]> git.proxmox.com Git - qemu.git/blob - block/sheepdog.c
Merge branch 'for-linux-user' of https://git.gitorious.org/qemu-m68k/qemu-m68k into...
[qemu.git] / block / sheepdog.c
1 /*
2 * Copyright (C) 2009-2010 Nippon Telegraph and Telephone Corporation.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License version
6 * 2 as published by the Free Software Foundation.
7 *
8 * You should have received a copy of the GNU General Public License
9 * along with this program. If not, see <http://www.gnu.org/licenses/>.
10 *
11 * Contributions after 2012-01-13 are licensed under the terms of the
12 * GNU GPL, version 2 or (at your option) any later version.
13 */
14
15 #include "qemu-common.h"
16 #include "qemu/error-report.h"
17 #include "qemu/sockets.h"
18 #include "block/block_int.h"
19 #include "qemu/bitops.h"
20
21 #define SD_PROTO_VER 0x01
22
23 #define SD_DEFAULT_ADDR "localhost"
24 #define SD_DEFAULT_PORT "7000"
25
26 #define SD_OP_CREATE_AND_WRITE_OBJ 0x01
27 #define SD_OP_READ_OBJ 0x02
28 #define SD_OP_WRITE_OBJ 0x03
29
30 #define SD_OP_NEW_VDI 0x11
31 #define SD_OP_LOCK_VDI 0x12
32 #define SD_OP_RELEASE_VDI 0x13
33 #define SD_OP_GET_VDI_INFO 0x14
34 #define SD_OP_READ_VDIS 0x15
35 #define SD_OP_FLUSH_VDI 0x16
36
37 #define SD_FLAG_CMD_WRITE 0x01
38 #define SD_FLAG_CMD_COW 0x02
39 #define SD_FLAG_CMD_CACHE 0x04 /* Writeback mode for cache */
40 #define SD_FLAG_CMD_DIRECT 0x08 /* Don't use cache */
41
42 #define SD_RES_SUCCESS 0x00 /* Success */
43 #define SD_RES_UNKNOWN 0x01 /* Unknown error */
44 #define SD_RES_NO_OBJ 0x02 /* No object found */
45 #define SD_RES_EIO 0x03 /* I/O error */
46 #define SD_RES_VDI_EXIST 0x04 /* Vdi exists already */
47 #define SD_RES_INVALID_PARMS 0x05 /* Invalid parameters */
48 #define SD_RES_SYSTEM_ERROR 0x06 /* System error */
49 #define SD_RES_VDI_LOCKED 0x07 /* Vdi is locked */
50 #define SD_RES_NO_VDI 0x08 /* No vdi found */
51 #define SD_RES_NO_BASE_VDI 0x09 /* No base vdi found */
52 #define SD_RES_VDI_READ 0x0A /* Cannot read requested vdi */
53 #define SD_RES_VDI_WRITE 0x0B /* Cannot write requested vdi */
54 #define SD_RES_BASE_VDI_READ 0x0C /* Cannot read base vdi */
55 #define SD_RES_BASE_VDI_WRITE 0x0D /* Cannot write base vdi */
56 #define SD_RES_NO_TAG 0x0E /* Requested tag is not found */
57 #define SD_RES_STARTUP 0x0F /* Sheepdog is on starting up */
58 #define SD_RES_VDI_NOT_LOCKED 0x10 /* Vdi is not locked */
59 #define SD_RES_SHUTDOWN 0x11 /* Sheepdog is shutting down */
60 #define SD_RES_NO_MEM 0x12 /* Cannot allocate memory */
61 #define SD_RES_FULL_VDI 0x13 /* we already have the maximum vdis */
62 #define SD_RES_VER_MISMATCH 0x14 /* Protocol version mismatch */
63 #define SD_RES_NO_SPACE 0x15 /* Server has no room for new objects */
64 #define SD_RES_WAIT_FOR_FORMAT 0x16 /* Waiting for a format operation */
65 #define SD_RES_WAIT_FOR_JOIN 0x17 /* Waiting for other nodes joining */
66 #define SD_RES_JOIN_FAILED 0x18 /* Target node had failed to join sheepdog */
67
68 /*
69 * Object ID rules
70 *
71 * 0 - 19 (20 bits): data object space
72 * 20 - 31 (12 bits): reserved data object space
73 * 32 - 55 (24 bits): vdi object space
74 * 56 - 59 ( 4 bits): reserved vdi object space
75 * 60 - 63 ( 4 bits): object type identifier space
76 */
77
78 #define VDI_SPACE_SHIFT 32
79 #define VDI_BIT (UINT64_C(1) << 63)
80 #define VMSTATE_BIT (UINT64_C(1) << 62)
81 #define MAX_DATA_OBJS (UINT64_C(1) << 20)
82 #define MAX_CHILDREN 1024
83 #define SD_MAX_VDI_LEN 256
84 #define SD_MAX_VDI_TAG_LEN 256
85 #define SD_NR_VDIS (1U << 24)
86 #define SD_DATA_OBJ_SIZE (UINT64_C(1) << 22)
87 #define SD_MAX_VDI_SIZE (SD_DATA_OBJ_SIZE * MAX_DATA_OBJS)
88 #define SECTOR_SIZE 512
89
90 #define SD_INODE_SIZE (sizeof(SheepdogInode))
91 #define CURRENT_VDI_ID 0
92
93 typedef struct SheepdogReq {
94 uint8_t proto_ver;
95 uint8_t opcode;
96 uint16_t flags;
97 uint32_t epoch;
98 uint32_t id;
99 uint32_t data_length;
100 uint32_t opcode_specific[8];
101 } SheepdogReq;
102
103 typedef struct SheepdogRsp {
104 uint8_t proto_ver;
105 uint8_t opcode;
106 uint16_t flags;
107 uint32_t epoch;
108 uint32_t id;
109 uint32_t data_length;
110 uint32_t result;
111 uint32_t opcode_specific[7];
112 } SheepdogRsp;
113
114 typedef struct SheepdogObjReq {
115 uint8_t proto_ver;
116 uint8_t opcode;
117 uint16_t flags;
118 uint32_t epoch;
119 uint32_t id;
120 uint32_t data_length;
121 uint64_t oid;
122 uint64_t cow_oid;
123 uint32_t copies;
124 uint32_t rsvd;
125 uint64_t offset;
126 } SheepdogObjReq;
127
128 typedef struct SheepdogObjRsp {
129 uint8_t proto_ver;
130 uint8_t opcode;
131 uint16_t flags;
132 uint32_t epoch;
133 uint32_t id;
134 uint32_t data_length;
135 uint32_t result;
136 uint32_t copies;
137 uint32_t pad[6];
138 } SheepdogObjRsp;
139
140 typedef struct SheepdogVdiReq {
141 uint8_t proto_ver;
142 uint8_t opcode;
143 uint16_t flags;
144 uint32_t epoch;
145 uint32_t id;
146 uint32_t data_length;
147 uint64_t vdi_size;
148 uint32_t vdi_id;
149 uint32_t copies;
150 uint32_t snapid;
151 uint32_t pad[3];
152 } SheepdogVdiReq;
153
154 typedef struct SheepdogVdiRsp {
155 uint8_t proto_ver;
156 uint8_t opcode;
157 uint16_t flags;
158 uint32_t epoch;
159 uint32_t id;
160 uint32_t data_length;
161 uint32_t result;
162 uint32_t rsvd;
163 uint32_t vdi_id;
164 uint32_t pad[5];
165 } SheepdogVdiRsp;
166
167 typedef struct SheepdogInode {
168 char name[SD_MAX_VDI_LEN];
169 char tag[SD_MAX_VDI_TAG_LEN];
170 uint64_t ctime;
171 uint64_t snap_ctime;
172 uint64_t vm_clock_nsec;
173 uint64_t vdi_size;
174 uint64_t vm_state_size;
175 uint16_t copy_policy;
176 uint8_t nr_copies;
177 uint8_t block_size_shift;
178 uint32_t snap_id;
179 uint32_t vdi_id;
180 uint32_t parent_vdi_id;
181 uint32_t child_vdi_id[MAX_CHILDREN];
182 uint32_t data_vdi_id[MAX_DATA_OBJS];
183 } SheepdogInode;
184
185 /*
186 * 64 bit FNV-1a non-zero initial basis
187 */
188 #define FNV1A_64_INIT ((uint64_t)0xcbf29ce484222325ULL)
189
190 /*
191 * 64 bit Fowler/Noll/Vo FNV-1a hash code
192 */
193 static inline uint64_t fnv_64a_buf(void *buf, size_t len, uint64_t hval)
194 {
195 unsigned char *bp = buf;
196 unsigned char *be = bp + len;
197 while (bp < be) {
198 hval ^= (uint64_t) *bp++;
199 hval += (hval << 1) + (hval << 4) + (hval << 5) +
200 (hval << 7) + (hval << 8) + (hval << 40);
201 }
202 return hval;
203 }
204
205 static inline bool is_data_obj_writable(SheepdogInode *inode, unsigned int idx)
206 {
207 return inode->vdi_id == inode->data_vdi_id[idx];
208 }
209
210 static inline bool is_data_obj(uint64_t oid)
211 {
212 return !(VDI_BIT & oid);
213 }
214
215 static inline uint64_t data_oid_to_idx(uint64_t oid)
216 {
217 return oid & (MAX_DATA_OBJS - 1);
218 }
219
220 static inline uint64_t vid_to_vdi_oid(uint32_t vid)
221 {
222 return VDI_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT);
223 }
224
225 static inline uint64_t vid_to_vmstate_oid(uint32_t vid, uint32_t idx)
226 {
227 return VMSTATE_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
228 }
229
230 static inline uint64_t vid_to_data_oid(uint32_t vid, uint32_t idx)
231 {
232 return ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
233 }
234
235 static inline bool is_snapshot(struct SheepdogInode *inode)
236 {
237 return !!inode->snap_ctime;
238 }
239
240 #undef dprintf
241 #ifdef DEBUG_SDOG
242 #define dprintf(fmt, args...) \
243 do { \
244 fprintf(stdout, "%s %d: " fmt, __func__, __LINE__, ##args); \
245 } while (0)
246 #else
247 #define dprintf(fmt, args...)
248 #endif
249
250 typedef struct SheepdogAIOCB SheepdogAIOCB;
251
252 typedef struct AIOReq {
253 SheepdogAIOCB *aiocb;
254 unsigned int iov_offset;
255
256 uint64_t oid;
257 uint64_t base_oid;
258 uint64_t offset;
259 unsigned int data_len;
260 uint8_t flags;
261 uint32_t id;
262
263 QLIST_ENTRY(AIOReq) aio_siblings;
264 } AIOReq;
265
266 enum AIOCBState {
267 AIOCB_WRITE_UDATA,
268 AIOCB_READ_UDATA,
269 AIOCB_FLUSH_CACHE,
270 };
271
272 struct SheepdogAIOCB {
273 BlockDriverAIOCB common;
274
275 QEMUIOVector *qiov;
276
277 int64_t sector_num;
278 int nb_sectors;
279
280 int ret;
281 enum AIOCBState aiocb_type;
282
283 Coroutine *coroutine;
284 void (*aio_done_func)(SheepdogAIOCB *);
285
286 bool canceled;
287 int nr_pending;
288 };
289
290 typedef struct BDRVSheepdogState {
291 SheepdogInode inode;
292
293 uint32_t min_dirty_data_idx;
294 uint32_t max_dirty_data_idx;
295
296 char name[SD_MAX_VDI_LEN];
297 bool is_snapshot;
298 uint32_t cache_flags;
299
300 char *addr;
301 char *port;
302 int fd;
303
304 CoMutex lock;
305 Coroutine *co_send;
306 Coroutine *co_recv;
307
308 uint32_t aioreq_seq_num;
309 QLIST_HEAD(inflight_aio_head, AIOReq) inflight_aio_head;
310 QLIST_HEAD(pending_aio_head, AIOReq) pending_aio_head;
311 } BDRVSheepdogState;
312
313 static const char * sd_strerror(int err)
314 {
315 int i;
316
317 static const struct {
318 int err;
319 const char *desc;
320 } errors[] = {
321 {SD_RES_SUCCESS, "Success"},
322 {SD_RES_UNKNOWN, "Unknown error"},
323 {SD_RES_NO_OBJ, "No object found"},
324 {SD_RES_EIO, "I/O error"},
325 {SD_RES_VDI_EXIST, "VDI exists already"},
326 {SD_RES_INVALID_PARMS, "Invalid parameters"},
327 {SD_RES_SYSTEM_ERROR, "System error"},
328 {SD_RES_VDI_LOCKED, "VDI is already locked"},
329 {SD_RES_NO_VDI, "No vdi found"},
330 {SD_RES_NO_BASE_VDI, "No base VDI found"},
331 {SD_RES_VDI_READ, "Failed read the requested VDI"},
332 {SD_RES_VDI_WRITE, "Failed to write the requested VDI"},
333 {SD_RES_BASE_VDI_READ, "Failed to read the base VDI"},
334 {SD_RES_BASE_VDI_WRITE, "Failed to write the base VDI"},
335 {SD_RES_NO_TAG, "Failed to find the requested tag"},
336 {SD_RES_STARTUP, "The system is still booting"},
337 {SD_RES_VDI_NOT_LOCKED, "VDI isn't locked"},
338 {SD_RES_SHUTDOWN, "The system is shutting down"},
339 {SD_RES_NO_MEM, "Out of memory on the server"},
340 {SD_RES_FULL_VDI, "We already have the maximum vdis"},
341 {SD_RES_VER_MISMATCH, "Protocol version mismatch"},
342 {SD_RES_NO_SPACE, "Server has no space for new objects"},
343 {SD_RES_WAIT_FOR_FORMAT, "Sheepdog is waiting for a format operation"},
344 {SD_RES_WAIT_FOR_JOIN, "Sheepdog is waiting for other nodes joining"},
345 {SD_RES_JOIN_FAILED, "Target node had failed to join sheepdog"},
346 };
347
348 for (i = 0; i < ARRAY_SIZE(errors); ++i) {
349 if (errors[i].err == err) {
350 return errors[i].desc;
351 }
352 }
353
354 return "Invalid error code";
355 }
356
357 /*
358 * Sheepdog I/O handling:
359 *
360 * 1. In sd_co_rw_vector, we send the I/O requests to the server and
361 * link the requests to the inflight_list in the
362 * BDRVSheepdogState. The function exits without waiting for
363 * receiving the response.
364 *
365 * 2. We receive the response in aio_read_response, the fd handler to
366 * the sheepdog connection. If metadata update is needed, we send
367 * the write request to the vdi object in sd_write_done, the write
368 * completion function. We switch back to sd_co_readv/writev after
369 * all the requests belonging to the AIOCB are finished.
370 */
371
372 static inline AIOReq *alloc_aio_req(BDRVSheepdogState *s, SheepdogAIOCB *acb,
373 uint64_t oid, unsigned int data_len,
374 uint64_t offset, uint8_t flags,
375 uint64_t base_oid, unsigned int iov_offset)
376 {
377 AIOReq *aio_req;
378
379 aio_req = g_malloc(sizeof(*aio_req));
380 aio_req->aiocb = acb;
381 aio_req->iov_offset = iov_offset;
382 aio_req->oid = oid;
383 aio_req->base_oid = base_oid;
384 aio_req->offset = offset;
385 aio_req->data_len = data_len;
386 aio_req->flags = flags;
387 aio_req->id = s->aioreq_seq_num++;
388
389 acb->nr_pending++;
390 return aio_req;
391 }
392
393 static inline void free_aio_req(BDRVSheepdogState *s, AIOReq *aio_req)
394 {
395 SheepdogAIOCB *acb = aio_req->aiocb;
396
397 QLIST_REMOVE(aio_req, aio_siblings);
398 g_free(aio_req);
399
400 acb->nr_pending--;
401 }
402
403 static void coroutine_fn sd_finish_aiocb(SheepdogAIOCB *acb)
404 {
405 if (!acb->canceled) {
406 qemu_coroutine_enter(acb->coroutine, NULL);
407 }
408 qemu_aio_release(acb);
409 }
410
411 static void sd_aio_cancel(BlockDriverAIOCB *blockacb)
412 {
413 SheepdogAIOCB *acb = (SheepdogAIOCB *)blockacb;
414
415 /*
416 * Sheepdog cannot cancel the requests which are already sent to
417 * the servers, so we just complete the request with -EIO here.
418 */
419 acb->ret = -EIO;
420 qemu_coroutine_enter(acb->coroutine, NULL);
421 acb->canceled = true;
422 }
423
424 static const AIOCBInfo sd_aiocb_info = {
425 .aiocb_size = sizeof(SheepdogAIOCB),
426 .cancel = sd_aio_cancel,
427 };
428
429 static SheepdogAIOCB *sd_aio_setup(BlockDriverState *bs, QEMUIOVector *qiov,
430 int64_t sector_num, int nb_sectors)
431 {
432 SheepdogAIOCB *acb;
433
434 acb = qemu_aio_get(&sd_aiocb_info, bs, NULL, NULL);
435
436 acb->qiov = qiov;
437
438 acb->sector_num = sector_num;
439 acb->nb_sectors = nb_sectors;
440
441 acb->aio_done_func = NULL;
442 acb->canceled = false;
443 acb->coroutine = qemu_coroutine_self();
444 acb->ret = 0;
445 acb->nr_pending = 0;
446 return acb;
447 }
448
449 static int connect_to_sdog(const char *addr, const char *port)
450 {
451 char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];
452 int fd, ret;
453 struct addrinfo hints, *res, *res0;
454
455 if (!addr) {
456 addr = SD_DEFAULT_ADDR;
457 port = SD_DEFAULT_PORT;
458 }
459
460 memset(&hints, 0, sizeof(hints));
461 hints.ai_socktype = SOCK_STREAM;
462
463 ret = getaddrinfo(addr, port, &hints, &res0);
464 if (ret) {
465 error_report("unable to get address info %s, %s",
466 addr, strerror(errno));
467 return -errno;
468 }
469
470 for (res = res0; res; res = res->ai_next) {
471 ret = getnameinfo(res->ai_addr, res->ai_addrlen, hbuf, sizeof(hbuf),
472 sbuf, sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV);
473 if (ret) {
474 continue;
475 }
476
477 fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
478 if (fd < 0) {
479 continue;
480 }
481
482 reconnect:
483 ret = connect(fd, res->ai_addr, res->ai_addrlen);
484 if (ret < 0) {
485 if (errno == EINTR) {
486 goto reconnect;
487 }
488 close(fd);
489 break;
490 }
491
492 dprintf("connected to %s:%s\n", addr, port);
493 goto success;
494 }
495 fd = -errno;
496 error_report("failed connect to %s:%s", addr, port);
497 success:
498 freeaddrinfo(res0);
499 return fd;
500 }
501
502 static coroutine_fn int send_co_req(int sockfd, SheepdogReq *hdr, void *data,
503 unsigned int *wlen)
504 {
505 int ret;
506
507 ret = qemu_co_send(sockfd, hdr, sizeof(*hdr));
508 if (ret < sizeof(*hdr)) {
509 error_report("failed to send a req, %s", strerror(errno));
510 return ret;
511 }
512
513 ret = qemu_co_send(sockfd, data, *wlen);
514 if (ret < *wlen) {
515 error_report("failed to send a req, %s", strerror(errno));
516 }
517
518 return ret;
519 }
520
521 static void restart_co_req(void *opaque)
522 {
523 Coroutine *co = opaque;
524
525 qemu_coroutine_enter(co, NULL);
526 }
527
528 typedef struct SheepdogReqCo {
529 int sockfd;
530 SheepdogReq *hdr;
531 void *data;
532 unsigned int *wlen;
533 unsigned int *rlen;
534 int ret;
535 bool finished;
536 } SheepdogReqCo;
537
538 static coroutine_fn void do_co_req(void *opaque)
539 {
540 int ret;
541 Coroutine *co;
542 SheepdogReqCo *srco = opaque;
543 int sockfd = srco->sockfd;
544 SheepdogReq *hdr = srco->hdr;
545 void *data = srco->data;
546 unsigned int *wlen = srco->wlen;
547 unsigned int *rlen = srco->rlen;
548
549 co = qemu_coroutine_self();
550 qemu_aio_set_fd_handler(sockfd, NULL, restart_co_req, NULL, co);
551
552 socket_set_block(sockfd);
553 ret = send_co_req(sockfd, hdr, data, wlen);
554 if (ret < 0) {
555 goto out;
556 }
557
558 qemu_aio_set_fd_handler(sockfd, restart_co_req, NULL, NULL, co);
559
560 ret = qemu_co_recv(sockfd, hdr, sizeof(*hdr));
561 if (ret < sizeof(*hdr)) {
562 error_report("failed to get a rsp, %s", strerror(errno));
563 ret = -errno;
564 goto out;
565 }
566
567 if (*rlen > hdr->data_length) {
568 *rlen = hdr->data_length;
569 }
570
571 if (*rlen) {
572 ret = qemu_co_recv(sockfd, data, *rlen);
573 if (ret < *rlen) {
574 error_report("failed to get the data, %s", strerror(errno));
575 ret = -errno;
576 goto out;
577 }
578 }
579 ret = 0;
580 out:
581 qemu_aio_set_fd_handler(sockfd, NULL, NULL, NULL, NULL);
582 socket_set_nonblock(sockfd);
583
584 srco->ret = ret;
585 srco->finished = true;
586 }
587
588 static int do_req(int sockfd, SheepdogReq *hdr, void *data,
589 unsigned int *wlen, unsigned int *rlen)
590 {
591 Coroutine *co;
592 SheepdogReqCo srco = {
593 .sockfd = sockfd,
594 .hdr = hdr,
595 .data = data,
596 .wlen = wlen,
597 .rlen = rlen,
598 .ret = 0,
599 .finished = false,
600 };
601
602 if (qemu_in_coroutine()) {
603 do_co_req(&srco);
604 } else {
605 co = qemu_coroutine_create(do_co_req);
606 qemu_coroutine_enter(co, &srco);
607 while (!srco.finished) {
608 qemu_aio_wait();
609 }
610 }
611
612 return srco.ret;
613 }
614
615 static int coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
616 struct iovec *iov, int niov, bool create,
617 enum AIOCBState aiocb_type);
618
619
620 static AIOReq *find_pending_req(BDRVSheepdogState *s, uint64_t oid)
621 {
622 AIOReq *aio_req;
623
624 QLIST_FOREACH(aio_req, &s->pending_aio_head, aio_siblings) {
625 if (aio_req->oid == oid) {
626 return aio_req;
627 }
628 }
629
630 return NULL;
631 }
632
633 /*
634 * This function searchs pending requests to the object `oid', and
635 * sends them.
636 */
637 static void coroutine_fn send_pending_req(BDRVSheepdogState *s, uint64_t oid)
638 {
639 AIOReq *aio_req;
640 SheepdogAIOCB *acb;
641 int ret;
642
643 while ((aio_req = find_pending_req(s, oid)) != NULL) {
644 acb = aio_req->aiocb;
645 /* move aio_req from pending list to inflight one */
646 QLIST_REMOVE(aio_req, aio_siblings);
647 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
648 ret = add_aio_request(s, aio_req, acb->qiov->iov,
649 acb->qiov->niov, false, acb->aiocb_type);
650 if (ret < 0) {
651 error_report("add_aio_request is failed");
652 free_aio_req(s, aio_req);
653 if (!acb->nr_pending) {
654 sd_finish_aiocb(acb);
655 }
656 }
657 }
658 }
659
660 /*
661 * Receive responses of the I/O requests.
662 *
663 * This function is registered as a fd handler, and called from the
664 * main loop when s->fd is ready for reading responses.
665 */
666 static void coroutine_fn aio_read_response(void *opaque)
667 {
668 SheepdogObjRsp rsp;
669 BDRVSheepdogState *s = opaque;
670 int fd = s->fd;
671 int ret;
672 AIOReq *aio_req = NULL;
673 SheepdogAIOCB *acb;
674 unsigned long idx;
675
676 if (QLIST_EMPTY(&s->inflight_aio_head)) {
677 goto out;
678 }
679
680 /* read a header */
681 ret = qemu_co_recv(fd, &rsp, sizeof(rsp));
682 if (ret < 0) {
683 error_report("failed to get the header, %s", strerror(errno));
684 goto out;
685 }
686
687 /* find the right aio_req from the inflight aio list */
688 QLIST_FOREACH(aio_req, &s->inflight_aio_head, aio_siblings) {
689 if (aio_req->id == rsp.id) {
690 break;
691 }
692 }
693 if (!aio_req) {
694 error_report("cannot find aio_req %x", rsp.id);
695 goto out;
696 }
697
698 acb = aio_req->aiocb;
699
700 switch (acb->aiocb_type) {
701 case AIOCB_WRITE_UDATA:
702 /* this coroutine context is no longer suitable for co_recv
703 * because we may send data to update vdi objects */
704 s->co_recv = NULL;
705 if (!is_data_obj(aio_req->oid)) {
706 break;
707 }
708 idx = data_oid_to_idx(aio_req->oid);
709
710 if (s->inode.data_vdi_id[idx] != s->inode.vdi_id) {
711 /*
712 * If the object is newly created one, we need to update
713 * the vdi object (metadata object). min_dirty_data_idx
714 * and max_dirty_data_idx are changed to include updated
715 * index between them.
716 */
717 if (rsp.result == SD_RES_SUCCESS) {
718 s->inode.data_vdi_id[idx] = s->inode.vdi_id;
719 s->max_dirty_data_idx = MAX(idx, s->max_dirty_data_idx);
720 s->min_dirty_data_idx = MIN(idx, s->min_dirty_data_idx);
721 }
722 /*
723 * Some requests may be blocked because simultaneous
724 * create requests are not allowed, so we search the
725 * pending requests here.
726 */
727 send_pending_req(s, aio_req->oid);
728 }
729 break;
730 case AIOCB_READ_UDATA:
731 ret = qemu_co_recvv(fd, acb->qiov->iov, acb->qiov->niov,
732 aio_req->iov_offset, rsp.data_length);
733 if (ret < 0) {
734 error_report("failed to get the data, %s", strerror(errno));
735 goto out;
736 }
737 break;
738 case AIOCB_FLUSH_CACHE:
739 if (rsp.result == SD_RES_INVALID_PARMS) {
740 dprintf("disable cache since the server doesn't support it\n");
741 s->cache_flags = SD_FLAG_CMD_DIRECT;
742 rsp.result = SD_RES_SUCCESS;
743 }
744 break;
745 }
746
747 if (rsp.result != SD_RES_SUCCESS) {
748 acb->ret = -EIO;
749 error_report("%s", sd_strerror(rsp.result));
750 }
751
752 free_aio_req(s, aio_req);
753 if (!acb->nr_pending) {
754 /*
755 * We've finished all requests which belong to the AIOCB, so
756 * we can switch back to sd_co_readv/writev now.
757 */
758 acb->aio_done_func(acb);
759 }
760 out:
761 s->co_recv = NULL;
762 }
763
764 static void co_read_response(void *opaque)
765 {
766 BDRVSheepdogState *s = opaque;
767
768 if (!s->co_recv) {
769 s->co_recv = qemu_coroutine_create(aio_read_response);
770 }
771
772 qemu_coroutine_enter(s->co_recv, opaque);
773 }
774
775 static void co_write_request(void *opaque)
776 {
777 BDRVSheepdogState *s = opaque;
778
779 qemu_coroutine_enter(s->co_send, NULL);
780 }
781
782 static int aio_flush_request(void *opaque)
783 {
784 BDRVSheepdogState *s = opaque;
785
786 return !QLIST_EMPTY(&s->inflight_aio_head) ||
787 !QLIST_EMPTY(&s->pending_aio_head);
788 }
789
790 static int set_nodelay(int fd)
791 {
792 int ret, opt;
793
794 opt = 1;
795 ret = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&opt, sizeof(opt));
796 return ret;
797 }
798
799 /*
800 * Return a socket discriptor to read/write objects.
801 *
802 * We cannot use this discriptor for other operations because
803 * the block driver may be on waiting response from the server.
804 */
805 static int get_sheep_fd(BDRVSheepdogState *s)
806 {
807 int ret, fd;
808
809 fd = connect_to_sdog(s->addr, s->port);
810 if (fd < 0) {
811 error_report("%s", strerror(errno));
812 return fd;
813 }
814
815 socket_set_nonblock(fd);
816
817 ret = set_nodelay(fd);
818 if (ret) {
819 error_report("%s", strerror(errno));
820 closesocket(fd);
821 return -errno;
822 }
823
824 qemu_aio_set_fd_handler(fd, co_read_response, NULL, aio_flush_request, s);
825 return fd;
826 }
827
828 /*
829 * Parse a filename
830 *
831 * filename must be one of the following formats:
832 * 1. [vdiname]
833 * 2. [vdiname]:[snapid]
834 * 3. [vdiname]:[tag]
835 * 4. [hostname]:[port]:[vdiname]
836 * 5. [hostname]:[port]:[vdiname]:[snapid]
837 * 6. [hostname]:[port]:[vdiname]:[tag]
838 *
839 * You can boot from the snapshot images by specifying `snapid` or
840 * `tag'.
841 *
842 * You can run VMs outside the Sheepdog cluster by specifying
843 * `hostname' and `port' (experimental).
844 */
845 static int parse_vdiname(BDRVSheepdogState *s, const char *filename,
846 char *vdi, uint32_t *snapid, char *tag)
847 {
848 char *p, *q;
849 int nr_sep;
850
851 p = q = g_strdup(filename);
852
853 /* count the number of separators */
854 nr_sep = 0;
855 while (*p) {
856 if (*p == ':') {
857 nr_sep++;
858 }
859 p++;
860 }
861 p = q;
862
863 /* use the first two tokens as hostname and port number. */
864 if (nr_sep >= 2) {
865 s->addr = p;
866 p = strchr(p, ':');
867 *p++ = '\0';
868
869 s->port = p;
870 p = strchr(p, ':');
871 *p++ = '\0';
872 } else {
873 s->addr = NULL;
874 s->port = 0;
875 }
876
877 pstrcpy(vdi, SD_MAX_VDI_LEN, p);
878
879 p = strchr(vdi, ':');
880 if (p) {
881 *p++ = '\0';
882 *snapid = strtoul(p, NULL, 10);
883 if (*snapid == 0) {
884 pstrcpy(tag, SD_MAX_VDI_TAG_LEN, p);
885 }
886 } else {
887 *snapid = CURRENT_VDI_ID; /* search current vdi */
888 }
889
890 if (s->addr == NULL) {
891 g_free(q);
892 }
893
894 return 0;
895 }
896
897 static int find_vdi_name(BDRVSheepdogState *s, char *filename, uint32_t snapid,
898 char *tag, uint32_t *vid, int for_snapshot)
899 {
900 int ret, fd;
901 SheepdogVdiReq hdr;
902 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
903 unsigned int wlen, rlen = 0;
904 char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN];
905
906 fd = connect_to_sdog(s->addr, s->port);
907 if (fd < 0) {
908 return fd;
909 }
910
911 /* This pair of strncpy calls ensures that the buffer is zero-filled,
912 * which is desirable since we'll soon be sending those bytes, and
913 * don't want the send_req to read uninitialized data.
914 */
915 strncpy(buf, filename, SD_MAX_VDI_LEN);
916 strncpy(buf + SD_MAX_VDI_LEN, tag, SD_MAX_VDI_TAG_LEN);
917
918 memset(&hdr, 0, sizeof(hdr));
919 if (for_snapshot) {
920 hdr.opcode = SD_OP_GET_VDI_INFO;
921 } else {
922 hdr.opcode = SD_OP_LOCK_VDI;
923 }
924 wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN;
925 hdr.proto_ver = SD_PROTO_VER;
926 hdr.data_length = wlen;
927 hdr.snapid = snapid;
928 hdr.flags = SD_FLAG_CMD_WRITE;
929
930 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
931 if (ret) {
932 goto out;
933 }
934
935 if (rsp->result != SD_RES_SUCCESS) {
936 error_report("cannot get vdi info, %s, %s %d %s",
937 sd_strerror(rsp->result), filename, snapid, tag);
938 if (rsp->result == SD_RES_NO_VDI) {
939 ret = -ENOENT;
940 } else {
941 ret = -EIO;
942 }
943 goto out;
944 }
945 *vid = rsp->vdi_id;
946
947 ret = 0;
948 out:
949 closesocket(fd);
950 return ret;
951 }
952
953 static int coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
954 struct iovec *iov, int niov, bool create,
955 enum AIOCBState aiocb_type)
956 {
957 int nr_copies = s->inode.nr_copies;
958 SheepdogObjReq hdr;
959 unsigned int wlen = 0;
960 int ret;
961 uint64_t oid = aio_req->oid;
962 unsigned int datalen = aio_req->data_len;
963 uint64_t offset = aio_req->offset;
964 uint8_t flags = aio_req->flags;
965 uint64_t old_oid = aio_req->base_oid;
966
967 if (!nr_copies) {
968 error_report("bug");
969 }
970
971 memset(&hdr, 0, sizeof(hdr));
972
973 switch (aiocb_type) {
974 case AIOCB_FLUSH_CACHE:
975 hdr.opcode = SD_OP_FLUSH_VDI;
976 break;
977 case AIOCB_READ_UDATA:
978 hdr.opcode = SD_OP_READ_OBJ;
979 hdr.flags = flags;
980 break;
981 case AIOCB_WRITE_UDATA:
982 if (create) {
983 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
984 } else {
985 hdr.opcode = SD_OP_WRITE_OBJ;
986 }
987 wlen = datalen;
988 hdr.flags = SD_FLAG_CMD_WRITE | flags;
989 break;
990 }
991
992 if (s->cache_flags) {
993 hdr.flags |= s->cache_flags;
994 }
995
996 hdr.oid = oid;
997 hdr.cow_oid = old_oid;
998 hdr.copies = s->inode.nr_copies;
999
1000 hdr.data_length = datalen;
1001 hdr.offset = offset;
1002
1003 hdr.id = aio_req->id;
1004
1005 qemu_co_mutex_lock(&s->lock);
1006 s->co_send = qemu_coroutine_self();
1007 qemu_aio_set_fd_handler(s->fd, co_read_response, co_write_request,
1008 aio_flush_request, s);
1009 socket_set_cork(s->fd, 1);
1010
1011 /* send a header */
1012 ret = qemu_co_send(s->fd, &hdr, sizeof(hdr));
1013 if (ret < 0) {
1014 qemu_co_mutex_unlock(&s->lock);
1015 error_report("failed to send a req, %s", strerror(errno));
1016 return -errno;
1017 }
1018
1019 if (wlen) {
1020 ret = qemu_co_sendv(s->fd, iov, niov, aio_req->iov_offset, wlen);
1021 if (ret < 0) {
1022 qemu_co_mutex_unlock(&s->lock);
1023 error_report("failed to send a data, %s", strerror(errno));
1024 return -errno;
1025 }
1026 }
1027
1028 socket_set_cork(s->fd, 0);
1029 qemu_aio_set_fd_handler(s->fd, co_read_response, NULL,
1030 aio_flush_request, s);
1031 qemu_co_mutex_unlock(&s->lock);
1032
1033 return 0;
1034 }
1035
1036 static int read_write_object(int fd, char *buf, uint64_t oid, int copies,
1037 unsigned int datalen, uint64_t offset,
1038 bool write, bool create, uint32_t cache_flags)
1039 {
1040 SheepdogObjReq hdr;
1041 SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr;
1042 unsigned int wlen, rlen;
1043 int ret;
1044
1045 memset(&hdr, 0, sizeof(hdr));
1046
1047 if (write) {
1048 wlen = datalen;
1049 rlen = 0;
1050 hdr.flags = SD_FLAG_CMD_WRITE;
1051 if (create) {
1052 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
1053 } else {
1054 hdr.opcode = SD_OP_WRITE_OBJ;
1055 }
1056 } else {
1057 wlen = 0;
1058 rlen = datalen;
1059 hdr.opcode = SD_OP_READ_OBJ;
1060 }
1061
1062 hdr.flags |= cache_flags;
1063
1064 hdr.oid = oid;
1065 hdr.data_length = datalen;
1066 hdr.offset = offset;
1067 hdr.copies = copies;
1068
1069 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1070 if (ret) {
1071 error_report("failed to send a request to the sheep");
1072 return ret;
1073 }
1074
1075 switch (rsp->result) {
1076 case SD_RES_SUCCESS:
1077 return 0;
1078 default:
1079 error_report("%s", sd_strerror(rsp->result));
1080 return -EIO;
1081 }
1082 }
1083
1084 static int read_object(int fd, char *buf, uint64_t oid, int copies,
1085 unsigned int datalen, uint64_t offset,
1086 uint32_t cache_flags)
1087 {
1088 return read_write_object(fd, buf, oid, copies, datalen, offset, false,
1089 false, cache_flags);
1090 }
1091
1092 static int write_object(int fd, char *buf, uint64_t oid, int copies,
1093 unsigned int datalen, uint64_t offset, bool create,
1094 uint32_t cache_flags)
1095 {
1096 return read_write_object(fd, buf, oid, copies, datalen, offset, true,
1097 create, cache_flags);
1098 }
1099
1100 static int sd_open(BlockDriverState *bs, const char *filename, int flags)
1101 {
1102 int ret, fd;
1103 uint32_t vid = 0;
1104 BDRVSheepdogState *s = bs->opaque;
1105 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1106 uint32_t snapid;
1107 char *buf = NULL;
1108
1109 strstart(filename, "sheepdog:", (const char **)&filename);
1110
1111 QLIST_INIT(&s->inflight_aio_head);
1112 QLIST_INIT(&s->pending_aio_head);
1113 s->fd = -1;
1114
1115 memset(vdi, 0, sizeof(vdi));
1116 memset(tag, 0, sizeof(tag));
1117 if (parse_vdiname(s, filename, vdi, &snapid, tag) < 0) {
1118 ret = -EINVAL;
1119 goto out;
1120 }
1121 s->fd = get_sheep_fd(s);
1122 if (s->fd < 0) {
1123 ret = s->fd;
1124 goto out;
1125 }
1126
1127 ret = find_vdi_name(s, vdi, snapid, tag, &vid, 0);
1128 if (ret) {
1129 goto out;
1130 }
1131
1132 /*
1133 * QEMU block layer emulates writethrough cache as 'writeback + flush', so
1134 * we always set SD_FLAG_CMD_CACHE (writeback cache) as default.
1135 */
1136 s->cache_flags = SD_FLAG_CMD_CACHE;
1137 if (flags & BDRV_O_NOCACHE) {
1138 s->cache_flags = SD_FLAG_CMD_DIRECT;
1139 }
1140
1141 if (snapid || tag[0] != '\0') {
1142 dprintf("%" PRIx32 " snapshot inode was open.\n", vid);
1143 s->is_snapshot = true;
1144 }
1145
1146 fd = connect_to_sdog(s->addr, s->port);
1147 if (fd < 0) {
1148 error_report("failed to connect");
1149 ret = fd;
1150 goto out;
1151 }
1152
1153 buf = g_malloc(SD_INODE_SIZE);
1154 ret = read_object(fd, buf, vid_to_vdi_oid(vid), 0, SD_INODE_SIZE, 0,
1155 s->cache_flags);
1156
1157 closesocket(fd);
1158
1159 if (ret) {
1160 goto out;
1161 }
1162
1163 memcpy(&s->inode, buf, sizeof(s->inode));
1164 s->min_dirty_data_idx = UINT32_MAX;
1165 s->max_dirty_data_idx = 0;
1166
1167 bs->total_sectors = s->inode.vdi_size / SECTOR_SIZE;
1168 pstrcpy(s->name, sizeof(s->name), vdi);
1169 qemu_co_mutex_init(&s->lock);
1170 g_free(buf);
1171 return 0;
1172 out:
1173 qemu_aio_set_fd_handler(s->fd, NULL, NULL, NULL, NULL);
1174 if (s->fd >= 0) {
1175 closesocket(s->fd);
1176 }
1177 g_free(buf);
1178 return ret;
1179 }
1180
1181 static int do_sd_create(char *filename, int64_t vdi_size,
1182 uint32_t base_vid, uint32_t *vdi_id, int snapshot,
1183 const char *addr, const char *port)
1184 {
1185 SheepdogVdiReq hdr;
1186 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1187 int fd, ret;
1188 unsigned int wlen, rlen = 0;
1189 char buf[SD_MAX_VDI_LEN];
1190
1191 fd = connect_to_sdog(addr, port);
1192 if (fd < 0) {
1193 return fd;
1194 }
1195
1196 /* FIXME: would it be better to fail (e.g., return -EIO) when filename
1197 * does not fit in buf? For now, just truncate and avoid buffer overrun.
1198 */
1199 memset(buf, 0, sizeof(buf));
1200 pstrcpy(buf, sizeof(buf), filename);
1201
1202 memset(&hdr, 0, sizeof(hdr));
1203 hdr.opcode = SD_OP_NEW_VDI;
1204 hdr.vdi_id = base_vid;
1205
1206 wlen = SD_MAX_VDI_LEN;
1207
1208 hdr.flags = SD_FLAG_CMD_WRITE;
1209 hdr.snapid = snapshot;
1210
1211 hdr.data_length = wlen;
1212 hdr.vdi_size = vdi_size;
1213
1214 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1215
1216 closesocket(fd);
1217
1218 if (ret) {
1219 return ret;
1220 }
1221
1222 if (rsp->result != SD_RES_SUCCESS) {
1223 error_report("%s, %s", sd_strerror(rsp->result), filename);
1224 return -EIO;
1225 }
1226
1227 if (vdi_id) {
1228 *vdi_id = rsp->vdi_id;
1229 }
1230
1231 return 0;
1232 }
1233
1234 static int sd_prealloc(const char *filename)
1235 {
1236 BlockDriverState *bs = NULL;
1237 uint32_t idx, max_idx;
1238 int64_t vdi_size;
1239 void *buf = g_malloc0(SD_DATA_OBJ_SIZE);
1240 int ret;
1241
1242 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR);
1243 if (ret < 0) {
1244 goto out;
1245 }
1246
1247 vdi_size = bdrv_getlength(bs);
1248 if (vdi_size < 0) {
1249 ret = vdi_size;
1250 goto out;
1251 }
1252 max_idx = DIV_ROUND_UP(vdi_size, SD_DATA_OBJ_SIZE);
1253
1254 for (idx = 0; idx < max_idx; idx++) {
1255 /*
1256 * The created image can be a cloned image, so we need to read
1257 * a data from the source image.
1258 */
1259 ret = bdrv_pread(bs, idx * SD_DATA_OBJ_SIZE, buf, SD_DATA_OBJ_SIZE);
1260 if (ret < 0) {
1261 goto out;
1262 }
1263 ret = bdrv_pwrite(bs, idx * SD_DATA_OBJ_SIZE, buf, SD_DATA_OBJ_SIZE);
1264 if (ret < 0) {
1265 goto out;
1266 }
1267 }
1268 out:
1269 if (bs) {
1270 bdrv_delete(bs);
1271 }
1272 g_free(buf);
1273
1274 return ret;
1275 }
1276
1277 static int sd_create(const char *filename, QEMUOptionParameter *options)
1278 {
1279 int ret = 0;
1280 uint32_t vid = 0, base_vid = 0;
1281 int64_t vdi_size = 0;
1282 char *backing_file = NULL;
1283 BDRVSheepdogState *s;
1284 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1285 uint32_t snapid;
1286 bool prealloc = false;
1287 const char *vdiname;
1288
1289 s = g_malloc0(sizeof(BDRVSheepdogState));
1290
1291 strstart(filename, "sheepdog:", &vdiname);
1292
1293 memset(vdi, 0, sizeof(vdi));
1294 memset(tag, 0, sizeof(tag));
1295 if (parse_vdiname(s, vdiname, vdi, &snapid, tag) < 0) {
1296 error_report("invalid filename");
1297 ret = -EINVAL;
1298 goto out;
1299 }
1300
1301 while (options && options->name) {
1302 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
1303 vdi_size = options->value.n;
1304 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
1305 backing_file = options->value.s;
1306 } else if (!strcmp(options->name, BLOCK_OPT_PREALLOC)) {
1307 if (!options->value.s || !strcmp(options->value.s, "off")) {
1308 prealloc = false;
1309 } else if (!strcmp(options->value.s, "full")) {
1310 prealloc = true;
1311 } else {
1312 error_report("Invalid preallocation mode: '%s'",
1313 options->value.s);
1314 ret = -EINVAL;
1315 goto out;
1316 }
1317 }
1318 options++;
1319 }
1320
1321 if (vdi_size > SD_MAX_VDI_SIZE) {
1322 error_report("too big image size");
1323 ret = -EINVAL;
1324 goto out;
1325 }
1326
1327 if (backing_file) {
1328 BlockDriverState *bs;
1329 BDRVSheepdogState *s;
1330 BlockDriver *drv;
1331
1332 /* Currently, only Sheepdog backing image is supported. */
1333 drv = bdrv_find_protocol(backing_file);
1334 if (!drv || strcmp(drv->protocol_name, "sheepdog") != 0) {
1335 error_report("backing_file must be a sheepdog image");
1336 ret = -EINVAL;
1337 goto out;
1338 }
1339
1340 ret = bdrv_file_open(&bs, backing_file, 0);
1341 if (ret < 0) {
1342 goto out;
1343 }
1344
1345 s = bs->opaque;
1346
1347 if (!is_snapshot(&s->inode)) {
1348 error_report("cannot clone from a non snapshot vdi");
1349 bdrv_delete(bs);
1350 ret = -EINVAL;
1351 goto out;
1352 }
1353
1354 base_vid = s->inode.vdi_id;
1355 bdrv_delete(bs);
1356 }
1357
1358 ret = do_sd_create(vdi, vdi_size, base_vid, &vid, 0, s->addr, s->port);
1359 if (!prealloc || ret) {
1360 goto out;
1361 }
1362
1363 ret = sd_prealloc(filename);
1364 out:
1365 g_free(s);
1366 return ret;
1367 }
1368
1369 static void sd_close(BlockDriverState *bs)
1370 {
1371 BDRVSheepdogState *s = bs->opaque;
1372 SheepdogVdiReq hdr;
1373 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1374 unsigned int wlen, rlen = 0;
1375 int fd, ret;
1376
1377 dprintf("%s\n", s->name);
1378
1379 fd = connect_to_sdog(s->addr, s->port);
1380 if (fd < 0) {
1381 return;
1382 }
1383
1384 memset(&hdr, 0, sizeof(hdr));
1385
1386 hdr.opcode = SD_OP_RELEASE_VDI;
1387 hdr.vdi_id = s->inode.vdi_id;
1388 wlen = strlen(s->name) + 1;
1389 hdr.data_length = wlen;
1390 hdr.flags = SD_FLAG_CMD_WRITE;
1391
1392 ret = do_req(fd, (SheepdogReq *)&hdr, s->name, &wlen, &rlen);
1393
1394 closesocket(fd);
1395
1396 if (!ret && rsp->result != SD_RES_SUCCESS &&
1397 rsp->result != SD_RES_VDI_NOT_LOCKED) {
1398 error_report("%s, %s", sd_strerror(rsp->result), s->name);
1399 }
1400
1401 qemu_aio_set_fd_handler(s->fd, NULL, NULL, NULL, NULL);
1402 closesocket(s->fd);
1403 g_free(s->addr);
1404 }
1405
1406 static int64_t sd_getlength(BlockDriverState *bs)
1407 {
1408 BDRVSheepdogState *s = bs->opaque;
1409
1410 return s->inode.vdi_size;
1411 }
1412
1413 static int sd_truncate(BlockDriverState *bs, int64_t offset)
1414 {
1415 BDRVSheepdogState *s = bs->opaque;
1416 int ret, fd;
1417 unsigned int datalen;
1418
1419 if (offset < s->inode.vdi_size) {
1420 error_report("shrinking is not supported");
1421 return -EINVAL;
1422 } else if (offset > SD_MAX_VDI_SIZE) {
1423 error_report("too big image size");
1424 return -EINVAL;
1425 }
1426
1427 fd = connect_to_sdog(s->addr, s->port);
1428 if (fd < 0) {
1429 return fd;
1430 }
1431
1432 /* we don't need to update entire object */
1433 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
1434 s->inode.vdi_size = offset;
1435 ret = write_object(fd, (char *)&s->inode, vid_to_vdi_oid(s->inode.vdi_id),
1436 s->inode.nr_copies, datalen, 0, false, s->cache_flags);
1437 close(fd);
1438
1439 if (ret < 0) {
1440 error_report("failed to update an inode.");
1441 }
1442
1443 return ret;
1444 }
1445
1446 /*
1447 * This function is called after writing data objects. If we need to
1448 * update metadata, this sends a write request to the vdi object.
1449 * Otherwise, this switches back to sd_co_readv/writev.
1450 */
1451 static void coroutine_fn sd_write_done(SheepdogAIOCB *acb)
1452 {
1453 int ret;
1454 BDRVSheepdogState *s = acb->common.bs->opaque;
1455 struct iovec iov;
1456 AIOReq *aio_req;
1457 uint32_t offset, data_len, mn, mx;
1458
1459 mn = s->min_dirty_data_idx;
1460 mx = s->max_dirty_data_idx;
1461 if (mn <= mx) {
1462 /* we need to update the vdi object. */
1463 offset = sizeof(s->inode) - sizeof(s->inode.data_vdi_id) +
1464 mn * sizeof(s->inode.data_vdi_id[0]);
1465 data_len = (mx - mn + 1) * sizeof(s->inode.data_vdi_id[0]);
1466
1467 s->min_dirty_data_idx = UINT32_MAX;
1468 s->max_dirty_data_idx = 0;
1469
1470 iov.iov_base = &s->inode;
1471 iov.iov_len = sizeof(s->inode);
1472 aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
1473 data_len, offset, 0, 0, offset);
1474 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
1475 ret = add_aio_request(s, aio_req, &iov, 1, false, AIOCB_WRITE_UDATA);
1476 if (ret) {
1477 free_aio_req(s, aio_req);
1478 acb->ret = -EIO;
1479 goto out;
1480 }
1481
1482 acb->aio_done_func = sd_finish_aiocb;
1483 acb->aiocb_type = AIOCB_WRITE_UDATA;
1484 return;
1485 }
1486 out:
1487 sd_finish_aiocb(acb);
1488 }
1489
1490 /*
1491 * Create a writable VDI from a snapshot
1492 */
1493 static int sd_create_branch(BDRVSheepdogState *s)
1494 {
1495 int ret, fd;
1496 uint32_t vid;
1497 char *buf;
1498
1499 dprintf("%" PRIx32 " is snapshot.\n", s->inode.vdi_id);
1500
1501 buf = g_malloc(SD_INODE_SIZE);
1502
1503 ret = do_sd_create(s->name, s->inode.vdi_size, s->inode.vdi_id, &vid, 1,
1504 s->addr, s->port);
1505 if (ret) {
1506 goto out;
1507 }
1508
1509 dprintf("%" PRIx32 " is created.\n", vid);
1510
1511 fd = connect_to_sdog(s->addr, s->port);
1512 if (fd < 0) {
1513 error_report("failed to connect");
1514 ret = fd;
1515 goto out;
1516 }
1517
1518 ret = read_object(fd, buf, vid_to_vdi_oid(vid), s->inode.nr_copies,
1519 SD_INODE_SIZE, 0, s->cache_flags);
1520
1521 closesocket(fd);
1522
1523 if (ret < 0) {
1524 goto out;
1525 }
1526
1527 memcpy(&s->inode, buf, sizeof(s->inode));
1528
1529 s->is_snapshot = false;
1530 ret = 0;
1531 dprintf("%" PRIx32 " was newly created.\n", s->inode.vdi_id);
1532
1533 out:
1534 g_free(buf);
1535
1536 return ret;
1537 }
1538
1539 /*
1540 * Send I/O requests to the server.
1541 *
1542 * This function sends requests to the server, links the requests to
1543 * the inflight_list in BDRVSheepdogState, and exits without
1544 * waiting the response. The responses are received in the
1545 * `aio_read_response' function which is called from the main loop as
1546 * a fd handler.
1547 *
1548 * Returns 1 when we need to wait a response, 0 when there is no sent
1549 * request and -errno in error cases.
1550 */
1551 static int coroutine_fn sd_co_rw_vector(void *p)
1552 {
1553 SheepdogAIOCB *acb = p;
1554 int ret = 0;
1555 unsigned long len, done = 0, total = acb->nb_sectors * SECTOR_SIZE;
1556 unsigned long idx = acb->sector_num * SECTOR_SIZE / SD_DATA_OBJ_SIZE;
1557 uint64_t oid;
1558 uint64_t offset = (acb->sector_num * SECTOR_SIZE) % SD_DATA_OBJ_SIZE;
1559 BDRVSheepdogState *s = acb->common.bs->opaque;
1560 SheepdogInode *inode = &s->inode;
1561 AIOReq *aio_req;
1562
1563 if (acb->aiocb_type == AIOCB_WRITE_UDATA && s->is_snapshot) {
1564 /*
1565 * In the case we open the snapshot VDI, Sheepdog creates the
1566 * writable VDI when we do a write operation first.
1567 */
1568 ret = sd_create_branch(s);
1569 if (ret) {
1570 acb->ret = -EIO;
1571 goto out;
1572 }
1573 }
1574
1575 /*
1576 * Make sure we don't free the aiocb before we are done with all requests.
1577 * This additional reference is dropped at the end of this function.
1578 */
1579 acb->nr_pending++;
1580
1581 while (done != total) {
1582 uint8_t flags = 0;
1583 uint64_t old_oid = 0;
1584 bool create = false;
1585
1586 oid = vid_to_data_oid(inode->data_vdi_id[idx], idx);
1587
1588 len = MIN(total - done, SD_DATA_OBJ_SIZE - offset);
1589
1590 switch (acb->aiocb_type) {
1591 case AIOCB_READ_UDATA:
1592 if (!inode->data_vdi_id[idx]) {
1593 qemu_iovec_memset(acb->qiov, done, 0, len);
1594 goto done;
1595 }
1596 break;
1597 case AIOCB_WRITE_UDATA:
1598 if (!inode->data_vdi_id[idx]) {
1599 create = true;
1600 } else if (!is_data_obj_writable(inode, idx)) {
1601 /* Copy-On-Write */
1602 create = true;
1603 old_oid = oid;
1604 flags = SD_FLAG_CMD_COW;
1605 }
1606 break;
1607 default:
1608 break;
1609 }
1610
1611 if (create) {
1612 dprintf("update ino (%" PRIu32 ") %" PRIu64 " %" PRIu64 " %ld\n",
1613 inode->vdi_id, oid,
1614 vid_to_data_oid(inode->data_vdi_id[idx], idx), idx);
1615 oid = vid_to_data_oid(inode->vdi_id, idx);
1616 dprintf("new oid %" PRIx64 "\n", oid);
1617 }
1618
1619 aio_req = alloc_aio_req(s, acb, oid, len, offset, flags, old_oid, done);
1620
1621 if (create) {
1622 AIOReq *areq;
1623 QLIST_FOREACH(areq, &s->inflight_aio_head, aio_siblings) {
1624 if (areq->oid == oid) {
1625 /*
1626 * Sheepdog cannot handle simultaneous create
1627 * requests to the same object. So we cannot send
1628 * the request until the previous request
1629 * finishes.
1630 */
1631 aio_req->flags = 0;
1632 aio_req->base_oid = 0;
1633 QLIST_INSERT_HEAD(&s->pending_aio_head, aio_req,
1634 aio_siblings);
1635 goto done;
1636 }
1637 }
1638 }
1639
1640 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
1641 ret = add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
1642 create, acb->aiocb_type);
1643 if (ret < 0) {
1644 error_report("add_aio_request is failed");
1645 free_aio_req(s, aio_req);
1646 acb->ret = -EIO;
1647 goto out;
1648 }
1649 done:
1650 offset = 0;
1651 idx++;
1652 done += len;
1653 }
1654 out:
1655 if (!--acb->nr_pending) {
1656 return acb->ret;
1657 }
1658 return 1;
1659 }
1660
1661 static coroutine_fn int sd_co_writev(BlockDriverState *bs, int64_t sector_num,
1662 int nb_sectors, QEMUIOVector *qiov)
1663 {
1664 SheepdogAIOCB *acb;
1665 int ret;
1666
1667 if (bs->growable && sector_num + nb_sectors > bs->total_sectors) {
1668 ret = sd_truncate(bs, (sector_num + nb_sectors) * SECTOR_SIZE);
1669 if (ret < 0) {
1670 return ret;
1671 }
1672 bs->total_sectors = sector_num + nb_sectors;
1673 }
1674
1675 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors);
1676 acb->aio_done_func = sd_write_done;
1677 acb->aiocb_type = AIOCB_WRITE_UDATA;
1678
1679 ret = sd_co_rw_vector(acb);
1680 if (ret <= 0) {
1681 qemu_aio_release(acb);
1682 return ret;
1683 }
1684
1685 qemu_coroutine_yield();
1686
1687 return acb->ret;
1688 }
1689
1690 static coroutine_fn int sd_co_readv(BlockDriverState *bs, int64_t sector_num,
1691 int nb_sectors, QEMUIOVector *qiov)
1692 {
1693 SheepdogAIOCB *acb;
1694 int ret;
1695
1696 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors);
1697 acb->aiocb_type = AIOCB_READ_UDATA;
1698 acb->aio_done_func = sd_finish_aiocb;
1699
1700 ret = sd_co_rw_vector(acb);
1701 if (ret <= 0) {
1702 qemu_aio_release(acb);
1703 return ret;
1704 }
1705
1706 qemu_coroutine_yield();
1707
1708 return acb->ret;
1709 }
1710
1711 static int coroutine_fn sd_co_flush_to_disk(BlockDriverState *bs)
1712 {
1713 BDRVSheepdogState *s = bs->opaque;
1714 SheepdogAIOCB *acb;
1715 AIOReq *aio_req;
1716 int ret;
1717
1718 if (s->cache_flags != SD_FLAG_CMD_CACHE) {
1719 return 0;
1720 }
1721
1722 acb = sd_aio_setup(bs, NULL, 0, 0);
1723 acb->aiocb_type = AIOCB_FLUSH_CACHE;
1724 acb->aio_done_func = sd_finish_aiocb;
1725
1726 aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
1727 0, 0, 0, 0, 0);
1728 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
1729 ret = add_aio_request(s, aio_req, NULL, 0, false, acb->aiocb_type);
1730 if (ret < 0) {
1731 error_report("add_aio_request is failed");
1732 free_aio_req(s, aio_req);
1733 qemu_aio_release(acb);
1734 return ret;
1735 }
1736
1737 qemu_coroutine_yield();
1738 return acb->ret;
1739 }
1740
1741 static int sd_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
1742 {
1743 BDRVSheepdogState *s = bs->opaque;
1744 int ret, fd;
1745 uint32_t new_vid;
1746 SheepdogInode *inode;
1747 unsigned int datalen;
1748
1749 dprintf("sn_info: name %s id_str %s s: name %s vm_state_size %" PRId64 " "
1750 "is_snapshot %d\n", sn_info->name, sn_info->id_str,
1751 s->name, sn_info->vm_state_size, s->is_snapshot);
1752
1753 if (s->is_snapshot) {
1754 error_report("You can't create a snapshot of a snapshot VDI, "
1755 "%s (%" PRIu32 ").", s->name, s->inode.vdi_id);
1756
1757 return -EINVAL;
1758 }
1759
1760 dprintf("%s %s\n", sn_info->name, sn_info->id_str);
1761
1762 s->inode.vm_state_size = sn_info->vm_state_size;
1763 s->inode.vm_clock_nsec = sn_info->vm_clock_nsec;
1764 /* It appears that inode.tag does not require a NUL terminator,
1765 * which means this use of strncpy is ok.
1766 */
1767 strncpy(s->inode.tag, sn_info->name, sizeof(s->inode.tag));
1768 /* we don't need to update entire object */
1769 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
1770
1771 /* refresh inode. */
1772 fd = connect_to_sdog(s->addr, s->port);
1773 if (fd < 0) {
1774 ret = fd;
1775 goto cleanup;
1776 }
1777
1778 ret = write_object(fd, (char *)&s->inode, vid_to_vdi_oid(s->inode.vdi_id),
1779 s->inode.nr_copies, datalen, 0, false, s->cache_flags);
1780 if (ret < 0) {
1781 error_report("failed to write snapshot's inode.");
1782 goto cleanup;
1783 }
1784
1785 ret = do_sd_create(s->name, s->inode.vdi_size, s->inode.vdi_id, &new_vid, 1,
1786 s->addr, s->port);
1787 if (ret < 0) {
1788 error_report("failed to create inode for snapshot. %s",
1789 strerror(errno));
1790 goto cleanup;
1791 }
1792
1793 inode = (SheepdogInode *)g_malloc(datalen);
1794
1795 ret = read_object(fd, (char *)inode, vid_to_vdi_oid(new_vid),
1796 s->inode.nr_copies, datalen, 0, s->cache_flags);
1797
1798 if (ret < 0) {
1799 error_report("failed to read new inode info. %s", strerror(errno));
1800 goto cleanup;
1801 }
1802
1803 memcpy(&s->inode, inode, datalen);
1804 dprintf("s->inode: name %s snap_id %x oid %x\n",
1805 s->inode.name, s->inode.snap_id, s->inode.vdi_id);
1806
1807 cleanup:
1808 closesocket(fd);
1809 return ret;
1810 }
1811
1812 static int sd_snapshot_goto(BlockDriverState *bs, const char *snapshot_id)
1813 {
1814 BDRVSheepdogState *s = bs->opaque;
1815 BDRVSheepdogState *old_s;
1816 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1817 char *buf = NULL;
1818 uint32_t vid;
1819 uint32_t snapid = 0;
1820 int ret = 0, fd;
1821
1822 old_s = g_malloc(sizeof(BDRVSheepdogState));
1823
1824 memcpy(old_s, s, sizeof(BDRVSheepdogState));
1825
1826 pstrcpy(vdi, sizeof(vdi), s->name);
1827
1828 snapid = strtoul(snapshot_id, NULL, 10);
1829 if (snapid) {
1830 tag[0] = 0;
1831 } else {
1832 pstrcpy(tag, sizeof(tag), s->name);
1833 }
1834
1835 ret = find_vdi_name(s, vdi, snapid, tag, &vid, 1);
1836 if (ret) {
1837 error_report("Failed to find_vdi_name");
1838 goto out;
1839 }
1840
1841 fd = connect_to_sdog(s->addr, s->port);
1842 if (fd < 0) {
1843 error_report("failed to connect");
1844 ret = fd;
1845 goto out;
1846 }
1847
1848 buf = g_malloc(SD_INODE_SIZE);
1849 ret = read_object(fd, buf, vid_to_vdi_oid(vid), s->inode.nr_copies,
1850 SD_INODE_SIZE, 0, s->cache_flags);
1851
1852 closesocket(fd);
1853
1854 if (ret) {
1855 goto out;
1856 }
1857
1858 memcpy(&s->inode, buf, sizeof(s->inode));
1859
1860 if (!s->inode.vm_state_size) {
1861 error_report("Invalid snapshot");
1862 ret = -ENOENT;
1863 goto out;
1864 }
1865
1866 s->is_snapshot = true;
1867
1868 g_free(buf);
1869 g_free(old_s);
1870
1871 return 0;
1872 out:
1873 /* recover bdrv_sd_state */
1874 memcpy(s, old_s, sizeof(BDRVSheepdogState));
1875 g_free(buf);
1876 g_free(old_s);
1877
1878 error_report("failed to open. recover old bdrv_sd_state.");
1879
1880 return ret;
1881 }
1882
1883 static int sd_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
1884 {
1885 /* FIXME: Delete specified snapshot id. */
1886 return 0;
1887 }
1888
1889 static int sd_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab)
1890 {
1891 BDRVSheepdogState *s = bs->opaque;
1892 SheepdogReq req;
1893 int fd, nr = 1024, ret, max = BITS_TO_LONGS(SD_NR_VDIS) * sizeof(long);
1894 QEMUSnapshotInfo *sn_tab = NULL;
1895 unsigned wlen, rlen;
1896 int found = 0;
1897 static SheepdogInode inode;
1898 unsigned long *vdi_inuse;
1899 unsigned int start_nr;
1900 uint64_t hval;
1901 uint32_t vid;
1902
1903 vdi_inuse = g_malloc(max);
1904
1905 fd = connect_to_sdog(s->addr, s->port);
1906 if (fd < 0) {
1907 ret = fd;
1908 goto out;
1909 }
1910
1911 rlen = max;
1912 wlen = 0;
1913
1914 memset(&req, 0, sizeof(req));
1915
1916 req.opcode = SD_OP_READ_VDIS;
1917 req.data_length = max;
1918
1919 ret = do_req(fd, (SheepdogReq *)&req, vdi_inuse, &wlen, &rlen);
1920
1921 closesocket(fd);
1922 if (ret) {
1923 goto out;
1924 }
1925
1926 sn_tab = g_malloc0(nr * sizeof(*sn_tab));
1927
1928 /* calculate a vdi id with hash function */
1929 hval = fnv_64a_buf(s->name, strlen(s->name), FNV1A_64_INIT);
1930 start_nr = hval & (SD_NR_VDIS - 1);
1931
1932 fd = connect_to_sdog(s->addr, s->port);
1933 if (fd < 0) {
1934 error_report("failed to connect");
1935 ret = fd;
1936 goto out;
1937 }
1938
1939 for (vid = start_nr; found < nr; vid = (vid + 1) % SD_NR_VDIS) {
1940 if (!test_bit(vid, vdi_inuse)) {
1941 break;
1942 }
1943
1944 /* we don't need to read entire object */
1945 ret = read_object(fd, (char *)&inode, vid_to_vdi_oid(vid),
1946 0, SD_INODE_SIZE - sizeof(inode.data_vdi_id), 0,
1947 s->cache_flags);
1948
1949 if (ret) {
1950 continue;
1951 }
1952
1953 if (!strcmp(inode.name, s->name) && is_snapshot(&inode)) {
1954 sn_tab[found].date_sec = inode.snap_ctime >> 32;
1955 sn_tab[found].date_nsec = inode.snap_ctime & 0xffffffff;
1956 sn_tab[found].vm_state_size = inode.vm_state_size;
1957 sn_tab[found].vm_clock_nsec = inode.vm_clock_nsec;
1958
1959 snprintf(sn_tab[found].id_str, sizeof(sn_tab[found].id_str), "%u",
1960 inode.snap_id);
1961 pstrcpy(sn_tab[found].name,
1962 MIN(sizeof(sn_tab[found].name), sizeof(inode.tag)),
1963 inode.tag);
1964 found++;
1965 }
1966 }
1967
1968 closesocket(fd);
1969 out:
1970 *psn_tab = sn_tab;
1971
1972 g_free(vdi_inuse);
1973
1974 if (ret < 0) {
1975 return ret;
1976 }
1977
1978 return found;
1979 }
1980
1981 static int do_load_save_vmstate(BDRVSheepdogState *s, uint8_t *data,
1982 int64_t pos, int size, int load)
1983 {
1984 bool create;
1985 int fd, ret = 0, remaining = size;
1986 unsigned int data_len;
1987 uint64_t vmstate_oid;
1988 uint32_t vdi_index;
1989 uint64_t offset;
1990
1991 fd = connect_to_sdog(s->addr, s->port);
1992 if (fd < 0) {
1993 return fd;
1994 }
1995
1996 while (remaining) {
1997 vdi_index = pos / SD_DATA_OBJ_SIZE;
1998 offset = pos % SD_DATA_OBJ_SIZE;
1999
2000 data_len = MIN(remaining, SD_DATA_OBJ_SIZE - offset);
2001
2002 vmstate_oid = vid_to_vmstate_oid(s->inode.vdi_id, vdi_index);
2003
2004 create = (offset == 0);
2005 if (load) {
2006 ret = read_object(fd, (char *)data, vmstate_oid,
2007 s->inode.nr_copies, data_len, offset,
2008 s->cache_flags);
2009 } else {
2010 ret = write_object(fd, (char *)data, vmstate_oid,
2011 s->inode.nr_copies, data_len, offset, create,
2012 s->cache_flags);
2013 }
2014
2015 if (ret < 0) {
2016 error_report("failed to save vmstate %s", strerror(errno));
2017 goto cleanup;
2018 }
2019
2020 pos += data_len;
2021 data += data_len;
2022 remaining -= data_len;
2023 }
2024 ret = size;
2025 cleanup:
2026 closesocket(fd);
2027 return ret;
2028 }
2029
2030 static int sd_save_vmstate(BlockDriverState *bs, const uint8_t *data,
2031 int64_t pos, int size)
2032 {
2033 BDRVSheepdogState *s = bs->opaque;
2034
2035 return do_load_save_vmstate(s, (uint8_t *)data, pos, size, 0);
2036 }
2037
2038 static int sd_load_vmstate(BlockDriverState *bs, uint8_t *data,
2039 int64_t pos, int size)
2040 {
2041 BDRVSheepdogState *s = bs->opaque;
2042
2043 return do_load_save_vmstate(s, data, pos, size, 1);
2044 }
2045
2046
2047 static QEMUOptionParameter sd_create_options[] = {
2048 {
2049 .name = BLOCK_OPT_SIZE,
2050 .type = OPT_SIZE,
2051 .help = "Virtual disk size"
2052 },
2053 {
2054 .name = BLOCK_OPT_BACKING_FILE,
2055 .type = OPT_STRING,
2056 .help = "File name of a base image"
2057 },
2058 {
2059 .name = BLOCK_OPT_PREALLOC,
2060 .type = OPT_STRING,
2061 .help = "Preallocation mode (allowed values: off, full)"
2062 },
2063 { NULL }
2064 };
2065
2066 BlockDriver bdrv_sheepdog = {
2067 .format_name = "sheepdog",
2068 .protocol_name = "sheepdog",
2069 .instance_size = sizeof(BDRVSheepdogState),
2070 .bdrv_file_open = sd_open,
2071 .bdrv_close = sd_close,
2072 .bdrv_create = sd_create,
2073 .bdrv_getlength = sd_getlength,
2074 .bdrv_truncate = sd_truncate,
2075
2076 .bdrv_co_readv = sd_co_readv,
2077 .bdrv_co_writev = sd_co_writev,
2078 .bdrv_co_flush_to_disk = sd_co_flush_to_disk,
2079
2080 .bdrv_snapshot_create = sd_snapshot_create,
2081 .bdrv_snapshot_goto = sd_snapshot_goto,
2082 .bdrv_snapshot_delete = sd_snapshot_delete,
2083 .bdrv_snapshot_list = sd_snapshot_list,
2084
2085 .bdrv_save_vmstate = sd_save_vmstate,
2086 .bdrv_load_vmstate = sd_load_vmstate,
2087
2088 .create_options = sd_create_options,
2089 };
2090
2091 static void bdrv_sheepdog_init(void)
2092 {
2093 bdrv_register(&bdrv_sheepdog);
2094 }
2095 block_init(bdrv_sheepdog_init);