]> git.proxmox.com Git - qemu.git/blob - block/sheepdog.c
Merge remote-tracking branch 'kwolf/for-anthony' into staging
[qemu.git] / block / sheepdog.c
1 /*
2 * Copyright (C) 2009-2010 Nippon Telegraph and Telephone Corporation.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License version
6 * 2 as published by the Free Software Foundation.
7 *
8 * You should have received a copy of the GNU General Public License
9 * along with this program. If not, see <http://www.gnu.org/licenses/>.
10 */
11
12 #include "qemu-common.h"
13 #include "qemu-error.h"
14 #include "qemu_socket.h"
15 #include "block_int.h"
16 #include "bitops.h"
17
18 #define SD_PROTO_VER 0x01
19
20 #define SD_DEFAULT_ADDR "localhost"
21 #define SD_DEFAULT_PORT "7000"
22
23 #define SD_OP_CREATE_AND_WRITE_OBJ 0x01
24 #define SD_OP_READ_OBJ 0x02
25 #define SD_OP_WRITE_OBJ 0x03
26
27 #define SD_OP_NEW_VDI 0x11
28 #define SD_OP_LOCK_VDI 0x12
29 #define SD_OP_RELEASE_VDI 0x13
30 #define SD_OP_GET_VDI_INFO 0x14
31 #define SD_OP_READ_VDIS 0x15
32
33 #define SD_FLAG_CMD_WRITE 0x01
34 #define SD_FLAG_CMD_COW 0x02
35
36 #define SD_RES_SUCCESS 0x00 /* Success */
37 #define SD_RES_UNKNOWN 0x01 /* Unknown error */
38 #define SD_RES_NO_OBJ 0x02 /* No object found */
39 #define SD_RES_EIO 0x03 /* I/O error */
40 #define SD_RES_VDI_EXIST 0x04 /* Vdi exists already */
41 #define SD_RES_INVALID_PARMS 0x05 /* Invalid parameters */
42 #define SD_RES_SYSTEM_ERROR 0x06 /* System error */
43 #define SD_RES_VDI_LOCKED 0x07 /* Vdi is locked */
44 #define SD_RES_NO_VDI 0x08 /* No vdi found */
45 #define SD_RES_NO_BASE_VDI 0x09 /* No base vdi found */
46 #define SD_RES_VDI_READ 0x0A /* Cannot read requested vdi */
47 #define SD_RES_VDI_WRITE 0x0B /* Cannot write requested vdi */
48 #define SD_RES_BASE_VDI_READ 0x0C /* Cannot read base vdi */
49 #define SD_RES_BASE_VDI_WRITE 0x0D /* Cannot write base vdi */
50 #define SD_RES_NO_TAG 0x0E /* Requested tag is not found */
51 #define SD_RES_STARTUP 0x0F /* Sheepdog is on starting up */
52 #define SD_RES_VDI_NOT_LOCKED 0x10 /* Vdi is not locked */
53 #define SD_RES_SHUTDOWN 0x11 /* Sheepdog is shutting down */
54 #define SD_RES_NO_MEM 0x12 /* Cannot allocate memory */
55 #define SD_RES_FULL_VDI 0x13 /* we already have the maximum vdis */
56 #define SD_RES_VER_MISMATCH 0x14 /* Protocol version mismatch */
57 #define SD_RES_NO_SPACE 0x15 /* Server has no room for new objects */
58 #define SD_RES_WAIT_FOR_FORMAT 0x16 /* Waiting for a format operation */
59 #define SD_RES_WAIT_FOR_JOIN 0x17 /* Waiting for other nodes joining */
60 #define SD_RES_JOIN_FAILED 0x18 /* Target node had failed to join sheepdog */
61
62 /*
63 * Object ID rules
64 *
65 * 0 - 19 (20 bits): data object space
66 * 20 - 31 (12 bits): reserved data object space
67 * 32 - 55 (24 bits): vdi object space
68 * 56 - 59 ( 4 bits): reserved vdi object space
69 * 60 - 63 ( 4 bits): object type identifier space
70 */
71
72 #define VDI_SPACE_SHIFT 32
73 #define VDI_BIT (UINT64_C(1) << 63)
74 #define VMSTATE_BIT (UINT64_C(1) << 62)
75 #define MAX_DATA_OBJS (UINT64_C(1) << 20)
76 #define MAX_CHILDREN 1024
77 #define SD_MAX_VDI_LEN 256
78 #define SD_MAX_VDI_TAG_LEN 256
79 #define SD_NR_VDIS (1U << 24)
80 #define SD_DATA_OBJ_SIZE (UINT64_C(1) << 22)
81 #define SD_MAX_VDI_SIZE (SD_DATA_OBJ_SIZE * MAX_DATA_OBJS)
82 #define SECTOR_SIZE 512
83
84 #define SD_INODE_SIZE (sizeof(SheepdogInode))
85 #define CURRENT_VDI_ID 0
86
87 typedef struct SheepdogReq {
88 uint8_t proto_ver;
89 uint8_t opcode;
90 uint16_t flags;
91 uint32_t epoch;
92 uint32_t id;
93 uint32_t data_length;
94 uint32_t opcode_specific[8];
95 } SheepdogReq;
96
97 typedef struct SheepdogRsp {
98 uint8_t proto_ver;
99 uint8_t opcode;
100 uint16_t flags;
101 uint32_t epoch;
102 uint32_t id;
103 uint32_t data_length;
104 uint32_t result;
105 uint32_t opcode_specific[7];
106 } SheepdogRsp;
107
108 typedef struct SheepdogObjReq {
109 uint8_t proto_ver;
110 uint8_t opcode;
111 uint16_t flags;
112 uint32_t epoch;
113 uint32_t id;
114 uint32_t data_length;
115 uint64_t oid;
116 uint64_t cow_oid;
117 uint32_t copies;
118 uint32_t rsvd;
119 uint64_t offset;
120 } SheepdogObjReq;
121
122 typedef struct SheepdogObjRsp {
123 uint8_t proto_ver;
124 uint8_t opcode;
125 uint16_t flags;
126 uint32_t epoch;
127 uint32_t id;
128 uint32_t data_length;
129 uint32_t result;
130 uint32_t copies;
131 uint32_t pad[6];
132 } SheepdogObjRsp;
133
134 typedef struct SheepdogVdiReq {
135 uint8_t proto_ver;
136 uint8_t opcode;
137 uint16_t flags;
138 uint32_t epoch;
139 uint32_t id;
140 uint32_t data_length;
141 uint64_t vdi_size;
142 uint32_t base_vdi_id;
143 uint32_t copies;
144 uint32_t snapid;
145 uint32_t pad[3];
146 } SheepdogVdiReq;
147
148 typedef struct SheepdogVdiRsp {
149 uint8_t proto_ver;
150 uint8_t opcode;
151 uint16_t flags;
152 uint32_t epoch;
153 uint32_t id;
154 uint32_t data_length;
155 uint32_t result;
156 uint32_t rsvd;
157 uint32_t vdi_id;
158 uint32_t pad[5];
159 } SheepdogVdiRsp;
160
161 typedef struct SheepdogInode {
162 char name[SD_MAX_VDI_LEN];
163 char tag[SD_MAX_VDI_TAG_LEN];
164 uint64_t ctime;
165 uint64_t snap_ctime;
166 uint64_t vm_clock_nsec;
167 uint64_t vdi_size;
168 uint64_t vm_state_size;
169 uint16_t copy_policy;
170 uint8_t nr_copies;
171 uint8_t block_size_shift;
172 uint32_t snap_id;
173 uint32_t vdi_id;
174 uint32_t parent_vdi_id;
175 uint32_t child_vdi_id[MAX_CHILDREN];
176 uint32_t data_vdi_id[MAX_DATA_OBJS];
177 } SheepdogInode;
178
179 /*
180 * 64 bit FNV-1a non-zero initial basis
181 */
182 #define FNV1A_64_INIT ((uint64_t)0xcbf29ce484222325ULL)
183
184 /*
185 * 64 bit Fowler/Noll/Vo FNV-1a hash code
186 */
187 static inline uint64_t fnv_64a_buf(void *buf, size_t len, uint64_t hval)
188 {
189 unsigned char *bp = buf;
190 unsigned char *be = bp + len;
191 while (bp < be) {
192 hval ^= (uint64_t) *bp++;
193 hval += (hval << 1) + (hval << 4) + (hval << 5) +
194 (hval << 7) + (hval << 8) + (hval << 40);
195 }
196 return hval;
197 }
198
199 static inline int is_data_obj_writable(SheepdogInode *inode, unsigned int idx)
200 {
201 return inode->vdi_id == inode->data_vdi_id[idx];
202 }
203
204 static inline int is_data_obj(uint64_t oid)
205 {
206 return !(VDI_BIT & oid);
207 }
208
209 static inline uint64_t data_oid_to_idx(uint64_t oid)
210 {
211 return oid & (MAX_DATA_OBJS - 1);
212 }
213
214 static inline uint64_t vid_to_vdi_oid(uint32_t vid)
215 {
216 return VDI_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT);
217 }
218
219 static inline uint64_t vid_to_vmstate_oid(uint32_t vid, uint32_t idx)
220 {
221 return VMSTATE_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
222 }
223
224 static inline uint64_t vid_to_data_oid(uint32_t vid, uint32_t idx)
225 {
226 return ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
227 }
228
229 static inline int is_snapshot(struct SheepdogInode *inode)
230 {
231 return !!inode->snap_ctime;
232 }
233
234 #undef dprintf
235 #ifdef DEBUG_SDOG
236 #define dprintf(fmt, args...) \
237 do { \
238 fprintf(stdout, "%s %d: " fmt, __func__, __LINE__, ##args); \
239 } while (0)
240 #else
241 #define dprintf(fmt, args...)
242 #endif
243
244 typedef struct SheepdogAIOCB SheepdogAIOCB;
245
246 typedef struct AIOReq {
247 SheepdogAIOCB *aiocb;
248 unsigned int iov_offset;
249
250 uint64_t oid;
251 uint64_t base_oid;
252 uint64_t offset;
253 unsigned int data_len;
254 uint8_t flags;
255 uint32_t id;
256
257 QLIST_ENTRY(AIOReq) outstanding_aio_siblings;
258 QLIST_ENTRY(AIOReq) aioreq_siblings;
259 } AIOReq;
260
261 enum AIOCBState {
262 AIOCB_WRITE_UDATA,
263 AIOCB_READ_UDATA,
264 };
265
266 struct SheepdogAIOCB {
267 BlockDriverAIOCB common;
268
269 QEMUIOVector *qiov;
270
271 int64_t sector_num;
272 int nb_sectors;
273
274 int ret;
275 enum AIOCBState aiocb_type;
276
277 Coroutine *coroutine;
278 void (*aio_done_func)(SheepdogAIOCB *);
279
280 int canceled;
281
282 QLIST_HEAD(aioreq_head, AIOReq) aioreq_head;
283 };
284
285 typedef struct BDRVSheepdogState {
286 SheepdogInode inode;
287
288 uint32_t min_dirty_data_idx;
289 uint32_t max_dirty_data_idx;
290
291 char name[SD_MAX_VDI_LEN];
292 int is_snapshot;
293
294 char *addr;
295 char *port;
296 int fd;
297
298 CoMutex lock;
299 Coroutine *co_send;
300 Coroutine *co_recv;
301
302 uint32_t aioreq_seq_num;
303 QLIST_HEAD(outstanding_aio_head, AIOReq) outstanding_aio_head;
304 } BDRVSheepdogState;
305
306 static const char * sd_strerror(int err)
307 {
308 int i;
309
310 static const struct {
311 int err;
312 const char *desc;
313 } errors[] = {
314 {SD_RES_SUCCESS, "Success"},
315 {SD_RES_UNKNOWN, "Unknown error"},
316 {SD_RES_NO_OBJ, "No object found"},
317 {SD_RES_EIO, "I/O error"},
318 {SD_RES_VDI_EXIST, "VDI exists already"},
319 {SD_RES_INVALID_PARMS, "Invalid parameters"},
320 {SD_RES_SYSTEM_ERROR, "System error"},
321 {SD_RES_VDI_LOCKED, "VDI is already locked"},
322 {SD_RES_NO_VDI, "No vdi found"},
323 {SD_RES_NO_BASE_VDI, "No base VDI found"},
324 {SD_RES_VDI_READ, "Failed read the requested VDI"},
325 {SD_RES_VDI_WRITE, "Failed to write the requested VDI"},
326 {SD_RES_BASE_VDI_READ, "Failed to read the base VDI"},
327 {SD_RES_BASE_VDI_WRITE, "Failed to write the base VDI"},
328 {SD_RES_NO_TAG, "Failed to find the requested tag"},
329 {SD_RES_STARTUP, "The system is still booting"},
330 {SD_RES_VDI_NOT_LOCKED, "VDI isn't locked"},
331 {SD_RES_SHUTDOWN, "The system is shutting down"},
332 {SD_RES_NO_MEM, "Out of memory on the server"},
333 {SD_RES_FULL_VDI, "We already have the maximum vdis"},
334 {SD_RES_VER_MISMATCH, "Protocol version mismatch"},
335 {SD_RES_NO_SPACE, "Server has no space for new objects"},
336 {SD_RES_WAIT_FOR_FORMAT, "Sheepdog is waiting for a format operation"},
337 {SD_RES_WAIT_FOR_JOIN, "Sheepdog is waiting for other nodes joining"},
338 {SD_RES_JOIN_FAILED, "Target node had failed to join sheepdog"},
339 };
340
341 for (i = 0; i < ARRAY_SIZE(errors); ++i) {
342 if (errors[i].err == err) {
343 return errors[i].desc;
344 }
345 }
346
347 return "Invalid error code";
348 }
349
350 /*
351 * Sheepdog I/O handling:
352 *
353 * 1. In sd_co_rw_vector, we send the I/O requests to the server and
354 * link the requests to the outstanding_list in the
355 * BDRVSheepdogState. The function exits without waiting for
356 * receiving the response.
357 *
358 * 2. We receive the response in aio_read_response, the fd handler to
359 * the sheepdog connection. If metadata update is needed, we send
360 * the write request to the vdi object in sd_write_done, the write
361 * completion function. We switch back to sd_co_readv/writev after
362 * all the requests belonging to the AIOCB are finished.
363 */
364
365 static inline AIOReq *alloc_aio_req(BDRVSheepdogState *s, SheepdogAIOCB *acb,
366 uint64_t oid, unsigned int data_len,
367 uint64_t offset, uint8_t flags,
368 uint64_t base_oid, unsigned int iov_offset)
369 {
370 AIOReq *aio_req;
371
372 aio_req = g_malloc(sizeof(*aio_req));
373 aio_req->aiocb = acb;
374 aio_req->iov_offset = iov_offset;
375 aio_req->oid = oid;
376 aio_req->base_oid = base_oid;
377 aio_req->offset = offset;
378 aio_req->data_len = data_len;
379 aio_req->flags = flags;
380 aio_req->id = s->aioreq_seq_num++;
381
382 QLIST_INSERT_HEAD(&s->outstanding_aio_head, aio_req,
383 outstanding_aio_siblings);
384 QLIST_INSERT_HEAD(&acb->aioreq_head, aio_req, aioreq_siblings);
385
386 return aio_req;
387 }
388
389 static inline int free_aio_req(BDRVSheepdogState *s, AIOReq *aio_req)
390 {
391 SheepdogAIOCB *acb = aio_req->aiocb;
392 QLIST_REMOVE(aio_req, outstanding_aio_siblings);
393 QLIST_REMOVE(aio_req, aioreq_siblings);
394 g_free(aio_req);
395
396 return !QLIST_EMPTY(&acb->aioreq_head);
397 }
398
399 static void coroutine_fn sd_finish_aiocb(SheepdogAIOCB *acb)
400 {
401 if (!acb->canceled) {
402 qemu_coroutine_enter(acb->coroutine, NULL);
403 }
404 qemu_aio_release(acb);
405 }
406
407 static void sd_aio_cancel(BlockDriverAIOCB *blockacb)
408 {
409 SheepdogAIOCB *acb = (SheepdogAIOCB *)blockacb;
410
411 /*
412 * Sheepdog cannot cancel the requests which are already sent to
413 * the servers, so we just complete the request with -EIO here.
414 */
415 acb->ret = -EIO;
416 qemu_coroutine_enter(acb->coroutine, NULL);
417 acb->canceled = 1;
418 }
419
420 static AIOPool sd_aio_pool = {
421 .aiocb_size = sizeof(SheepdogAIOCB),
422 .cancel = sd_aio_cancel,
423 };
424
425 static SheepdogAIOCB *sd_aio_setup(BlockDriverState *bs, QEMUIOVector *qiov,
426 int64_t sector_num, int nb_sectors,
427 BlockDriverCompletionFunc *cb, void *opaque)
428 {
429 SheepdogAIOCB *acb;
430
431 acb = qemu_aio_get(&sd_aio_pool, bs, cb, opaque);
432
433 acb->qiov = qiov;
434
435 acb->sector_num = sector_num;
436 acb->nb_sectors = nb_sectors;
437
438 acb->aio_done_func = NULL;
439 acb->canceled = 0;
440 acb->coroutine = qemu_coroutine_self();
441 acb->ret = 0;
442 QLIST_INIT(&acb->aioreq_head);
443 return acb;
444 }
445
446 #ifdef _WIN32
447
448 struct msghdr {
449 struct iovec *msg_iov;
450 size_t msg_iovlen;
451 };
452
453 static ssize_t sendmsg(int s, const struct msghdr *msg, int flags)
454 {
455 size_t size = 0;
456 char *buf, *p;
457 int i, ret;
458
459 /* count the msg size */
460 for (i = 0; i < msg->msg_iovlen; i++) {
461 size += msg->msg_iov[i].iov_len;
462 }
463 buf = g_malloc(size);
464
465 p = buf;
466 for (i = 0; i < msg->msg_iovlen; i++) {
467 memcpy(p, msg->msg_iov[i].iov_base, msg->msg_iov[i].iov_len);
468 p += msg->msg_iov[i].iov_len;
469 }
470
471 ret = send(s, buf, size, flags);
472
473 g_free(buf);
474 return ret;
475 }
476
477 static ssize_t recvmsg(int s, struct msghdr *msg, int flags)
478 {
479 size_t size = 0;
480 char *buf, *p;
481 int i, ret;
482
483 /* count the msg size */
484 for (i = 0; i < msg->msg_iovlen; i++) {
485 size += msg->msg_iov[i].iov_len;
486 }
487 buf = g_malloc(size);
488
489 ret = qemu_recv(s, buf, size, flags);
490 if (ret < 0) {
491 goto out;
492 }
493
494 p = buf;
495 for (i = 0; i < msg->msg_iovlen; i++) {
496 memcpy(msg->msg_iov[i].iov_base, p, msg->msg_iov[i].iov_len);
497 p += msg->msg_iov[i].iov_len;
498 }
499 out:
500 g_free(buf);
501 return ret;
502 }
503
504 #endif
505
506 /*
507 * Send/recv data with iovec buffers
508 *
509 * This function send/recv data from/to the iovec buffer directly.
510 * The first `offset' bytes in the iovec buffer are skipped and next
511 * `len' bytes are used.
512 *
513 * For example,
514 *
515 * do_send_recv(sockfd, iov, len, offset, 1);
516 *
517 * is equals to
518 *
519 * char *buf = malloc(size);
520 * iov_to_buf(iov, iovcnt, buf, offset, size);
521 * send(sockfd, buf, size, 0);
522 * free(buf);
523 */
524 static int do_send_recv(int sockfd, struct iovec *iov, int len, int offset,
525 int write)
526 {
527 struct msghdr msg;
528 int ret, diff;
529
530 memset(&msg, 0, sizeof(msg));
531 msg.msg_iov = iov;
532 msg.msg_iovlen = 1;
533
534 len += offset;
535
536 while (iov->iov_len < len) {
537 len -= iov->iov_len;
538
539 iov++;
540 msg.msg_iovlen++;
541 }
542
543 diff = iov->iov_len - len;
544 iov->iov_len -= diff;
545
546 while (msg.msg_iov->iov_len <= offset) {
547 offset -= msg.msg_iov->iov_len;
548
549 msg.msg_iov++;
550 msg.msg_iovlen--;
551 }
552
553 msg.msg_iov->iov_base = (char *) msg.msg_iov->iov_base + offset;
554 msg.msg_iov->iov_len -= offset;
555
556 if (write) {
557 ret = sendmsg(sockfd, &msg, 0);
558 } else {
559 ret = recvmsg(sockfd, &msg, 0);
560 }
561
562 msg.msg_iov->iov_base = (char *) msg.msg_iov->iov_base - offset;
563 msg.msg_iov->iov_len += offset;
564
565 iov->iov_len += diff;
566 return ret;
567 }
568
569 static int connect_to_sdog(const char *addr, const char *port)
570 {
571 char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];
572 int fd, ret;
573 struct addrinfo hints, *res, *res0;
574
575 if (!addr) {
576 addr = SD_DEFAULT_ADDR;
577 port = SD_DEFAULT_PORT;
578 }
579
580 memset(&hints, 0, sizeof(hints));
581 hints.ai_socktype = SOCK_STREAM;
582
583 ret = getaddrinfo(addr, port, &hints, &res0);
584 if (ret) {
585 error_report("unable to get address info %s, %s",
586 addr, strerror(errno));
587 return -1;
588 }
589
590 for (res = res0; res; res = res->ai_next) {
591 ret = getnameinfo(res->ai_addr, res->ai_addrlen, hbuf, sizeof(hbuf),
592 sbuf, sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV);
593 if (ret) {
594 continue;
595 }
596
597 fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
598 if (fd < 0) {
599 continue;
600 }
601
602 reconnect:
603 ret = connect(fd, res->ai_addr, res->ai_addrlen);
604 if (ret < 0) {
605 if (errno == EINTR) {
606 goto reconnect;
607 }
608 break;
609 }
610
611 dprintf("connected to %s:%s\n", addr, port);
612 goto success;
613 }
614 fd = -1;
615 error_report("failed connect to %s:%s", addr, port);
616 success:
617 freeaddrinfo(res0);
618 return fd;
619 }
620
621 static int do_readv_writev(int sockfd, struct iovec *iov, int len,
622 int iov_offset, int write)
623 {
624 int ret;
625 again:
626 ret = do_send_recv(sockfd, iov, len, iov_offset, write);
627 if (ret < 0) {
628 if (errno == EINTR) {
629 goto again;
630 }
631 if (errno == EAGAIN) {
632 if (qemu_in_coroutine()) {
633 qemu_coroutine_yield();
634 }
635 goto again;
636 }
637 error_report("failed to recv a rsp, %s", strerror(errno));
638 return 1;
639 }
640
641 iov_offset += ret;
642 len -= ret;
643 if (len) {
644 goto again;
645 }
646
647 return 0;
648 }
649
650 static int do_readv(int sockfd, struct iovec *iov, int len, int iov_offset)
651 {
652 return do_readv_writev(sockfd, iov, len, iov_offset, 0);
653 }
654
655 static int do_writev(int sockfd, struct iovec *iov, int len, int iov_offset)
656 {
657 return do_readv_writev(sockfd, iov, len, iov_offset, 1);
658 }
659
660 static int do_read_write(int sockfd, void *buf, int len, int write)
661 {
662 struct iovec iov;
663
664 iov.iov_base = buf;
665 iov.iov_len = len;
666
667 return do_readv_writev(sockfd, &iov, len, 0, write);
668 }
669
670 static int do_read(int sockfd, void *buf, int len)
671 {
672 return do_read_write(sockfd, buf, len, 0);
673 }
674
675 static int do_write(int sockfd, void *buf, int len)
676 {
677 return do_read_write(sockfd, buf, len, 1);
678 }
679
680 static int send_req(int sockfd, SheepdogReq *hdr, void *data,
681 unsigned int *wlen)
682 {
683 int ret;
684 struct iovec iov[2];
685
686 iov[0].iov_base = hdr;
687 iov[0].iov_len = sizeof(*hdr);
688
689 if (*wlen) {
690 iov[1].iov_base = data;
691 iov[1].iov_len = *wlen;
692 }
693
694 ret = do_writev(sockfd, iov, sizeof(*hdr) + *wlen, 0);
695 if (ret) {
696 error_report("failed to send a req, %s", strerror(errno));
697 ret = -1;
698 }
699
700 return ret;
701 }
702
703 static int do_req(int sockfd, SheepdogReq *hdr, void *data,
704 unsigned int *wlen, unsigned int *rlen)
705 {
706 int ret;
707
708 ret = send_req(sockfd, hdr, data, wlen);
709 if (ret) {
710 ret = -1;
711 goto out;
712 }
713
714 ret = do_read(sockfd, hdr, sizeof(*hdr));
715 if (ret) {
716 error_report("failed to get a rsp, %s", strerror(errno));
717 ret = -1;
718 goto out;
719 }
720
721 if (*rlen > hdr->data_length) {
722 *rlen = hdr->data_length;
723 }
724
725 if (*rlen) {
726 ret = do_read(sockfd, data, *rlen);
727 if (ret) {
728 error_report("failed to get the data, %s", strerror(errno));
729 ret = -1;
730 goto out;
731 }
732 }
733 ret = 0;
734 out:
735 return ret;
736 }
737
738 static int coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
739 struct iovec *iov, int niov, int create,
740 enum AIOCBState aiocb_type);
741
742 /*
743 * This function searchs pending requests to the object `oid', and
744 * sends them.
745 */
746 static void coroutine_fn send_pending_req(BDRVSheepdogState *s, uint64_t oid, uint32_t id)
747 {
748 AIOReq *aio_req, *next;
749 SheepdogAIOCB *acb;
750 int ret;
751
752 QLIST_FOREACH_SAFE(aio_req, &s->outstanding_aio_head,
753 outstanding_aio_siblings, next) {
754 if (id == aio_req->id) {
755 continue;
756 }
757 if (aio_req->oid != oid) {
758 continue;
759 }
760
761 acb = aio_req->aiocb;
762 ret = add_aio_request(s, aio_req, acb->qiov->iov,
763 acb->qiov->niov, 0, acb->aiocb_type);
764 if (ret < 0) {
765 error_report("add_aio_request is failed");
766 free_aio_req(s, aio_req);
767 if (QLIST_EMPTY(&acb->aioreq_head)) {
768 sd_finish_aiocb(acb);
769 }
770 }
771 }
772 }
773
774 /*
775 * Receive responses of the I/O requests.
776 *
777 * This function is registered as a fd handler, and called from the
778 * main loop when s->fd is ready for reading responses.
779 */
780 static void coroutine_fn aio_read_response(void *opaque)
781 {
782 SheepdogObjRsp rsp;
783 BDRVSheepdogState *s = opaque;
784 int fd = s->fd;
785 int ret;
786 AIOReq *aio_req = NULL;
787 SheepdogAIOCB *acb;
788 int rest;
789 unsigned long idx;
790
791 if (QLIST_EMPTY(&s->outstanding_aio_head)) {
792 goto out;
793 }
794
795 /* read a header */
796 ret = do_read(fd, &rsp, sizeof(rsp));
797 if (ret) {
798 error_report("failed to get the header, %s", strerror(errno));
799 goto out;
800 }
801
802 /* find the right aio_req from the outstanding_aio list */
803 QLIST_FOREACH(aio_req, &s->outstanding_aio_head, outstanding_aio_siblings) {
804 if (aio_req->id == rsp.id) {
805 break;
806 }
807 }
808 if (!aio_req) {
809 error_report("cannot find aio_req %x", rsp.id);
810 goto out;
811 }
812
813 acb = aio_req->aiocb;
814
815 switch (acb->aiocb_type) {
816 case AIOCB_WRITE_UDATA:
817 if (!is_data_obj(aio_req->oid)) {
818 break;
819 }
820 idx = data_oid_to_idx(aio_req->oid);
821
822 if (s->inode.data_vdi_id[idx] != s->inode.vdi_id) {
823 /*
824 * If the object is newly created one, we need to update
825 * the vdi object (metadata object). min_dirty_data_idx
826 * and max_dirty_data_idx are changed to include updated
827 * index between them.
828 */
829 s->inode.data_vdi_id[idx] = s->inode.vdi_id;
830 s->max_dirty_data_idx = MAX(idx, s->max_dirty_data_idx);
831 s->min_dirty_data_idx = MIN(idx, s->min_dirty_data_idx);
832
833 /*
834 * Some requests may be blocked because simultaneous
835 * create requests are not allowed, so we search the
836 * pending requests here.
837 */
838 send_pending_req(s, vid_to_data_oid(s->inode.vdi_id, idx), rsp.id);
839 }
840 break;
841 case AIOCB_READ_UDATA:
842 ret = do_readv(fd, acb->qiov->iov, rsp.data_length,
843 aio_req->iov_offset);
844 if (ret) {
845 error_report("failed to get the data, %s", strerror(errno));
846 goto out;
847 }
848 break;
849 }
850
851 if (rsp.result != SD_RES_SUCCESS) {
852 acb->ret = -EIO;
853 error_report("%s", sd_strerror(rsp.result));
854 }
855
856 rest = free_aio_req(s, aio_req);
857 if (!rest) {
858 /*
859 * We've finished all requests which belong to the AIOCB, so
860 * we can switch back to sd_co_readv/writev now.
861 */
862 acb->aio_done_func(acb);
863 }
864 out:
865 s->co_recv = NULL;
866 }
867
868 static void co_read_response(void *opaque)
869 {
870 BDRVSheepdogState *s = opaque;
871
872 if (!s->co_recv) {
873 s->co_recv = qemu_coroutine_create(aio_read_response);
874 }
875
876 qemu_coroutine_enter(s->co_recv, opaque);
877 }
878
879 static void co_write_request(void *opaque)
880 {
881 BDRVSheepdogState *s = opaque;
882
883 qemu_coroutine_enter(s->co_send, NULL);
884 }
885
886 static int aio_flush_request(void *opaque)
887 {
888 BDRVSheepdogState *s = opaque;
889
890 return !QLIST_EMPTY(&s->outstanding_aio_head);
891 }
892
893 #if !defined(SOL_TCP) || !defined(TCP_CORK)
894
895 static int set_cork(int fd, int v)
896 {
897 return 0;
898 }
899
900 #else
901
902 static int set_cork(int fd, int v)
903 {
904 return setsockopt(fd, SOL_TCP, TCP_CORK, &v, sizeof(v));
905 }
906
907 #endif
908
909 static int set_nodelay(int fd)
910 {
911 int ret, opt;
912
913 opt = 1;
914 ret = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&opt, sizeof(opt));
915 return ret;
916 }
917
918 /*
919 * Return a socket discriptor to read/write objects.
920 *
921 * We cannot use this discriptor for other operations because
922 * the block driver may be on waiting response from the server.
923 */
924 static int get_sheep_fd(BDRVSheepdogState *s)
925 {
926 int ret, fd;
927
928 fd = connect_to_sdog(s->addr, s->port);
929 if (fd < 0) {
930 error_report("%s", strerror(errno));
931 return -1;
932 }
933
934 socket_set_nonblock(fd);
935
936 ret = set_nodelay(fd);
937 if (ret) {
938 error_report("%s", strerror(errno));
939 closesocket(fd);
940 return -1;
941 }
942
943 qemu_aio_set_fd_handler(fd, co_read_response, NULL, aio_flush_request,
944 NULL, s);
945 return fd;
946 }
947
948 /*
949 * Parse a filename
950 *
951 * filename must be one of the following formats:
952 * 1. [vdiname]
953 * 2. [vdiname]:[snapid]
954 * 3. [vdiname]:[tag]
955 * 4. [hostname]:[port]:[vdiname]
956 * 5. [hostname]:[port]:[vdiname]:[snapid]
957 * 6. [hostname]:[port]:[vdiname]:[tag]
958 *
959 * You can boot from the snapshot images by specifying `snapid` or
960 * `tag'.
961 *
962 * You can run VMs outside the Sheepdog cluster by specifying
963 * `hostname' and `port' (experimental).
964 */
965 static int parse_vdiname(BDRVSheepdogState *s, const char *filename,
966 char *vdi, uint32_t *snapid, char *tag)
967 {
968 char *p, *q;
969 int nr_sep;
970
971 p = q = g_strdup(filename);
972
973 /* count the number of separators */
974 nr_sep = 0;
975 while (*p) {
976 if (*p == ':') {
977 nr_sep++;
978 }
979 p++;
980 }
981 p = q;
982
983 /* use the first two tokens as hostname and port number. */
984 if (nr_sep >= 2) {
985 s->addr = p;
986 p = strchr(p, ':');
987 *p++ = '\0';
988
989 s->port = p;
990 p = strchr(p, ':');
991 *p++ = '\0';
992 } else {
993 s->addr = NULL;
994 s->port = 0;
995 }
996
997 strncpy(vdi, p, SD_MAX_VDI_LEN);
998
999 p = strchr(vdi, ':');
1000 if (p) {
1001 *p++ = '\0';
1002 *snapid = strtoul(p, NULL, 10);
1003 if (*snapid == 0) {
1004 strncpy(tag, p, SD_MAX_VDI_TAG_LEN);
1005 }
1006 } else {
1007 *snapid = CURRENT_VDI_ID; /* search current vdi */
1008 }
1009
1010 if (s->addr == NULL) {
1011 g_free(q);
1012 }
1013
1014 return 0;
1015 }
1016
1017 static int find_vdi_name(BDRVSheepdogState *s, char *filename, uint32_t snapid,
1018 char *tag, uint32_t *vid, int for_snapshot)
1019 {
1020 int ret, fd;
1021 SheepdogVdiReq hdr;
1022 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1023 unsigned int wlen, rlen = 0;
1024 char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN];
1025
1026 fd = connect_to_sdog(s->addr, s->port);
1027 if (fd < 0) {
1028 return -1;
1029 }
1030
1031 memset(buf, 0, sizeof(buf));
1032 strncpy(buf, filename, SD_MAX_VDI_LEN);
1033 strncpy(buf + SD_MAX_VDI_LEN, tag, SD_MAX_VDI_TAG_LEN);
1034
1035 memset(&hdr, 0, sizeof(hdr));
1036 if (for_snapshot) {
1037 hdr.opcode = SD_OP_GET_VDI_INFO;
1038 } else {
1039 hdr.opcode = SD_OP_LOCK_VDI;
1040 }
1041 wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN;
1042 hdr.proto_ver = SD_PROTO_VER;
1043 hdr.data_length = wlen;
1044 hdr.snapid = snapid;
1045 hdr.flags = SD_FLAG_CMD_WRITE;
1046
1047 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1048 if (ret) {
1049 ret = -1;
1050 goto out;
1051 }
1052
1053 if (rsp->result != SD_RES_SUCCESS) {
1054 error_report("cannot get vdi info, %s, %s %d %s",
1055 sd_strerror(rsp->result), filename, snapid, tag);
1056 ret = -1;
1057 goto out;
1058 }
1059 *vid = rsp->vdi_id;
1060
1061 ret = 0;
1062 out:
1063 closesocket(fd);
1064 return ret;
1065 }
1066
1067 static int coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
1068 struct iovec *iov, int niov, int create,
1069 enum AIOCBState aiocb_type)
1070 {
1071 int nr_copies = s->inode.nr_copies;
1072 SheepdogObjReq hdr;
1073 unsigned int wlen;
1074 int ret;
1075 uint64_t oid = aio_req->oid;
1076 unsigned int datalen = aio_req->data_len;
1077 uint64_t offset = aio_req->offset;
1078 uint8_t flags = aio_req->flags;
1079 uint64_t old_oid = aio_req->base_oid;
1080
1081 if (!nr_copies) {
1082 error_report("bug");
1083 }
1084
1085 memset(&hdr, 0, sizeof(hdr));
1086
1087 if (aiocb_type == AIOCB_READ_UDATA) {
1088 wlen = 0;
1089 hdr.opcode = SD_OP_READ_OBJ;
1090 hdr.flags = flags;
1091 } else if (create) {
1092 wlen = datalen;
1093 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
1094 hdr.flags = SD_FLAG_CMD_WRITE | flags;
1095 } else {
1096 wlen = datalen;
1097 hdr.opcode = SD_OP_WRITE_OBJ;
1098 hdr.flags = SD_FLAG_CMD_WRITE | flags;
1099 }
1100
1101 hdr.oid = oid;
1102 hdr.cow_oid = old_oid;
1103 hdr.copies = s->inode.nr_copies;
1104
1105 hdr.data_length = datalen;
1106 hdr.offset = offset;
1107
1108 hdr.id = aio_req->id;
1109
1110 qemu_co_mutex_lock(&s->lock);
1111 s->co_send = qemu_coroutine_self();
1112 qemu_aio_set_fd_handler(s->fd, co_read_response, co_write_request,
1113 aio_flush_request, NULL, s);
1114 set_cork(s->fd, 1);
1115
1116 /* send a header */
1117 ret = do_write(s->fd, &hdr, sizeof(hdr));
1118 if (ret) {
1119 qemu_co_mutex_unlock(&s->lock);
1120 error_report("failed to send a req, %s", strerror(errno));
1121 return -EIO;
1122 }
1123
1124 if (wlen) {
1125 ret = do_writev(s->fd, iov, wlen, aio_req->iov_offset);
1126 if (ret) {
1127 qemu_co_mutex_unlock(&s->lock);
1128 error_report("failed to send a data, %s", strerror(errno));
1129 return -EIO;
1130 }
1131 }
1132
1133 set_cork(s->fd, 0);
1134 qemu_aio_set_fd_handler(s->fd, co_read_response, NULL,
1135 aio_flush_request, NULL, s);
1136 qemu_co_mutex_unlock(&s->lock);
1137
1138 return 0;
1139 }
1140
1141 static int read_write_object(int fd, char *buf, uint64_t oid, int copies,
1142 unsigned int datalen, uint64_t offset,
1143 int write, int create)
1144 {
1145 SheepdogObjReq hdr;
1146 SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr;
1147 unsigned int wlen, rlen;
1148 int ret;
1149
1150 memset(&hdr, 0, sizeof(hdr));
1151
1152 if (write) {
1153 wlen = datalen;
1154 rlen = 0;
1155 hdr.flags = SD_FLAG_CMD_WRITE;
1156 if (create) {
1157 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
1158 } else {
1159 hdr.opcode = SD_OP_WRITE_OBJ;
1160 }
1161 } else {
1162 wlen = 0;
1163 rlen = datalen;
1164 hdr.opcode = SD_OP_READ_OBJ;
1165 }
1166 hdr.oid = oid;
1167 hdr.data_length = datalen;
1168 hdr.offset = offset;
1169 hdr.copies = copies;
1170
1171 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1172 if (ret) {
1173 error_report("failed to send a request to the sheep");
1174 return -1;
1175 }
1176
1177 switch (rsp->result) {
1178 case SD_RES_SUCCESS:
1179 return 0;
1180 default:
1181 error_report("%s", sd_strerror(rsp->result));
1182 return -1;
1183 }
1184 }
1185
1186 static int read_object(int fd, char *buf, uint64_t oid, int copies,
1187 unsigned int datalen, uint64_t offset)
1188 {
1189 return read_write_object(fd, buf, oid, copies, datalen, offset, 0, 0);
1190 }
1191
1192 static int write_object(int fd, char *buf, uint64_t oid, int copies,
1193 unsigned int datalen, uint64_t offset, int create)
1194 {
1195 return read_write_object(fd, buf, oid, copies, datalen, offset, 1, create);
1196 }
1197
1198 static int sd_open(BlockDriverState *bs, const char *filename, int flags)
1199 {
1200 int ret, fd;
1201 uint32_t vid = 0;
1202 BDRVSheepdogState *s = bs->opaque;
1203 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1204 uint32_t snapid;
1205 char *buf = NULL;
1206
1207 strstart(filename, "sheepdog:", (const char **)&filename);
1208
1209 QLIST_INIT(&s->outstanding_aio_head);
1210 s->fd = -1;
1211
1212 memset(vdi, 0, sizeof(vdi));
1213 memset(tag, 0, sizeof(tag));
1214 if (parse_vdiname(s, filename, vdi, &snapid, tag) < 0) {
1215 goto out;
1216 }
1217 s->fd = get_sheep_fd(s);
1218 if (s->fd < 0) {
1219 goto out;
1220 }
1221
1222 ret = find_vdi_name(s, vdi, snapid, tag, &vid, 0);
1223 if (ret) {
1224 goto out;
1225 }
1226
1227 if (snapid) {
1228 dprintf("%" PRIx32 " snapshot inode was open.\n", vid);
1229 s->is_snapshot = 1;
1230 }
1231
1232 fd = connect_to_sdog(s->addr, s->port);
1233 if (fd < 0) {
1234 error_report("failed to connect");
1235 goto out;
1236 }
1237
1238 buf = g_malloc(SD_INODE_SIZE);
1239 ret = read_object(fd, buf, vid_to_vdi_oid(vid), 0, SD_INODE_SIZE, 0);
1240
1241 closesocket(fd);
1242
1243 if (ret) {
1244 goto out;
1245 }
1246
1247 memcpy(&s->inode, buf, sizeof(s->inode));
1248 s->min_dirty_data_idx = UINT32_MAX;
1249 s->max_dirty_data_idx = 0;
1250
1251 bs->total_sectors = s->inode.vdi_size / SECTOR_SIZE;
1252 strncpy(s->name, vdi, sizeof(s->name));
1253 qemu_co_mutex_init(&s->lock);
1254 g_free(buf);
1255 return 0;
1256 out:
1257 qemu_aio_set_fd_handler(s->fd, NULL, NULL, NULL, NULL, NULL);
1258 if (s->fd >= 0) {
1259 closesocket(s->fd);
1260 }
1261 g_free(buf);
1262 return -1;
1263 }
1264
1265 static int do_sd_create(char *filename, int64_t vdi_size,
1266 uint32_t base_vid, uint32_t *vdi_id, int snapshot,
1267 const char *addr, const char *port)
1268 {
1269 SheepdogVdiReq hdr;
1270 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1271 int fd, ret;
1272 unsigned int wlen, rlen = 0;
1273 char buf[SD_MAX_VDI_LEN];
1274
1275 fd = connect_to_sdog(addr, port);
1276 if (fd < 0) {
1277 return -EIO;
1278 }
1279
1280 memset(buf, 0, sizeof(buf));
1281 strncpy(buf, filename, SD_MAX_VDI_LEN);
1282
1283 memset(&hdr, 0, sizeof(hdr));
1284 hdr.opcode = SD_OP_NEW_VDI;
1285 hdr.base_vdi_id = base_vid;
1286
1287 wlen = SD_MAX_VDI_LEN;
1288
1289 hdr.flags = SD_FLAG_CMD_WRITE;
1290 hdr.snapid = snapshot;
1291
1292 hdr.data_length = wlen;
1293 hdr.vdi_size = vdi_size;
1294
1295 ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1296
1297 closesocket(fd);
1298
1299 if (ret) {
1300 return -EIO;
1301 }
1302
1303 if (rsp->result != SD_RES_SUCCESS) {
1304 error_report("%s, %s", sd_strerror(rsp->result), filename);
1305 return -EIO;
1306 }
1307
1308 if (vdi_id) {
1309 *vdi_id = rsp->vdi_id;
1310 }
1311
1312 return 0;
1313 }
1314
1315 static int sd_prealloc(const char *filename)
1316 {
1317 BlockDriverState *bs = NULL;
1318 uint32_t idx, max_idx;
1319 int64_t vdi_size;
1320 void *buf = g_malloc0(SD_DATA_OBJ_SIZE);
1321 int ret;
1322
1323 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR);
1324 if (ret < 0) {
1325 goto out;
1326 }
1327
1328 vdi_size = bdrv_getlength(bs);
1329 if (vdi_size < 0) {
1330 ret = vdi_size;
1331 goto out;
1332 }
1333 max_idx = DIV_ROUND_UP(vdi_size, SD_DATA_OBJ_SIZE);
1334
1335 for (idx = 0; idx < max_idx; idx++) {
1336 /*
1337 * The created image can be a cloned image, so we need to read
1338 * a data from the source image.
1339 */
1340 ret = bdrv_pread(bs, idx * SD_DATA_OBJ_SIZE, buf, SD_DATA_OBJ_SIZE);
1341 if (ret < 0) {
1342 goto out;
1343 }
1344 ret = bdrv_pwrite(bs, idx * SD_DATA_OBJ_SIZE, buf, SD_DATA_OBJ_SIZE);
1345 if (ret < 0) {
1346 goto out;
1347 }
1348 }
1349 out:
1350 if (bs) {
1351 bdrv_delete(bs);
1352 }
1353 g_free(buf);
1354
1355 return ret;
1356 }
1357
1358 static int sd_create(const char *filename, QEMUOptionParameter *options)
1359 {
1360 int ret;
1361 uint32_t vid = 0, base_vid = 0;
1362 int64_t vdi_size = 0;
1363 char *backing_file = NULL;
1364 BDRVSheepdogState s;
1365 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1366 uint32_t snapid;
1367 int prealloc = 0;
1368 const char *vdiname;
1369
1370 strstart(filename, "sheepdog:", &vdiname);
1371
1372 memset(&s, 0, sizeof(s));
1373 memset(vdi, 0, sizeof(vdi));
1374 memset(tag, 0, sizeof(tag));
1375 if (parse_vdiname(&s, vdiname, vdi, &snapid, tag) < 0) {
1376 error_report("invalid filename");
1377 return -EINVAL;
1378 }
1379
1380 while (options && options->name) {
1381 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
1382 vdi_size = options->value.n;
1383 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
1384 backing_file = options->value.s;
1385 } else if (!strcmp(options->name, BLOCK_OPT_PREALLOC)) {
1386 if (!options->value.s || !strcmp(options->value.s, "off")) {
1387 prealloc = 0;
1388 } else if (!strcmp(options->value.s, "full")) {
1389 prealloc = 1;
1390 } else {
1391 error_report("Invalid preallocation mode: '%s'",
1392 options->value.s);
1393 return -EINVAL;
1394 }
1395 }
1396 options++;
1397 }
1398
1399 if (vdi_size > SD_MAX_VDI_SIZE) {
1400 error_report("too big image size");
1401 return -EINVAL;
1402 }
1403
1404 if (backing_file) {
1405 BlockDriverState *bs;
1406 BDRVSheepdogState *s;
1407 BlockDriver *drv;
1408
1409 /* Currently, only Sheepdog backing image is supported. */
1410 drv = bdrv_find_protocol(backing_file);
1411 if (!drv || strcmp(drv->protocol_name, "sheepdog") != 0) {
1412 error_report("backing_file must be a sheepdog image");
1413 return -EINVAL;
1414 }
1415
1416 ret = bdrv_file_open(&bs, backing_file, 0);
1417 if (ret < 0)
1418 return -EIO;
1419
1420 s = bs->opaque;
1421
1422 if (!is_snapshot(&s->inode)) {
1423 error_report("cannot clone from a non snapshot vdi");
1424 bdrv_delete(bs);
1425 return -EINVAL;
1426 }
1427
1428 base_vid = s->inode.vdi_id;
1429 bdrv_delete(bs);
1430 }
1431
1432 ret = do_sd_create(vdi, vdi_size, base_vid, &vid, 0, s.addr, s.port);
1433 if (!prealloc || ret) {
1434 return ret;
1435 }
1436
1437 return sd_prealloc(filename);
1438 }
1439
1440 static void sd_close(BlockDriverState *bs)
1441 {
1442 BDRVSheepdogState *s = bs->opaque;
1443 SheepdogVdiReq hdr;
1444 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1445 unsigned int wlen, rlen = 0;
1446 int fd, ret;
1447
1448 dprintf("%s\n", s->name);
1449
1450 fd = connect_to_sdog(s->addr, s->port);
1451 if (fd < 0) {
1452 return;
1453 }
1454
1455 memset(&hdr, 0, sizeof(hdr));
1456
1457 hdr.opcode = SD_OP_RELEASE_VDI;
1458 wlen = strlen(s->name) + 1;
1459 hdr.data_length = wlen;
1460 hdr.flags = SD_FLAG_CMD_WRITE;
1461
1462 ret = do_req(fd, (SheepdogReq *)&hdr, s->name, &wlen, &rlen);
1463
1464 closesocket(fd);
1465
1466 if (!ret && rsp->result != SD_RES_SUCCESS &&
1467 rsp->result != SD_RES_VDI_NOT_LOCKED) {
1468 error_report("%s, %s", sd_strerror(rsp->result), s->name);
1469 }
1470
1471 qemu_aio_set_fd_handler(s->fd, NULL, NULL, NULL, NULL, NULL);
1472 closesocket(s->fd);
1473 g_free(s->addr);
1474 }
1475
1476 static int64_t sd_getlength(BlockDriverState *bs)
1477 {
1478 BDRVSheepdogState *s = bs->opaque;
1479
1480 return s->inode.vdi_size;
1481 }
1482
1483 static int sd_truncate(BlockDriverState *bs, int64_t offset)
1484 {
1485 BDRVSheepdogState *s = bs->opaque;
1486 int ret, fd;
1487 unsigned int datalen;
1488
1489 if (offset < s->inode.vdi_size) {
1490 error_report("shrinking is not supported");
1491 return -EINVAL;
1492 } else if (offset > SD_MAX_VDI_SIZE) {
1493 error_report("too big image size");
1494 return -EINVAL;
1495 }
1496
1497 fd = connect_to_sdog(s->addr, s->port);
1498 if (fd < 0) {
1499 return -EIO;
1500 }
1501
1502 /* we don't need to update entire object */
1503 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
1504 s->inode.vdi_size = offset;
1505 ret = write_object(fd, (char *)&s->inode, vid_to_vdi_oid(s->inode.vdi_id),
1506 s->inode.nr_copies, datalen, 0, 0);
1507 close(fd);
1508
1509 if (ret < 0) {
1510 error_report("failed to update an inode.");
1511 return -EIO;
1512 }
1513
1514 return 0;
1515 }
1516
1517 /*
1518 * This function is called after writing data objects. If we need to
1519 * update metadata, this sends a write request to the vdi object.
1520 * Otherwise, this switches back to sd_co_readv/writev.
1521 */
1522 static void coroutine_fn sd_write_done(SheepdogAIOCB *acb)
1523 {
1524 int ret;
1525 BDRVSheepdogState *s = acb->common.bs->opaque;
1526 struct iovec iov;
1527 AIOReq *aio_req;
1528 uint32_t offset, data_len, mn, mx;
1529
1530 mn = s->min_dirty_data_idx;
1531 mx = s->max_dirty_data_idx;
1532 if (mn <= mx) {
1533 /* we need to update the vdi object. */
1534 offset = sizeof(s->inode) - sizeof(s->inode.data_vdi_id) +
1535 mn * sizeof(s->inode.data_vdi_id[0]);
1536 data_len = (mx - mn + 1) * sizeof(s->inode.data_vdi_id[0]);
1537
1538 s->min_dirty_data_idx = UINT32_MAX;
1539 s->max_dirty_data_idx = 0;
1540
1541 iov.iov_base = &s->inode;
1542 iov.iov_len = sizeof(s->inode);
1543 aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
1544 data_len, offset, 0, 0, offset);
1545 ret = add_aio_request(s, aio_req, &iov, 1, 0, AIOCB_WRITE_UDATA);
1546 if (ret) {
1547 free_aio_req(s, aio_req);
1548 acb->ret = -EIO;
1549 goto out;
1550 }
1551
1552 acb->aio_done_func = sd_finish_aiocb;
1553 acb->aiocb_type = AIOCB_WRITE_UDATA;
1554 return;
1555 }
1556 out:
1557 sd_finish_aiocb(acb);
1558 }
1559
1560 /*
1561 * Create a writable VDI from a snapshot
1562 */
1563 static int sd_create_branch(BDRVSheepdogState *s)
1564 {
1565 int ret, fd;
1566 uint32_t vid;
1567 char *buf;
1568
1569 dprintf("%" PRIx32 " is snapshot.\n", s->inode.vdi_id);
1570
1571 buf = g_malloc(SD_INODE_SIZE);
1572
1573 ret = do_sd_create(s->name, s->inode.vdi_size, s->inode.vdi_id, &vid, 1,
1574 s->addr, s->port);
1575 if (ret) {
1576 goto out;
1577 }
1578
1579 dprintf("%" PRIx32 " is created.\n", vid);
1580
1581 fd = connect_to_sdog(s->addr, s->port);
1582 if (fd < 0) {
1583 error_report("failed to connect");
1584 goto out;
1585 }
1586
1587 ret = read_object(fd, buf, vid_to_vdi_oid(vid), s->inode.nr_copies,
1588 SD_INODE_SIZE, 0);
1589
1590 closesocket(fd);
1591
1592 if (ret < 0) {
1593 goto out;
1594 }
1595
1596 memcpy(&s->inode, buf, sizeof(s->inode));
1597
1598 s->is_snapshot = 0;
1599 ret = 0;
1600 dprintf("%" PRIx32 " was newly created.\n", s->inode.vdi_id);
1601
1602 out:
1603 g_free(buf);
1604
1605 return ret;
1606 }
1607
1608 /*
1609 * Send I/O requests to the server.
1610 *
1611 * This function sends requests to the server, links the requests to
1612 * the outstanding_list in BDRVSheepdogState, and exits without
1613 * waiting the response. The responses are received in the
1614 * `aio_read_response' function which is called from the main loop as
1615 * a fd handler.
1616 *
1617 * Returns 1 when we need to wait a response, 0 when there is no sent
1618 * request and -errno in error cases.
1619 */
1620 static int coroutine_fn sd_co_rw_vector(void *p)
1621 {
1622 SheepdogAIOCB *acb = p;
1623 int ret = 0;
1624 unsigned long len, done = 0, total = acb->nb_sectors * SECTOR_SIZE;
1625 unsigned long idx = acb->sector_num * SECTOR_SIZE / SD_DATA_OBJ_SIZE;
1626 uint64_t oid;
1627 uint64_t offset = (acb->sector_num * SECTOR_SIZE) % SD_DATA_OBJ_SIZE;
1628 BDRVSheepdogState *s = acb->common.bs->opaque;
1629 SheepdogInode *inode = &s->inode;
1630 AIOReq *aio_req;
1631
1632 if (acb->aiocb_type == AIOCB_WRITE_UDATA && s->is_snapshot) {
1633 /*
1634 * In the case we open the snapshot VDI, Sheepdog creates the
1635 * writable VDI when we do a write operation first.
1636 */
1637 ret = sd_create_branch(s);
1638 if (ret) {
1639 acb->ret = -EIO;
1640 goto out;
1641 }
1642 }
1643
1644 while (done != total) {
1645 uint8_t flags = 0;
1646 uint64_t old_oid = 0;
1647 int create = 0;
1648
1649 oid = vid_to_data_oid(inode->data_vdi_id[idx], idx);
1650
1651 len = MIN(total - done, SD_DATA_OBJ_SIZE - offset);
1652
1653 if (!inode->data_vdi_id[idx]) {
1654 if (acb->aiocb_type == AIOCB_READ_UDATA) {
1655 goto done;
1656 }
1657
1658 create = 1;
1659 } else if (acb->aiocb_type == AIOCB_WRITE_UDATA
1660 && !is_data_obj_writable(inode, idx)) {
1661 /* Copy-On-Write */
1662 create = 1;
1663 old_oid = oid;
1664 flags = SD_FLAG_CMD_COW;
1665 }
1666
1667 if (create) {
1668 dprintf("update ino (%" PRIu32") %" PRIu64 " %" PRIu64
1669 " %" PRIu64 "\n", inode->vdi_id, oid,
1670 vid_to_data_oid(inode->data_vdi_id[idx], idx), idx);
1671 oid = vid_to_data_oid(inode->vdi_id, idx);
1672 dprintf("new oid %lx\n", oid);
1673 }
1674
1675 aio_req = alloc_aio_req(s, acb, oid, len, offset, flags, old_oid, done);
1676
1677 if (create) {
1678 AIOReq *areq;
1679 QLIST_FOREACH(areq, &s->outstanding_aio_head,
1680 outstanding_aio_siblings) {
1681 if (areq == aio_req) {
1682 continue;
1683 }
1684 if (areq->oid == oid) {
1685 /*
1686 * Sheepdog cannot handle simultaneous create
1687 * requests to the same object. So we cannot send
1688 * the request until the previous request
1689 * finishes.
1690 */
1691 aio_req->flags = 0;
1692 aio_req->base_oid = 0;
1693 goto done;
1694 }
1695 }
1696 }
1697
1698 ret = add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
1699 create, acb->aiocb_type);
1700 if (ret < 0) {
1701 error_report("add_aio_request is failed");
1702 free_aio_req(s, aio_req);
1703 acb->ret = -EIO;
1704 goto out;
1705 }
1706 done:
1707 offset = 0;
1708 idx++;
1709 done += len;
1710 }
1711 out:
1712 if (QLIST_EMPTY(&acb->aioreq_head)) {
1713 return acb->ret;
1714 }
1715 return 1;
1716 }
1717
1718 static coroutine_fn int sd_co_writev(BlockDriverState *bs, int64_t sector_num,
1719 int nb_sectors, QEMUIOVector *qiov)
1720 {
1721 SheepdogAIOCB *acb;
1722 int ret;
1723
1724 if (bs->growable && sector_num + nb_sectors > bs->total_sectors) {
1725 /* TODO: shouldn't block here */
1726 if (sd_truncate(bs, (sector_num + nb_sectors) * SECTOR_SIZE) < 0) {
1727 return -EIO;
1728 }
1729 bs->total_sectors = sector_num + nb_sectors;
1730 }
1731
1732 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, NULL, NULL);
1733 acb->aio_done_func = sd_write_done;
1734 acb->aiocb_type = AIOCB_WRITE_UDATA;
1735
1736 ret = sd_co_rw_vector(acb);
1737 if (ret <= 0) {
1738 qemu_aio_release(acb);
1739 return ret;
1740 }
1741
1742 qemu_coroutine_yield();
1743
1744 return acb->ret;
1745 }
1746
1747 static coroutine_fn int sd_co_readv(BlockDriverState *bs, int64_t sector_num,
1748 int nb_sectors, QEMUIOVector *qiov)
1749 {
1750 SheepdogAIOCB *acb;
1751 int i, ret;
1752
1753 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, NULL, NULL);
1754 acb->aiocb_type = AIOCB_READ_UDATA;
1755 acb->aio_done_func = sd_finish_aiocb;
1756
1757 /*
1758 * TODO: we can do better; we don't need to initialize
1759 * blindly.
1760 */
1761 for (i = 0; i < qiov->niov; i++) {
1762 memset(qiov->iov[i].iov_base, 0, qiov->iov[i].iov_len);
1763 }
1764
1765 ret = sd_co_rw_vector(acb);
1766 if (ret <= 0) {
1767 qemu_aio_release(acb);
1768 return ret;
1769 }
1770
1771 qemu_coroutine_yield();
1772
1773 return acb->ret;
1774 }
1775
1776 static int sd_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
1777 {
1778 BDRVSheepdogState *s = bs->opaque;
1779 int ret, fd;
1780 uint32_t new_vid;
1781 SheepdogInode *inode;
1782 unsigned int datalen;
1783
1784 dprintf("sn_info: name %s id_str %s s: name %s vm_state_size %d "
1785 "is_snapshot %d\n", sn_info->name, sn_info->id_str,
1786 s->name, sn_info->vm_state_size, s->is_snapshot);
1787
1788 if (s->is_snapshot) {
1789 error_report("You can't create a snapshot of a snapshot VDI, "
1790 "%s (%" PRIu32 ").", s->name, s->inode.vdi_id);
1791
1792 return -EINVAL;
1793 }
1794
1795 dprintf("%s %s\n", sn_info->name, sn_info->id_str);
1796
1797 s->inode.vm_state_size = sn_info->vm_state_size;
1798 s->inode.vm_clock_nsec = sn_info->vm_clock_nsec;
1799 strncpy(s->inode.tag, sn_info->name, sizeof(s->inode.tag));
1800 /* we don't need to update entire object */
1801 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
1802
1803 /* refresh inode. */
1804 fd = connect_to_sdog(s->addr, s->port);
1805 if (fd < 0) {
1806 ret = -EIO;
1807 goto cleanup;
1808 }
1809
1810 ret = write_object(fd, (char *)&s->inode, vid_to_vdi_oid(s->inode.vdi_id),
1811 s->inode.nr_copies, datalen, 0, 0);
1812 if (ret < 0) {
1813 error_report("failed to write snapshot's inode.");
1814 ret = -EIO;
1815 goto cleanup;
1816 }
1817
1818 ret = do_sd_create(s->name, s->inode.vdi_size, s->inode.vdi_id, &new_vid, 1,
1819 s->addr, s->port);
1820 if (ret < 0) {
1821 error_report("failed to create inode for snapshot. %s",
1822 strerror(errno));
1823 ret = -EIO;
1824 goto cleanup;
1825 }
1826
1827 inode = (SheepdogInode *)g_malloc(datalen);
1828
1829 ret = read_object(fd, (char *)inode, vid_to_vdi_oid(new_vid),
1830 s->inode.nr_copies, datalen, 0);
1831
1832 if (ret < 0) {
1833 error_report("failed to read new inode info. %s", strerror(errno));
1834 ret = -EIO;
1835 goto cleanup;
1836 }
1837
1838 memcpy(&s->inode, inode, datalen);
1839 dprintf("s->inode: name %s snap_id %x oid %x\n",
1840 s->inode.name, s->inode.snap_id, s->inode.vdi_id);
1841
1842 cleanup:
1843 closesocket(fd);
1844 return ret;
1845 }
1846
1847 static int sd_snapshot_goto(BlockDriverState *bs, const char *snapshot_id)
1848 {
1849 BDRVSheepdogState *s = bs->opaque;
1850 BDRVSheepdogState *old_s;
1851 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1852 char *buf = NULL;
1853 uint32_t vid;
1854 uint32_t snapid = 0;
1855 int ret = -ENOENT, fd;
1856
1857 old_s = g_malloc(sizeof(BDRVSheepdogState));
1858
1859 memcpy(old_s, s, sizeof(BDRVSheepdogState));
1860
1861 memset(vdi, 0, sizeof(vdi));
1862 strncpy(vdi, s->name, sizeof(vdi));
1863
1864 memset(tag, 0, sizeof(tag));
1865 snapid = strtoul(snapshot_id, NULL, 10);
1866 if (!snapid) {
1867 strncpy(tag, s->name, sizeof(tag));
1868 }
1869
1870 ret = find_vdi_name(s, vdi, snapid, tag, &vid, 1);
1871 if (ret) {
1872 error_report("Failed to find_vdi_name");
1873 ret = -ENOENT;
1874 goto out;
1875 }
1876
1877 fd = connect_to_sdog(s->addr, s->port);
1878 if (fd < 0) {
1879 error_report("failed to connect");
1880 goto out;
1881 }
1882
1883 buf = g_malloc(SD_INODE_SIZE);
1884 ret = read_object(fd, buf, vid_to_vdi_oid(vid), s->inode.nr_copies,
1885 SD_INODE_SIZE, 0);
1886
1887 closesocket(fd);
1888
1889 if (ret) {
1890 ret = -ENOENT;
1891 goto out;
1892 }
1893
1894 memcpy(&s->inode, buf, sizeof(s->inode));
1895
1896 if (!s->inode.vm_state_size) {
1897 error_report("Invalid snapshot");
1898 ret = -ENOENT;
1899 goto out;
1900 }
1901
1902 s->is_snapshot = 1;
1903
1904 g_free(buf);
1905 g_free(old_s);
1906
1907 return 0;
1908 out:
1909 /* recover bdrv_sd_state */
1910 memcpy(s, old_s, sizeof(BDRVSheepdogState));
1911 g_free(buf);
1912 g_free(old_s);
1913
1914 error_report("failed to open. recover old bdrv_sd_state.");
1915
1916 return ret;
1917 }
1918
1919 static int sd_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
1920 {
1921 /* FIXME: Delete specified snapshot id. */
1922 return 0;
1923 }
1924
1925 static int sd_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab)
1926 {
1927 BDRVSheepdogState *s = bs->opaque;
1928 SheepdogReq req;
1929 int fd, nr = 1024, ret, max = BITS_TO_LONGS(SD_NR_VDIS) * sizeof(long);
1930 QEMUSnapshotInfo *sn_tab = NULL;
1931 unsigned wlen, rlen;
1932 int found = 0;
1933 static SheepdogInode inode;
1934 unsigned long *vdi_inuse;
1935 unsigned int start_nr;
1936 uint64_t hval;
1937 uint32_t vid;
1938
1939 vdi_inuse = g_malloc(max);
1940
1941 fd = connect_to_sdog(s->addr, s->port);
1942 if (fd < 0) {
1943 goto out;
1944 }
1945
1946 rlen = max;
1947 wlen = 0;
1948
1949 memset(&req, 0, sizeof(req));
1950
1951 req.opcode = SD_OP_READ_VDIS;
1952 req.data_length = max;
1953
1954 ret = do_req(fd, (SheepdogReq *)&req, vdi_inuse, &wlen, &rlen);
1955
1956 closesocket(fd);
1957 if (ret) {
1958 goto out;
1959 }
1960
1961 sn_tab = g_malloc0(nr * sizeof(*sn_tab));
1962
1963 /* calculate a vdi id with hash function */
1964 hval = fnv_64a_buf(s->name, strlen(s->name), FNV1A_64_INIT);
1965 start_nr = hval & (SD_NR_VDIS - 1);
1966
1967 fd = connect_to_sdog(s->addr, s->port);
1968 if (fd < 0) {
1969 error_report("failed to connect");
1970 goto out;
1971 }
1972
1973 for (vid = start_nr; found < nr; vid = (vid + 1) % SD_NR_VDIS) {
1974 if (!test_bit(vid, vdi_inuse)) {
1975 break;
1976 }
1977
1978 /* we don't need to read entire object */
1979 ret = read_object(fd, (char *)&inode, vid_to_vdi_oid(vid),
1980 0, SD_INODE_SIZE - sizeof(inode.data_vdi_id), 0);
1981
1982 if (ret) {
1983 continue;
1984 }
1985
1986 if (!strcmp(inode.name, s->name) && is_snapshot(&inode)) {
1987 sn_tab[found].date_sec = inode.snap_ctime >> 32;
1988 sn_tab[found].date_nsec = inode.snap_ctime & 0xffffffff;
1989 sn_tab[found].vm_state_size = inode.vm_state_size;
1990 sn_tab[found].vm_clock_nsec = inode.vm_clock_nsec;
1991
1992 snprintf(sn_tab[found].id_str, sizeof(sn_tab[found].id_str), "%u",
1993 inode.snap_id);
1994 strncpy(sn_tab[found].name, inode.tag,
1995 MIN(sizeof(sn_tab[found].name), sizeof(inode.tag)));
1996 found++;
1997 }
1998 }
1999
2000 closesocket(fd);
2001 out:
2002 *psn_tab = sn_tab;
2003
2004 g_free(vdi_inuse);
2005
2006 return found;
2007 }
2008
2009 static int do_load_save_vmstate(BDRVSheepdogState *s, uint8_t *data,
2010 int64_t pos, int size, int load)
2011 {
2012 int fd, create;
2013 int ret = 0;
2014 unsigned int data_len;
2015 uint64_t vmstate_oid;
2016 uint32_t vdi_index;
2017 uint64_t offset;
2018
2019 fd = connect_to_sdog(s->addr, s->port);
2020 if (fd < 0) {
2021 ret = -EIO;
2022 goto cleanup;
2023 }
2024
2025 while (size) {
2026 vdi_index = pos / SD_DATA_OBJ_SIZE;
2027 offset = pos % SD_DATA_OBJ_SIZE;
2028
2029 data_len = MIN(size, SD_DATA_OBJ_SIZE);
2030
2031 vmstate_oid = vid_to_vmstate_oid(s->inode.vdi_id, vdi_index);
2032
2033 create = (offset == 0);
2034 if (load) {
2035 ret = read_object(fd, (char *)data, vmstate_oid,
2036 s->inode.nr_copies, data_len, offset);
2037 } else {
2038 ret = write_object(fd, (char *)data, vmstate_oid,
2039 s->inode.nr_copies, data_len, offset, create);
2040 }
2041
2042 if (ret < 0) {
2043 error_report("failed to save vmstate %s", strerror(errno));
2044 ret = -EIO;
2045 goto cleanup;
2046 }
2047
2048 pos += data_len;
2049 size -= data_len;
2050 ret += data_len;
2051 }
2052 cleanup:
2053 closesocket(fd);
2054 return ret;
2055 }
2056
2057 static int sd_save_vmstate(BlockDriverState *bs, const uint8_t *data,
2058 int64_t pos, int size)
2059 {
2060 BDRVSheepdogState *s = bs->opaque;
2061
2062 return do_load_save_vmstate(s, (uint8_t *)data, pos, size, 0);
2063 }
2064
2065 static int sd_load_vmstate(BlockDriverState *bs, uint8_t *data,
2066 int64_t pos, int size)
2067 {
2068 BDRVSheepdogState *s = bs->opaque;
2069
2070 return do_load_save_vmstate(s, data, pos, size, 1);
2071 }
2072
2073
2074 static QEMUOptionParameter sd_create_options[] = {
2075 {
2076 .name = BLOCK_OPT_SIZE,
2077 .type = OPT_SIZE,
2078 .help = "Virtual disk size"
2079 },
2080 {
2081 .name = BLOCK_OPT_BACKING_FILE,
2082 .type = OPT_STRING,
2083 .help = "File name of a base image"
2084 },
2085 {
2086 .name = BLOCK_OPT_PREALLOC,
2087 .type = OPT_STRING,
2088 .help = "Preallocation mode (allowed values: off, full)"
2089 },
2090 { NULL }
2091 };
2092
2093 BlockDriver bdrv_sheepdog = {
2094 .format_name = "sheepdog",
2095 .protocol_name = "sheepdog",
2096 .instance_size = sizeof(BDRVSheepdogState),
2097 .bdrv_file_open = sd_open,
2098 .bdrv_close = sd_close,
2099 .bdrv_create = sd_create,
2100 .bdrv_getlength = sd_getlength,
2101 .bdrv_truncate = sd_truncate,
2102
2103 .bdrv_co_readv = sd_co_readv,
2104 .bdrv_co_writev = sd_co_writev,
2105
2106 .bdrv_snapshot_create = sd_snapshot_create,
2107 .bdrv_snapshot_goto = sd_snapshot_goto,
2108 .bdrv_snapshot_delete = sd_snapshot_delete,
2109 .bdrv_snapshot_list = sd_snapshot_list,
2110
2111 .bdrv_save_vmstate = sd_save_vmstate,
2112 .bdrv_load_vmstate = sd_load_vmstate,
2113
2114 .create_options = sd_create_options,
2115 };
2116
2117 static void bdrv_sheepdog_init(void)
2118 {
2119 bdrv_register(&bdrv_sheepdog);
2120 }
2121 block_init(bdrv_sheepdog_init);