]> git.proxmox.com Git - qemu.git/blob - block.c
cpu: Introduce ENV_OFFSET macros
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor/monitor.h"
28 #include "block/block_int.h"
29 #include "block/blockjob.h"
30 #include "qemu/module.h"
31 #include "qapi/qmp/qjson.h"
32 #include "sysemu/sysemu.h"
33 #include "qemu/notify.h"
34 #include "block/coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu/timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55 BDRV_REQ_COPY_ON_READ = 0x1,
56 BDRV_REQ_ZERO_WRITE = 0x2,
57 } BdrvRequestFlags;
58
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65 BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors,
71 QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77 BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79 int64_t sector_num,
80 QEMUIOVector *qiov,
81 int nb_sectors,
82 BlockDriverCompletionFunc *cb,
83 void *opaque,
84 bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87 int64_t sector_num, int nb_sectors);
88
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90 bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92 double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94 bool is_write, int64_t *wait);
95
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97 QTAILQ_HEAD_INITIALIZER(bdrv_states);
98
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100 QLIST_HEAD_INITIALIZER(bdrv_drivers);
101
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113 filename[1] == ':');
114 }
115
116 int is_windows_drive(const char *filename)
117 {
118 if (is_windows_drive_prefix(filename) &&
119 filename[2] == '\0')
120 return 1;
121 if (strstart(filename, "\\\\.\\", NULL) ||
122 strstart(filename, "//./", NULL))
123 return 1;
124 return 0;
125 }
126 #endif
127
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131 bs->io_limits_enabled = false;
132
133 while (qemu_co_queue_next(&bs->throttled_reqs));
134
135 if (bs->block_timer) {
136 qemu_del_timer(bs->block_timer);
137 qemu_free_timer(bs->block_timer);
138 bs->block_timer = NULL;
139 }
140
141 bs->slice_start = 0;
142 bs->slice_end = 0;
143 bs->slice_time = 0;
144 memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146
147 static void bdrv_block_timer(void *opaque)
148 {
149 BlockDriverState *bs = opaque;
150
151 qemu_co_queue_next(&bs->throttled_reqs);
152 }
153
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156 qemu_co_queue_init(&bs->throttled_reqs);
157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158 bs->io_limits_enabled = true;
159 }
160
161 bool bdrv_io_limits_enabled(BlockDriverState *bs)
162 {
163 BlockIOLimit *io_limits = &bs->io_limits;
164 return io_limits->bps[BLOCK_IO_LIMIT_READ]
165 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
166 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
167 || io_limits->iops[BLOCK_IO_LIMIT_READ]
168 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
169 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
170 }
171
172 static void bdrv_io_limits_intercept(BlockDriverState *bs,
173 bool is_write, int nb_sectors)
174 {
175 int64_t wait_time = -1;
176
177 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
178 qemu_co_queue_wait(&bs->throttled_reqs);
179 }
180
181 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
182 * throttled requests will not be dequeued until the current request is
183 * allowed to be serviced. So if the current request still exceeds the
184 * limits, it will be inserted to the head. All requests followed it will
185 * be still in throttled_reqs queue.
186 */
187
188 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
189 qemu_mod_timer(bs->block_timer,
190 wait_time + qemu_get_clock_ns(vm_clock));
191 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
192 }
193
194 qemu_co_queue_next(&bs->throttled_reqs);
195 }
196
197 /* check if the path starts with "<protocol>:" */
198 static int path_has_protocol(const char *path)
199 {
200 const char *p;
201
202 #ifdef _WIN32
203 if (is_windows_drive(path) ||
204 is_windows_drive_prefix(path)) {
205 return 0;
206 }
207 p = path + strcspn(path, ":/\\");
208 #else
209 p = path + strcspn(path, ":/");
210 #endif
211
212 return *p == ':';
213 }
214
215 int path_is_absolute(const char *path)
216 {
217 #ifdef _WIN32
218 /* specific case for names like: "\\.\d:" */
219 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
220 return 1;
221 }
222 return (*path == '/' || *path == '\\');
223 #else
224 return (*path == '/');
225 #endif
226 }
227
228 /* if filename is absolute, just copy it to dest. Otherwise, build a
229 path to it by considering it is relative to base_path. URL are
230 supported. */
231 void path_combine(char *dest, int dest_size,
232 const char *base_path,
233 const char *filename)
234 {
235 const char *p, *p1;
236 int len;
237
238 if (dest_size <= 0)
239 return;
240 if (path_is_absolute(filename)) {
241 pstrcpy(dest, dest_size, filename);
242 } else {
243 p = strchr(base_path, ':');
244 if (p)
245 p++;
246 else
247 p = base_path;
248 p1 = strrchr(base_path, '/');
249 #ifdef _WIN32
250 {
251 const char *p2;
252 p2 = strrchr(base_path, '\\');
253 if (!p1 || p2 > p1)
254 p1 = p2;
255 }
256 #endif
257 if (p1)
258 p1++;
259 else
260 p1 = base_path;
261 if (p1 > p)
262 p = p1;
263 len = p - base_path;
264 if (len > dest_size - 1)
265 len = dest_size - 1;
266 memcpy(dest, base_path, len);
267 dest[len] = '\0';
268 pstrcat(dest, dest_size, filename);
269 }
270 }
271
272 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
273 {
274 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
275 pstrcpy(dest, sz, bs->backing_file);
276 } else {
277 path_combine(dest, sz, bs->filename, bs->backing_file);
278 }
279 }
280
281 void bdrv_register(BlockDriver *bdrv)
282 {
283 /* Block drivers without coroutine functions need emulation */
284 if (!bdrv->bdrv_co_readv) {
285 bdrv->bdrv_co_readv = bdrv_co_readv_em;
286 bdrv->bdrv_co_writev = bdrv_co_writev_em;
287
288 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
289 * the block driver lacks aio we need to emulate that too.
290 */
291 if (!bdrv->bdrv_aio_readv) {
292 /* add AIO emulation layer */
293 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
294 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
295 }
296 }
297
298 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
299 }
300
301 /* create a new block device (by default it is empty) */
302 BlockDriverState *bdrv_new(const char *device_name)
303 {
304 BlockDriverState *bs;
305
306 bs = g_malloc0(sizeof(BlockDriverState));
307 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
308 if (device_name[0] != '\0') {
309 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
310 }
311 bdrv_iostatus_disable(bs);
312 notifier_list_init(&bs->close_notifiers);
313
314 return bs;
315 }
316
317 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
318 {
319 notifier_list_add(&bs->close_notifiers, notify);
320 }
321
322 BlockDriver *bdrv_find_format(const char *format_name)
323 {
324 BlockDriver *drv1;
325 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
326 if (!strcmp(drv1->format_name, format_name)) {
327 return drv1;
328 }
329 }
330 return NULL;
331 }
332
333 static int bdrv_is_whitelisted(BlockDriver *drv)
334 {
335 static const char *whitelist[] = {
336 CONFIG_BDRV_WHITELIST
337 };
338 const char **p;
339
340 if (!whitelist[0])
341 return 1; /* no whitelist, anything goes */
342
343 for (p = whitelist; *p; p++) {
344 if (!strcmp(drv->format_name, *p)) {
345 return 1;
346 }
347 }
348 return 0;
349 }
350
351 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
352 {
353 BlockDriver *drv = bdrv_find_format(format_name);
354 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
355 }
356
357 typedef struct CreateCo {
358 BlockDriver *drv;
359 char *filename;
360 QEMUOptionParameter *options;
361 int ret;
362 } CreateCo;
363
364 static void coroutine_fn bdrv_create_co_entry(void *opaque)
365 {
366 CreateCo *cco = opaque;
367 assert(cco->drv);
368
369 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
370 }
371
372 int bdrv_create(BlockDriver *drv, const char* filename,
373 QEMUOptionParameter *options)
374 {
375 int ret;
376
377 Coroutine *co;
378 CreateCo cco = {
379 .drv = drv,
380 .filename = g_strdup(filename),
381 .options = options,
382 .ret = NOT_DONE,
383 };
384
385 if (!drv->bdrv_create) {
386 ret = -ENOTSUP;
387 goto out;
388 }
389
390 if (qemu_in_coroutine()) {
391 /* Fast-path if already in coroutine context */
392 bdrv_create_co_entry(&cco);
393 } else {
394 co = qemu_coroutine_create(bdrv_create_co_entry);
395 qemu_coroutine_enter(co, &cco);
396 while (cco.ret == NOT_DONE) {
397 qemu_aio_wait();
398 }
399 }
400
401 ret = cco.ret;
402
403 out:
404 g_free(cco.filename);
405 return ret;
406 }
407
408 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
409 {
410 BlockDriver *drv;
411
412 drv = bdrv_find_protocol(filename);
413 if (drv == NULL) {
414 return -ENOENT;
415 }
416
417 return bdrv_create(drv, filename, options);
418 }
419
420 /*
421 * Create a uniquely-named empty temporary file.
422 * Return 0 upon success, otherwise a negative errno value.
423 */
424 int get_tmp_filename(char *filename, int size)
425 {
426 #ifdef _WIN32
427 char temp_dir[MAX_PATH];
428 /* GetTempFileName requires that its output buffer (4th param)
429 have length MAX_PATH or greater. */
430 assert(size >= MAX_PATH);
431 return (GetTempPath(MAX_PATH, temp_dir)
432 && GetTempFileName(temp_dir, "qem", 0, filename)
433 ? 0 : -GetLastError());
434 #else
435 int fd;
436 const char *tmpdir;
437 tmpdir = getenv("TMPDIR");
438 if (!tmpdir)
439 tmpdir = "/tmp";
440 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
441 return -EOVERFLOW;
442 }
443 fd = mkstemp(filename);
444 if (fd < 0) {
445 return -errno;
446 }
447 if (close(fd) != 0) {
448 unlink(filename);
449 return -errno;
450 }
451 return 0;
452 #endif
453 }
454
455 /*
456 * Detect host devices. By convention, /dev/cdrom[N] is always
457 * recognized as a host CDROM.
458 */
459 static BlockDriver *find_hdev_driver(const char *filename)
460 {
461 int score_max = 0, score;
462 BlockDriver *drv = NULL, *d;
463
464 QLIST_FOREACH(d, &bdrv_drivers, list) {
465 if (d->bdrv_probe_device) {
466 score = d->bdrv_probe_device(filename);
467 if (score > score_max) {
468 score_max = score;
469 drv = d;
470 }
471 }
472 }
473
474 return drv;
475 }
476
477 BlockDriver *bdrv_find_protocol(const char *filename)
478 {
479 BlockDriver *drv1;
480 char protocol[128];
481 int len;
482 const char *p;
483
484 /* TODO Drivers without bdrv_file_open must be specified explicitly */
485
486 /*
487 * XXX(hch): we really should not let host device detection
488 * override an explicit protocol specification, but moving this
489 * later breaks access to device names with colons in them.
490 * Thanks to the brain-dead persistent naming schemes on udev-
491 * based Linux systems those actually are quite common.
492 */
493 drv1 = find_hdev_driver(filename);
494 if (drv1) {
495 return drv1;
496 }
497
498 if (!path_has_protocol(filename)) {
499 return bdrv_find_format("file");
500 }
501 p = strchr(filename, ':');
502 assert(p != NULL);
503 len = p - filename;
504 if (len > sizeof(protocol) - 1)
505 len = sizeof(protocol) - 1;
506 memcpy(protocol, filename, len);
507 protocol[len] = '\0';
508 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
509 if (drv1->protocol_name &&
510 !strcmp(drv1->protocol_name, protocol)) {
511 return drv1;
512 }
513 }
514 return NULL;
515 }
516
517 static int find_image_format(BlockDriverState *bs, const char *filename,
518 BlockDriver **pdrv)
519 {
520 int score, score_max;
521 BlockDriver *drv1, *drv;
522 uint8_t buf[2048];
523 int ret = 0;
524
525 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
526 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) {
527 drv = bdrv_find_format("raw");
528 if (!drv) {
529 ret = -ENOENT;
530 }
531 *pdrv = drv;
532 return ret;
533 }
534
535 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
536 if (ret < 0) {
537 *pdrv = NULL;
538 return ret;
539 }
540
541 score_max = 0;
542 drv = NULL;
543 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
544 if (drv1->bdrv_probe) {
545 score = drv1->bdrv_probe(buf, ret, filename);
546 if (score > score_max) {
547 score_max = score;
548 drv = drv1;
549 }
550 }
551 }
552 if (!drv) {
553 ret = -ENOENT;
554 }
555 *pdrv = drv;
556 return ret;
557 }
558
559 /**
560 * Set the current 'total_sectors' value
561 */
562 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
563 {
564 BlockDriver *drv = bs->drv;
565
566 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
567 if (bs->sg)
568 return 0;
569
570 /* query actual device if possible, otherwise just trust the hint */
571 if (drv->bdrv_getlength) {
572 int64_t length = drv->bdrv_getlength(bs);
573 if (length < 0) {
574 return length;
575 }
576 hint = length >> BDRV_SECTOR_BITS;
577 }
578
579 bs->total_sectors = hint;
580 return 0;
581 }
582
583 /**
584 * Set open flags for a given discard mode
585 *
586 * Return 0 on success, -1 if the discard mode was invalid.
587 */
588 int bdrv_parse_discard_flags(const char *mode, int *flags)
589 {
590 *flags &= ~BDRV_O_UNMAP;
591
592 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) {
593 /* do nothing */
594 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) {
595 *flags |= BDRV_O_UNMAP;
596 } else {
597 return -1;
598 }
599
600 return 0;
601 }
602
603 /**
604 * Set open flags for a given cache mode
605 *
606 * Return 0 on success, -1 if the cache mode was invalid.
607 */
608 int bdrv_parse_cache_flags(const char *mode, int *flags)
609 {
610 *flags &= ~BDRV_O_CACHE_MASK;
611
612 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
613 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
614 } else if (!strcmp(mode, "directsync")) {
615 *flags |= BDRV_O_NOCACHE;
616 } else if (!strcmp(mode, "writeback")) {
617 *flags |= BDRV_O_CACHE_WB;
618 } else if (!strcmp(mode, "unsafe")) {
619 *flags |= BDRV_O_CACHE_WB;
620 *flags |= BDRV_O_NO_FLUSH;
621 } else if (!strcmp(mode, "writethrough")) {
622 /* this is the default */
623 } else {
624 return -1;
625 }
626
627 return 0;
628 }
629
630 /**
631 * The copy-on-read flag is actually a reference count so multiple users may
632 * use the feature without worrying about clobbering its previous state.
633 * Copy-on-read stays enabled until all users have called to disable it.
634 */
635 void bdrv_enable_copy_on_read(BlockDriverState *bs)
636 {
637 bs->copy_on_read++;
638 }
639
640 void bdrv_disable_copy_on_read(BlockDriverState *bs)
641 {
642 assert(bs->copy_on_read > 0);
643 bs->copy_on_read--;
644 }
645
646 static int bdrv_open_flags(BlockDriverState *bs, int flags)
647 {
648 int open_flags = flags | BDRV_O_CACHE_WB;
649
650 /*
651 * Clear flags that are internal to the block layer before opening the
652 * image.
653 */
654 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
655
656 /*
657 * Snapshots should be writable.
658 */
659 if (bs->is_temporary) {
660 open_flags |= BDRV_O_RDWR;
661 }
662
663 return open_flags;
664 }
665
666 /*
667 * Common part for opening disk images and files
668 */
669 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
670 const char *filename,
671 int flags, BlockDriver *drv)
672 {
673 int ret, open_flags;
674
675 assert(drv != NULL);
676 assert(bs->file == NULL);
677
678 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
679
680 bs->open_flags = flags;
681 bs->buffer_alignment = 512;
682
683 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
684 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
685 bdrv_enable_copy_on_read(bs);
686 }
687
688 pstrcpy(bs->filename, sizeof(bs->filename), filename);
689
690 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
691 return -ENOTSUP;
692 }
693
694 bs->drv = drv;
695 bs->opaque = g_malloc0(drv->instance_size);
696
697 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
698 open_flags = bdrv_open_flags(bs, flags);
699
700 bs->read_only = !(open_flags & BDRV_O_RDWR);
701
702 /* Open the image, either directly or using a protocol */
703 if (drv->bdrv_file_open) {
704 if (file != NULL) {
705 bdrv_swap(file, bs);
706 ret = 0;
707 } else {
708 ret = drv->bdrv_file_open(bs, filename, open_flags);
709 }
710 } else {
711 assert(file != NULL);
712 bs->file = file;
713 ret = drv->bdrv_open(bs, open_flags);
714 }
715
716 if (ret < 0) {
717 goto free_and_fail;
718 }
719
720 ret = refresh_total_sectors(bs, bs->total_sectors);
721 if (ret < 0) {
722 goto free_and_fail;
723 }
724
725 #ifndef _WIN32
726 if (bs->is_temporary) {
727 unlink(filename);
728 }
729 #endif
730 return 0;
731
732 free_and_fail:
733 bs->file = NULL;
734 g_free(bs->opaque);
735 bs->opaque = NULL;
736 bs->drv = NULL;
737 return ret;
738 }
739
740 /*
741 * Opens a file using a protocol (file, host_device, nbd, ...)
742 */
743 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
744 {
745 BlockDriverState *bs;
746 BlockDriver *drv;
747 int ret;
748
749 drv = bdrv_find_protocol(filename);
750 if (!drv) {
751 return -ENOENT;
752 }
753
754 bs = bdrv_new("");
755 ret = bdrv_open_common(bs, NULL, filename, flags, drv);
756 if (ret < 0) {
757 bdrv_delete(bs);
758 return ret;
759 }
760 bs->growable = 1;
761 *pbs = bs;
762 return 0;
763 }
764
765 int bdrv_open_backing_file(BlockDriverState *bs)
766 {
767 char backing_filename[PATH_MAX];
768 int back_flags, ret;
769 BlockDriver *back_drv = NULL;
770
771 if (bs->backing_hd != NULL) {
772 return 0;
773 }
774
775 bs->open_flags &= ~BDRV_O_NO_BACKING;
776 if (bs->backing_file[0] == '\0') {
777 return 0;
778 }
779
780 bs->backing_hd = bdrv_new("");
781 bdrv_get_full_backing_filename(bs, backing_filename,
782 sizeof(backing_filename));
783
784 if (bs->backing_format[0] != '\0') {
785 back_drv = bdrv_find_format(bs->backing_format);
786 }
787
788 /* backing files always opened read-only */
789 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
790
791 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
792 if (ret < 0) {
793 bdrv_delete(bs->backing_hd);
794 bs->backing_hd = NULL;
795 bs->open_flags |= BDRV_O_NO_BACKING;
796 return ret;
797 }
798 return 0;
799 }
800
801 /*
802 * Opens a disk image (raw, qcow2, vmdk, ...)
803 */
804 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
805 BlockDriver *drv)
806 {
807 int ret;
808 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
809 char tmp_filename[PATH_MAX + 1];
810 BlockDriverState *file = NULL;
811
812 if (flags & BDRV_O_SNAPSHOT) {
813 BlockDriverState *bs1;
814 int64_t total_size;
815 int is_protocol = 0;
816 BlockDriver *bdrv_qcow2;
817 QEMUOptionParameter *options;
818 char backing_filename[PATH_MAX];
819
820 /* if snapshot, we create a temporary backing file and open it
821 instead of opening 'filename' directly */
822
823 /* if there is a backing file, use it */
824 bs1 = bdrv_new("");
825 ret = bdrv_open(bs1, filename, 0, drv);
826 if (ret < 0) {
827 bdrv_delete(bs1);
828 return ret;
829 }
830 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
831
832 if (bs1->drv && bs1->drv->protocol_name)
833 is_protocol = 1;
834
835 bdrv_delete(bs1);
836
837 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
838 if (ret < 0) {
839 return ret;
840 }
841
842 /* Real path is meaningless for protocols */
843 if (is_protocol)
844 snprintf(backing_filename, sizeof(backing_filename),
845 "%s", filename);
846 else if (!realpath(filename, backing_filename))
847 return -errno;
848
849 bdrv_qcow2 = bdrv_find_format("qcow2");
850 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
851
852 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
853 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
854 if (drv) {
855 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
856 drv->format_name);
857 }
858
859 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
860 free_option_parameters(options);
861 if (ret < 0) {
862 return ret;
863 }
864
865 filename = tmp_filename;
866 drv = bdrv_qcow2;
867 bs->is_temporary = 1;
868 }
869
870 /* Open image file without format layer */
871 if (flags & BDRV_O_RDWR) {
872 flags |= BDRV_O_ALLOW_RDWR;
873 }
874
875 ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags));
876 if (ret < 0) {
877 return ret;
878 }
879
880 /* Find the right image format driver */
881 if (!drv) {
882 ret = find_image_format(file, filename, &drv);
883 }
884
885 if (!drv) {
886 goto unlink_and_fail;
887 }
888
889 /* Open the image */
890 ret = bdrv_open_common(bs, file, filename, flags, drv);
891 if (ret < 0) {
892 goto unlink_and_fail;
893 }
894
895 if (bs->file != file) {
896 bdrv_delete(file);
897 file = NULL;
898 }
899
900 /* If there is a backing file, use it */
901 if ((flags & BDRV_O_NO_BACKING) == 0) {
902 ret = bdrv_open_backing_file(bs);
903 if (ret < 0) {
904 bdrv_close(bs);
905 return ret;
906 }
907 }
908
909 if (!bdrv_key_required(bs)) {
910 bdrv_dev_change_media_cb(bs, true);
911 }
912
913 /* throttling disk I/O limits */
914 if (bs->io_limits_enabled) {
915 bdrv_io_limits_enable(bs);
916 }
917
918 return 0;
919
920 unlink_and_fail:
921 if (file != NULL) {
922 bdrv_delete(file);
923 }
924 if (bs->is_temporary) {
925 unlink(filename);
926 }
927 return ret;
928 }
929
930 typedef struct BlockReopenQueueEntry {
931 bool prepared;
932 BDRVReopenState state;
933 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
934 } BlockReopenQueueEntry;
935
936 /*
937 * Adds a BlockDriverState to a simple queue for an atomic, transactional
938 * reopen of multiple devices.
939 *
940 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
941 * already performed, or alternatively may be NULL a new BlockReopenQueue will
942 * be created and initialized. This newly created BlockReopenQueue should be
943 * passed back in for subsequent calls that are intended to be of the same
944 * atomic 'set'.
945 *
946 * bs is the BlockDriverState to add to the reopen queue.
947 *
948 * flags contains the open flags for the associated bs
949 *
950 * returns a pointer to bs_queue, which is either the newly allocated
951 * bs_queue, or the existing bs_queue being used.
952 *
953 */
954 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
955 BlockDriverState *bs, int flags)
956 {
957 assert(bs != NULL);
958
959 BlockReopenQueueEntry *bs_entry;
960 if (bs_queue == NULL) {
961 bs_queue = g_new0(BlockReopenQueue, 1);
962 QSIMPLEQ_INIT(bs_queue);
963 }
964
965 if (bs->file) {
966 bdrv_reopen_queue(bs_queue, bs->file, flags);
967 }
968
969 bs_entry = g_new0(BlockReopenQueueEntry, 1);
970 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
971
972 bs_entry->state.bs = bs;
973 bs_entry->state.flags = flags;
974
975 return bs_queue;
976 }
977
978 /*
979 * Reopen multiple BlockDriverStates atomically & transactionally.
980 *
981 * The queue passed in (bs_queue) must have been built up previous
982 * via bdrv_reopen_queue().
983 *
984 * Reopens all BDS specified in the queue, with the appropriate
985 * flags. All devices are prepared for reopen, and failure of any
986 * device will cause all device changes to be abandonded, and intermediate
987 * data cleaned up.
988 *
989 * If all devices prepare successfully, then the changes are committed
990 * to all devices.
991 *
992 */
993 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
994 {
995 int ret = -1;
996 BlockReopenQueueEntry *bs_entry, *next;
997 Error *local_err = NULL;
998
999 assert(bs_queue != NULL);
1000
1001 bdrv_drain_all();
1002
1003 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1004 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
1005 error_propagate(errp, local_err);
1006 goto cleanup;
1007 }
1008 bs_entry->prepared = true;
1009 }
1010
1011 /* If we reach this point, we have success and just need to apply the
1012 * changes
1013 */
1014 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1015 bdrv_reopen_commit(&bs_entry->state);
1016 }
1017
1018 ret = 0;
1019
1020 cleanup:
1021 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
1022 if (ret && bs_entry->prepared) {
1023 bdrv_reopen_abort(&bs_entry->state);
1024 }
1025 g_free(bs_entry);
1026 }
1027 g_free(bs_queue);
1028 return ret;
1029 }
1030
1031
1032 /* Reopen a single BlockDriverState with the specified flags. */
1033 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1034 {
1035 int ret = -1;
1036 Error *local_err = NULL;
1037 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1038
1039 ret = bdrv_reopen_multiple(queue, &local_err);
1040 if (local_err != NULL) {
1041 error_propagate(errp, local_err);
1042 }
1043 return ret;
1044 }
1045
1046
1047 /*
1048 * Prepares a BlockDriverState for reopen. All changes are staged in the
1049 * 'opaque' field of the BDRVReopenState, which is used and allocated by
1050 * the block driver layer .bdrv_reopen_prepare()
1051 *
1052 * bs is the BlockDriverState to reopen
1053 * flags are the new open flags
1054 * queue is the reopen queue
1055 *
1056 * Returns 0 on success, non-zero on error. On error errp will be set
1057 * as well.
1058 *
1059 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1060 * It is the responsibility of the caller to then call the abort() or
1061 * commit() for any other BDS that have been left in a prepare() state
1062 *
1063 */
1064 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1065 Error **errp)
1066 {
1067 int ret = -1;
1068 Error *local_err = NULL;
1069 BlockDriver *drv;
1070
1071 assert(reopen_state != NULL);
1072 assert(reopen_state->bs->drv != NULL);
1073 drv = reopen_state->bs->drv;
1074
1075 /* if we are to stay read-only, do not allow permission change
1076 * to r/w */
1077 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1078 reopen_state->flags & BDRV_O_RDWR) {
1079 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1080 reopen_state->bs->device_name);
1081 goto error;
1082 }
1083
1084
1085 ret = bdrv_flush(reopen_state->bs);
1086 if (ret) {
1087 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1088 strerror(-ret));
1089 goto error;
1090 }
1091
1092 if (drv->bdrv_reopen_prepare) {
1093 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1094 if (ret) {
1095 if (local_err != NULL) {
1096 error_propagate(errp, local_err);
1097 } else {
1098 error_set(errp, QERR_OPEN_FILE_FAILED,
1099 reopen_state->bs->filename);
1100 }
1101 goto error;
1102 }
1103 } else {
1104 /* It is currently mandatory to have a bdrv_reopen_prepare()
1105 * handler for each supported drv. */
1106 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1107 drv->format_name, reopen_state->bs->device_name,
1108 "reopening of file");
1109 ret = -1;
1110 goto error;
1111 }
1112
1113 ret = 0;
1114
1115 error:
1116 return ret;
1117 }
1118
1119 /*
1120 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1121 * makes them final by swapping the staging BlockDriverState contents into
1122 * the active BlockDriverState contents.
1123 */
1124 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1125 {
1126 BlockDriver *drv;
1127
1128 assert(reopen_state != NULL);
1129 drv = reopen_state->bs->drv;
1130 assert(drv != NULL);
1131
1132 /* If there are any driver level actions to take */
1133 if (drv->bdrv_reopen_commit) {
1134 drv->bdrv_reopen_commit(reopen_state);
1135 }
1136
1137 /* set BDS specific flags now */
1138 reopen_state->bs->open_flags = reopen_state->flags;
1139 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1140 BDRV_O_CACHE_WB);
1141 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1142 }
1143
1144 /*
1145 * Abort the reopen, and delete and free the staged changes in
1146 * reopen_state
1147 */
1148 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1149 {
1150 BlockDriver *drv;
1151
1152 assert(reopen_state != NULL);
1153 drv = reopen_state->bs->drv;
1154 assert(drv != NULL);
1155
1156 if (drv->bdrv_reopen_abort) {
1157 drv->bdrv_reopen_abort(reopen_state);
1158 }
1159 }
1160
1161
1162 void bdrv_close(BlockDriverState *bs)
1163 {
1164 bdrv_flush(bs);
1165 if (bs->job) {
1166 block_job_cancel_sync(bs->job);
1167 }
1168 bdrv_drain_all();
1169 notifier_list_notify(&bs->close_notifiers, bs);
1170
1171 if (bs->drv) {
1172 if (bs == bs_snapshots) {
1173 bs_snapshots = NULL;
1174 }
1175 if (bs->backing_hd) {
1176 bdrv_delete(bs->backing_hd);
1177 bs->backing_hd = NULL;
1178 }
1179 bs->drv->bdrv_close(bs);
1180 g_free(bs->opaque);
1181 #ifdef _WIN32
1182 if (bs->is_temporary) {
1183 unlink(bs->filename);
1184 }
1185 #endif
1186 bs->opaque = NULL;
1187 bs->drv = NULL;
1188 bs->copy_on_read = 0;
1189 bs->backing_file[0] = '\0';
1190 bs->backing_format[0] = '\0';
1191 bs->total_sectors = 0;
1192 bs->encrypted = 0;
1193 bs->valid_key = 0;
1194 bs->sg = 0;
1195 bs->growable = 0;
1196
1197 if (bs->file != NULL) {
1198 bdrv_delete(bs->file);
1199 bs->file = NULL;
1200 }
1201 }
1202
1203 bdrv_dev_change_media_cb(bs, false);
1204
1205 /*throttling disk I/O limits*/
1206 if (bs->io_limits_enabled) {
1207 bdrv_io_limits_disable(bs);
1208 }
1209 }
1210
1211 void bdrv_close_all(void)
1212 {
1213 BlockDriverState *bs;
1214
1215 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1216 bdrv_close(bs);
1217 }
1218 }
1219
1220 /*
1221 * Wait for pending requests to complete across all BlockDriverStates
1222 *
1223 * This function does not flush data to disk, use bdrv_flush_all() for that
1224 * after calling this function.
1225 *
1226 * Note that completion of an asynchronous I/O operation can trigger any
1227 * number of other I/O operations on other devices---for example a coroutine
1228 * can be arbitrarily complex and a constant flow of I/O can come until the
1229 * coroutine is complete. Because of this, it is not possible to have a
1230 * function to drain a single device's I/O queue.
1231 */
1232 void bdrv_drain_all(void)
1233 {
1234 BlockDriverState *bs;
1235 bool busy;
1236
1237 do {
1238 busy = qemu_aio_wait();
1239
1240 /* FIXME: We do not have timer support here, so this is effectively
1241 * a busy wait.
1242 */
1243 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1244 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1245 qemu_co_queue_restart_all(&bs->throttled_reqs);
1246 busy = true;
1247 }
1248 }
1249 } while (busy);
1250
1251 /* If requests are still pending there is a bug somewhere */
1252 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1253 assert(QLIST_EMPTY(&bs->tracked_requests));
1254 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1255 }
1256 }
1257
1258 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1259 Also, NULL terminate the device_name to prevent double remove */
1260 void bdrv_make_anon(BlockDriverState *bs)
1261 {
1262 if (bs->device_name[0] != '\0') {
1263 QTAILQ_REMOVE(&bdrv_states, bs, list);
1264 }
1265 bs->device_name[0] = '\0';
1266 }
1267
1268 static void bdrv_rebind(BlockDriverState *bs)
1269 {
1270 if (bs->drv && bs->drv->bdrv_rebind) {
1271 bs->drv->bdrv_rebind(bs);
1272 }
1273 }
1274
1275 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1276 BlockDriverState *bs_src)
1277 {
1278 /* move some fields that need to stay attached to the device */
1279 bs_dest->open_flags = bs_src->open_flags;
1280
1281 /* dev info */
1282 bs_dest->dev_ops = bs_src->dev_ops;
1283 bs_dest->dev_opaque = bs_src->dev_opaque;
1284 bs_dest->dev = bs_src->dev;
1285 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1286 bs_dest->copy_on_read = bs_src->copy_on_read;
1287
1288 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1289
1290 /* i/o timing parameters */
1291 bs_dest->slice_time = bs_src->slice_time;
1292 bs_dest->slice_start = bs_src->slice_start;
1293 bs_dest->slice_end = bs_src->slice_end;
1294 bs_dest->io_limits = bs_src->io_limits;
1295 bs_dest->io_base = bs_src->io_base;
1296 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1297 bs_dest->block_timer = bs_src->block_timer;
1298 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1299
1300 /* r/w error */
1301 bs_dest->on_read_error = bs_src->on_read_error;
1302 bs_dest->on_write_error = bs_src->on_write_error;
1303
1304 /* i/o status */
1305 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1306 bs_dest->iostatus = bs_src->iostatus;
1307
1308 /* dirty bitmap */
1309 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1310
1311 /* job */
1312 bs_dest->in_use = bs_src->in_use;
1313 bs_dest->job = bs_src->job;
1314
1315 /* keep the same entry in bdrv_states */
1316 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1317 bs_src->device_name);
1318 bs_dest->list = bs_src->list;
1319 }
1320
1321 /*
1322 * Swap bs contents for two image chains while they are live,
1323 * while keeping required fields on the BlockDriverState that is
1324 * actually attached to a device.
1325 *
1326 * This will modify the BlockDriverState fields, and swap contents
1327 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1328 *
1329 * bs_new is required to be anonymous.
1330 *
1331 * This function does not create any image files.
1332 */
1333 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1334 {
1335 BlockDriverState tmp;
1336
1337 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1338 assert(bs_new->device_name[0] == '\0');
1339 assert(bs_new->dirty_bitmap == NULL);
1340 assert(bs_new->job == NULL);
1341 assert(bs_new->dev == NULL);
1342 assert(bs_new->in_use == 0);
1343 assert(bs_new->io_limits_enabled == false);
1344 assert(bs_new->block_timer == NULL);
1345
1346 tmp = *bs_new;
1347 *bs_new = *bs_old;
1348 *bs_old = tmp;
1349
1350 /* there are some fields that should not be swapped, move them back */
1351 bdrv_move_feature_fields(&tmp, bs_old);
1352 bdrv_move_feature_fields(bs_old, bs_new);
1353 bdrv_move_feature_fields(bs_new, &tmp);
1354
1355 /* bs_new shouldn't be in bdrv_states even after the swap! */
1356 assert(bs_new->device_name[0] == '\0');
1357
1358 /* Check a few fields that should remain attached to the device */
1359 assert(bs_new->dev == NULL);
1360 assert(bs_new->job == NULL);
1361 assert(bs_new->in_use == 0);
1362 assert(bs_new->io_limits_enabled == false);
1363 assert(bs_new->block_timer == NULL);
1364
1365 bdrv_rebind(bs_new);
1366 bdrv_rebind(bs_old);
1367 }
1368
1369 /*
1370 * Add new bs contents at the top of an image chain while the chain is
1371 * live, while keeping required fields on the top layer.
1372 *
1373 * This will modify the BlockDriverState fields, and swap contents
1374 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1375 *
1376 * bs_new is required to be anonymous.
1377 *
1378 * This function does not create any image files.
1379 */
1380 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1381 {
1382 bdrv_swap(bs_new, bs_top);
1383
1384 /* The contents of 'tmp' will become bs_top, as we are
1385 * swapping bs_new and bs_top contents. */
1386 bs_top->backing_hd = bs_new;
1387 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1388 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1389 bs_new->filename);
1390 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1391 bs_new->drv ? bs_new->drv->format_name : "");
1392 }
1393
1394 void bdrv_delete(BlockDriverState *bs)
1395 {
1396 assert(!bs->dev);
1397 assert(!bs->job);
1398 assert(!bs->in_use);
1399
1400 /* remove from list, if necessary */
1401 bdrv_make_anon(bs);
1402
1403 bdrv_close(bs);
1404
1405 assert(bs != bs_snapshots);
1406 g_free(bs);
1407 }
1408
1409 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1410 /* TODO change to DeviceState *dev when all users are qdevified */
1411 {
1412 if (bs->dev) {
1413 return -EBUSY;
1414 }
1415 bs->dev = dev;
1416 bdrv_iostatus_reset(bs);
1417 return 0;
1418 }
1419
1420 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1421 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1422 {
1423 if (bdrv_attach_dev(bs, dev) < 0) {
1424 abort();
1425 }
1426 }
1427
1428 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1429 /* TODO change to DeviceState *dev when all users are qdevified */
1430 {
1431 assert(bs->dev == dev);
1432 bs->dev = NULL;
1433 bs->dev_ops = NULL;
1434 bs->dev_opaque = NULL;
1435 bs->buffer_alignment = 512;
1436 }
1437
1438 /* TODO change to return DeviceState * when all users are qdevified */
1439 void *bdrv_get_attached_dev(BlockDriverState *bs)
1440 {
1441 return bs->dev;
1442 }
1443
1444 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1445 void *opaque)
1446 {
1447 bs->dev_ops = ops;
1448 bs->dev_opaque = opaque;
1449 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1450 bs_snapshots = NULL;
1451 }
1452 }
1453
1454 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1455 enum MonitorEvent ev,
1456 BlockErrorAction action, bool is_read)
1457 {
1458 QObject *data;
1459 const char *action_str;
1460
1461 switch (action) {
1462 case BDRV_ACTION_REPORT:
1463 action_str = "report";
1464 break;
1465 case BDRV_ACTION_IGNORE:
1466 action_str = "ignore";
1467 break;
1468 case BDRV_ACTION_STOP:
1469 action_str = "stop";
1470 break;
1471 default:
1472 abort();
1473 }
1474
1475 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1476 bdrv->device_name,
1477 action_str,
1478 is_read ? "read" : "write");
1479 monitor_protocol_event(ev, data);
1480
1481 qobject_decref(data);
1482 }
1483
1484 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1485 {
1486 QObject *data;
1487
1488 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1489 bdrv_get_device_name(bs), ejected);
1490 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1491
1492 qobject_decref(data);
1493 }
1494
1495 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1496 {
1497 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1498 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1499 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1500 if (tray_was_closed) {
1501 /* tray open */
1502 bdrv_emit_qmp_eject_event(bs, true);
1503 }
1504 if (load) {
1505 /* tray close */
1506 bdrv_emit_qmp_eject_event(bs, false);
1507 }
1508 }
1509 }
1510
1511 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1512 {
1513 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1514 }
1515
1516 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1517 {
1518 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1519 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1520 }
1521 }
1522
1523 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1524 {
1525 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1526 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1527 }
1528 return false;
1529 }
1530
1531 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1532 {
1533 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1534 bs->dev_ops->resize_cb(bs->dev_opaque);
1535 }
1536 }
1537
1538 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1539 {
1540 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1541 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1542 }
1543 return false;
1544 }
1545
1546 /*
1547 * Run consistency checks on an image
1548 *
1549 * Returns 0 if the check could be completed (it doesn't mean that the image is
1550 * free of errors) or -errno when an internal error occurred. The results of the
1551 * check are stored in res.
1552 */
1553 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1554 {
1555 if (bs->drv->bdrv_check == NULL) {
1556 return -ENOTSUP;
1557 }
1558
1559 memset(res, 0, sizeof(*res));
1560 return bs->drv->bdrv_check(bs, res, fix);
1561 }
1562
1563 #define COMMIT_BUF_SECTORS 2048
1564
1565 /* commit COW file into the raw image */
1566 int bdrv_commit(BlockDriverState *bs)
1567 {
1568 BlockDriver *drv = bs->drv;
1569 int64_t sector, total_sectors;
1570 int n, ro, open_flags;
1571 int ret = 0;
1572 uint8_t *buf;
1573 char filename[PATH_MAX];
1574
1575 if (!drv)
1576 return -ENOMEDIUM;
1577
1578 if (!bs->backing_hd) {
1579 return -ENOTSUP;
1580 }
1581
1582 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1583 return -EBUSY;
1584 }
1585
1586 ro = bs->backing_hd->read_only;
1587 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1588 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1589 open_flags = bs->backing_hd->open_flags;
1590
1591 if (ro) {
1592 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1593 return -EACCES;
1594 }
1595 }
1596
1597 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1598 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1599
1600 for (sector = 0; sector < total_sectors; sector += n) {
1601 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1602
1603 if (bdrv_read(bs, sector, buf, n) != 0) {
1604 ret = -EIO;
1605 goto ro_cleanup;
1606 }
1607
1608 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1609 ret = -EIO;
1610 goto ro_cleanup;
1611 }
1612 }
1613 }
1614
1615 if (drv->bdrv_make_empty) {
1616 ret = drv->bdrv_make_empty(bs);
1617 bdrv_flush(bs);
1618 }
1619
1620 /*
1621 * Make sure all data we wrote to the backing device is actually
1622 * stable on disk.
1623 */
1624 if (bs->backing_hd)
1625 bdrv_flush(bs->backing_hd);
1626
1627 ro_cleanup:
1628 g_free(buf);
1629
1630 if (ro) {
1631 /* ignoring error return here */
1632 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1633 }
1634
1635 return ret;
1636 }
1637
1638 int bdrv_commit_all(void)
1639 {
1640 BlockDriverState *bs;
1641
1642 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1643 int ret = bdrv_commit(bs);
1644 if (ret < 0) {
1645 return ret;
1646 }
1647 }
1648 return 0;
1649 }
1650
1651 struct BdrvTrackedRequest {
1652 BlockDriverState *bs;
1653 int64_t sector_num;
1654 int nb_sectors;
1655 bool is_write;
1656 QLIST_ENTRY(BdrvTrackedRequest) list;
1657 Coroutine *co; /* owner, used for deadlock detection */
1658 CoQueue wait_queue; /* coroutines blocked on this request */
1659 };
1660
1661 /**
1662 * Remove an active request from the tracked requests list
1663 *
1664 * This function should be called when a tracked request is completing.
1665 */
1666 static void tracked_request_end(BdrvTrackedRequest *req)
1667 {
1668 QLIST_REMOVE(req, list);
1669 qemu_co_queue_restart_all(&req->wait_queue);
1670 }
1671
1672 /**
1673 * Add an active request to the tracked requests list
1674 */
1675 static void tracked_request_begin(BdrvTrackedRequest *req,
1676 BlockDriverState *bs,
1677 int64_t sector_num,
1678 int nb_sectors, bool is_write)
1679 {
1680 *req = (BdrvTrackedRequest){
1681 .bs = bs,
1682 .sector_num = sector_num,
1683 .nb_sectors = nb_sectors,
1684 .is_write = is_write,
1685 .co = qemu_coroutine_self(),
1686 };
1687
1688 qemu_co_queue_init(&req->wait_queue);
1689
1690 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1691 }
1692
1693 /**
1694 * Round a region to cluster boundaries
1695 */
1696 void bdrv_round_to_clusters(BlockDriverState *bs,
1697 int64_t sector_num, int nb_sectors,
1698 int64_t *cluster_sector_num,
1699 int *cluster_nb_sectors)
1700 {
1701 BlockDriverInfo bdi;
1702
1703 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1704 *cluster_sector_num = sector_num;
1705 *cluster_nb_sectors = nb_sectors;
1706 } else {
1707 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1708 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1709 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1710 nb_sectors, c);
1711 }
1712 }
1713
1714 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1715 int64_t sector_num, int nb_sectors) {
1716 /* aaaa bbbb */
1717 if (sector_num >= req->sector_num + req->nb_sectors) {
1718 return false;
1719 }
1720 /* bbbb aaaa */
1721 if (req->sector_num >= sector_num + nb_sectors) {
1722 return false;
1723 }
1724 return true;
1725 }
1726
1727 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1728 int64_t sector_num, int nb_sectors)
1729 {
1730 BdrvTrackedRequest *req;
1731 int64_t cluster_sector_num;
1732 int cluster_nb_sectors;
1733 bool retry;
1734
1735 /* If we touch the same cluster it counts as an overlap. This guarantees
1736 * that allocating writes will be serialized and not race with each other
1737 * for the same cluster. For example, in copy-on-read it ensures that the
1738 * CoR read and write operations are atomic and guest writes cannot
1739 * interleave between them.
1740 */
1741 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
1742 &cluster_sector_num, &cluster_nb_sectors);
1743
1744 do {
1745 retry = false;
1746 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1747 if (tracked_request_overlaps(req, cluster_sector_num,
1748 cluster_nb_sectors)) {
1749 /* Hitting this means there was a reentrant request, for
1750 * example, a block driver issuing nested requests. This must
1751 * never happen since it means deadlock.
1752 */
1753 assert(qemu_coroutine_self() != req->co);
1754
1755 qemu_co_queue_wait(&req->wait_queue);
1756 retry = true;
1757 break;
1758 }
1759 }
1760 } while (retry);
1761 }
1762
1763 /*
1764 * Return values:
1765 * 0 - success
1766 * -EINVAL - backing format specified, but no file
1767 * -ENOSPC - can't update the backing file because no space is left in the
1768 * image file header
1769 * -ENOTSUP - format driver doesn't support changing the backing file
1770 */
1771 int bdrv_change_backing_file(BlockDriverState *bs,
1772 const char *backing_file, const char *backing_fmt)
1773 {
1774 BlockDriver *drv = bs->drv;
1775 int ret;
1776
1777 /* Backing file format doesn't make sense without a backing file */
1778 if (backing_fmt && !backing_file) {
1779 return -EINVAL;
1780 }
1781
1782 if (drv->bdrv_change_backing_file != NULL) {
1783 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1784 } else {
1785 ret = -ENOTSUP;
1786 }
1787
1788 if (ret == 0) {
1789 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1790 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1791 }
1792 return ret;
1793 }
1794
1795 /*
1796 * Finds the image layer in the chain that has 'bs' as its backing file.
1797 *
1798 * active is the current topmost image.
1799 *
1800 * Returns NULL if bs is not found in active's image chain,
1801 * or if active == bs.
1802 */
1803 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1804 BlockDriverState *bs)
1805 {
1806 BlockDriverState *overlay = NULL;
1807 BlockDriverState *intermediate;
1808
1809 assert(active != NULL);
1810 assert(bs != NULL);
1811
1812 /* if bs is the same as active, then by definition it has no overlay
1813 */
1814 if (active == bs) {
1815 return NULL;
1816 }
1817
1818 intermediate = active;
1819 while (intermediate->backing_hd) {
1820 if (intermediate->backing_hd == bs) {
1821 overlay = intermediate;
1822 break;
1823 }
1824 intermediate = intermediate->backing_hd;
1825 }
1826
1827 return overlay;
1828 }
1829
1830 typedef struct BlkIntermediateStates {
1831 BlockDriverState *bs;
1832 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1833 } BlkIntermediateStates;
1834
1835
1836 /*
1837 * Drops images above 'base' up to and including 'top', and sets the image
1838 * above 'top' to have base as its backing file.
1839 *
1840 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1841 * information in 'bs' can be properly updated.
1842 *
1843 * E.g., this will convert the following chain:
1844 * bottom <- base <- intermediate <- top <- active
1845 *
1846 * to
1847 *
1848 * bottom <- base <- active
1849 *
1850 * It is allowed for bottom==base, in which case it converts:
1851 *
1852 * base <- intermediate <- top <- active
1853 *
1854 * to
1855 *
1856 * base <- active
1857 *
1858 * Error conditions:
1859 * if active == top, that is considered an error
1860 *
1861 */
1862 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1863 BlockDriverState *base)
1864 {
1865 BlockDriverState *intermediate;
1866 BlockDriverState *base_bs = NULL;
1867 BlockDriverState *new_top_bs = NULL;
1868 BlkIntermediateStates *intermediate_state, *next;
1869 int ret = -EIO;
1870
1871 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1872 QSIMPLEQ_INIT(&states_to_delete);
1873
1874 if (!top->drv || !base->drv) {
1875 goto exit;
1876 }
1877
1878 new_top_bs = bdrv_find_overlay(active, top);
1879
1880 if (new_top_bs == NULL) {
1881 /* we could not find the image above 'top', this is an error */
1882 goto exit;
1883 }
1884
1885 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1886 * to do, no intermediate images */
1887 if (new_top_bs->backing_hd == base) {
1888 ret = 0;
1889 goto exit;
1890 }
1891
1892 intermediate = top;
1893
1894 /* now we will go down through the list, and add each BDS we find
1895 * into our deletion queue, until we hit the 'base'
1896 */
1897 while (intermediate) {
1898 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1899 intermediate_state->bs = intermediate;
1900 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1901
1902 if (intermediate->backing_hd == base) {
1903 base_bs = intermediate->backing_hd;
1904 break;
1905 }
1906 intermediate = intermediate->backing_hd;
1907 }
1908 if (base_bs == NULL) {
1909 /* something went wrong, we did not end at the base. safely
1910 * unravel everything, and exit with error */
1911 goto exit;
1912 }
1913
1914 /* success - we can delete the intermediate states, and link top->base */
1915 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1916 base_bs->drv ? base_bs->drv->format_name : "");
1917 if (ret) {
1918 goto exit;
1919 }
1920 new_top_bs->backing_hd = base_bs;
1921
1922
1923 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1924 /* so that bdrv_close() does not recursively close the chain */
1925 intermediate_state->bs->backing_hd = NULL;
1926 bdrv_delete(intermediate_state->bs);
1927 }
1928 ret = 0;
1929
1930 exit:
1931 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1932 g_free(intermediate_state);
1933 }
1934 return ret;
1935 }
1936
1937
1938 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1939 size_t size)
1940 {
1941 int64_t len;
1942
1943 if (!bdrv_is_inserted(bs))
1944 return -ENOMEDIUM;
1945
1946 if (bs->growable)
1947 return 0;
1948
1949 len = bdrv_getlength(bs);
1950
1951 if (offset < 0)
1952 return -EIO;
1953
1954 if ((offset > len) || (len - offset < size))
1955 return -EIO;
1956
1957 return 0;
1958 }
1959
1960 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1961 int nb_sectors)
1962 {
1963 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1964 nb_sectors * BDRV_SECTOR_SIZE);
1965 }
1966
1967 typedef struct RwCo {
1968 BlockDriverState *bs;
1969 int64_t sector_num;
1970 int nb_sectors;
1971 QEMUIOVector *qiov;
1972 bool is_write;
1973 int ret;
1974 } RwCo;
1975
1976 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1977 {
1978 RwCo *rwco = opaque;
1979
1980 if (!rwco->is_write) {
1981 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1982 rwco->nb_sectors, rwco->qiov, 0);
1983 } else {
1984 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1985 rwco->nb_sectors, rwco->qiov, 0);
1986 }
1987 }
1988
1989 /*
1990 * Process a synchronous request using coroutines
1991 */
1992 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1993 int nb_sectors, bool is_write)
1994 {
1995 QEMUIOVector qiov;
1996 struct iovec iov = {
1997 .iov_base = (void *)buf,
1998 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1999 };
2000 Coroutine *co;
2001 RwCo rwco = {
2002 .bs = bs,
2003 .sector_num = sector_num,
2004 .nb_sectors = nb_sectors,
2005 .qiov = &qiov,
2006 .is_write = is_write,
2007 .ret = NOT_DONE,
2008 };
2009
2010 qemu_iovec_init_external(&qiov, &iov, 1);
2011
2012 /**
2013 * In sync call context, when the vcpu is blocked, this throttling timer
2014 * will not fire; so the I/O throttling function has to be disabled here
2015 * if it has been enabled.
2016 */
2017 if (bs->io_limits_enabled) {
2018 fprintf(stderr, "Disabling I/O throttling on '%s' due "
2019 "to synchronous I/O.\n", bdrv_get_device_name(bs));
2020 bdrv_io_limits_disable(bs);
2021 }
2022
2023 if (qemu_in_coroutine()) {
2024 /* Fast-path if already in coroutine context */
2025 bdrv_rw_co_entry(&rwco);
2026 } else {
2027 co = qemu_coroutine_create(bdrv_rw_co_entry);
2028 qemu_coroutine_enter(co, &rwco);
2029 while (rwco.ret == NOT_DONE) {
2030 qemu_aio_wait();
2031 }
2032 }
2033 return rwco.ret;
2034 }
2035
2036 /* return < 0 if error. See bdrv_write() for the return codes */
2037 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2038 uint8_t *buf, int nb_sectors)
2039 {
2040 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2041 }
2042
2043 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2044 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2045 uint8_t *buf, int nb_sectors)
2046 {
2047 bool enabled;
2048 int ret;
2049
2050 enabled = bs->io_limits_enabled;
2051 bs->io_limits_enabled = false;
2052 ret = bdrv_read(bs, 0, buf, 1);
2053 bs->io_limits_enabled = enabled;
2054 return ret;
2055 }
2056
2057 /* Return < 0 if error. Important errors are:
2058 -EIO generic I/O error (may happen for all errors)
2059 -ENOMEDIUM No media inserted.
2060 -EINVAL Invalid sector number or nb_sectors
2061 -EACCES Trying to write a read-only device
2062 */
2063 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2064 const uint8_t *buf, int nb_sectors)
2065 {
2066 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2067 }
2068
2069 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2070 void *buf, int count1)
2071 {
2072 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2073 int len, nb_sectors, count;
2074 int64_t sector_num;
2075 int ret;
2076
2077 count = count1;
2078 /* first read to align to sector start */
2079 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2080 if (len > count)
2081 len = count;
2082 sector_num = offset >> BDRV_SECTOR_BITS;
2083 if (len > 0) {
2084 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2085 return ret;
2086 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2087 count -= len;
2088 if (count == 0)
2089 return count1;
2090 sector_num++;
2091 buf += len;
2092 }
2093
2094 /* read the sectors "in place" */
2095 nb_sectors = count >> BDRV_SECTOR_BITS;
2096 if (nb_sectors > 0) {
2097 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2098 return ret;
2099 sector_num += nb_sectors;
2100 len = nb_sectors << BDRV_SECTOR_BITS;
2101 buf += len;
2102 count -= len;
2103 }
2104
2105 /* add data from the last sector */
2106 if (count > 0) {
2107 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2108 return ret;
2109 memcpy(buf, tmp_buf, count);
2110 }
2111 return count1;
2112 }
2113
2114 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2115 const void *buf, int count1)
2116 {
2117 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2118 int len, nb_sectors, count;
2119 int64_t sector_num;
2120 int ret;
2121
2122 count = count1;
2123 /* first write to align to sector start */
2124 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2125 if (len > count)
2126 len = count;
2127 sector_num = offset >> BDRV_SECTOR_BITS;
2128 if (len > 0) {
2129 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2130 return ret;
2131 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2132 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2133 return ret;
2134 count -= len;
2135 if (count == 0)
2136 return count1;
2137 sector_num++;
2138 buf += len;
2139 }
2140
2141 /* write the sectors "in place" */
2142 nb_sectors = count >> BDRV_SECTOR_BITS;
2143 if (nb_sectors > 0) {
2144 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2145 return ret;
2146 sector_num += nb_sectors;
2147 len = nb_sectors << BDRV_SECTOR_BITS;
2148 buf += len;
2149 count -= len;
2150 }
2151
2152 /* add data from the last sector */
2153 if (count > 0) {
2154 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2155 return ret;
2156 memcpy(tmp_buf, buf, count);
2157 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2158 return ret;
2159 }
2160 return count1;
2161 }
2162
2163 /*
2164 * Writes to the file and ensures that no writes are reordered across this
2165 * request (acts as a barrier)
2166 *
2167 * Returns 0 on success, -errno in error cases.
2168 */
2169 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2170 const void *buf, int count)
2171 {
2172 int ret;
2173
2174 ret = bdrv_pwrite(bs, offset, buf, count);
2175 if (ret < 0) {
2176 return ret;
2177 }
2178
2179 /* No flush needed for cache modes that already do it */
2180 if (bs->enable_write_cache) {
2181 bdrv_flush(bs);
2182 }
2183
2184 return 0;
2185 }
2186
2187 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2188 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2189 {
2190 /* Perform I/O through a temporary buffer so that users who scribble over
2191 * their read buffer while the operation is in progress do not end up
2192 * modifying the image file. This is critical for zero-copy guest I/O
2193 * where anything might happen inside guest memory.
2194 */
2195 void *bounce_buffer;
2196
2197 BlockDriver *drv = bs->drv;
2198 struct iovec iov;
2199 QEMUIOVector bounce_qiov;
2200 int64_t cluster_sector_num;
2201 int cluster_nb_sectors;
2202 size_t skip_bytes;
2203 int ret;
2204
2205 /* Cover entire cluster so no additional backing file I/O is required when
2206 * allocating cluster in the image file.
2207 */
2208 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
2209 &cluster_sector_num, &cluster_nb_sectors);
2210
2211 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2212 cluster_sector_num, cluster_nb_sectors);
2213
2214 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2215 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2216 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2217
2218 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2219 &bounce_qiov);
2220 if (ret < 0) {
2221 goto err;
2222 }
2223
2224 if (drv->bdrv_co_write_zeroes &&
2225 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2226 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2227 cluster_nb_sectors);
2228 } else {
2229 /* This does not change the data on the disk, it is not necessary
2230 * to flush even in cache=writethrough mode.
2231 */
2232 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2233 &bounce_qiov);
2234 }
2235
2236 if (ret < 0) {
2237 /* It might be okay to ignore write errors for guest requests. If this
2238 * is a deliberate copy-on-read then we don't want to ignore the error.
2239 * Simply report it in all cases.
2240 */
2241 goto err;
2242 }
2243
2244 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2245 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2246 nb_sectors * BDRV_SECTOR_SIZE);
2247
2248 err:
2249 qemu_vfree(bounce_buffer);
2250 return ret;
2251 }
2252
2253 /*
2254 * Handle a read request in coroutine context
2255 */
2256 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2257 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2258 BdrvRequestFlags flags)
2259 {
2260 BlockDriver *drv = bs->drv;
2261 BdrvTrackedRequest req;
2262 int ret;
2263
2264 if (!drv) {
2265 return -ENOMEDIUM;
2266 }
2267 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2268 return -EIO;
2269 }
2270
2271 /* throttling disk read I/O */
2272 if (bs->io_limits_enabled) {
2273 bdrv_io_limits_intercept(bs, false, nb_sectors);
2274 }
2275
2276 if (bs->copy_on_read) {
2277 flags |= BDRV_REQ_COPY_ON_READ;
2278 }
2279 if (flags & BDRV_REQ_COPY_ON_READ) {
2280 bs->copy_on_read_in_flight++;
2281 }
2282
2283 if (bs->copy_on_read_in_flight) {
2284 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2285 }
2286
2287 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2288
2289 if (flags & BDRV_REQ_COPY_ON_READ) {
2290 int pnum;
2291
2292 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2293 if (ret < 0) {
2294 goto out;
2295 }
2296
2297 if (!ret || pnum != nb_sectors) {
2298 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2299 goto out;
2300 }
2301 }
2302
2303 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2304
2305 out:
2306 tracked_request_end(&req);
2307
2308 if (flags & BDRV_REQ_COPY_ON_READ) {
2309 bs->copy_on_read_in_flight--;
2310 }
2311
2312 return ret;
2313 }
2314
2315 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2316 int nb_sectors, QEMUIOVector *qiov)
2317 {
2318 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2319
2320 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2321 }
2322
2323 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2324 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2325 {
2326 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2327
2328 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2329 BDRV_REQ_COPY_ON_READ);
2330 }
2331
2332 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2333 int64_t sector_num, int nb_sectors)
2334 {
2335 BlockDriver *drv = bs->drv;
2336 QEMUIOVector qiov;
2337 struct iovec iov;
2338 int ret;
2339
2340 /* TODO Emulate only part of misaligned requests instead of letting block
2341 * drivers return -ENOTSUP and emulate everything */
2342
2343 /* First try the efficient write zeroes operation */
2344 if (drv->bdrv_co_write_zeroes) {
2345 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2346 if (ret != -ENOTSUP) {
2347 return ret;
2348 }
2349 }
2350
2351 /* Fall back to bounce buffer if write zeroes is unsupported */
2352 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2353 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2354 memset(iov.iov_base, 0, iov.iov_len);
2355 qemu_iovec_init_external(&qiov, &iov, 1);
2356
2357 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2358
2359 qemu_vfree(iov.iov_base);
2360 return ret;
2361 }
2362
2363 /*
2364 * Handle a write request in coroutine context
2365 */
2366 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2367 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2368 BdrvRequestFlags flags)
2369 {
2370 BlockDriver *drv = bs->drv;
2371 BdrvTrackedRequest req;
2372 int ret;
2373
2374 if (!bs->drv) {
2375 return -ENOMEDIUM;
2376 }
2377 if (bs->read_only) {
2378 return -EACCES;
2379 }
2380 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2381 return -EIO;
2382 }
2383
2384 /* throttling disk write I/O */
2385 if (bs->io_limits_enabled) {
2386 bdrv_io_limits_intercept(bs, true, nb_sectors);
2387 }
2388
2389 if (bs->copy_on_read_in_flight) {
2390 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2391 }
2392
2393 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2394
2395 if (flags & BDRV_REQ_ZERO_WRITE) {
2396 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2397 } else {
2398 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2399 }
2400
2401 if (ret == 0 && !bs->enable_write_cache) {
2402 ret = bdrv_co_flush(bs);
2403 }
2404
2405 if (bs->dirty_bitmap) {
2406 bdrv_set_dirty(bs, sector_num, nb_sectors);
2407 }
2408
2409 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2410 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2411 }
2412
2413 tracked_request_end(&req);
2414
2415 return ret;
2416 }
2417
2418 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2419 int nb_sectors, QEMUIOVector *qiov)
2420 {
2421 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2422
2423 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2424 }
2425
2426 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2427 int64_t sector_num, int nb_sectors)
2428 {
2429 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2430
2431 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2432 BDRV_REQ_ZERO_WRITE);
2433 }
2434
2435 /**
2436 * Truncate file to 'offset' bytes (needed only for file protocols)
2437 */
2438 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2439 {
2440 BlockDriver *drv = bs->drv;
2441 int ret;
2442 if (!drv)
2443 return -ENOMEDIUM;
2444 if (!drv->bdrv_truncate)
2445 return -ENOTSUP;
2446 if (bs->read_only)
2447 return -EACCES;
2448 if (bdrv_in_use(bs))
2449 return -EBUSY;
2450
2451 /* There better not be any in-flight IOs when we truncate the device. */
2452 bdrv_drain_all();
2453
2454 ret = drv->bdrv_truncate(bs, offset);
2455 if (ret == 0) {
2456 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2457 bdrv_dev_resize_cb(bs);
2458 }
2459 return ret;
2460 }
2461
2462 /**
2463 * Length of a allocated file in bytes. Sparse files are counted by actual
2464 * allocated space. Return < 0 if error or unknown.
2465 */
2466 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2467 {
2468 BlockDriver *drv = bs->drv;
2469 if (!drv) {
2470 return -ENOMEDIUM;
2471 }
2472 if (drv->bdrv_get_allocated_file_size) {
2473 return drv->bdrv_get_allocated_file_size(bs);
2474 }
2475 if (bs->file) {
2476 return bdrv_get_allocated_file_size(bs->file);
2477 }
2478 return -ENOTSUP;
2479 }
2480
2481 /**
2482 * Length of a file in bytes. Return < 0 if error or unknown.
2483 */
2484 int64_t bdrv_getlength(BlockDriverState *bs)
2485 {
2486 BlockDriver *drv = bs->drv;
2487 if (!drv)
2488 return -ENOMEDIUM;
2489
2490 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2491 if (drv->bdrv_getlength) {
2492 return drv->bdrv_getlength(bs);
2493 }
2494 }
2495 return bs->total_sectors * BDRV_SECTOR_SIZE;
2496 }
2497
2498 /* return 0 as number of sectors if no device present or error */
2499 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2500 {
2501 int64_t length;
2502 length = bdrv_getlength(bs);
2503 if (length < 0)
2504 length = 0;
2505 else
2506 length = length >> BDRV_SECTOR_BITS;
2507 *nb_sectors_ptr = length;
2508 }
2509
2510 /* throttling disk io limits */
2511 void bdrv_set_io_limits(BlockDriverState *bs,
2512 BlockIOLimit *io_limits)
2513 {
2514 bs->io_limits = *io_limits;
2515 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2516 }
2517
2518 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2519 BlockdevOnError on_write_error)
2520 {
2521 bs->on_read_error = on_read_error;
2522 bs->on_write_error = on_write_error;
2523 }
2524
2525 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2526 {
2527 return is_read ? bs->on_read_error : bs->on_write_error;
2528 }
2529
2530 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2531 {
2532 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2533
2534 switch (on_err) {
2535 case BLOCKDEV_ON_ERROR_ENOSPC:
2536 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2537 case BLOCKDEV_ON_ERROR_STOP:
2538 return BDRV_ACTION_STOP;
2539 case BLOCKDEV_ON_ERROR_REPORT:
2540 return BDRV_ACTION_REPORT;
2541 case BLOCKDEV_ON_ERROR_IGNORE:
2542 return BDRV_ACTION_IGNORE;
2543 default:
2544 abort();
2545 }
2546 }
2547
2548 /* This is done by device models because, while the block layer knows
2549 * about the error, it does not know whether an operation comes from
2550 * the device or the block layer (from a job, for example).
2551 */
2552 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2553 bool is_read, int error)
2554 {
2555 assert(error >= 0);
2556 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2557 if (action == BDRV_ACTION_STOP) {
2558 vm_stop(RUN_STATE_IO_ERROR);
2559 bdrv_iostatus_set_err(bs, error);
2560 }
2561 }
2562
2563 int bdrv_is_read_only(BlockDriverState *bs)
2564 {
2565 return bs->read_only;
2566 }
2567
2568 int bdrv_is_sg(BlockDriverState *bs)
2569 {
2570 return bs->sg;
2571 }
2572
2573 int bdrv_enable_write_cache(BlockDriverState *bs)
2574 {
2575 return bs->enable_write_cache;
2576 }
2577
2578 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2579 {
2580 bs->enable_write_cache = wce;
2581
2582 /* so a reopen() will preserve wce */
2583 if (wce) {
2584 bs->open_flags |= BDRV_O_CACHE_WB;
2585 } else {
2586 bs->open_flags &= ~BDRV_O_CACHE_WB;
2587 }
2588 }
2589
2590 int bdrv_is_encrypted(BlockDriverState *bs)
2591 {
2592 if (bs->backing_hd && bs->backing_hd->encrypted)
2593 return 1;
2594 return bs->encrypted;
2595 }
2596
2597 int bdrv_key_required(BlockDriverState *bs)
2598 {
2599 BlockDriverState *backing_hd = bs->backing_hd;
2600
2601 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2602 return 1;
2603 return (bs->encrypted && !bs->valid_key);
2604 }
2605
2606 int bdrv_set_key(BlockDriverState *bs, const char *key)
2607 {
2608 int ret;
2609 if (bs->backing_hd && bs->backing_hd->encrypted) {
2610 ret = bdrv_set_key(bs->backing_hd, key);
2611 if (ret < 0)
2612 return ret;
2613 if (!bs->encrypted)
2614 return 0;
2615 }
2616 if (!bs->encrypted) {
2617 return -EINVAL;
2618 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2619 return -ENOMEDIUM;
2620 }
2621 ret = bs->drv->bdrv_set_key(bs, key);
2622 if (ret < 0) {
2623 bs->valid_key = 0;
2624 } else if (!bs->valid_key) {
2625 bs->valid_key = 1;
2626 /* call the change callback now, we skipped it on open */
2627 bdrv_dev_change_media_cb(bs, true);
2628 }
2629 return ret;
2630 }
2631
2632 const char *bdrv_get_format_name(BlockDriverState *bs)
2633 {
2634 return bs->drv ? bs->drv->format_name : NULL;
2635 }
2636
2637 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2638 void *opaque)
2639 {
2640 BlockDriver *drv;
2641
2642 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2643 it(opaque, drv->format_name);
2644 }
2645 }
2646
2647 BlockDriverState *bdrv_find(const char *name)
2648 {
2649 BlockDriverState *bs;
2650
2651 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2652 if (!strcmp(name, bs->device_name)) {
2653 return bs;
2654 }
2655 }
2656 return NULL;
2657 }
2658
2659 BlockDriverState *bdrv_next(BlockDriverState *bs)
2660 {
2661 if (!bs) {
2662 return QTAILQ_FIRST(&bdrv_states);
2663 }
2664 return QTAILQ_NEXT(bs, list);
2665 }
2666
2667 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2668 {
2669 BlockDriverState *bs;
2670
2671 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2672 it(opaque, bs);
2673 }
2674 }
2675
2676 const char *bdrv_get_device_name(BlockDriverState *bs)
2677 {
2678 return bs->device_name;
2679 }
2680
2681 int bdrv_get_flags(BlockDriverState *bs)
2682 {
2683 return bs->open_flags;
2684 }
2685
2686 void bdrv_flush_all(void)
2687 {
2688 BlockDriverState *bs;
2689
2690 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2691 bdrv_flush(bs);
2692 }
2693 }
2694
2695 int bdrv_has_zero_init(BlockDriverState *bs)
2696 {
2697 assert(bs->drv);
2698
2699 if (bs->drv->bdrv_has_zero_init) {
2700 return bs->drv->bdrv_has_zero_init(bs);
2701 }
2702
2703 return 1;
2704 }
2705
2706 typedef struct BdrvCoIsAllocatedData {
2707 BlockDriverState *bs;
2708 BlockDriverState *base;
2709 int64_t sector_num;
2710 int nb_sectors;
2711 int *pnum;
2712 int ret;
2713 bool done;
2714 } BdrvCoIsAllocatedData;
2715
2716 /*
2717 * Returns true iff the specified sector is present in the disk image. Drivers
2718 * not implementing the functionality are assumed to not support backing files,
2719 * hence all their sectors are reported as allocated.
2720 *
2721 * If 'sector_num' is beyond the end of the disk image the return value is 0
2722 * and 'pnum' is set to 0.
2723 *
2724 * 'pnum' is set to the number of sectors (including and immediately following
2725 * the specified sector) that are known to be in the same
2726 * allocated/unallocated state.
2727 *
2728 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2729 * beyond the end of the disk image it will be clamped.
2730 */
2731 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2732 int nb_sectors, int *pnum)
2733 {
2734 int64_t n;
2735
2736 if (sector_num >= bs->total_sectors) {
2737 *pnum = 0;
2738 return 0;
2739 }
2740
2741 n = bs->total_sectors - sector_num;
2742 if (n < nb_sectors) {
2743 nb_sectors = n;
2744 }
2745
2746 if (!bs->drv->bdrv_co_is_allocated) {
2747 *pnum = nb_sectors;
2748 return 1;
2749 }
2750
2751 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2752 }
2753
2754 /* Coroutine wrapper for bdrv_is_allocated() */
2755 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2756 {
2757 BdrvCoIsAllocatedData *data = opaque;
2758 BlockDriverState *bs = data->bs;
2759
2760 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2761 data->pnum);
2762 data->done = true;
2763 }
2764
2765 /*
2766 * Synchronous wrapper around bdrv_co_is_allocated().
2767 *
2768 * See bdrv_co_is_allocated() for details.
2769 */
2770 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2771 int *pnum)
2772 {
2773 Coroutine *co;
2774 BdrvCoIsAllocatedData data = {
2775 .bs = bs,
2776 .sector_num = sector_num,
2777 .nb_sectors = nb_sectors,
2778 .pnum = pnum,
2779 .done = false,
2780 };
2781
2782 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2783 qemu_coroutine_enter(co, &data);
2784 while (!data.done) {
2785 qemu_aio_wait();
2786 }
2787 return data.ret;
2788 }
2789
2790 /*
2791 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2792 *
2793 * Return true if the given sector is allocated in any image between
2794 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2795 * sector is allocated in any image of the chain. Return false otherwise.
2796 *
2797 * 'pnum' is set to the number of sectors (including and immediately following
2798 * the specified sector) that are known to be in the same
2799 * allocated/unallocated state.
2800 *
2801 */
2802 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2803 BlockDriverState *base,
2804 int64_t sector_num,
2805 int nb_sectors, int *pnum)
2806 {
2807 BlockDriverState *intermediate;
2808 int ret, n = nb_sectors;
2809
2810 intermediate = top;
2811 while (intermediate && intermediate != base) {
2812 int pnum_inter;
2813 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2814 &pnum_inter);
2815 if (ret < 0) {
2816 return ret;
2817 } else if (ret) {
2818 *pnum = pnum_inter;
2819 return 1;
2820 }
2821
2822 /*
2823 * [sector_num, nb_sectors] is unallocated on top but intermediate
2824 * might have
2825 *
2826 * [sector_num+x, nr_sectors] allocated.
2827 */
2828 if (n > pnum_inter &&
2829 (intermediate == top ||
2830 sector_num + pnum_inter < intermediate->total_sectors)) {
2831 n = pnum_inter;
2832 }
2833
2834 intermediate = intermediate->backing_hd;
2835 }
2836
2837 *pnum = n;
2838 return 0;
2839 }
2840
2841 /* Coroutine wrapper for bdrv_is_allocated_above() */
2842 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque)
2843 {
2844 BdrvCoIsAllocatedData *data = opaque;
2845 BlockDriverState *top = data->bs;
2846 BlockDriverState *base = data->base;
2847
2848 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num,
2849 data->nb_sectors, data->pnum);
2850 data->done = true;
2851 }
2852
2853 /*
2854 * Synchronous wrapper around bdrv_co_is_allocated_above().
2855 *
2856 * See bdrv_co_is_allocated_above() for details.
2857 */
2858 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
2859 int64_t sector_num, int nb_sectors, int *pnum)
2860 {
2861 Coroutine *co;
2862 BdrvCoIsAllocatedData data = {
2863 .bs = top,
2864 .base = base,
2865 .sector_num = sector_num,
2866 .nb_sectors = nb_sectors,
2867 .pnum = pnum,
2868 .done = false,
2869 };
2870
2871 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry);
2872 qemu_coroutine_enter(co, &data);
2873 while (!data.done) {
2874 qemu_aio_wait();
2875 }
2876 return data.ret;
2877 }
2878
2879 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2880 {
2881 BlockInfo *info = g_malloc0(sizeof(*info));
2882 info->device = g_strdup(bs->device_name);
2883 info->type = g_strdup("unknown");
2884 info->locked = bdrv_dev_is_medium_locked(bs);
2885 info->removable = bdrv_dev_has_removable_media(bs);
2886
2887 if (bdrv_dev_has_removable_media(bs)) {
2888 info->has_tray_open = true;
2889 info->tray_open = bdrv_dev_is_tray_open(bs);
2890 }
2891
2892 if (bdrv_iostatus_is_enabled(bs)) {
2893 info->has_io_status = true;
2894 info->io_status = bs->iostatus;
2895 }
2896
2897 if (bs->dirty_bitmap) {
2898 info->has_dirty = true;
2899 info->dirty = g_malloc0(sizeof(*info->dirty));
2900 info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE;
2901 info->dirty->granularity =
2902 ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap));
2903 }
2904
2905 if (bs->drv) {
2906 info->has_inserted = true;
2907 info->inserted = g_malloc0(sizeof(*info->inserted));
2908 info->inserted->file = g_strdup(bs->filename);
2909 info->inserted->ro = bs->read_only;
2910 info->inserted->drv = g_strdup(bs->drv->format_name);
2911 info->inserted->encrypted = bs->encrypted;
2912 info->inserted->encryption_key_missing = bdrv_key_required(bs);
2913
2914 if (bs->backing_file[0]) {
2915 info->inserted->has_backing_file = true;
2916 info->inserted->backing_file = g_strdup(bs->backing_file);
2917 }
2918
2919 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
2920
2921 if (bs->io_limits_enabled) {
2922 info->inserted->bps =
2923 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2924 info->inserted->bps_rd =
2925 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2926 info->inserted->bps_wr =
2927 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2928 info->inserted->iops =
2929 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2930 info->inserted->iops_rd =
2931 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2932 info->inserted->iops_wr =
2933 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2934 }
2935 }
2936 return info;
2937 }
2938
2939 BlockInfoList *qmp_query_block(Error **errp)
2940 {
2941 BlockInfoList *head = NULL, **p_next = &head;
2942 BlockDriverState *bs;
2943
2944 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2945 BlockInfoList *info = g_malloc0(sizeof(*info));
2946 info->value = bdrv_query_info(bs);
2947
2948 *p_next = info;
2949 p_next = &info->next;
2950 }
2951
2952 return head;
2953 }
2954
2955 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
2956 {
2957 BlockStats *s;
2958
2959 s = g_malloc0(sizeof(*s));
2960
2961 if (bs->device_name[0]) {
2962 s->has_device = true;
2963 s->device = g_strdup(bs->device_name);
2964 }
2965
2966 s->stats = g_malloc0(sizeof(*s->stats));
2967 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2968 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2969 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2970 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2971 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2972 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2973 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2974 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2975 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2976
2977 if (bs->file) {
2978 s->has_parent = true;
2979 s->parent = bdrv_query_stats(bs->file);
2980 }
2981
2982 return s;
2983 }
2984
2985 BlockStatsList *qmp_query_blockstats(Error **errp)
2986 {
2987 BlockStatsList *head = NULL, **p_next = &head;
2988 BlockDriverState *bs;
2989
2990 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2991 BlockStatsList *info = g_malloc0(sizeof(*info));
2992 info->value = bdrv_query_stats(bs);
2993
2994 *p_next = info;
2995 p_next = &info->next;
2996 }
2997
2998 return head;
2999 }
3000
3001 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
3002 {
3003 if (bs->backing_hd && bs->backing_hd->encrypted)
3004 return bs->backing_file;
3005 else if (bs->encrypted)
3006 return bs->filename;
3007 else
3008 return NULL;
3009 }
3010
3011 void bdrv_get_backing_filename(BlockDriverState *bs,
3012 char *filename, int filename_size)
3013 {
3014 pstrcpy(filename, filename_size, bs->backing_file);
3015 }
3016
3017 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
3018 const uint8_t *buf, int nb_sectors)
3019 {
3020 BlockDriver *drv = bs->drv;
3021 if (!drv)
3022 return -ENOMEDIUM;
3023 if (!drv->bdrv_write_compressed)
3024 return -ENOTSUP;
3025 if (bdrv_check_request(bs, sector_num, nb_sectors))
3026 return -EIO;
3027
3028 assert(!bs->dirty_bitmap);
3029
3030 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
3031 }
3032
3033 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
3034 {
3035 BlockDriver *drv = bs->drv;
3036 if (!drv)
3037 return -ENOMEDIUM;
3038 if (!drv->bdrv_get_info)
3039 return -ENOTSUP;
3040 memset(bdi, 0, sizeof(*bdi));
3041 return drv->bdrv_get_info(bs, bdi);
3042 }
3043
3044 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
3045 int64_t pos, int size)
3046 {
3047 BlockDriver *drv = bs->drv;
3048 if (!drv)
3049 return -ENOMEDIUM;
3050 if (drv->bdrv_save_vmstate)
3051 return drv->bdrv_save_vmstate(bs, buf, pos, size);
3052 if (bs->file)
3053 return bdrv_save_vmstate(bs->file, buf, pos, size);
3054 return -ENOTSUP;
3055 }
3056
3057 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3058 int64_t pos, int size)
3059 {
3060 BlockDriver *drv = bs->drv;
3061 if (!drv)
3062 return -ENOMEDIUM;
3063 if (drv->bdrv_load_vmstate)
3064 return drv->bdrv_load_vmstate(bs, buf, pos, size);
3065 if (bs->file)
3066 return bdrv_load_vmstate(bs->file, buf, pos, size);
3067 return -ENOTSUP;
3068 }
3069
3070 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3071 {
3072 BlockDriver *drv = bs->drv;
3073
3074 if (!drv || !drv->bdrv_debug_event) {
3075 return;
3076 }
3077
3078 drv->bdrv_debug_event(bs, event);
3079 }
3080
3081 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
3082 const char *tag)
3083 {
3084 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
3085 bs = bs->file;
3086 }
3087
3088 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
3089 return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
3090 }
3091
3092 return -ENOTSUP;
3093 }
3094
3095 int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
3096 {
3097 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) {
3098 bs = bs->file;
3099 }
3100
3101 if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
3102 return bs->drv->bdrv_debug_resume(bs, tag);
3103 }
3104
3105 return -ENOTSUP;
3106 }
3107
3108 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
3109 {
3110 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
3111 bs = bs->file;
3112 }
3113
3114 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
3115 return bs->drv->bdrv_debug_is_suspended(bs, tag);
3116 }
3117
3118 return false;
3119 }
3120
3121 /**************************************************************/
3122 /* handling of snapshots */
3123
3124 int bdrv_can_snapshot(BlockDriverState *bs)
3125 {
3126 BlockDriver *drv = bs->drv;
3127 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3128 return 0;
3129 }
3130
3131 if (!drv->bdrv_snapshot_create) {
3132 if (bs->file != NULL) {
3133 return bdrv_can_snapshot(bs->file);
3134 }
3135 return 0;
3136 }
3137
3138 return 1;
3139 }
3140
3141 int bdrv_is_snapshot(BlockDriverState *bs)
3142 {
3143 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3144 }
3145
3146 BlockDriverState *bdrv_snapshots(void)
3147 {
3148 BlockDriverState *bs;
3149
3150 if (bs_snapshots) {
3151 return bs_snapshots;
3152 }
3153
3154 bs = NULL;
3155 while ((bs = bdrv_next(bs))) {
3156 if (bdrv_can_snapshot(bs)) {
3157 bs_snapshots = bs;
3158 return bs;
3159 }
3160 }
3161 return NULL;
3162 }
3163
3164 int bdrv_snapshot_create(BlockDriverState *bs,
3165 QEMUSnapshotInfo *sn_info)
3166 {
3167 BlockDriver *drv = bs->drv;
3168 if (!drv)
3169 return -ENOMEDIUM;
3170 if (drv->bdrv_snapshot_create)
3171 return drv->bdrv_snapshot_create(bs, sn_info);
3172 if (bs->file)
3173 return bdrv_snapshot_create(bs->file, sn_info);
3174 return -ENOTSUP;
3175 }
3176
3177 int bdrv_snapshot_goto(BlockDriverState *bs,
3178 const char *snapshot_id)
3179 {
3180 BlockDriver *drv = bs->drv;
3181 int ret, open_ret;
3182
3183 if (!drv)
3184 return -ENOMEDIUM;
3185 if (drv->bdrv_snapshot_goto)
3186 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3187
3188 if (bs->file) {
3189 drv->bdrv_close(bs);
3190 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3191 open_ret = drv->bdrv_open(bs, bs->open_flags);
3192 if (open_ret < 0) {
3193 bdrv_delete(bs->file);
3194 bs->drv = NULL;
3195 return open_ret;
3196 }
3197 return ret;
3198 }
3199
3200 return -ENOTSUP;
3201 }
3202
3203 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3204 {
3205 BlockDriver *drv = bs->drv;
3206 if (!drv)
3207 return -ENOMEDIUM;
3208 if (drv->bdrv_snapshot_delete)
3209 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3210 if (bs->file)
3211 return bdrv_snapshot_delete(bs->file, snapshot_id);
3212 return -ENOTSUP;
3213 }
3214
3215 int bdrv_snapshot_list(BlockDriverState *bs,
3216 QEMUSnapshotInfo **psn_info)
3217 {
3218 BlockDriver *drv = bs->drv;
3219 if (!drv)
3220 return -ENOMEDIUM;
3221 if (drv->bdrv_snapshot_list)
3222 return drv->bdrv_snapshot_list(bs, psn_info);
3223 if (bs->file)
3224 return bdrv_snapshot_list(bs->file, psn_info);
3225 return -ENOTSUP;
3226 }
3227
3228 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3229 const char *snapshot_name)
3230 {
3231 BlockDriver *drv = bs->drv;
3232 if (!drv) {
3233 return -ENOMEDIUM;
3234 }
3235 if (!bs->read_only) {
3236 return -EINVAL;
3237 }
3238 if (drv->bdrv_snapshot_load_tmp) {
3239 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3240 }
3241 return -ENOTSUP;
3242 }
3243
3244 /* backing_file can either be relative, or absolute, or a protocol. If it is
3245 * relative, it must be relative to the chain. So, passing in bs->filename
3246 * from a BDS as backing_file should not be done, as that may be relative to
3247 * the CWD rather than the chain. */
3248 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3249 const char *backing_file)
3250 {
3251 char *filename_full = NULL;
3252 char *backing_file_full = NULL;
3253 char *filename_tmp = NULL;
3254 int is_protocol = 0;
3255 BlockDriverState *curr_bs = NULL;
3256 BlockDriverState *retval = NULL;
3257
3258 if (!bs || !bs->drv || !backing_file) {
3259 return NULL;
3260 }
3261
3262 filename_full = g_malloc(PATH_MAX);
3263 backing_file_full = g_malloc(PATH_MAX);
3264 filename_tmp = g_malloc(PATH_MAX);
3265
3266 is_protocol = path_has_protocol(backing_file);
3267
3268 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3269
3270 /* If either of the filename paths is actually a protocol, then
3271 * compare unmodified paths; otherwise make paths relative */
3272 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3273 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3274 retval = curr_bs->backing_hd;
3275 break;
3276 }
3277 } else {
3278 /* If not an absolute filename path, make it relative to the current
3279 * image's filename path */
3280 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3281 backing_file);
3282
3283 /* We are going to compare absolute pathnames */
3284 if (!realpath(filename_tmp, filename_full)) {
3285 continue;
3286 }
3287
3288 /* We need to make sure the backing filename we are comparing against
3289 * is relative to the current image filename (or absolute) */
3290 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3291 curr_bs->backing_file);
3292
3293 if (!realpath(filename_tmp, backing_file_full)) {
3294 continue;
3295 }
3296
3297 if (strcmp(backing_file_full, filename_full) == 0) {
3298 retval = curr_bs->backing_hd;
3299 break;
3300 }
3301 }
3302 }
3303
3304 g_free(filename_full);
3305 g_free(backing_file_full);
3306 g_free(filename_tmp);
3307 return retval;
3308 }
3309
3310 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3311 {
3312 if (!bs->drv) {
3313 return 0;
3314 }
3315
3316 if (!bs->backing_hd) {
3317 return 0;
3318 }
3319
3320 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3321 }
3322
3323 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3324 {
3325 BlockDriverState *curr_bs = NULL;
3326
3327 if (!bs) {
3328 return NULL;
3329 }
3330
3331 curr_bs = bs;
3332
3333 while (curr_bs->backing_hd) {
3334 curr_bs = curr_bs->backing_hd;
3335 }
3336 return curr_bs;
3337 }
3338
3339 #define NB_SUFFIXES 4
3340
3341 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3342 {
3343 static const char suffixes[NB_SUFFIXES] = "KMGT";
3344 int64_t base;
3345 int i;
3346
3347 if (size <= 999) {
3348 snprintf(buf, buf_size, "%" PRId64, size);
3349 } else {
3350 base = 1024;
3351 for(i = 0; i < NB_SUFFIXES; i++) {
3352 if (size < (10 * base)) {
3353 snprintf(buf, buf_size, "%0.1f%c",
3354 (double)size / base,
3355 suffixes[i]);
3356 break;
3357 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3358 snprintf(buf, buf_size, "%" PRId64 "%c",
3359 ((size + (base >> 1)) / base),
3360 suffixes[i]);
3361 break;
3362 }
3363 base = base * 1024;
3364 }
3365 }
3366 return buf;
3367 }
3368
3369 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3370 {
3371 char buf1[128], date_buf[128], clock_buf[128];
3372 struct tm tm;
3373 time_t ti;
3374 int64_t secs;
3375
3376 if (!sn) {
3377 snprintf(buf, buf_size,
3378 "%-10s%-20s%7s%20s%15s",
3379 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3380 } else {
3381 ti = sn->date_sec;
3382 localtime_r(&ti, &tm);
3383 strftime(date_buf, sizeof(date_buf),
3384 "%Y-%m-%d %H:%M:%S", &tm);
3385 secs = sn->vm_clock_nsec / 1000000000;
3386 snprintf(clock_buf, sizeof(clock_buf),
3387 "%02d:%02d:%02d.%03d",
3388 (int)(secs / 3600),
3389 (int)((secs / 60) % 60),
3390 (int)(secs % 60),
3391 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3392 snprintf(buf, buf_size,
3393 "%-10s%-20s%7s%20s%15s",
3394 sn->id_str, sn->name,
3395 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3396 date_buf,
3397 clock_buf);
3398 }
3399 return buf;
3400 }
3401
3402 /**************************************************************/
3403 /* async I/Os */
3404
3405 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3406 QEMUIOVector *qiov, int nb_sectors,
3407 BlockDriverCompletionFunc *cb, void *opaque)
3408 {
3409 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3410
3411 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3412 cb, opaque, false);
3413 }
3414
3415 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3416 QEMUIOVector *qiov, int nb_sectors,
3417 BlockDriverCompletionFunc *cb, void *opaque)
3418 {
3419 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3420
3421 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3422 cb, opaque, true);
3423 }
3424
3425
3426 typedef struct MultiwriteCB {
3427 int error;
3428 int num_requests;
3429 int num_callbacks;
3430 struct {
3431 BlockDriverCompletionFunc *cb;
3432 void *opaque;
3433 QEMUIOVector *free_qiov;
3434 } callbacks[];
3435 } MultiwriteCB;
3436
3437 static void multiwrite_user_cb(MultiwriteCB *mcb)
3438 {
3439 int i;
3440
3441 for (i = 0; i < mcb->num_callbacks; i++) {
3442 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3443 if (mcb->callbacks[i].free_qiov) {
3444 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3445 }
3446 g_free(mcb->callbacks[i].free_qiov);
3447 }
3448 }
3449
3450 static void multiwrite_cb(void *opaque, int ret)
3451 {
3452 MultiwriteCB *mcb = opaque;
3453
3454 trace_multiwrite_cb(mcb, ret);
3455
3456 if (ret < 0 && !mcb->error) {
3457 mcb->error = ret;
3458 }
3459
3460 mcb->num_requests--;
3461 if (mcb->num_requests == 0) {
3462 multiwrite_user_cb(mcb);
3463 g_free(mcb);
3464 }
3465 }
3466
3467 static int multiwrite_req_compare(const void *a, const void *b)
3468 {
3469 const BlockRequest *req1 = a, *req2 = b;
3470
3471 /*
3472 * Note that we can't simply subtract req2->sector from req1->sector
3473 * here as that could overflow the return value.
3474 */
3475 if (req1->sector > req2->sector) {
3476 return 1;
3477 } else if (req1->sector < req2->sector) {
3478 return -1;
3479 } else {
3480 return 0;
3481 }
3482 }
3483
3484 /*
3485 * Takes a bunch of requests and tries to merge them. Returns the number of
3486 * requests that remain after merging.
3487 */
3488 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3489 int num_reqs, MultiwriteCB *mcb)
3490 {
3491 int i, outidx;
3492
3493 // Sort requests by start sector
3494 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3495
3496 // Check if adjacent requests touch the same clusters. If so, combine them,
3497 // filling up gaps with zero sectors.
3498 outidx = 0;
3499 for (i = 1; i < num_reqs; i++) {
3500 int merge = 0;
3501 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3502
3503 // Handle exactly sequential writes and overlapping writes.
3504 if (reqs[i].sector <= oldreq_last) {
3505 merge = 1;
3506 }
3507
3508 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3509 merge = 0;
3510 }
3511
3512 if (merge) {
3513 size_t size;
3514 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3515 qemu_iovec_init(qiov,
3516 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3517
3518 // Add the first request to the merged one. If the requests are
3519 // overlapping, drop the last sectors of the first request.
3520 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3521 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3522
3523 // We should need to add any zeros between the two requests
3524 assert (reqs[i].sector <= oldreq_last);
3525
3526 // Add the second request
3527 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3528
3529 reqs[outidx].nb_sectors = qiov->size >> 9;
3530 reqs[outidx].qiov = qiov;
3531
3532 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3533 } else {
3534 outidx++;
3535 reqs[outidx].sector = reqs[i].sector;
3536 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3537 reqs[outidx].qiov = reqs[i].qiov;
3538 }
3539 }
3540
3541 return outidx + 1;
3542 }
3543
3544 /*
3545 * Submit multiple AIO write requests at once.
3546 *
3547 * On success, the function returns 0 and all requests in the reqs array have
3548 * been submitted. In error case this function returns -1, and any of the
3549 * requests may or may not be submitted yet. In particular, this means that the
3550 * callback will be called for some of the requests, for others it won't. The
3551 * caller must check the error field of the BlockRequest to wait for the right
3552 * callbacks (if error != 0, no callback will be called).
3553 *
3554 * The implementation may modify the contents of the reqs array, e.g. to merge
3555 * requests. However, the fields opaque and error are left unmodified as they
3556 * are used to signal failure for a single request to the caller.
3557 */
3558 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3559 {
3560 MultiwriteCB *mcb;
3561 int i;
3562
3563 /* don't submit writes if we don't have a medium */
3564 if (bs->drv == NULL) {
3565 for (i = 0; i < num_reqs; i++) {
3566 reqs[i].error = -ENOMEDIUM;
3567 }
3568 return -1;
3569 }
3570
3571 if (num_reqs == 0) {
3572 return 0;
3573 }
3574
3575 // Create MultiwriteCB structure
3576 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3577 mcb->num_requests = 0;
3578 mcb->num_callbacks = num_reqs;
3579
3580 for (i = 0; i < num_reqs; i++) {
3581 mcb->callbacks[i].cb = reqs[i].cb;
3582 mcb->callbacks[i].opaque = reqs[i].opaque;
3583 }
3584
3585 // Check for mergable requests
3586 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3587
3588 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3589
3590 /* Run the aio requests. */
3591 mcb->num_requests = num_reqs;
3592 for (i = 0; i < num_reqs; i++) {
3593 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3594 reqs[i].nb_sectors, multiwrite_cb, mcb);
3595 }
3596
3597 return 0;
3598 }
3599
3600 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3601 {
3602 acb->aiocb_info->cancel(acb);
3603 }
3604
3605 /* block I/O throttling */
3606 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3607 bool is_write, double elapsed_time, uint64_t *wait)
3608 {
3609 uint64_t bps_limit = 0;
3610 double bytes_limit, bytes_base, bytes_res;
3611 double slice_time, wait_time;
3612
3613 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3614 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3615 } else if (bs->io_limits.bps[is_write]) {
3616 bps_limit = bs->io_limits.bps[is_write];
3617 } else {
3618 if (wait) {
3619 *wait = 0;
3620 }
3621
3622 return false;
3623 }
3624
3625 slice_time = bs->slice_end - bs->slice_start;
3626 slice_time /= (NANOSECONDS_PER_SECOND);
3627 bytes_limit = bps_limit * slice_time;
3628 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3629 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3630 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3631 }
3632
3633 /* bytes_base: the bytes of data which have been read/written; and
3634 * it is obtained from the history statistic info.
3635 * bytes_res: the remaining bytes of data which need to be read/written.
3636 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3637 * the total time for completing reading/writting all data.
3638 */
3639 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3640
3641 if (bytes_base + bytes_res <= bytes_limit) {
3642 if (wait) {
3643 *wait = 0;
3644 }
3645
3646 return false;
3647 }
3648
3649 /* Calc approx time to dispatch */
3650 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3651
3652 /* When the I/O rate at runtime exceeds the limits,
3653 * bs->slice_end need to be extended in order that the current statistic
3654 * info can be kept until the timer fire, so it is increased and tuned
3655 * based on the result of experiment.
3656 */
3657 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3658 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3659 if (wait) {
3660 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3661 }
3662
3663 return true;
3664 }
3665
3666 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3667 double elapsed_time, uint64_t *wait)
3668 {
3669 uint64_t iops_limit = 0;
3670 double ios_limit, ios_base;
3671 double slice_time, wait_time;
3672
3673 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3674 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3675 } else if (bs->io_limits.iops[is_write]) {
3676 iops_limit = bs->io_limits.iops[is_write];
3677 } else {
3678 if (wait) {
3679 *wait = 0;
3680 }
3681
3682 return false;
3683 }
3684
3685 slice_time = bs->slice_end - bs->slice_start;
3686 slice_time /= (NANOSECONDS_PER_SECOND);
3687 ios_limit = iops_limit * slice_time;
3688 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3689 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3690 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3691 }
3692
3693 if (ios_base + 1 <= ios_limit) {
3694 if (wait) {
3695 *wait = 0;
3696 }
3697
3698 return false;
3699 }
3700
3701 /* Calc approx time to dispatch */
3702 wait_time = (ios_base + 1) / iops_limit;
3703 if (wait_time > elapsed_time) {
3704 wait_time = wait_time - elapsed_time;
3705 } else {
3706 wait_time = 0;
3707 }
3708
3709 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3710 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3711 if (wait) {
3712 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3713 }
3714
3715 return true;
3716 }
3717
3718 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3719 bool is_write, int64_t *wait)
3720 {
3721 int64_t now, max_wait;
3722 uint64_t bps_wait = 0, iops_wait = 0;
3723 double elapsed_time;
3724 int bps_ret, iops_ret;
3725
3726 now = qemu_get_clock_ns(vm_clock);
3727 if ((bs->slice_start < now)
3728 && (bs->slice_end > now)) {
3729 bs->slice_end = now + bs->slice_time;
3730 } else {
3731 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3732 bs->slice_start = now;
3733 bs->slice_end = now + bs->slice_time;
3734
3735 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3736 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3737
3738 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3739 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3740 }
3741
3742 elapsed_time = now - bs->slice_start;
3743 elapsed_time /= (NANOSECONDS_PER_SECOND);
3744
3745 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3746 is_write, elapsed_time, &bps_wait);
3747 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3748 elapsed_time, &iops_wait);
3749 if (bps_ret || iops_ret) {
3750 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3751 if (wait) {
3752 *wait = max_wait;
3753 }
3754
3755 now = qemu_get_clock_ns(vm_clock);
3756 if (bs->slice_end < now + max_wait) {
3757 bs->slice_end = now + max_wait;
3758 }
3759
3760 return true;
3761 }
3762
3763 if (wait) {
3764 *wait = 0;
3765 }
3766
3767 return false;
3768 }
3769
3770 /**************************************************************/
3771 /* async block device emulation */
3772
3773 typedef struct BlockDriverAIOCBSync {
3774 BlockDriverAIOCB common;
3775 QEMUBH *bh;
3776 int ret;
3777 /* vector translation state */
3778 QEMUIOVector *qiov;
3779 uint8_t *bounce;
3780 int is_write;
3781 } BlockDriverAIOCBSync;
3782
3783 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3784 {
3785 BlockDriverAIOCBSync *acb =
3786 container_of(blockacb, BlockDriverAIOCBSync, common);
3787 qemu_bh_delete(acb->bh);
3788 acb->bh = NULL;
3789 qemu_aio_release(acb);
3790 }
3791
3792 static const AIOCBInfo bdrv_em_aiocb_info = {
3793 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3794 .cancel = bdrv_aio_cancel_em,
3795 };
3796
3797 static void bdrv_aio_bh_cb(void *opaque)
3798 {
3799 BlockDriverAIOCBSync *acb = opaque;
3800
3801 if (!acb->is_write)
3802 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3803 qemu_vfree(acb->bounce);
3804 acb->common.cb(acb->common.opaque, acb->ret);
3805 qemu_bh_delete(acb->bh);
3806 acb->bh = NULL;
3807 qemu_aio_release(acb);
3808 }
3809
3810 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3811 int64_t sector_num,
3812 QEMUIOVector *qiov,
3813 int nb_sectors,
3814 BlockDriverCompletionFunc *cb,
3815 void *opaque,
3816 int is_write)
3817
3818 {
3819 BlockDriverAIOCBSync *acb;
3820
3821 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3822 acb->is_write = is_write;
3823 acb->qiov = qiov;
3824 acb->bounce = qemu_blockalign(bs, qiov->size);
3825 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3826
3827 if (is_write) {
3828 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3829 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3830 } else {
3831 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3832 }
3833
3834 qemu_bh_schedule(acb->bh);
3835
3836 return &acb->common;
3837 }
3838
3839 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3840 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3841 BlockDriverCompletionFunc *cb, void *opaque)
3842 {
3843 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3844 }
3845
3846 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3847 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3848 BlockDriverCompletionFunc *cb, void *opaque)
3849 {
3850 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3851 }
3852
3853
3854 typedef struct BlockDriverAIOCBCoroutine {
3855 BlockDriverAIOCB common;
3856 BlockRequest req;
3857 bool is_write;
3858 bool *done;
3859 QEMUBH* bh;
3860 } BlockDriverAIOCBCoroutine;
3861
3862 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3863 {
3864 BlockDriverAIOCBCoroutine *acb =
3865 container_of(blockacb, BlockDriverAIOCBCoroutine, common);
3866 bool done = false;
3867
3868 acb->done = &done;
3869 while (!done) {
3870 qemu_aio_wait();
3871 }
3872 }
3873
3874 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3875 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3876 .cancel = bdrv_aio_co_cancel_em,
3877 };
3878
3879 static void bdrv_co_em_bh(void *opaque)
3880 {
3881 BlockDriverAIOCBCoroutine *acb = opaque;
3882
3883 acb->common.cb(acb->common.opaque, acb->req.error);
3884
3885 if (acb->done) {
3886 *acb->done = true;
3887 }
3888
3889 qemu_bh_delete(acb->bh);
3890 qemu_aio_release(acb);
3891 }
3892
3893 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3894 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3895 {
3896 BlockDriverAIOCBCoroutine *acb = opaque;
3897 BlockDriverState *bs = acb->common.bs;
3898
3899 if (!acb->is_write) {
3900 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3901 acb->req.nb_sectors, acb->req.qiov, 0);
3902 } else {
3903 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3904 acb->req.nb_sectors, acb->req.qiov, 0);
3905 }
3906
3907 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3908 qemu_bh_schedule(acb->bh);
3909 }
3910
3911 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3912 int64_t sector_num,
3913 QEMUIOVector *qiov,
3914 int nb_sectors,
3915 BlockDriverCompletionFunc *cb,
3916 void *opaque,
3917 bool is_write)
3918 {
3919 Coroutine *co;
3920 BlockDriverAIOCBCoroutine *acb;
3921
3922 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3923 acb->req.sector = sector_num;
3924 acb->req.nb_sectors = nb_sectors;
3925 acb->req.qiov = qiov;
3926 acb->is_write = is_write;
3927 acb->done = NULL;
3928
3929 co = qemu_coroutine_create(bdrv_co_do_rw);
3930 qemu_coroutine_enter(co, acb);
3931
3932 return &acb->common;
3933 }
3934
3935 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3936 {
3937 BlockDriverAIOCBCoroutine *acb = opaque;
3938 BlockDriverState *bs = acb->common.bs;
3939
3940 acb->req.error = bdrv_co_flush(bs);
3941 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3942 qemu_bh_schedule(acb->bh);
3943 }
3944
3945 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3946 BlockDriverCompletionFunc *cb, void *opaque)
3947 {
3948 trace_bdrv_aio_flush(bs, opaque);
3949
3950 Coroutine *co;
3951 BlockDriverAIOCBCoroutine *acb;
3952
3953 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3954 acb->done = NULL;
3955
3956 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3957 qemu_coroutine_enter(co, acb);
3958
3959 return &acb->common;
3960 }
3961
3962 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3963 {
3964 BlockDriverAIOCBCoroutine *acb = opaque;
3965 BlockDriverState *bs = acb->common.bs;
3966
3967 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3968 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3969 qemu_bh_schedule(acb->bh);
3970 }
3971
3972 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3973 int64_t sector_num, int nb_sectors,
3974 BlockDriverCompletionFunc *cb, void *opaque)
3975 {
3976 Coroutine *co;
3977 BlockDriverAIOCBCoroutine *acb;
3978
3979 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3980
3981 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3982 acb->req.sector = sector_num;
3983 acb->req.nb_sectors = nb_sectors;
3984 acb->done = NULL;
3985 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3986 qemu_coroutine_enter(co, acb);
3987
3988 return &acb->common;
3989 }
3990
3991 void bdrv_init(void)
3992 {
3993 module_call_init(MODULE_INIT_BLOCK);
3994 }
3995
3996 void bdrv_init_with_whitelist(void)
3997 {
3998 use_bdrv_whitelist = 1;
3999 bdrv_init();
4000 }
4001
4002 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
4003 BlockDriverCompletionFunc *cb, void *opaque)
4004 {
4005 BlockDriverAIOCB *acb;
4006
4007 acb = g_slice_alloc(aiocb_info->aiocb_size);
4008 acb->aiocb_info = aiocb_info;
4009 acb->bs = bs;
4010 acb->cb = cb;
4011 acb->opaque = opaque;
4012 return acb;
4013 }
4014
4015 void qemu_aio_release(void *p)
4016 {
4017 BlockDriverAIOCB *acb = p;
4018 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
4019 }
4020
4021 /**************************************************************/
4022 /* Coroutine block device emulation */
4023
4024 typedef struct CoroutineIOCompletion {
4025 Coroutine *coroutine;
4026 int ret;
4027 } CoroutineIOCompletion;
4028
4029 static void bdrv_co_io_em_complete(void *opaque, int ret)
4030 {
4031 CoroutineIOCompletion *co = opaque;
4032
4033 co->ret = ret;
4034 qemu_coroutine_enter(co->coroutine, NULL);
4035 }
4036
4037 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
4038 int nb_sectors, QEMUIOVector *iov,
4039 bool is_write)
4040 {
4041 CoroutineIOCompletion co = {
4042 .coroutine = qemu_coroutine_self(),
4043 };
4044 BlockDriverAIOCB *acb;
4045
4046 if (is_write) {
4047 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
4048 bdrv_co_io_em_complete, &co);
4049 } else {
4050 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
4051 bdrv_co_io_em_complete, &co);
4052 }
4053
4054 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
4055 if (!acb) {
4056 return -EIO;
4057 }
4058 qemu_coroutine_yield();
4059
4060 return co.ret;
4061 }
4062
4063 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
4064 int64_t sector_num, int nb_sectors,
4065 QEMUIOVector *iov)
4066 {
4067 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
4068 }
4069
4070 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
4071 int64_t sector_num, int nb_sectors,
4072 QEMUIOVector *iov)
4073 {
4074 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
4075 }
4076
4077 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
4078 {
4079 RwCo *rwco = opaque;
4080
4081 rwco->ret = bdrv_co_flush(rwco->bs);
4082 }
4083
4084 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
4085 {
4086 int ret;
4087
4088 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
4089 return 0;
4090 }
4091
4092 /* Write back cached data to the OS even with cache=unsafe */
4093 if (bs->drv->bdrv_co_flush_to_os) {
4094 ret = bs->drv->bdrv_co_flush_to_os(bs);
4095 if (ret < 0) {
4096 return ret;
4097 }
4098 }
4099
4100 /* But don't actually force it to the disk with cache=unsafe */
4101 if (bs->open_flags & BDRV_O_NO_FLUSH) {
4102 goto flush_parent;
4103 }
4104
4105 if (bs->drv->bdrv_co_flush_to_disk) {
4106 ret = bs->drv->bdrv_co_flush_to_disk(bs);
4107 } else if (bs->drv->bdrv_aio_flush) {
4108 BlockDriverAIOCB *acb;
4109 CoroutineIOCompletion co = {
4110 .coroutine = qemu_coroutine_self(),
4111 };
4112
4113 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4114 if (acb == NULL) {
4115 ret = -EIO;
4116 } else {
4117 qemu_coroutine_yield();
4118 ret = co.ret;
4119 }
4120 } else {
4121 /*
4122 * Some block drivers always operate in either writethrough or unsafe
4123 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4124 * know how the server works (because the behaviour is hardcoded or
4125 * depends on server-side configuration), so we can't ensure that
4126 * everything is safe on disk. Returning an error doesn't work because
4127 * that would break guests even if the server operates in writethrough
4128 * mode.
4129 *
4130 * Let's hope the user knows what he's doing.
4131 */
4132 ret = 0;
4133 }
4134 if (ret < 0) {
4135 return ret;
4136 }
4137
4138 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4139 * in the case of cache=unsafe, so there are no useless flushes.
4140 */
4141 flush_parent:
4142 return bdrv_co_flush(bs->file);
4143 }
4144
4145 void bdrv_invalidate_cache(BlockDriverState *bs)
4146 {
4147 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4148 bs->drv->bdrv_invalidate_cache(bs);
4149 }
4150 }
4151
4152 void bdrv_invalidate_cache_all(void)
4153 {
4154 BlockDriverState *bs;
4155
4156 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4157 bdrv_invalidate_cache(bs);
4158 }
4159 }
4160
4161 void bdrv_clear_incoming_migration_all(void)
4162 {
4163 BlockDriverState *bs;
4164
4165 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4166 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4167 }
4168 }
4169
4170 int bdrv_flush(BlockDriverState *bs)
4171 {
4172 Coroutine *co;
4173 RwCo rwco = {
4174 .bs = bs,
4175 .ret = NOT_DONE,
4176 };
4177
4178 if (qemu_in_coroutine()) {
4179 /* Fast-path if already in coroutine context */
4180 bdrv_flush_co_entry(&rwco);
4181 } else {
4182 co = qemu_coroutine_create(bdrv_flush_co_entry);
4183 qemu_coroutine_enter(co, &rwco);
4184 while (rwco.ret == NOT_DONE) {
4185 qemu_aio_wait();
4186 }
4187 }
4188
4189 return rwco.ret;
4190 }
4191
4192 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4193 {
4194 RwCo *rwco = opaque;
4195
4196 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4197 }
4198
4199 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4200 int nb_sectors)
4201 {
4202 if (!bs->drv) {
4203 return -ENOMEDIUM;
4204 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4205 return -EIO;
4206 } else if (bs->read_only) {
4207 return -EROFS;
4208 }
4209
4210 if (bs->dirty_bitmap) {
4211 bdrv_reset_dirty(bs, sector_num, nb_sectors);
4212 }
4213
4214 /* Do nothing if disabled. */
4215 if (!(bs->open_flags & BDRV_O_UNMAP)) {
4216 return 0;
4217 }
4218
4219 if (bs->drv->bdrv_co_discard) {
4220 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4221 } else if (bs->drv->bdrv_aio_discard) {
4222 BlockDriverAIOCB *acb;
4223 CoroutineIOCompletion co = {
4224 .coroutine = qemu_coroutine_self(),
4225 };
4226
4227 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4228 bdrv_co_io_em_complete, &co);
4229 if (acb == NULL) {
4230 return -EIO;
4231 } else {
4232 qemu_coroutine_yield();
4233 return co.ret;
4234 }
4235 } else {
4236 return 0;
4237 }
4238 }
4239
4240 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4241 {
4242 Coroutine *co;
4243 RwCo rwco = {
4244 .bs = bs,
4245 .sector_num = sector_num,
4246 .nb_sectors = nb_sectors,
4247 .ret = NOT_DONE,
4248 };
4249
4250 if (qemu_in_coroutine()) {
4251 /* Fast-path if already in coroutine context */
4252 bdrv_discard_co_entry(&rwco);
4253 } else {
4254 co = qemu_coroutine_create(bdrv_discard_co_entry);
4255 qemu_coroutine_enter(co, &rwco);
4256 while (rwco.ret == NOT_DONE) {
4257 qemu_aio_wait();
4258 }
4259 }
4260
4261 return rwco.ret;
4262 }
4263
4264 /**************************************************************/
4265 /* removable device support */
4266
4267 /**
4268 * Return TRUE if the media is present
4269 */
4270 int bdrv_is_inserted(BlockDriverState *bs)
4271 {
4272 BlockDriver *drv = bs->drv;
4273
4274 if (!drv)
4275 return 0;
4276 if (!drv->bdrv_is_inserted)
4277 return 1;
4278 return drv->bdrv_is_inserted(bs);
4279 }
4280
4281 /**
4282 * Return whether the media changed since the last call to this
4283 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4284 */
4285 int bdrv_media_changed(BlockDriverState *bs)
4286 {
4287 BlockDriver *drv = bs->drv;
4288
4289 if (drv && drv->bdrv_media_changed) {
4290 return drv->bdrv_media_changed(bs);
4291 }
4292 return -ENOTSUP;
4293 }
4294
4295 /**
4296 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4297 */
4298 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4299 {
4300 BlockDriver *drv = bs->drv;
4301
4302 if (drv && drv->bdrv_eject) {
4303 drv->bdrv_eject(bs, eject_flag);
4304 }
4305
4306 if (bs->device_name[0] != '\0') {
4307 bdrv_emit_qmp_eject_event(bs, eject_flag);
4308 }
4309 }
4310
4311 /**
4312 * Lock or unlock the media (if it is locked, the user won't be able
4313 * to eject it manually).
4314 */
4315 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4316 {
4317 BlockDriver *drv = bs->drv;
4318
4319 trace_bdrv_lock_medium(bs, locked);
4320
4321 if (drv && drv->bdrv_lock_medium) {
4322 drv->bdrv_lock_medium(bs, locked);
4323 }
4324 }
4325
4326 /* needed for generic scsi interface */
4327
4328 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4329 {
4330 BlockDriver *drv = bs->drv;
4331
4332 if (drv && drv->bdrv_ioctl)
4333 return drv->bdrv_ioctl(bs, req, buf);
4334 return -ENOTSUP;
4335 }
4336
4337 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4338 unsigned long int req, void *buf,
4339 BlockDriverCompletionFunc *cb, void *opaque)
4340 {
4341 BlockDriver *drv = bs->drv;
4342
4343 if (drv && drv->bdrv_aio_ioctl)
4344 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4345 return NULL;
4346 }
4347
4348 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4349 {
4350 bs->buffer_alignment = align;
4351 }
4352
4353 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4354 {
4355 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4356 }
4357
4358 /*
4359 * Check if all memory in this vector is sector aligned.
4360 */
4361 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
4362 {
4363 int i;
4364
4365 for (i = 0; i < qiov->niov; i++) {
4366 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) {
4367 return false;
4368 }
4369 }
4370
4371 return true;
4372 }
4373
4374 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity)
4375 {
4376 int64_t bitmap_size;
4377
4378 assert((granularity & (granularity - 1)) == 0);
4379
4380 if (granularity) {
4381 granularity >>= BDRV_SECTOR_BITS;
4382 assert(!bs->dirty_bitmap);
4383 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS);
4384 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1);
4385 } else {
4386 if (bs->dirty_bitmap) {
4387 hbitmap_free(bs->dirty_bitmap);
4388 bs->dirty_bitmap = NULL;
4389 }
4390 }
4391 }
4392
4393 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4394 {
4395 if (bs->dirty_bitmap) {
4396 return hbitmap_get(bs->dirty_bitmap, sector);
4397 } else {
4398 return 0;
4399 }
4400 }
4401
4402 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi)
4403 {
4404 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0);
4405 }
4406
4407 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4408 int nr_sectors)
4409 {
4410 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors);
4411 }
4412
4413 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4414 int nr_sectors)
4415 {
4416 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors);
4417 }
4418
4419 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4420 {
4421 if (bs->dirty_bitmap) {
4422 return hbitmap_count(bs->dirty_bitmap);
4423 } else {
4424 return 0;
4425 }
4426 }
4427
4428 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4429 {
4430 assert(bs->in_use != in_use);
4431 bs->in_use = in_use;
4432 }
4433
4434 int bdrv_in_use(BlockDriverState *bs)
4435 {
4436 return bs->in_use;
4437 }
4438
4439 void bdrv_iostatus_enable(BlockDriverState *bs)
4440 {
4441 bs->iostatus_enabled = true;
4442 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4443 }
4444
4445 /* The I/O status is only enabled if the drive explicitly
4446 * enables it _and_ the VM is configured to stop on errors */
4447 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4448 {
4449 return (bs->iostatus_enabled &&
4450 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4451 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4452 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4453 }
4454
4455 void bdrv_iostatus_disable(BlockDriverState *bs)
4456 {
4457 bs->iostatus_enabled = false;
4458 }
4459
4460 void bdrv_iostatus_reset(BlockDriverState *bs)
4461 {
4462 if (bdrv_iostatus_is_enabled(bs)) {
4463 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4464 if (bs->job) {
4465 block_job_iostatus_reset(bs->job);
4466 }
4467 }
4468 }
4469
4470 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4471 {
4472 assert(bdrv_iostatus_is_enabled(bs));
4473 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4474 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4475 BLOCK_DEVICE_IO_STATUS_FAILED;
4476 }
4477 }
4478
4479 void
4480 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4481 enum BlockAcctType type)
4482 {
4483 assert(type < BDRV_MAX_IOTYPE);
4484
4485 cookie->bytes = bytes;
4486 cookie->start_time_ns = get_clock();
4487 cookie->type = type;
4488 }
4489
4490 void
4491 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4492 {
4493 assert(cookie->type < BDRV_MAX_IOTYPE);
4494
4495 bs->nr_bytes[cookie->type] += cookie->bytes;
4496 bs->nr_ops[cookie->type]++;
4497 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4498 }
4499
4500 void bdrv_img_create(const char *filename, const char *fmt,
4501 const char *base_filename, const char *base_fmt,
4502 char *options, uint64_t img_size, int flags,
4503 Error **errp, bool quiet)
4504 {
4505 QEMUOptionParameter *param = NULL, *create_options = NULL;
4506 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4507 BlockDriverState *bs = NULL;
4508 BlockDriver *drv, *proto_drv;
4509 BlockDriver *backing_drv = NULL;
4510 int ret = 0;
4511
4512 /* Find driver and parse its options */
4513 drv = bdrv_find_format(fmt);
4514 if (!drv) {
4515 error_setg(errp, "Unknown file format '%s'", fmt);
4516 return;
4517 }
4518
4519 proto_drv = bdrv_find_protocol(filename);
4520 if (!proto_drv) {
4521 error_setg(errp, "Unknown protocol '%s'", filename);
4522 return;
4523 }
4524
4525 create_options = append_option_parameters(create_options,
4526 drv->create_options);
4527 create_options = append_option_parameters(create_options,
4528 proto_drv->create_options);
4529
4530 /* Create parameter list with default values */
4531 param = parse_option_parameters("", create_options, param);
4532
4533 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4534
4535 /* Parse -o options */
4536 if (options) {
4537 param = parse_option_parameters(options, create_options, param);
4538 if (param == NULL) {
4539 error_setg(errp, "Invalid options for file format '%s'.", fmt);
4540 goto out;
4541 }
4542 }
4543
4544 if (base_filename) {
4545 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4546 base_filename)) {
4547 error_setg(errp, "Backing file not supported for file format '%s'",
4548 fmt);
4549 goto out;
4550 }
4551 }
4552
4553 if (base_fmt) {
4554 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4555 error_setg(errp, "Backing file format not supported for file "
4556 "format '%s'", fmt);
4557 goto out;
4558 }
4559 }
4560
4561 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4562 if (backing_file && backing_file->value.s) {
4563 if (!strcmp(filename, backing_file->value.s)) {
4564 error_setg(errp, "Error: Trying to create an image with the "
4565 "same filename as the backing file");
4566 goto out;
4567 }
4568 }
4569
4570 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4571 if (backing_fmt && backing_fmt->value.s) {
4572 backing_drv = bdrv_find_format(backing_fmt->value.s);
4573 if (!backing_drv) {
4574 error_setg(errp, "Unknown backing file format '%s'",
4575 backing_fmt->value.s);
4576 goto out;
4577 }
4578 }
4579
4580 // The size for the image must always be specified, with one exception:
4581 // If we are using a backing file, we can obtain the size from there
4582 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4583 if (size && size->value.n == -1) {
4584 if (backing_file && backing_file->value.s) {
4585 uint64_t size;
4586 char buf[32];
4587 int back_flags;
4588
4589 /* backing files always opened read-only */
4590 back_flags =
4591 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4592
4593 bs = bdrv_new("");
4594
4595 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4596 if (ret < 0) {
4597 error_setg_errno(errp, -ret, "Could not open '%s'",
4598 backing_file->value.s);
4599 goto out;
4600 }
4601 bdrv_get_geometry(bs, &size);
4602 size *= 512;
4603
4604 snprintf(buf, sizeof(buf), "%" PRId64, size);
4605 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4606 } else {
4607 error_setg(errp, "Image creation needs a size parameter");
4608 goto out;
4609 }
4610 }
4611
4612 if (!quiet) {
4613 printf("Formatting '%s', fmt=%s ", filename, fmt);
4614 print_option_parameters(param);
4615 puts("");
4616 }
4617 ret = bdrv_create(drv, filename, param);
4618 if (ret < 0) {
4619 if (ret == -ENOTSUP) {
4620 error_setg(errp,"Formatting or formatting option not supported for "
4621 "file format '%s'", fmt);
4622 } else if (ret == -EFBIG) {
4623 error_setg(errp, "The image size is too large for file format '%s'",
4624 fmt);
4625 } else {
4626 error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
4627 strerror(-ret));
4628 }
4629 }
4630
4631 out:
4632 free_option_parameters(create_options);
4633 free_option_parameters(param);
4634
4635 if (bs) {
4636 bdrv_delete(bs);
4637 }
4638 }