]> git.proxmox.com Git - qemu.git/blob - block.c
vmport: convert PIO to new memory api read/write
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "notify.h"
34 #include "qemu-coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu-timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55 BDRV_REQ_COPY_ON_READ = 0x1,
56 BDRV_REQ_ZERO_WRITE = 0x2,
57 } BdrvRequestFlags;
58
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65 BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors,
71 QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77 BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79 int64_t sector_num,
80 QEMUIOVector *qiov,
81 int nb_sectors,
82 BlockDriverCompletionFunc *cb,
83 void *opaque,
84 bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87 int64_t sector_num, int nb_sectors);
88
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90 bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92 double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94 bool is_write, int64_t *wait);
95
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97 QTAILQ_HEAD_INITIALIZER(bdrv_states);
98
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100 QLIST_HEAD_INITIALIZER(bdrv_drivers);
101
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113 filename[1] == ':');
114 }
115
116 int is_windows_drive(const char *filename)
117 {
118 if (is_windows_drive_prefix(filename) &&
119 filename[2] == '\0')
120 return 1;
121 if (strstart(filename, "\\\\.\\", NULL) ||
122 strstart(filename, "//./", NULL))
123 return 1;
124 return 0;
125 }
126 #endif
127
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131 bs->io_limits_enabled = false;
132
133 while (qemu_co_queue_next(&bs->throttled_reqs));
134
135 if (bs->block_timer) {
136 qemu_del_timer(bs->block_timer);
137 qemu_free_timer(bs->block_timer);
138 bs->block_timer = NULL;
139 }
140
141 bs->slice_start = 0;
142 bs->slice_end = 0;
143 bs->slice_time = 0;
144 memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146
147 static void bdrv_block_timer(void *opaque)
148 {
149 BlockDriverState *bs = opaque;
150
151 qemu_co_queue_next(&bs->throttled_reqs);
152 }
153
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156 qemu_co_queue_init(&bs->throttled_reqs);
157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
159 bs->slice_start = qemu_get_clock_ns(vm_clock);
160 bs->slice_end = bs->slice_start + bs->slice_time;
161 memset(&bs->io_base, 0, sizeof(bs->io_base));
162 bs->io_limits_enabled = true;
163 }
164
165 bool bdrv_io_limits_enabled(BlockDriverState *bs)
166 {
167 BlockIOLimit *io_limits = &bs->io_limits;
168 return io_limits->bps[BLOCK_IO_LIMIT_READ]
169 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
171 || io_limits->iops[BLOCK_IO_LIMIT_READ]
172 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
173 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
174 }
175
176 static void bdrv_io_limits_intercept(BlockDriverState *bs,
177 bool is_write, int nb_sectors)
178 {
179 int64_t wait_time = -1;
180
181 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
182 qemu_co_queue_wait(&bs->throttled_reqs);
183 }
184
185 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
186 * throttled requests will not be dequeued until the current request is
187 * allowed to be serviced. So if the current request still exceeds the
188 * limits, it will be inserted to the head. All requests followed it will
189 * be still in throttled_reqs queue.
190 */
191
192 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
193 qemu_mod_timer(bs->block_timer,
194 wait_time + qemu_get_clock_ns(vm_clock));
195 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
196 }
197
198 qemu_co_queue_next(&bs->throttled_reqs);
199 }
200
201 /* check if the path starts with "<protocol>:" */
202 static int path_has_protocol(const char *path)
203 {
204 const char *p;
205
206 #ifdef _WIN32
207 if (is_windows_drive(path) ||
208 is_windows_drive_prefix(path)) {
209 return 0;
210 }
211 p = path + strcspn(path, ":/\\");
212 #else
213 p = path + strcspn(path, ":/");
214 #endif
215
216 return *p == ':';
217 }
218
219 int path_is_absolute(const char *path)
220 {
221 #ifdef _WIN32
222 /* specific case for names like: "\\.\d:" */
223 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
224 return 1;
225 }
226 return (*path == '/' || *path == '\\');
227 #else
228 return (*path == '/');
229 #endif
230 }
231
232 /* if filename is absolute, just copy it to dest. Otherwise, build a
233 path to it by considering it is relative to base_path. URL are
234 supported. */
235 void path_combine(char *dest, int dest_size,
236 const char *base_path,
237 const char *filename)
238 {
239 const char *p, *p1;
240 int len;
241
242 if (dest_size <= 0)
243 return;
244 if (path_is_absolute(filename)) {
245 pstrcpy(dest, dest_size, filename);
246 } else {
247 p = strchr(base_path, ':');
248 if (p)
249 p++;
250 else
251 p = base_path;
252 p1 = strrchr(base_path, '/');
253 #ifdef _WIN32
254 {
255 const char *p2;
256 p2 = strrchr(base_path, '\\');
257 if (!p1 || p2 > p1)
258 p1 = p2;
259 }
260 #endif
261 if (p1)
262 p1++;
263 else
264 p1 = base_path;
265 if (p1 > p)
266 p = p1;
267 len = p - base_path;
268 if (len > dest_size - 1)
269 len = dest_size - 1;
270 memcpy(dest, base_path, len);
271 dest[len] = '\0';
272 pstrcat(dest, dest_size, filename);
273 }
274 }
275
276 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
277 {
278 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
279 pstrcpy(dest, sz, bs->backing_file);
280 } else {
281 path_combine(dest, sz, bs->filename, bs->backing_file);
282 }
283 }
284
285 void bdrv_register(BlockDriver *bdrv)
286 {
287 /* Block drivers without coroutine functions need emulation */
288 if (!bdrv->bdrv_co_readv) {
289 bdrv->bdrv_co_readv = bdrv_co_readv_em;
290 bdrv->bdrv_co_writev = bdrv_co_writev_em;
291
292 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
293 * the block driver lacks aio we need to emulate that too.
294 */
295 if (!bdrv->bdrv_aio_readv) {
296 /* add AIO emulation layer */
297 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
298 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
299 }
300 }
301
302 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
303 }
304
305 /* create a new block device (by default it is empty) */
306 BlockDriverState *bdrv_new(const char *device_name)
307 {
308 BlockDriverState *bs;
309
310 bs = g_malloc0(sizeof(BlockDriverState));
311 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
312 if (device_name[0] != '\0') {
313 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
314 }
315 bdrv_iostatus_disable(bs);
316 notifier_list_init(&bs->close_notifiers);
317
318 return bs;
319 }
320
321 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
322 {
323 notifier_list_add(&bs->close_notifiers, notify);
324 }
325
326 BlockDriver *bdrv_find_format(const char *format_name)
327 {
328 BlockDriver *drv1;
329 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
330 if (!strcmp(drv1->format_name, format_name)) {
331 return drv1;
332 }
333 }
334 return NULL;
335 }
336
337 static int bdrv_is_whitelisted(BlockDriver *drv)
338 {
339 static const char *whitelist[] = {
340 CONFIG_BDRV_WHITELIST
341 };
342 const char **p;
343
344 if (!whitelist[0])
345 return 1; /* no whitelist, anything goes */
346
347 for (p = whitelist; *p; p++) {
348 if (!strcmp(drv->format_name, *p)) {
349 return 1;
350 }
351 }
352 return 0;
353 }
354
355 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
356 {
357 BlockDriver *drv = bdrv_find_format(format_name);
358 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
359 }
360
361 typedef struct CreateCo {
362 BlockDriver *drv;
363 char *filename;
364 QEMUOptionParameter *options;
365 int ret;
366 } CreateCo;
367
368 static void coroutine_fn bdrv_create_co_entry(void *opaque)
369 {
370 CreateCo *cco = opaque;
371 assert(cco->drv);
372
373 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
374 }
375
376 int bdrv_create(BlockDriver *drv, const char* filename,
377 QEMUOptionParameter *options)
378 {
379 int ret;
380
381 Coroutine *co;
382 CreateCo cco = {
383 .drv = drv,
384 .filename = g_strdup(filename),
385 .options = options,
386 .ret = NOT_DONE,
387 };
388
389 if (!drv->bdrv_create) {
390 return -ENOTSUP;
391 }
392
393 if (qemu_in_coroutine()) {
394 /* Fast-path if already in coroutine context */
395 bdrv_create_co_entry(&cco);
396 } else {
397 co = qemu_coroutine_create(bdrv_create_co_entry);
398 qemu_coroutine_enter(co, &cco);
399 while (cco.ret == NOT_DONE) {
400 qemu_aio_wait();
401 }
402 }
403
404 ret = cco.ret;
405 g_free(cco.filename);
406
407 return ret;
408 }
409
410 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
411 {
412 BlockDriver *drv;
413
414 drv = bdrv_find_protocol(filename);
415 if (drv == NULL) {
416 return -ENOENT;
417 }
418
419 return bdrv_create(drv, filename, options);
420 }
421
422 /*
423 * Create a uniquely-named empty temporary file.
424 * Return 0 upon success, otherwise a negative errno value.
425 */
426 int get_tmp_filename(char *filename, int size)
427 {
428 #ifdef _WIN32
429 char temp_dir[MAX_PATH];
430 /* GetTempFileName requires that its output buffer (4th param)
431 have length MAX_PATH or greater. */
432 assert(size >= MAX_PATH);
433 return (GetTempPath(MAX_PATH, temp_dir)
434 && GetTempFileName(temp_dir, "qem", 0, filename)
435 ? 0 : -GetLastError());
436 #else
437 int fd;
438 const char *tmpdir;
439 tmpdir = getenv("TMPDIR");
440 if (!tmpdir)
441 tmpdir = "/tmp";
442 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
443 return -EOVERFLOW;
444 }
445 fd = mkstemp(filename);
446 if (fd < 0) {
447 return -errno;
448 }
449 if (close(fd) != 0) {
450 unlink(filename);
451 return -errno;
452 }
453 return 0;
454 #endif
455 }
456
457 /*
458 * Detect host devices. By convention, /dev/cdrom[N] is always
459 * recognized as a host CDROM.
460 */
461 static BlockDriver *find_hdev_driver(const char *filename)
462 {
463 int score_max = 0, score;
464 BlockDriver *drv = NULL, *d;
465
466 QLIST_FOREACH(d, &bdrv_drivers, list) {
467 if (d->bdrv_probe_device) {
468 score = d->bdrv_probe_device(filename);
469 if (score > score_max) {
470 score_max = score;
471 drv = d;
472 }
473 }
474 }
475
476 return drv;
477 }
478
479 BlockDriver *bdrv_find_protocol(const char *filename)
480 {
481 BlockDriver *drv1;
482 char protocol[128];
483 int len;
484 const char *p;
485
486 /* TODO Drivers without bdrv_file_open must be specified explicitly */
487
488 /*
489 * XXX(hch): we really should not let host device detection
490 * override an explicit protocol specification, but moving this
491 * later breaks access to device names with colons in them.
492 * Thanks to the brain-dead persistent naming schemes on udev-
493 * based Linux systems those actually are quite common.
494 */
495 drv1 = find_hdev_driver(filename);
496 if (drv1) {
497 return drv1;
498 }
499
500 if (!path_has_protocol(filename)) {
501 return bdrv_find_format("file");
502 }
503 p = strchr(filename, ':');
504 assert(p != NULL);
505 len = p - filename;
506 if (len > sizeof(protocol) - 1)
507 len = sizeof(protocol) - 1;
508 memcpy(protocol, filename, len);
509 protocol[len] = '\0';
510 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
511 if (drv1->protocol_name &&
512 !strcmp(drv1->protocol_name, protocol)) {
513 return drv1;
514 }
515 }
516 return NULL;
517 }
518
519 static int find_image_format(const char *filename, BlockDriver **pdrv)
520 {
521 int ret, score, score_max;
522 BlockDriver *drv1, *drv;
523 uint8_t buf[2048];
524 BlockDriverState *bs;
525
526 ret = bdrv_file_open(&bs, filename, 0);
527 if (ret < 0) {
528 *pdrv = NULL;
529 return ret;
530 }
531
532 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
533 if (bs->sg || !bdrv_is_inserted(bs)) {
534 bdrv_delete(bs);
535 drv = bdrv_find_format("raw");
536 if (!drv) {
537 ret = -ENOENT;
538 }
539 *pdrv = drv;
540 return ret;
541 }
542
543 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
544 bdrv_delete(bs);
545 if (ret < 0) {
546 *pdrv = NULL;
547 return ret;
548 }
549
550 score_max = 0;
551 drv = NULL;
552 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
553 if (drv1->bdrv_probe) {
554 score = drv1->bdrv_probe(buf, ret, filename);
555 if (score > score_max) {
556 score_max = score;
557 drv = drv1;
558 }
559 }
560 }
561 if (!drv) {
562 ret = -ENOENT;
563 }
564 *pdrv = drv;
565 return ret;
566 }
567
568 /**
569 * Set the current 'total_sectors' value
570 */
571 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
572 {
573 BlockDriver *drv = bs->drv;
574
575 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
576 if (bs->sg)
577 return 0;
578
579 /* query actual device if possible, otherwise just trust the hint */
580 if (drv->bdrv_getlength) {
581 int64_t length = drv->bdrv_getlength(bs);
582 if (length < 0) {
583 return length;
584 }
585 hint = length >> BDRV_SECTOR_BITS;
586 }
587
588 bs->total_sectors = hint;
589 return 0;
590 }
591
592 /**
593 * Set open flags for a given cache mode
594 *
595 * Return 0 on success, -1 if the cache mode was invalid.
596 */
597 int bdrv_parse_cache_flags(const char *mode, int *flags)
598 {
599 *flags &= ~BDRV_O_CACHE_MASK;
600
601 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
602 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
603 } else if (!strcmp(mode, "directsync")) {
604 *flags |= BDRV_O_NOCACHE;
605 } else if (!strcmp(mode, "writeback")) {
606 *flags |= BDRV_O_CACHE_WB;
607 } else if (!strcmp(mode, "unsafe")) {
608 *flags |= BDRV_O_CACHE_WB;
609 *flags |= BDRV_O_NO_FLUSH;
610 } else if (!strcmp(mode, "writethrough")) {
611 /* this is the default */
612 } else {
613 return -1;
614 }
615
616 return 0;
617 }
618
619 /**
620 * The copy-on-read flag is actually a reference count so multiple users may
621 * use the feature without worrying about clobbering its previous state.
622 * Copy-on-read stays enabled until all users have called to disable it.
623 */
624 void bdrv_enable_copy_on_read(BlockDriverState *bs)
625 {
626 bs->copy_on_read++;
627 }
628
629 void bdrv_disable_copy_on_read(BlockDriverState *bs)
630 {
631 assert(bs->copy_on_read > 0);
632 bs->copy_on_read--;
633 }
634
635 /*
636 * Common part for opening disk images and files
637 */
638 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
639 int flags, BlockDriver *drv)
640 {
641 int ret, open_flags;
642
643 assert(drv != NULL);
644 assert(bs->file == NULL);
645
646 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
647
648 bs->open_flags = flags;
649 bs->buffer_alignment = 512;
650
651 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
652 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
653 bdrv_enable_copy_on_read(bs);
654 }
655
656 pstrcpy(bs->filename, sizeof(bs->filename), filename);
657
658 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
659 return -ENOTSUP;
660 }
661
662 bs->drv = drv;
663 bs->opaque = g_malloc0(drv->instance_size);
664
665 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
666 open_flags = flags | BDRV_O_CACHE_WB;
667
668 /*
669 * Clear flags that are internal to the block layer before opening the
670 * image.
671 */
672 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
673
674 /*
675 * Snapshots should be writable.
676 */
677 if (bs->is_temporary) {
678 open_flags |= BDRV_O_RDWR;
679 }
680
681 bs->read_only = !(open_flags & BDRV_O_RDWR);
682
683 /* Open the image, either directly or using a protocol */
684 if (drv->bdrv_file_open) {
685 ret = drv->bdrv_file_open(bs, filename, open_flags);
686 } else {
687 ret = bdrv_file_open(&bs->file, filename, open_flags);
688 if (ret >= 0) {
689 ret = drv->bdrv_open(bs, open_flags);
690 }
691 }
692
693 if (ret < 0) {
694 goto free_and_fail;
695 }
696
697 ret = refresh_total_sectors(bs, bs->total_sectors);
698 if (ret < 0) {
699 goto free_and_fail;
700 }
701
702 #ifndef _WIN32
703 if (bs->is_temporary) {
704 unlink(filename);
705 }
706 #endif
707 return 0;
708
709 free_and_fail:
710 if (bs->file) {
711 bdrv_delete(bs->file);
712 bs->file = NULL;
713 }
714 g_free(bs->opaque);
715 bs->opaque = NULL;
716 bs->drv = NULL;
717 return ret;
718 }
719
720 /*
721 * Opens a file using a protocol (file, host_device, nbd, ...)
722 */
723 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
724 {
725 BlockDriverState *bs;
726 BlockDriver *drv;
727 int ret;
728
729 drv = bdrv_find_protocol(filename);
730 if (!drv) {
731 return -ENOENT;
732 }
733
734 bs = bdrv_new("");
735 ret = bdrv_open_common(bs, filename, flags, drv);
736 if (ret < 0) {
737 bdrv_delete(bs);
738 return ret;
739 }
740 bs->growable = 1;
741 *pbs = bs;
742 return 0;
743 }
744
745 /*
746 * Opens a disk image (raw, qcow2, vmdk, ...)
747 */
748 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
749 BlockDriver *drv)
750 {
751 int ret;
752 char tmp_filename[PATH_MAX];
753
754 if (flags & BDRV_O_SNAPSHOT) {
755 BlockDriverState *bs1;
756 int64_t total_size;
757 int is_protocol = 0;
758 BlockDriver *bdrv_qcow2;
759 QEMUOptionParameter *options;
760 char backing_filename[PATH_MAX];
761
762 /* if snapshot, we create a temporary backing file and open it
763 instead of opening 'filename' directly */
764
765 /* if there is a backing file, use it */
766 bs1 = bdrv_new("");
767 ret = bdrv_open(bs1, filename, 0, drv);
768 if (ret < 0) {
769 bdrv_delete(bs1);
770 return ret;
771 }
772 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
773
774 if (bs1->drv && bs1->drv->protocol_name)
775 is_protocol = 1;
776
777 bdrv_delete(bs1);
778
779 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
780 if (ret < 0) {
781 return ret;
782 }
783
784 /* Real path is meaningless for protocols */
785 if (is_protocol)
786 snprintf(backing_filename, sizeof(backing_filename),
787 "%s", filename);
788 else if (!realpath(filename, backing_filename))
789 return -errno;
790
791 bdrv_qcow2 = bdrv_find_format("qcow2");
792 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
793
794 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
795 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
796 if (drv) {
797 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
798 drv->format_name);
799 }
800
801 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
802 free_option_parameters(options);
803 if (ret < 0) {
804 return ret;
805 }
806
807 filename = tmp_filename;
808 drv = bdrv_qcow2;
809 bs->is_temporary = 1;
810 }
811
812 /* Find the right image format driver */
813 if (!drv) {
814 ret = find_image_format(filename, &drv);
815 }
816
817 if (!drv) {
818 goto unlink_and_fail;
819 }
820
821 if (flags & BDRV_O_RDWR) {
822 flags |= BDRV_O_ALLOW_RDWR;
823 }
824
825 /* Open the image */
826 ret = bdrv_open_common(bs, filename, flags, drv);
827 if (ret < 0) {
828 goto unlink_and_fail;
829 }
830
831 /* If there is a backing file, use it */
832 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
833 char backing_filename[PATH_MAX];
834 int back_flags;
835 BlockDriver *back_drv = NULL;
836
837 bs->backing_hd = bdrv_new("");
838 bdrv_get_full_backing_filename(bs, backing_filename,
839 sizeof(backing_filename));
840
841 if (bs->backing_format[0] != '\0') {
842 back_drv = bdrv_find_format(bs->backing_format);
843 }
844
845 /* backing files always opened read-only */
846 back_flags =
847 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
848
849 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
850 if (ret < 0) {
851 bdrv_close(bs);
852 return ret;
853 }
854 }
855
856 if (!bdrv_key_required(bs)) {
857 bdrv_dev_change_media_cb(bs, true);
858 }
859
860 /* throttling disk I/O limits */
861 if (bs->io_limits_enabled) {
862 bdrv_io_limits_enable(bs);
863 }
864
865 return 0;
866
867 unlink_and_fail:
868 if (bs->is_temporary) {
869 unlink(filename);
870 }
871 return ret;
872 }
873
874 typedef struct BlockReopenQueueEntry {
875 bool prepared;
876 BDRVReopenState state;
877 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
878 } BlockReopenQueueEntry;
879
880 /*
881 * Adds a BlockDriverState to a simple queue for an atomic, transactional
882 * reopen of multiple devices.
883 *
884 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
885 * already performed, or alternatively may be NULL a new BlockReopenQueue will
886 * be created and initialized. This newly created BlockReopenQueue should be
887 * passed back in for subsequent calls that are intended to be of the same
888 * atomic 'set'.
889 *
890 * bs is the BlockDriverState to add to the reopen queue.
891 *
892 * flags contains the open flags for the associated bs
893 *
894 * returns a pointer to bs_queue, which is either the newly allocated
895 * bs_queue, or the existing bs_queue being used.
896 *
897 */
898 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
899 BlockDriverState *bs, int flags)
900 {
901 assert(bs != NULL);
902
903 BlockReopenQueueEntry *bs_entry;
904 if (bs_queue == NULL) {
905 bs_queue = g_new0(BlockReopenQueue, 1);
906 QSIMPLEQ_INIT(bs_queue);
907 }
908
909 if (bs->file) {
910 bdrv_reopen_queue(bs_queue, bs->file, flags);
911 }
912
913 bs_entry = g_new0(BlockReopenQueueEntry, 1);
914 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
915
916 bs_entry->state.bs = bs;
917 bs_entry->state.flags = flags;
918
919 return bs_queue;
920 }
921
922 /*
923 * Reopen multiple BlockDriverStates atomically & transactionally.
924 *
925 * The queue passed in (bs_queue) must have been built up previous
926 * via bdrv_reopen_queue().
927 *
928 * Reopens all BDS specified in the queue, with the appropriate
929 * flags. All devices are prepared for reopen, and failure of any
930 * device will cause all device changes to be abandonded, and intermediate
931 * data cleaned up.
932 *
933 * If all devices prepare successfully, then the changes are committed
934 * to all devices.
935 *
936 */
937 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
938 {
939 int ret = -1;
940 BlockReopenQueueEntry *bs_entry, *next;
941 Error *local_err = NULL;
942
943 assert(bs_queue != NULL);
944
945 bdrv_drain_all();
946
947 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
948 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
949 error_propagate(errp, local_err);
950 goto cleanup;
951 }
952 bs_entry->prepared = true;
953 }
954
955 /* If we reach this point, we have success and just need to apply the
956 * changes
957 */
958 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
959 bdrv_reopen_commit(&bs_entry->state);
960 }
961
962 ret = 0;
963
964 cleanup:
965 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
966 if (ret && bs_entry->prepared) {
967 bdrv_reopen_abort(&bs_entry->state);
968 }
969 g_free(bs_entry);
970 }
971 g_free(bs_queue);
972 return ret;
973 }
974
975
976 /* Reopen a single BlockDriverState with the specified flags. */
977 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
978 {
979 int ret = -1;
980 Error *local_err = NULL;
981 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
982
983 ret = bdrv_reopen_multiple(queue, &local_err);
984 if (local_err != NULL) {
985 error_propagate(errp, local_err);
986 }
987 return ret;
988 }
989
990
991 /*
992 * Prepares a BlockDriverState for reopen. All changes are staged in the
993 * 'opaque' field of the BDRVReopenState, which is used and allocated by
994 * the block driver layer .bdrv_reopen_prepare()
995 *
996 * bs is the BlockDriverState to reopen
997 * flags are the new open flags
998 * queue is the reopen queue
999 *
1000 * Returns 0 on success, non-zero on error. On error errp will be set
1001 * as well.
1002 *
1003 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1004 * It is the responsibility of the caller to then call the abort() or
1005 * commit() for any other BDS that have been left in a prepare() state
1006 *
1007 */
1008 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1009 Error **errp)
1010 {
1011 int ret = -1;
1012 Error *local_err = NULL;
1013 BlockDriver *drv;
1014
1015 assert(reopen_state != NULL);
1016 assert(reopen_state->bs->drv != NULL);
1017 drv = reopen_state->bs->drv;
1018
1019 /* if we are to stay read-only, do not allow permission change
1020 * to r/w */
1021 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1022 reopen_state->flags & BDRV_O_RDWR) {
1023 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1024 reopen_state->bs->device_name);
1025 goto error;
1026 }
1027
1028
1029 ret = bdrv_flush(reopen_state->bs);
1030 if (ret) {
1031 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1032 strerror(-ret));
1033 goto error;
1034 }
1035
1036 if (drv->bdrv_reopen_prepare) {
1037 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1038 if (ret) {
1039 if (local_err != NULL) {
1040 error_propagate(errp, local_err);
1041 } else {
1042 error_set(errp, QERR_OPEN_FILE_FAILED,
1043 reopen_state->bs->filename);
1044 }
1045 goto error;
1046 }
1047 } else {
1048 /* It is currently mandatory to have a bdrv_reopen_prepare()
1049 * handler for each supported drv. */
1050 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1051 drv->format_name, reopen_state->bs->device_name,
1052 "reopening of file");
1053 ret = -1;
1054 goto error;
1055 }
1056
1057 ret = 0;
1058
1059 error:
1060 return ret;
1061 }
1062
1063 /*
1064 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1065 * makes them final by swapping the staging BlockDriverState contents into
1066 * the active BlockDriverState contents.
1067 */
1068 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1069 {
1070 BlockDriver *drv;
1071
1072 assert(reopen_state != NULL);
1073 drv = reopen_state->bs->drv;
1074 assert(drv != NULL);
1075
1076 /* If there are any driver level actions to take */
1077 if (drv->bdrv_reopen_commit) {
1078 drv->bdrv_reopen_commit(reopen_state);
1079 }
1080
1081 /* set BDS specific flags now */
1082 reopen_state->bs->open_flags = reopen_state->flags;
1083 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1084 BDRV_O_CACHE_WB);
1085 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1086 }
1087
1088 /*
1089 * Abort the reopen, and delete and free the staged changes in
1090 * reopen_state
1091 */
1092 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1093 {
1094 BlockDriver *drv;
1095
1096 assert(reopen_state != NULL);
1097 drv = reopen_state->bs->drv;
1098 assert(drv != NULL);
1099
1100 if (drv->bdrv_reopen_abort) {
1101 drv->bdrv_reopen_abort(reopen_state);
1102 }
1103 }
1104
1105
1106 void bdrv_close(BlockDriverState *bs)
1107 {
1108 bdrv_flush(bs);
1109 if (bs->job) {
1110 block_job_cancel_sync(bs->job);
1111 }
1112 bdrv_drain_all();
1113 notifier_list_notify(&bs->close_notifiers, bs);
1114
1115 if (bs->drv) {
1116 if (bs == bs_snapshots) {
1117 bs_snapshots = NULL;
1118 }
1119 if (bs->backing_hd) {
1120 bdrv_delete(bs->backing_hd);
1121 bs->backing_hd = NULL;
1122 }
1123 bs->drv->bdrv_close(bs);
1124 g_free(bs->opaque);
1125 #ifdef _WIN32
1126 if (bs->is_temporary) {
1127 unlink(bs->filename);
1128 }
1129 #endif
1130 bs->opaque = NULL;
1131 bs->drv = NULL;
1132 bs->copy_on_read = 0;
1133 bs->backing_file[0] = '\0';
1134 bs->backing_format[0] = '\0';
1135 bs->total_sectors = 0;
1136 bs->encrypted = 0;
1137 bs->valid_key = 0;
1138 bs->sg = 0;
1139 bs->growable = 0;
1140
1141 if (bs->file != NULL) {
1142 bdrv_delete(bs->file);
1143 bs->file = NULL;
1144 }
1145 }
1146
1147 bdrv_dev_change_media_cb(bs, false);
1148
1149 /*throttling disk I/O limits*/
1150 if (bs->io_limits_enabled) {
1151 bdrv_io_limits_disable(bs);
1152 }
1153 }
1154
1155 void bdrv_close_all(void)
1156 {
1157 BlockDriverState *bs;
1158
1159 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1160 bdrv_close(bs);
1161 }
1162 }
1163
1164 /*
1165 * Wait for pending requests to complete across all BlockDriverStates
1166 *
1167 * This function does not flush data to disk, use bdrv_flush_all() for that
1168 * after calling this function.
1169 *
1170 * Note that completion of an asynchronous I/O operation can trigger any
1171 * number of other I/O operations on other devices---for example a coroutine
1172 * can be arbitrarily complex and a constant flow of I/O can come until the
1173 * coroutine is complete. Because of this, it is not possible to have a
1174 * function to drain a single device's I/O queue.
1175 */
1176 void bdrv_drain_all(void)
1177 {
1178 BlockDriverState *bs;
1179 bool busy;
1180
1181 do {
1182 busy = qemu_aio_wait();
1183
1184 /* FIXME: We do not have timer support here, so this is effectively
1185 * a busy wait.
1186 */
1187 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1188 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1189 qemu_co_queue_restart_all(&bs->throttled_reqs);
1190 busy = true;
1191 }
1192 }
1193 } while (busy);
1194
1195 /* If requests are still pending there is a bug somewhere */
1196 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1197 assert(QLIST_EMPTY(&bs->tracked_requests));
1198 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1199 }
1200 }
1201
1202 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1203 Also, NULL terminate the device_name to prevent double remove */
1204 void bdrv_make_anon(BlockDriverState *bs)
1205 {
1206 if (bs->device_name[0] != '\0') {
1207 QTAILQ_REMOVE(&bdrv_states, bs, list);
1208 }
1209 bs->device_name[0] = '\0';
1210 }
1211
1212 static void bdrv_rebind(BlockDriverState *bs)
1213 {
1214 if (bs->drv && bs->drv->bdrv_rebind) {
1215 bs->drv->bdrv_rebind(bs);
1216 }
1217 }
1218
1219 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1220 BlockDriverState *bs_src)
1221 {
1222 /* move some fields that need to stay attached to the device */
1223 bs_dest->open_flags = bs_src->open_flags;
1224
1225 /* dev info */
1226 bs_dest->dev_ops = bs_src->dev_ops;
1227 bs_dest->dev_opaque = bs_src->dev_opaque;
1228 bs_dest->dev = bs_src->dev;
1229 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1230 bs_dest->copy_on_read = bs_src->copy_on_read;
1231
1232 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1233
1234 /* i/o timing parameters */
1235 bs_dest->slice_time = bs_src->slice_time;
1236 bs_dest->slice_start = bs_src->slice_start;
1237 bs_dest->slice_end = bs_src->slice_end;
1238 bs_dest->io_limits = bs_src->io_limits;
1239 bs_dest->io_base = bs_src->io_base;
1240 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1241 bs_dest->block_timer = bs_src->block_timer;
1242 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1243
1244 /* r/w error */
1245 bs_dest->on_read_error = bs_src->on_read_error;
1246 bs_dest->on_write_error = bs_src->on_write_error;
1247
1248 /* i/o status */
1249 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1250 bs_dest->iostatus = bs_src->iostatus;
1251
1252 /* dirty bitmap */
1253 bs_dest->dirty_count = bs_src->dirty_count;
1254 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1255
1256 /* job */
1257 bs_dest->in_use = bs_src->in_use;
1258 bs_dest->job = bs_src->job;
1259
1260 /* keep the same entry in bdrv_states */
1261 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1262 bs_src->device_name);
1263 bs_dest->list = bs_src->list;
1264 }
1265
1266 /*
1267 * Swap bs contents for two image chains while they are live,
1268 * while keeping required fields on the BlockDriverState that is
1269 * actually attached to a device.
1270 *
1271 * This will modify the BlockDriverState fields, and swap contents
1272 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1273 *
1274 * bs_new is required to be anonymous.
1275 *
1276 * This function does not create any image files.
1277 */
1278 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1279 {
1280 BlockDriverState tmp;
1281
1282 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1283 assert(bs_new->device_name[0] == '\0');
1284 assert(bs_new->dirty_bitmap == NULL);
1285 assert(bs_new->job == NULL);
1286 assert(bs_new->dev == NULL);
1287 assert(bs_new->in_use == 0);
1288 assert(bs_new->io_limits_enabled == false);
1289 assert(bs_new->block_timer == NULL);
1290
1291 tmp = *bs_new;
1292 *bs_new = *bs_old;
1293 *bs_old = tmp;
1294
1295 /* there are some fields that should not be swapped, move them back */
1296 bdrv_move_feature_fields(&tmp, bs_old);
1297 bdrv_move_feature_fields(bs_old, bs_new);
1298 bdrv_move_feature_fields(bs_new, &tmp);
1299
1300 /* bs_new shouldn't be in bdrv_states even after the swap! */
1301 assert(bs_new->device_name[0] == '\0');
1302
1303 /* Check a few fields that should remain attached to the device */
1304 assert(bs_new->dev == NULL);
1305 assert(bs_new->job == NULL);
1306 assert(bs_new->in_use == 0);
1307 assert(bs_new->io_limits_enabled == false);
1308 assert(bs_new->block_timer == NULL);
1309
1310 bdrv_rebind(bs_new);
1311 bdrv_rebind(bs_old);
1312 }
1313
1314 /*
1315 * Add new bs contents at the top of an image chain while the chain is
1316 * live, while keeping required fields on the top layer.
1317 *
1318 * This will modify the BlockDriverState fields, and swap contents
1319 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1320 *
1321 * bs_new is required to be anonymous.
1322 *
1323 * This function does not create any image files.
1324 */
1325 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1326 {
1327 bdrv_swap(bs_new, bs_top);
1328
1329 /* The contents of 'tmp' will become bs_top, as we are
1330 * swapping bs_new and bs_top contents. */
1331 bs_top->backing_hd = bs_new;
1332 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1333 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1334 bs_new->filename);
1335 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1336 bs_new->drv ? bs_new->drv->format_name : "");
1337 }
1338
1339 void bdrv_delete(BlockDriverState *bs)
1340 {
1341 assert(!bs->dev);
1342 assert(!bs->job);
1343 assert(!bs->in_use);
1344
1345 /* remove from list, if necessary */
1346 bdrv_make_anon(bs);
1347
1348 bdrv_close(bs);
1349
1350 assert(bs != bs_snapshots);
1351 g_free(bs);
1352 }
1353
1354 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1355 /* TODO change to DeviceState *dev when all users are qdevified */
1356 {
1357 if (bs->dev) {
1358 return -EBUSY;
1359 }
1360 bs->dev = dev;
1361 bdrv_iostatus_reset(bs);
1362 return 0;
1363 }
1364
1365 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1366 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1367 {
1368 if (bdrv_attach_dev(bs, dev) < 0) {
1369 abort();
1370 }
1371 }
1372
1373 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1374 /* TODO change to DeviceState *dev when all users are qdevified */
1375 {
1376 assert(bs->dev == dev);
1377 bs->dev = NULL;
1378 bs->dev_ops = NULL;
1379 bs->dev_opaque = NULL;
1380 bs->buffer_alignment = 512;
1381 }
1382
1383 /* TODO change to return DeviceState * when all users are qdevified */
1384 void *bdrv_get_attached_dev(BlockDriverState *bs)
1385 {
1386 return bs->dev;
1387 }
1388
1389 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1390 void *opaque)
1391 {
1392 bs->dev_ops = ops;
1393 bs->dev_opaque = opaque;
1394 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1395 bs_snapshots = NULL;
1396 }
1397 }
1398
1399 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1400 enum MonitorEvent ev,
1401 BlockErrorAction action, bool is_read)
1402 {
1403 QObject *data;
1404 const char *action_str;
1405
1406 switch (action) {
1407 case BDRV_ACTION_REPORT:
1408 action_str = "report";
1409 break;
1410 case BDRV_ACTION_IGNORE:
1411 action_str = "ignore";
1412 break;
1413 case BDRV_ACTION_STOP:
1414 action_str = "stop";
1415 break;
1416 default:
1417 abort();
1418 }
1419
1420 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1421 bdrv->device_name,
1422 action_str,
1423 is_read ? "read" : "write");
1424 monitor_protocol_event(ev, data);
1425
1426 qobject_decref(data);
1427 }
1428
1429 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1430 {
1431 QObject *data;
1432
1433 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1434 bdrv_get_device_name(bs), ejected);
1435 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1436
1437 qobject_decref(data);
1438 }
1439
1440 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1441 {
1442 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1443 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1444 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1445 if (tray_was_closed) {
1446 /* tray open */
1447 bdrv_emit_qmp_eject_event(bs, true);
1448 }
1449 if (load) {
1450 /* tray close */
1451 bdrv_emit_qmp_eject_event(bs, false);
1452 }
1453 }
1454 }
1455
1456 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1457 {
1458 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1459 }
1460
1461 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1462 {
1463 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1464 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1465 }
1466 }
1467
1468 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1469 {
1470 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1471 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1472 }
1473 return false;
1474 }
1475
1476 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1477 {
1478 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1479 bs->dev_ops->resize_cb(bs->dev_opaque);
1480 }
1481 }
1482
1483 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1484 {
1485 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1486 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1487 }
1488 return false;
1489 }
1490
1491 /*
1492 * Run consistency checks on an image
1493 *
1494 * Returns 0 if the check could be completed (it doesn't mean that the image is
1495 * free of errors) or -errno when an internal error occurred. The results of the
1496 * check are stored in res.
1497 */
1498 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1499 {
1500 if (bs->drv->bdrv_check == NULL) {
1501 return -ENOTSUP;
1502 }
1503
1504 memset(res, 0, sizeof(*res));
1505 return bs->drv->bdrv_check(bs, res, fix);
1506 }
1507
1508 #define COMMIT_BUF_SECTORS 2048
1509
1510 /* commit COW file into the raw image */
1511 int bdrv_commit(BlockDriverState *bs)
1512 {
1513 BlockDriver *drv = bs->drv;
1514 int64_t sector, total_sectors;
1515 int n, ro, open_flags;
1516 int ret = 0;
1517 uint8_t *buf;
1518 char filename[PATH_MAX];
1519
1520 if (!drv)
1521 return -ENOMEDIUM;
1522
1523 if (!bs->backing_hd) {
1524 return -ENOTSUP;
1525 }
1526
1527 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1528 return -EBUSY;
1529 }
1530
1531 ro = bs->backing_hd->read_only;
1532 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1533 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1534 open_flags = bs->backing_hd->open_flags;
1535
1536 if (ro) {
1537 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1538 return -EACCES;
1539 }
1540 }
1541
1542 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1543 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1544
1545 for (sector = 0; sector < total_sectors; sector += n) {
1546 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1547
1548 if (bdrv_read(bs, sector, buf, n) != 0) {
1549 ret = -EIO;
1550 goto ro_cleanup;
1551 }
1552
1553 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1554 ret = -EIO;
1555 goto ro_cleanup;
1556 }
1557 }
1558 }
1559
1560 if (drv->bdrv_make_empty) {
1561 ret = drv->bdrv_make_empty(bs);
1562 bdrv_flush(bs);
1563 }
1564
1565 /*
1566 * Make sure all data we wrote to the backing device is actually
1567 * stable on disk.
1568 */
1569 if (bs->backing_hd)
1570 bdrv_flush(bs->backing_hd);
1571
1572 ro_cleanup:
1573 g_free(buf);
1574
1575 if (ro) {
1576 /* ignoring error return here */
1577 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1578 }
1579
1580 return ret;
1581 }
1582
1583 int bdrv_commit_all(void)
1584 {
1585 BlockDriverState *bs;
1586
1587 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1588 int ret = bdrv_commit(bs);
1589 if (ret < 0) {
1590 return ret;
1591 }
1592 }
1593 return 0;
1594 }
1595
1596 struct BdrvTrackedRequest {
1597 BlockDriverState *bs;
1598 int64_t sector_num;
1599 int nb_sectors;
1600 bool is_write;
1601 QLIST_ENTRY(BdrvTrackedRequest) list;
1602 Coroutine *co; /* owner, used for deadlock detection */
1603 CoQueue wait_queue; /* coroutines blocked on this request */
1604 };
1605
1606 /**
1607 * Remove an active request from the tracked requests list
1608 *
1609 * This function should be called when a tracked request is completing.
1610 */
1611 static void tracked_request_end(BdrvTrackedRequest *req)
1612 {
1613 QLIST_REMOVE(req, list);
1614 qemu_co_queue_restart_all(&req->wait_queue);
1615 }
1616
1617 /**
1618 * Add an active request to the tracked requests list
1619 */
1620 static void tracked_request_begin(BdrvTrackedRequest *req,
1621 BlockDriverState *bs,
1622 int64_t sector_num,
1623 int nb_sectors, bool is_write)
1624 {
1625 *req = (BdrvTrackedRequest){
1626 .bs = bs,
1627 .sector_num = sector_num,
1628 .nb_sectors = nb_sectors,
1629 .is_write = is_write,
1630 .co = qemu_coroutine_self(),
1631 };
1632
1633 qemu_co_queue_init(&req->wait_queue);
1634
1635 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1636 }
1637
1638 /**
1639 * Round a region to cluster boundaries
1640 */
1641 static void round_to_clusters(BlockDriverState *bs,
1642 int64_t sector_num, int nb_sectors,
1643 int64_t *cluster_sector_num,
1644 int *cluster_nb_sectors)
1645 {
1646 BlockDriverInfo bdi;
1647
1648 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1649 *cluster_sector_num = sector_num;
1650 *cluster_nb_sectors = nb_sectors;
1651 } else {
1652 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1653 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1654 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1655 nb_sectors, c);
1656 }
1657 }
1658
1659 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1660 int64_t sector_num, int nb_sectors) {
1661 /* aaaa bbbb */
1662 if (sector_num >= req->sector_num + req->nb_sectors) {
1663 return false;
1664 }
1665 /* bbbb aaaa */
1666 if (req->sector_num >= sector_num + nb_sectors) {
1667 return false;
1668 }
1669 return true;
1670 }
1671
1672 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1673 int64_t sector_num, int nb_sectors)
1674 {
1675 BdrvTrackedRequest *req;
1676 int64_t cluster_sector_num;
1677 int cluster_nb_sectors;
1678 bool retry;
1679
1680 /* If we touch the same cluster it counts as an overlap. This guarantees
1681 * that allocating writes will be serialized and not race with each other
1682 * for the same cluster. For example, in copy-on-read it ensures that the
1683 * CoR read and write operations are atomic and guest writes cannot
1684 * interleave between them.
1685 */
1686 round_to_clusters(bs, sector_num, nb_sectors,
1687 &cluster_sector_num, &cluster_nb_sectors);
1688
1689 do {
1690 retry = false;
1691 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1692 if (tracked_request_overlaps(req, cluster_sector_num,
1693 cluster_nb_sectors)) {
1694 /* Hitting this means there was a reentrant request, for
1695 * example, a block driver issuing nested requests. This must
1696 * never happen since it means deadlock.
1697 */
1698 assert(qemu_coroutine_self() != req->co);
1699
1700 qemu_co_queue_wait(&req->wait_queue);
1701 retry = true;
1702 break;
1703 }
1704 }
1705 } while (retry);
1706 }
1707
1708 /*
1709 * Return values:
1710 * 0 - success
1711 * -EINVAL - backing format specified, but no file
1712 * -ENOSPC - can't update the backing file because no space is left in the
1713 * image file header
1714 * -ENOTSUP - format driver doesn't support changing the backing file
1715 */
1716 int bdrv_change_backing_file(BlockDriverState *bs,
1717 const char *backing_file, const char *backing_fmt)
1718 {
1719 BlockDriver *drv = bs->drv;
1720 int ret;
1721
1722 /* Backing file format doesn't make sense without a backing file */
1723 if (backing_fmt && !backing_file) {
1724 return -EINVAL;
1725 }
1726
1727 if (drv->bdrv_change_backing_file != NULL) {
1728 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1729 } else {
1730 ret = -ENOTSUP;
1731 }
1732
1733 if (ret == 0) {
1734 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1735 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1736 }
1737 return ret;
1738 }
1739
1740 /*
1741 * Finds the image layer in the chain that has 'bs' as its backing file.
1742 *
1743 * active is the current topmost image.
1744 *
1745 * Returns NULL if bs is not found in active's image chain,
1746 * or if active == bs.
1747 */
1748 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1749 BlockDriverState *bs)
1750 {
1751 BlockDriverState *overlay = NULL;
1752 BlockDriverState *intermediate;
1753
1754 assert(active != NULL);
1755 assert(bs != NULL);
1756
1757 /* if bs is the same as active, then by definition it has no overlay
1758 */
1759 if (active == bs) {
1760 return NULL;
1761 }
1762
1763 intermediate = active;
1764 while (intermediate->backing_hd) {
1765 if (intermediate->backing_hd == bs) {
1766 overlay = intermediate;
1767 break;
1768 }
1769 intermediate = intermediate->backing_hd;
1770 }
1771
1772 return overlay;
1773 }
1774
1775 typedef struct BlkIntermediateStates {
1776 BlockDriverState *bs;
1777 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1778 } BlkIntermediateStates;
1779
1780
1781 /*
1782 * Drops images above 'base' up to and including 'top', and sets the image
1783 * above 'top' to have base as its backing file.
1784 *
1785 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1786 * information in 'bs' can be properly updated.
1787 *
1788 * E.g., this will convert the following chain:
1789 * bottom <- base <- intermediate <- top <- active
1790 *
1791 * to
1792 *
1793 * bottom <- base <- active
1794 *
1795 * It is allowed for bottom==base, in which case it converts:
1796 *
1797 * base <- intermediate <- top <- active
1798 *
1799 * to
1800 *
1801 * base <- active
1802 *
1803 * Error conditions:
1804 * if active == top, that is considered an error
1805 *
1806 */
1807 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1808 BlockDriverState *base)
1809 {
1810 BlockDriverState *intermediate;
1811 BlockDriverState *base_bs = NULL;
1812 BlockDriverState *new_top_bs = NULL;
1813 BlkIntermediateStates *intermediate_state, *next;
1814 int ret = -EIO;
1815
1816 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1817 QSIMPLEQ_INIT(&states_to_delete);
1818
1819 if (!top->drv || !base->drv) {
1820 goto exit;
1821 }
1822
1823 new_top_bs = bdrv_find_overlay(active, top);
1824
1825 if (new_top_bs == NULL) {
1826 /* we could not find the image above 'top', this is an error */
1827 goto exit;
1828 }
1829
1830 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1831 * to do, no intermediate images */
1832 if (new_top_bs->backing_hd == base) {
1833 ret = 0;
1834 goto exit;
1835 }
1836
1837 intermediate = top;
1838
1839 /* now we will go down through the list, and add each BDS we find
1840 * into our deletion queue, until we hit the 'base'
1841 */
1842 while (intermediate) {
1843 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1844 intermediate_state->bs = intermediate;
1845 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1846
1847 if (intermediate->backing_hd == base) {
1848 base_bs = intermediate->backing_hd;
1849 break;
1850 }
1851 intermediate = intermediate->backing_hd;
1852 }
1853 if (base_bs == NULL) {
1854 /* something went wrong, we did not end at the base. safely
1855 * unravel everything, and exit with error */
1856 goto exit;
1857 }
1858
1859 /* success - we can delete the intermediate states, and link top->base */
1860 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1861 base_bs->drv ? base_bs->drv->format_name : "");
1862 if (ret) {
1863 goto exit;
1864 }
1865 new_top_bs->backing_hd = base_bs;
1866
1867
1868 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1869 /* so that bdrv_close() does not recursively close the chain */
1870 intermediate_state->bs->backing_hd = NULL;
1871 bdrv_delete(intermediate_state->bs);
1872 }
1873 ret = 0;
1874
1875 exit:
1876 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1877 g_free(intermediate_state);
1878 }
1879 return ret;
1880 }
1881
1882
1883 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1884 size_t size)
1885 {
1886 int64_t len;
1887
1888 if (!bdrv_is_inserted(bs))
1889 return -ENOMEDIUM;
1890
1891 if (bs->growable)
1892 return 0;
1893
1894 len = bdrv_getlength(bs);
1895
1896 if (offset < 0)
1897 return -EIO;
1898
1899 if ((offset > len) || (len - offset < size))
1900 return -EIO;
1901
1902 return 0;
1903 }
1904
1905 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1906 int nb_sectors)
1907 {
1908 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1909 nb_sectors * BDRV_SECTOR_SIZE);
1910 }
1911
1912 typedef struct RwCo {
1913 BlockDriverState *bs;
1914 int64_t sector_num;
1915 int nb_sectors;
1916 QEMUIOVector *qiov;
1917 bool is_write;
1918 int ret;
1919 } RwCo;
1920
1921 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1922 {
1923 RwCo *rwco = opaque;
1924
1925 if (!rwco->is_write) {
1926 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1927 rwco->nb_sectors, rwco->qiov, 0);
1928 } else {
1929 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1930 rwco->nb_sectors, rwco->qiov, 0);
1931 }
1932 }
1933
1934 /*
1935 * Process a synchronous request using coroutines
1936 */
1937 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1938 int nb_sectors, bool is_write)
1939 {
1940 QEMUIOVector qiov;
1941 struct iovec iov = {
1942 .iov_base = (void *)buf,
1943 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1944 };
1945 Coroutine *co;
1946 RwCo rwco = {
1947 .bs = bs,
1948 .sector_num = sector_num,
1949 .nb_sectors = nb_sectors,
1950 .qiov = &qiov,
1951 .is_write = is_write,
1952 .ret = NOT_DONE,
1953 };
1954
1955 qemu_iovec_init_external(&qiov, &iov, 1);
1956
1957 /**
1958 * In sync call context, when the vcpu is blocked, this throttling timer
1959 * will not fire; so the I/O throttling function has to be disabled here
1960 * if it has been enabled.
1961 */
1962 if (bs->io_limits_enabled) {
1963 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1964 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1965 bdrv_io_limits_disable(bs);
1966 }
1967
1968 if (qemu_in_coroutine()) {
1969 /* Fast-path if already in coroutine context */
1970 bdrv_rw_co_entry(&rwco);
1971 } else {
1972 co = qemu_coroutine_create(bdrv_rw_co_entry);
1973 qemu_coroutine_enter(co, &rwco);
1974 while (rwco.ret == NOT_DONE) {
1975 qemu_aio_wait();
1976 }
1977 }
1978 return rwco.ret;
1979 }
1980
1981 /* return < 0 if error. See bdrv_write() for the return codes */
1982 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1983 uint8_t *buf, int nb_sectors)
1984 {
1985 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1986 }
1987
1988 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1989 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1990 uint8_t *buf, int nb_sectors)
1991 {
1992 bool enabled;
1993 int ret;
1994
1995 enabled = bs->io_limits_enabled;
1996 bs->io_limits_enabled = false;
1997 ret = bdrv_read(bs, 0, buf, 1);
1998 bs->io_limits_enabled = enabled;
1999 return ret;
2000 }
2001
2002 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
2003
2004 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
2005 int nb_sectors, int dirty)
2006 {
2007 int64_t start, end;
2008 unsigned long val, idx, bit;
2009
2010 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2011 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2012
2013 for (; start <= end; start++) {
2014 idx = start / BITS_PER_LONG;
2015 bit = start % BITS_PER_LONG;
2016 val = bs->dirty_bitmap[idx];
2017 if (dirty) {
2018 if (!(val & (1UL << bit))) {
2019 bs->dirty_count++;
2020 val |= 1UL << bit;
2021 }
2022 } else {
2023 if (val & (1UL << bit)) {
2024 bs->dirty_count--;
2025 val &= ~(1UL << bit);
2026 }
2027 }
2028 bs->dirty_bitmap[idx] = val;
2029 }
2030 }
2031
2032 /* Return < 0 if error. Important errors are:
2033 -EIO generic I/O error (may happen for all errors)
2034 -ENOMEDIUM No media inserted.
2035 -EINVAL Invalid sector number or nb_sectors
2036 -EACCES Trying to write a read-only device
2037 */
2038 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2039 const uint8_t *buf, int nb_sectors)
2040 {
2041 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2042 }
2043
2044 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2045 void *buf, int count1)
2046 {
2047 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2048 int len, nb_sectors, count;
2049 int64_t sector_num;
2050 int ret;
2051
2052 count = count1;
2053 /* first read to align to sector start */
2054 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2055 if (len > count)
2056 len = count;
2057 sector_num = offset >> BDRV_SECTOR_BITS;
2058 if (len > 0) {
2059 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2060 return ret;
2061 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2062 count -= len;
2063 if (count == 0)
2064 return count1;
2065 sector_num++;
2066 buf += len;
2067 }
2068
2069 /* read the sectors "in place" */
2070 nb_sectors = count >> BDRV_SECTOR_BITS;
2071 if (nb_sectors > 0) {
2072 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2073 return ret;
2074 sector_num += nb_sectors;
2075 len = nb_sectors << BDRV_SECTOR_BITS;
2076 buf += len;
2077 count -= len;
2078 }
2079
2080 /* add data from the last sector */
2081 if (count > 0) {
2082 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2083 return ret;
2084 memcpy(buf, tmp_buf, count);
2085 }
2086 return count1;
2087 }
2088
2089 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2090 const void *buf, int count1)
2091 {
2092 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2093 int len, nb_sectors, count;
2094 int64_t sector_num;
2095 int ret;
2096
2097 count = count1;
2098 /* first write to align to sector start */
2099 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2100 if (len > count)
2101 len = count;
2102 sector_num = offset >> BDRV_SECTOR_BITS;
2103 if (len > 0) {
2104 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2105 return ret;
2106 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2107 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2108 return ret;
2109 count -= len;
2110 if (count == 0)
2111 return count1;
2112 sector_num++;
2113 buf += len;
2114 }
2115
2116 /* write the sectors "in place" */
2117 nb_sectors = count >> BDRV_SECTOR_BITS;
2118 if (nb_sectors > 0) {
2119 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2120 return ret;
2121 sector_num += nb_sectors;
2122 len = nb_sectors << BDRV_SECTOR_BITS;
2123 buf += len;
2124 count -= len;
2125 }
2126
2127 /* add data from the last sector */
2128 if (count > 0) {
2129 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2130 return ret;
2131 memcpy(tmp_buf, buf, count);
2132 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2133 return ret;
2134 }
2135 return count1;
2136 }
2137
2138 /*
2139 * Writes to the file and ensures that no writes are reordered across this
2140 * request (acts as a barrier)
2141 *
2142 * Returns 0 on success, -errno in error cases.
2143 */
2144 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2145 const void *buf, int count)
2146 {
2147 int ret;
2148
2149 ret = bdrv_pwrite(bs, offset, buf, count);
2150 if (ret < 0) {
2151 return ret;
2152 }
2153
2154 /* No flush needed for cache modes that already do it */
2155 if (bs->enable_write_cache) {
2156 bdrv_flush(bs);
2157 }
2158
2159 return 0;
2160 }
2161
2162 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2163 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2164 {
2165 /* Perform I/O through a temporary buffer so that users who scribble over
2166 * their read buffer while the operation is in progress do not end up
2167 * modifying the image file. This is critical for zero-copy guest I/O
2168 * where anything might happen inside guest memory.
2169 */
2170 void *bounce_buffer;
2171
2172 BlockDriver *drv = bs->drv;
2173 struct iovec iov;
2174 QEMUIOVector bounce_qiov;
2175 int64_t cluster_sector_num;
2176 int cluster_nb_sectors;
2177 size_t skip_bytes;
2178 int ret;
2179
2180 /* Cover entire cluster so no additional backing file I/O is required when
2181 * allocating cluster in the image file.
2182 */
2183 round_to_clusters(bs, sector_num, nb_sectors,
2184 &cluster_sector_num, &cluster_nb_sectors);
2185
2186 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2187 cluster_sector_num, cluster_nb_sectors);
2188
2189 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2190 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2191 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2192
2193 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2194 &bounce_qiov);
2195 if (ret < 0) {
2196 goto err;
2197 }
2198
2199 if (drv->bdrv_co_write_zeroes &&
2200 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2201 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2202 cluster_nb_sectors);
2203 } else {
2204 /* This does not change the data on the disk, it is not necessary
2205 * to flush even in cache=writethrough mode.
2206 */
2207 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2208 &bounce_qiov);
2209 }
2210
2211 if (ret < 0) {
2212 /* It might be okay to ignore write errors for guest requests. If this
2213 * is a deliberate copy-on-read then we don't want to ignore the error.
2214 * Simply report it in all cases.
2215 */
2216 goto err;
2217 }
2218
2219 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2220 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2221 nb_sectors * BDRV_SECTOR_SIZE);
2222
2223 err:
2224 qemu_vfree(bounce_buffer);
2225 return ret;
2226 }
2227
2228 /*
2229 * Handle a read request in coroutine context
2230 */
2231 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2232 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2233 BdrvRequestFlags flags)
2234 {
2235 BlockDriver *drv = bs->drv;
2236 BdrvTrackedRequest req;
2237 int ret;
2238
2239 if (!drv) {
2240 return -ENOMEDIUM;
2241 }
2242 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2243 return -EIO;
2244 }
2245
2246 /* throttling disk read I/O */
2247 if (bs->io_limits_enabled) {
2248 bdrv_io_limits_intercept(bs, false, nb_sectors);
2249 }
2250
2251 if (bs->copy_on_read) {
2252 flags |= BDRV_REQ_COPY_ON_READ;
2253 }
2254 if (flags & BDRV_REQ_COPY_ON_READ) {
2255 bs->copy_on_read_in_flight++;
2256 }
2257
2258 if (bs->copy_on_read_in_flight) {
2259 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2260 }
2261
2262 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2263
2264 if (flags & BDRV_REQ_COPY_ON_READ) {
2265 int pnum;
2266
2267 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2268 if (ret < 0) {
2269 goto out;
2270 }
2271
2272 if (!ret || pnum != nb_sectors) {
2273 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2274 goto out;
2275 }
2276 }
2277
2278 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2279
2280 out:
2281 tracked_request_end(&req);
2282
2283 if (flags & BDRV_REQ_COPY_ON_READ) {
2284 bs->copy_on_read_in_flight--;
2285 }
2286
2287 return ret;
2288 }
2289
2290 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2291 int nb_sectors, QEMUIOVector *qiov)
2292 {
2293 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2294
2295 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2296 }
2297
2298 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2299 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2300 {
2301 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2302
2303 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2304 BDRV_REQ_COPY_ON_READ);
2305 }
2306
2307 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2308 int64_t sector_num, int nb_sectors)
2309 {
2310 BlockDriver *drv = bs->drv;
2311 QEMUIOVector qiov;
2312 struct iovec iov;
2313 int ret;
2314
2315 /* TODO Emulate only part of misaligned requests instead of letting block
2316 * drivers return -ENOTSUP and emulate everything */
2317
2318 /* First try the efficient write zeroes operation */
2319 if (drv->bdrv_co_write_zeroes) {
2320 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2321 if (ret != -ENOTSUP) {
2322 return ret;
2323 }
2324 }
2325
2326 /* Fall back to bounce buffer if write zeroes is unsupported */
2327 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2328 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2329 memset(iov.iov_base, 0, iov.iov_len);
2330 qemu_iovec_init_external(&qiov, &iov, 1);
2331
2332 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2333
2334 qemu_vfree(iov.iov_base);
2335 return ret;
2336 }
2337
2338 /*
2339 * Handle a write request in coroutine context
2340 */
2341 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2342 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2343 BdrvRequestFlags flags)
2344 {
2345 BlockDriver *drv = bs->drv;
2346 BdrvTrackedRequest req;
2347 int ret;
2348
2349 if (!bs->drv) {
2350 return -ENOMEDIUM;
2351 }
2352 if (bs->read_only) {
2353 return -EACCES;
2354 }
2355 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2356 return -EIO;
2357 }
2358
2359 /* throttling disk write I/O */
2360 if (bs->io_limits_enabled) {
2361 bdrv_io_limits_intercept(bs, true, nb_sectors);
2362 }
2363
2364 if (bs->copy_on_read_in_flight) {
2365 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2366 }
2367
2368 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2369
2370 if (flags & BDRV_REQ_ZERO_WRITE) {
2371 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2372 } else {
2373 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2374 }
2375
2376 if (ret == 0 && !bs->enable_write_cache) {
2377 ret = bdrv_co_flush(bs);
2378 }
2379
2380 if (bs->dirty_bitmap) {
2381 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2382 }
2383
2384 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2385 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2386 }
2387
2388 tracked_request_end(&req);
2389
2390 return ret;
2391 }
2392
2393 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2394 int nb_sectors, QEMUIOVector *qiov)
2395 {
2396 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2397
2398 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2399 }
2400
2401 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2402 int64_t sector_num, int nb_sectors)
2403 {
2404 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2405
2406 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2407 BDRV_REQ_ZERO_WRITE);
2408 }
2409
2410 /**
2411 * Truncate file to 'offset' bytes (needed only for file protocols)
2412 */
2413 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2414 {
2415 BlockDriver *drv = bs->drv;
2416 int ret;
2417 if (!drv)
2418 return -ENOMEDIUM;
2419 if (!drv->bdrv_truncate)
2420 return -ENOTSUP;
2421 if (bs->read_only)
2422 return -EACCES;
2423 if (bdrv_in_use(bs))
2424 return -EBUSY;
2425 ret = drv->bdrv_truncate(bs, offset);
2426 if (ret == 0) {
2427 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2428 bdrv_dev_resize_cb(bs);
2429 }
2430 return ret;
2431 }
2432
2433 /**
2434 * Length of a allocated file in bytes. Sparse files are counted by actual
2435 * allocated space. Return < 0 if error or unknown.
2436 */
2437 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2438 {
2439 BlockDriver *drv = bs->drv;
2440 if (!drv) {
2441 return -ENOMEDIUM;
2442 }
2443 if (drv->bdrv_get_allocated_file_size) {
2444 return drv->bdrv_get_allocated_file_size(bs);
2445 }
2446 if (bs->file) {
2447 return bdrv_get_allocated_file_size(bs->file);
2448 }
2449 return -ENOTSUP;
2450 }
2451
2452 /**
2453 * Length of a file in bytes. Return < 0 if error or unknown.
2454 */
2455 int64_t bdrv_getlength(BlockDriverState *bs)
2456 {
2457 BlockDriver *drv = bs->drv;
2458 if (!drv)
2459 return -ENOMEDIUM;
2460
2461 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2462 if (drv->bdrv_getlength) {
2463 return drv->bdrv_getlength(bs);
2464 }
2465 }
2466 return bs->total_sectors * BDRV_SECTOR_SIZE;
2467 }
2468
2469 /* return 0 as number of sectors if no device present or error */
2470 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2471 {
2472 int64_t length;
2473 length = bdrv_getlength(bs);
2474 if (length < 0)
2475 length = 0;
2476 else
2477 length = length >> BDRV_SECTOR_BITS;
2478 *nb_sectors_ptr = length;
2479 }
2480
2481 /* throttling disk io limits */
2482 void bdrv_set_io_limits(BlockDriverState *bs,
2483 BlockIOLimit *io_limits)
2484 {
2485 bs->io_limits = *io_limits;
2486 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2487 }
2488
2489 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2490 BlockdevOnError on_write_error)
2491 {
2492 bs->on_read_error = on_read_error;
2493 bs->on_write_error = on_write_error;
2494 }
2495
2496 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2497 {
2498 return is_read ? bs->on_read_error : bs->on_write_error;
2499 }
2500
2501 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2502 {
2503 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2504
2505 switch (on_err) {
2506 case BLOCKDEV_ON_ERROR_ENOSPC:
2507 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2508 case BLOCKDEV_ON_ERROR_STOP:
2509 return BDRV_ACTION_STOP;
2510 case BLOCKDEV_ON_ERROR_REPORT:
2511 return BDRV_ACTION_REPORT;
2512 case BLOCKDEV_ON_ERROR_IGNORE:
2513 return BDRV_ACTION_IGNORE;
2514 default:
2515 abort();
2516 }
2517 }
2518
2519 /* This is done by device models because, while the block layer knows
2520 * about the error, it does not know whether an operation comes from
2521 * the device or the block layer (from a job, for example).
2522 */
2523 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2524 bool is_read, int error)
2525 {
2526 assert(error >= 0);
2527 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2528 if (action == BDRV_ACTION_STOP) {
2529 vm_stop(RUN_STATE_IO_ERROR);
2530 bdrv_iostatus_set_err(bs, error);
2531 }
2532 }
2533
2534 int bdrv_is_read_only(BlockDriverState *bs)
2535 {
2536 return bs->read_only;
2537 }
2538
2539 int bdrv_is_sg(BlockDriverState *bs)
2540 {
2541 return bs->sg;
2542 }
2543
2544 int bdrv_enable_write_cache(BlockDriverState *bs)
2545 {
2546 return bs->enable_write_cache;
2547 }
2548
2549 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2550 {
2551 bs->enable_write_cache = wce;
2552
2553 /* so a reopen() will preserve wce */
2554 if (wce) {
2555 bs->open_flags |= BDRV_O_CACHE_WB;
2556 } else {
2557 bs->open_flags &= ~BDRV_O_CACHE_WB;
2558 }
2559 }
2560
2561 int bdrv_is_encrypted(BlockDriverState *bs)
2562 {
2563 if (bs->backing_hd && bs->backing_hd->encrypted)
2564 return 1;
2565 return bs->encrypted;
2566 }
2567
2568 int bdrv_key_required(BlockDriverState *bs)
2569 {
2570 BlockDriverState *backing_hd = bs->backing_hd;
2571
2572 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2573 return 1;
2574 return (bs->encrypted && !bs->valid_key);
2575 }
2576
2577 int bdrv_set_key(BlockDriverState *bs, const char *key)
2578 {
2579 int ret;
2580 if (bs->backing_hd && bs->backing_hd->encrypted) {
2581 ret = bdrv_set_key(bs->backing_hd, key);
2582 if (ret < 0)
2583 return ret;
2584 if (!bs->encrypted)
2585 return 0;
2586 }
2587 if (!bs->encrypted) {
2588 return -EINVAL;
2589 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2590 return -ENOMEDIUM;
2591 }
2592 ret = bs->drv->bdrv_set_key(bs, key);
2593 if (ret < 0) {
2594 bs->valid_key = 0;
2595 } else if (!bs->valid_key) {
2596 bs->valid_key = 1;
2597 /* call the change callback now, we skipped it on open */
2598 bdrv_dev_change_media_cb(bs, true);
2599 }
2600 return ret;
2601 }
2602
2603 const char *bdrv_get_format_name(BlockDriverState *bs)
2604 {
2605 return bs->drv ? bs->drv->format_name : NULL;
2606 }
2607
2608 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2609 void *opaque)
2610 {
2611 BlockDriver *drv;
2612
2613 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2614 it(opaque, drv->format_name);
2615 }
2616 }
2617
2618 BlockDriverState *bdrv_find(const char *name)
2619 {
2620 BlockDriverState *bs;
2621
2622 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2623 if (!strcmp(name, bs->device_name)) {
2624 return bs;
2625 }
2626 }
2627 return NULL;
2628 }
2629
2630 BlockDriverState *bdrv_next(BlockDriverState *bs)
2631 {
2632 if (!bs) {
2633 return QTAILQ_FIRST(&bdrv_states);
2634 }
2635 return QTAILQ_NEXT(bs, list);
2636 }
2637
2638 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2639 {
2640 BlockDriverState *bs;
2641
2642 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2643 it(opaque, bs);
2644 }
2645 }
2646
2647 const char *bdrv_get_device_name(BlockDriverState *bs)
2648 {
2649 return bs->device_name;
2650 }
2651
2652 int bdrv_get_flags(BlockDriverState *bs)
2653 {
2654 return bs->open_flags;
2655 }
2656
2657 void bdrv_flush_all(void)
2658 {
2659 BlockDriverState *bs;
2660
2661 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2662 bdrv_flush(bs);
2663 }
2664 }
2665
2666 int bdrv_has_zero_init(BlockDriverState *bs)
2667 {
2668 assert(bs->drv);
2669
2670 if (bs->drv->bdrv_has_zero_init) {
2671 return bs->drv->bdrv_has_zero_init(bs);
2672 }
2673
2674 return 1;
2675 }
2676
2677 typedef struct BdrvCoIsAllocatedData {
2678 BlockDriverState *bs;
2679 int64_t sector_num;
2680 int nb_sectors;
2681 int *pnum;
2682 int ret;
2683 bool done;
2684 } BdrvCoIsAllocatedData;
2685
2686 /*
2687 * Returns true iff the specified sector is present in the disk image. Drivers
2688 * not implementing the functionality are assumed to not support backing files,
2689 * hence all their sectors are reported as allocated.
2690 *
2691 * If 'sector_num' is beyond the end of the disk image the return value is 0
2692 * and 'pnum' is set to 0.
2693 *
2694 * 'pnum' is set to the number of sectors (including and immediately following
2695 * the specified sector) that are known to be in the same
2696 * allocated/unallocated state.
2697 *
2698 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2699 * beyond the end of the disk image it will be clamped.
2700 */
2701 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2702 int nb_sectors, int *pnum)
2703 {
2704 int64_t n;
2705
2706 if (sector_num >= bs->total_sectors) {
2707 *pnum = 0;
2708 return 0;
2709 }
2710
2711 n = bs->total_sectors - sector_num;
2712 if (n < nb_sectors) {
2713 nb_sectors = n;
2714 }
2715
2716 if (!bs->drv->bdrv_co_is_allocated) {
2717 *pnum = nb_sectors;
2718 return 1;
2719 }
2720
2721 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2722 }
2723
2724 /* Coroutine wrapper for bdrv_is_allocated() */
2725 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2726 {
2727 BdrvCoIsAllocatedData *data = opaque;
2728 BlockDriverState *bs = data->bs;
2729
2730 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2731 data->pnum);
2732 data->done = true;
2733 }
2734
2735 /*
2736 * Synchronous wrapper around bdrv_co_is_allocated().
2737 *
2738 * See bdrv_co_is_allocated() for details.
2739 */
2740 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2741 int *pnum)
2742 {
2743 Coroutine *co;
2744 BdrvCoIsAllocatedData data = {
2745 .bs = bs,
2746 .sector_num = sector_num,
2747 .nb_sectors = nb_sectors,
2748 .pnum = pnum,
2749 .done = false,
2750 };
2751
2752 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2753 qemu_coroutine_enter(co, &data);
2754 while (!data.done) {
2755 qemu_aio_wait();
2756 }
2757 return data.ret;
2758 }
2759
2760 /*
2761 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2762 *
2763 * Return true if the given sector is allocated in any image between
2764 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2765 * sector is allocated in any image of the chain. Return false otherwise.
2766 *
2767 * 'pnum' is set to the number of sectors (including and immediately following
2768 * the specified sector) that are known to be in the same
2769 * allocated/unallocated state.
2770 *
2771 */
2772 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2773 BlockDriverState *base,
2774 int64_t sector_num,
2775 int nb_sectors, int *pnum)
2776 {
2777 BlockDriverState *intermediate;
2778 int ret, n = nb_sectors;
2779
2780 intermediate = top;
2781 while (intermediate && intermediate != base) {
2782 int pnum_inter;
2783 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2784 &pnum_inter);
2785 if (ret < 0) {
2786 return ret;
2787 } else if (ret) {
2788 *pnum = pnum_inter;
2789 return 1;
2790 }
2791
2792 /*
2793 * [sector_num, nb_sectors] is unallocated on top but intermediate
2794 * might have
2795 *
2796 * [sector_num+x, nr_sectors] allocated.
2797 */
2798 if (n > pnum_inter) {
2799 n = pnum_inter;
2800 }
2801
2802 intermediate = intermediate->backing_hd;
2803 }
2804
2805 *pnum = n;
2806 return 0;
2807 }
2808
2809 BlockInfoList *qmp_query_block(Error **errp)
2810 {
2811 BlockInfoList *head = NULL, *cur_item = NULL;
2812 BlockDriverState *bs;
2813
2814 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2815 BlockInfoList *info = g_malloc0(sizeof(*info));
2816
2817 info->value = g_malloc0(sizeof(*info->value));
2818 info->value->device = g_strdup(bs->device_name);
2819 info->value->type = g_strdup("unknown");
2820 info->value->locked = bdrv_dev_is_medium_locked(bs);
2821 info->value->removable = bdrv_dev_has_removable_media(bs);
2822
2823 if (bdrv_dev_has_removable_media(bs)) {
2824 info->value->has_tray_open = true;
2825 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2826 }
2827
2828 if (bdrv_iostatus_is_enabled(bs)) {
2829 info->value->has_io_status = true;
2830 info->value->io_status = bs->iostatus;
2831 }
2832
2833 if (bs->drv) {
2834 info->value->has_inserted = true;
2835 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2836 info->value->inserted->file = g_strdup(bs->filename);
2837 info->value->inserted->ro = bs->read_only;
2838 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2839 info->value->inserted->encrypted = bs->encrypted;
2840 info->value->inserted->encryption_key_missing = bdrv_key_required(bs);
2841 if (bs->backing_file[0]) {
2842 info->value->inserted->has_backing_file = true;
2843 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2844 }
2845
2846 info->value->inserted->backing_file_depth =
2847 bdrv_get_backing_file_depth(bs);
2848
2849 if (bs->io_limits_enabled) {
2850 info->value->inserted->bps =
2851 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2852 info->value->inserted->bps_rd =
2853 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2854 info->value->inserted->bps_wr =
2855 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2856 info->value->inserted->iops =
2857 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2858 info->value->inserted->iops_rd =
2859 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2860 info->value->inserted->iops_wr =
2861 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2862 }
2863 }
2864
2865 /* XXX: waiting for the qapi to support GSList */
2866 if (!cur_item) {
2867 head = cur_item = info;
2868 } else {
2869 cur_item->next = info;
2870 cur_item = info;
2871 }
2872 }
2873
2874 return head;
2875 }
2876
2877 /* Consider exposing this as a full fledged QMP command */
2878 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2879 {
2880 BlockStats *s;
2881
2882 s = g_malloc0(sizeof(*s));
2883
2884 if (bs->device_name[0]) {
2885 s->has_device = true;
2886 s->device = g_strdup(bs->device_name);
2887 }
2888
2889 s->stats = g_malloc0(sizeof(*s->stats));
2890 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2891 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2892 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2893 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2894 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2895 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2896 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2897 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2898 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2899
2900 if (bs->file) {
2901 s->has_parent = true;
2902 s->parent = qmp_query_blockstat(bs->file, NULL);
2903 }
2904
2905 return s;
2906 }
2907
2908 BlockStatsList *qmp_query_blockstats(Error **errp)
2909 {
2910 BlockStatsList *head = NULL, *cur_item = NULL;
2911 BlockDriverState *bs;
2912
2913 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2914 BlockStatsList *info = g_malloc0(sizeof(*info));
2915 info->value = qmp_query_blockstat(bs, NULL);
2916
2917 /* XXX: waiting for the qapi to support GSList */
2918 if (!cur_item) {
2919 head = cur_item = info;
2920 } else {
2921 cur_item->next = info;
2922 cur_item = info;
2923 }
2924 }
2925
2926 return head;
2927 }
2928
2929 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2930 {
2931 if (bs->backing_hd && bs->backing_hd->encrypted)
2932 return bs->backing_file;
2933 else if (bs->encrypted)
2934 return bs->filename;
2935 else
2936 return NULL;
2937 }
2938
2939 void bdrv_get_backing_filename(BlockDriverState *bs,
2940 char *filename, int filename_size)
2941 {
2942 pstrcpy(filename, filename_size, bs->backing_file);
2943 }
2944
2945 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2946 const uint8_t *buf, int nb_sectors)
2947 {
2948 BlockDriver *drv = bs->drv;
2949 if (!drv)
2950 return -ENOMEDIUM;
2951 if (!drv->bdrv_write_compressed)
2952 return -ENOTSUP;
2953 if (bdrv_check_request(bs, sector_num, nb_sectors))
2954 return -EIO;
2955
2956 if (bs->dirty_bitmap) {
2957 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2958 }
2959
2960 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2961 }
2962
2963 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2964 {
2965 BlockDriver *drv = bs->drv;
2966 if (!drv)
2967 return -ENOMEDIUM;
2968 if (!drv->bdrv_get_info)
2969 return -ENOTSUP;
2970 memset(bdi, 0, sizeof(*bdi));
2971 return drv->bdrv_get_info(bs, bdi);
2972 }
2973
2974 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2975 int64_t pos, int size)
2976 {
2977 BlockDriver *drv = bs->drv;
2978 if (!drv)
2979 return -ENOMEDIUM;
2980 if (drv->bdrv_save_vmstate)
2981 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2982 if (bs->file)
2983 return bdrv_save_vmstate(bs->file, buf, pos, size);
2984 return -ENOTSUP;
2985 }
2986
2987 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2988 int64_t pos, int size)
2989 {
2990 BlockDriver *drv = bs->drv;
2991 if (!drv)
2992 return -ENOMEDIUM;
2993 if (drv->bdrv_load_vmstate)
2994 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2995 if (bs->file)
2996 return bdrv_load_vmstate(bs->file, buf, pos, size);
2997 return -ENOTSUP;
2998 }
2999
3000 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3001 {
3002 BlockDriver *drv = bs->drv;
3003
3004 if (!drv || !drv->bdrv_debug_event) {
3005 return;
3006 }
3007
3008 drv->bdrv_debug_event(bs, event);
3009
3010 }
3011
3012 /**************************************************************/
3013 /* handling of snapshots */
3014
3015 int bdrv_can_snapshot(BlockDriverState *bs)
3016 {
3017 BlockDriver *drv = bs->drv;
3018 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3019 return 0;
3020 }
3021
3022 if (!drv->bdrv_snapshot_create) {
3023 if (bs->file != NULL) {
3024 return bdrv_can_snapshot(bs->file);
3025 }
3026 return 0;
3027 }
3028
3029 return 1;
3030 }
3031
3032 int bdrv_is_snapshot(BlockDriverState *bs)
3033 {
3034 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3035 }
3036
3037 BlockDriverState *bdrv_snapshots(void)
3038 {
3039 BlockDriverState *bs;
3040
3041 if (bs_snapshots) {
3042 return bs_snapshots;
3043 }
3044
3045 bs = NULL;
3046 while ((bs = bdrv_next(bs))) {
3047 if (bdrv_can_snapshot(bs)) {
3048 bs_snapshots = bs;
3049 return bs;
3050 }
3051 }
3052 return NULL;
3053 }
3054
3055 int bdrv_snapshot_create(BlockDriverState *bs,
3056 QEMUSnapshotInfo *sn_info)
3057 {
3058 BlockDriver *drv = bs->drv;
3059 if (!drv)
3060 return -ENOMEDIUM;
3061 if (drv->bdrv_snapshot_create)
3062 return drv->bdrv_snapshot_create(bs, sn_info);
3063 if (bs->file)
3064 return bdrv_snapshot_create(bs->file, sn_info);
3065 return -ENOTSUP;
3066 }
3067
3068 int bdrv_snapshot_goto(BlockDriverState *bs,
3069 const char *snapshot_id)
3070 {
3071 BlockDriver *drv = bs->drv;
3072 int ret, open_ret;
3073
3074 if (!drv)
3075 return -ENOMEDIUM;
3076 if (drv->bdrv_snapshot_goto)
3077 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3078
3079 if (bs->file) {
3080 drv->bdrv_close(bs);
3081 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3082 open_ret = drv->bdrv_open(bs, bs->open_flags);
3083 if (open_ret < 0) {
3084 bdrv_delete(bs->file);
3085 bs->drv = NULL;
3086 return open_ret;
3087 }
3088 return ret;
3089 }
3090
3091 return -ENOTSUP;
3092 }
3093
3094 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3095 {
3096 BlockDriver *drv = bs->drv;
3097 if (!drv)
3098 return -ENOMEDIUM;
3099 if (drv->bdrv_snapshot_delete)
3100 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3101 if (bs->file)
3102 return bdrv_snapshot_delete(bs->file, snapshot_id);
3103 return -ENOTSUP;
3104 }
3105
3106 int bdrv_snapshot_list(BlockDriverState *bs,
3107 QEMUSnapshotInfo **psn_info)
3108 {
3109 BlockDriver *drv = bs->drv;
3110 if (!drv)
3111 return -ENOMEDIUM;
3112 if (drv->bdrv_snapshot_list)
3113 return drv->bdrv_snapshot_list(bs, psn_info);
3114 if (bs->file)
3115 return bdrv_snapshot_list(bs->file, psn_info);
3116 return -ENOTSUP;
3117 }
3118
3119 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3120 const char *snapshot_name)
3121 {
3122 BlockDriver *drv = bs->drv;
3123 if (!drv) {
3124 return -ENOMEDIUM;
3125 }
3126 if (!bs->read_only) {
3127 return -EINVAL;
3128 }
3129 if (drv->bdrv_snapshot_load_tmp) {
3130 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3131 }
3132 return -ENOTSUP;
3133 }
3134
3135 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3136 const char *backing_file)
3137 {
3138 if (!bs->drv) {
3139 return NULL;
3140 }
3141
3142 if (bs->backing_hd) {
3143 if (strcmp(bs->backing_file, backing_file) == 0) {
3144 return bs->backing_hd;
3145 } else {
3146 return bdrv_find_backing_image(bs->backing_hd, backing_file);
3147 }
3148 }
3149
3150 return NULL;
3151 }
3152
3153 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3154 {
3155 if (!bs->drv) {
3156 return 0;
3157 }
3158
3159 if (!bs->backing_hd) {
3160 return 0;
3161 }
3162
3163 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3164 }
3165
3166 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3167 {
3168 BlockDriverState *curr_bs = NULL;
3169
3170 if (!bs) {
3171 return NULL;
3172 }
3173
3174 curr_bs = bs;
3175
3176 while (curr_bs->backing_hd) {
3177 curr_bs = curr_bs->backing_hd;
3178 }
3179 return curr_bs;
3180 }
3181
3182 #define NB_SUFFIXES 4
3183
3184 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3185 {
3186 static const char suffixes[NB_SUFFIXES] = "KMGT";
3187 int64_t base;
3188 int i;
3189
3190 if (size <= 999) {
3191 snprintf(buf, buf_size, "%" PRId64, size);
3192 } else {
3193 base = 1024;
3194 for(i = 0; i < NB_SUFFIXES; i++) {
3195 if (size < (10 * base)) {
3196 snprintf(buf, buf_size, "%0.1f%c",
3197 (double)size / base,
3198 suffixes[i]);
3199 break;
3200 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3201 snprintf(buf, buf_size, "%" PRId64 "%c",
3202 ((size + (base >> 1)) / base),
3203 suffixes[i]);
3204 break;
3205 }
3206 base = base * 1024;
3207 }
3208 }
3209 return buf;
3210 }
3211
3212 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3213 {
3214 char buf1[128], date_buf[128], clock_buf[128];
3215 #ifdef _WIN32
3216 struct tm *ptm;
3217 #else
3218 struct tm tm;
3219 #endif
3220 time_t ti;
3221 int64_t secs;
3222
3223 if (!sn) {
3224 snprintf(buf, buf_size,
3225 "%-10s%-20s%7s%20s%15s",
3226 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3227 } else {
3228 ti = sn->date_sec;
3229 #ifdef _WIN32
3230 ptm = localtime(&ti);
3231 strftime(date_buf, sizeof(date_buf),
3232 "%Y-%m-%d %H:%M:%S", ptm);
3233 #else
3234 localtime_r(&ti, &tm);
3235 strftime(date_buf, sizeof(date_buf),
3236 "%Y-%m-%d %H:%M:%S", &tm);
3237 #endif
3238 secs = sn->vm_clock_nsec / 1000000000;
3239 snprintf(clock_buf, sizeof(clock_buf),
3240 "%02d:%02d:%02d.%03d",
3241 (int)(secs / 3600),
3242 (int)((secs / 60) % 60),
3243 (int)(secs % 60),
3244 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3245 snprintf(buf, buf_size,
3246 "%-10s%-20s%7s%20s%15s",
3247 sn->id_str, sn->name,
3248 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3249 date_buf,
3250 clock_buf);
3251 }
3252 return buf;
3253 }
3254
3255 /**************************************************************/
3256 /* async I/Os */
3257
3258 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3259 QEMUIOVector *qiov, int nb_sectors,
3260 BlockDriverCompletionFunc *cb, void *opaque)
3261 {
3262 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3263
3264 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3265 cb, opaque, false);
3266 }
3267
3268 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3269 QEMUIOVector *qiov, int nb_sectors,
3270 BlockDriverCompletionFunc *cb, void *opaque)
3271 {
3272 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3273
3274 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3275 cb, opaque, true);
3276 }
3277
3278
3279 typedef struct MultiwriteCB {
3280 int error;
3281 int num_requests;
3282 int num_callbacks;
3283 struct {
3284 BlockDriverCompletionFunc *cb;
3285 void *opaque;
3286 QEMUIOVector *free_qiov;
3287 } callbacks[];
3288 } MultiwriteCB;
3289
3290 static void multiwrite_user_cb(MultiwriteCB *mcb)
3291 {
3292 int i;
3293
3294 for (i = 0; i < mcb->num_callbacks; i++) {
3295 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3296 if (mcb->callbacks[i].free_qiov) {
3297 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3298 }
3299 g_free(mcb->callbacks[i].free_qiov);
3300 }
3301 }
3302
3303 static void multiwrite_cb(void *opaque, int ret)
3304 {
3305 MultiwriteCB *mcb = opaque;
3306
3307 trace_multiwrite_cb(mcb, ret);
3308
3309 if (ret < 0 && !mcb->error) {
3310 mcb->error = ret;
3311 }
3312
3313 mcb->num_requests--;
3314 if (mcb->num_requests == 0) {
3315 multiwrite_user_cb(mcb);
3316 g_free(mcb);
3317 }
3318 }
3319
3320 static int multiwrite_req_compare(const void *a, const void *b)
3321 {
3322 const BlockRequest *req1 = a, *req2 = b;
3323
3324 /*
3325 * Note that we can't simply subtract req2->sector from req1->sector
3326 * here as that could overflow the return value.
3327 */
3328 if (req1->sector > req2->sector) {
3329 return 1;
3330 } else if (req1->sector < req2->sector) {
3331 return -1;
3332 } else {
3333 return 0;
3334 }
3335 }
3336
3337 /*
3338 * Takes a bunch of requests and tries to merge them. Returns the number of
3339 * requests that remain after merging.
3340 */
3341 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3342 int num_reqs, MultiwriteCB *mcb)
3343 {
3344 int i, outidx;
3345
3346 // Sort requests by start sector
3347 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3348
3349 // Check if adjacent requests touch the same clusters. If so, combine them,
3350 // filling up gaps with zero sectors.
3351 outidx = 0;
3352 for (i = 1; i < num_reqs; i++) {
3353 int merge = 0;
3354 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3355
3356 // Handle exactly sequential writes and overlapping writes.
3357 if (reqs[i].sector <= oldreq_last) {
3358 merge = 1;
3359 }
3360
3361 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3362 merge = 0;
3363 }
3364
3365 if (merge) {
3366 size_t size;
3367 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3368 qemu_iovec_init(qiov,
3369 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3370
3371 // Add the first request to the merged one. If the requests are
3372 // overlapping, drop the last sectors of the first request.
3373 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3374 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3375
3376 // We should need to add any zeros between the two requests
3377 assert (reqs[i].sector <= oldreq_last);
3378
3379 // Add the second request
3380 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3381
3382 reqs[outidx].nb_sectors = qiov->size >> 9;
3383 reqs[outidx].qiov = qiov;
3384
3385 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3386 } else {
3387 outidx++;
3388 reqs[outidx].sector = reqs[i].sector;
3389 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3390 reqs[outidx].qiov = reqs[i].qiov;
3391 }
3392 }
3393
3394 return outidx + 1;
3395 }
3396
3397 /*
3398 * Submit multiple AIO write requests at once.
3399 *
3400 * On success, the function returns 0 and all requests in the reqs array have
3401 * been submitted. In error case this function returns -1, and any of the
3402 * requests may or may not be submitted yet. In particular, this means that the
3403 * callback will be called for some of the requests, for others it won't. The
3404 * caller must check the error field of the BlockRequest to wait for the right
3405 * callbacks (if error != 0, no callback will be called).
3406 *
3407 * The implementation may modify the contents of the reqs array, e.g. to merge
3408 * requests. However, the fields opaque and error are left unmodified as they
3409 * are used to signal failure for a single request to the caller.
3410 */
3411 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3412 {
3413 MultiwriteCB *mcb;
3414 int i;
3415
3416 /* don't submit writes if we don't have a medium */
3417 if (bs->drv == NULL) {
3418 for (i = 0; i < num_reqs; i++) {
3419 reqs[i].error = -ENOMEDIUM;
3420 }
3421 return -1;
3422 }
3423
3424 if (num_reqs == 0) {
3425 return 0;
3426 }
3427
3428 // Create MultiwriteCB structure
3429 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3430 mcb->num_requests = 0;
3431 mcb->num_callbacks = num_reqs;
3432
3433 for (i = 0; i < num_reqs; i++) {
3434 mcb->callbacks[i].cb = reqs[i].cb;
3435 mcb->callbacks[i].opaque = reqs[i].opaque;
3436 }
3437
3438 // Check for mergable requests
3439 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3440
3441 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3442
3443 /* Run the aio requests. */
3444 mcb->num_requests = num_reqs;
3445 for (i = 0; i < num_reqs; i++) {
3446 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3447 reqs[i].nb_sectors, multiwrite_cb, mcb);
3448 }
3449
3450 return 0;
3451 }
3452
3453 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3454 {
3455 acb->pool->cancel(acb);
3456 }
3457
3458 /* block I/O throttling */
3459 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3460 bool is_write, double elapsed_time, uint64_t *wait)
3461 {
3462 uint64_t bps_limit = 0;
3463 double bytes_limit, bytes_base, bytes_res;
3464 double slice_time, wait_time;
3465
3466 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3467 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3468 } else if (bs->io_limits.bps[is_write]) {
3469 bps_limit = bs->io_limits.bps[is_write];
3470 } else {
3471 if (wait) {
3472 *wait = 0;
3473 }
3474
3475 return false;
3476 }
3477
3478 slice_time = bs->slice_end - bs->slice_start;
3479 slice_time /= (NANOSECONDS_PER_SECOND);
3480 bytes_limit = bps_limit * slice_time;
3481 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3482 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3483 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3484 }
3485
3486 /* bytes_base: the bytes of data which have been read/written; and
3487 * it is obtained from the history statistic info.
3488 * bytes_res: the remaining bytes of data which need to be read/written.
3489 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3490 * the total time for completing reading/writting all data.
3491 */
3492 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3493
3494 if (bytes_base + bytes_res <= bytes_limit) {
3495 if (wait) {
3496 *wait = 0;
3497 }
3498
3499 return false;
3500 }
3501
3502 /* Calc approx time to dispatch */
3503 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3504
3505 /* When the I/O rate at runtime exceeds the limits,
3506 * bs->slice_end need to be extended in order that the current statistic
3507 * info can be kept until the timer fire, so it is increased and tuned
3508 * based on the result of experiment.
3509 */
3510 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3511 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3512 if (wait) {
3513 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3514 }
3515
3516 return true;
3517 }
3518
3519 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3520 double elapsed_time, uint64_t *wait)
3521 {
3522 uint64_t iops_limit = 0;
3523 double ios_limit, ios_base;
3524 double slice_time, wait_time;
3525
3526 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3527 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3528 } else if (bs->io_limits.iops[is_write]) {
3529 iops_limit = bs->io_limits.iops[is_write];
3530 } else {
3531 if (wait) {
3532 *wait = 0;
3533 }
3534
3535 return false;
3536 }
3537
3538 slice_time = bs->slice_end - bs->slice_start;
3539 slice_time /= (NANOSECONDS_PER_SECOND);
3540 ios_limit = iops_limit * slice_time;
3541 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3542 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3543 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3544 }
3545
3546 if (ios_base + 1 <= ios_limit) {
3547 if (wait) {
3548 *wait = 0;
3549 }
3550
3551 return false;
3552 }
3553
3554 /* Calc approx time to dispatch */
3555 wait_time = (ios_base + 1) / iops_limit;
3556 if (wait_time > elapsed_time) {
3557 wait_time = wait_time - elapsed_time;
3558 } else {
3559 wait_time = 0;
3560 }
3561
3562 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3563 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3564 if (wait) {
3565 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3566 }
3567
3568 return true;
3569 }
3570
3571 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3572 bool is_write, int64_t *wait)
3573 {
3574 int64_t now, max_wait;
3575 uint64_t bps_wait = 0, iops_wait = 0;
3576 double elapsed_time;
3577 int bps_ret, iops_ret;
3578
3579 now = qemu_get_clock_ns(vm_clock);
3580 if ((bs->slice_start < now)
3581 && (bs->slice_end > now)) {
3582 bs->slice_end = now + bs->slice_time;
3583 } else {
3584 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3585 bs->slice_start = now;
3586 bs->slice_end = now + bs->slice_time;
3587
3588 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3589 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3590
3591 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3592 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3593 }
3594
3595 elapsed_time = now - bs->slice_start;
3596 elapsed_time /= (NANOSECONDS_PER_SECOND);
3597
3598 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3599 is_write, elapsed_time, &bps_wait);
3600 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3601 elapsed_time, &iops_wait);
3602 if (bps_ret || iops_ret) {
3603 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3604 if (wait) {
3605 *wait = max_wait;
3606 }
3607
3608 now = qemu_get_clock_ns(vm_clock);
3609 if (bs->slice_end < now + max_wait) {
3610 bs->slice_end = now + max_wait;
3611 }
3612
3613 return true;
3614 }
3615
3616 if (wait) {
3617 *wait = 0;
3618 }
3619
3620 return false;
3621 }
3622
3623 /**************************************************************/
3624 /* async block device emulation */
3625
3626 typedef struct BlockDriverAIOCBSync {
3627 BlockDriverAIOCB common;
3628 QEMUBH *bh;
3629 int ret;
3630 /* vector translation state */
3631 QEMUIOVector *qiov;
3632 uint8_t *bounce;
3633 int is_write;
3634 } BlockDriverAIOCBSync;
3635
3636 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3637 {
3638 BlockDriverAIOCBSync *acb =
3639 container_of(blockacb, BlockDriverAIOCBSync, common);
3640 qemu_bh_delete(acb->bh);
3641 acb->bh = NULL;
3642 qemu_aio_release(acb);
3643 }
3644
3645 static AIOPool bdrv_em_aio_pool = {
3646 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3647 .cancel = bdrv_aio_cancel_em,
3648 };
3649
3650 static void bdrv_aio_bh_cb(void *opaque)
3651 {
3652 BlockDriverAIOCBSync *acb = opaque;
3653
3654 if (!acb->is_write)
3655 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3656 qemu_vfree(acb->bounce);
3657 acb->common.cb(acb->common.opaque, acb->ret);
3658 qemu_bh_delete(acb->bh);
3659 acb->bh = NULL;
3660 qemu_aio_release(acb);
3661 }
3662
3663 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3664 int64_t sector_num,
3665 QEMUIOVector *qiov,
3666 int nb_sectors,
3667 BlockDriverCompletionFunc *cb,
3668 void *opaque,
3669 int is_write)
3670
3671 {
3672 BlockDriverAIOCBSync *acb;
3673
3674 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3675 acb->is_write = is_write;
3676 acb->qiov = qiov;
3677 acb->bounce = qemu_blockalign(bs, qiov->size);
3678 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3679
3680 if (is_write) {
3681 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3682 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3683 } else {
3684 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3685 }
3686
3687 qemu_bh_schedule(acb->bh);
3688
3689 return &acb->common;
3690 }
3691
3692 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3693 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3694 BlockDriverCompletionFunc *cb, void *opaque)
3695 {
3696 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3697 }
3698
3699 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3700 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3701 BlockDriverCompletionFunc *cb, void *opaque)
3702 {
3703 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3704 }
3705
3706
3707 typedef struct BlockDriverAIOCBCoroutine {
3708 BlockDriverAIOCB common;
3709 BlockRequest req;
3710 bool is_write;
3711 QEMUBH* bh;
3712 } BlockDriverAIOCBCoroutine;
3713
3714 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3715 {
3716 qemu_aio_flush();
3717 }
3718
3719 static AIOPool bdrv_em_co_aio_pool = {
3720 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3721 .cancel = bdrv_aio_co_cancel_em,
3722 };
3723
3724 static void bdrv_co_em_bh(void *opaque)
3725 {
3726 BlockDriverAIOCBCoroutine *acb = opaque;
3727
3728 acb->common.cb(acb->common.opaque, acb->req.error);
3729 qemu_bh_delete(acb->bh);
3730 qemu_aio_release(acb);
3731 }
3732
3733 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3734 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3735 {
3736 BlockDriverAIOCBCoroutine *acb = opaque;
3737 BlockDriverState *bs = acb->common.bs;
3738
3739 if (!acb->is_write) {
3740 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3741 acb->req.nb_sectors, acb->req.qiov, 0);
3742 } else {
3743 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3744 acb->req.nb_sectors, acb->req.qiov, 0);
3745 }
3746
3747 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3748 qemu_bh_schedule(acb->bh);
3749 }
3750
3751 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3752 int64_t sector_num,
3753 QEMUIOVector *qiov,
3754 int nb_sectors,
3755 BlockDriverCompletionFunc *cb,
3756 void *opaque,
3757 bool is_write)
3758 {
3759 Coroutine *co;
3760 BlockDriverAIOCBCoroutine *acb;
3761
3762 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3763 acb->req.sector = sector_num;
3764 acb->req.nb_sectors = nb_sectors;
3765 acb->req.qiov = qiov;
3766 acb->is_write = is_write;
3767
3768 co = qemu_coroutine_create(bdrv_co_do_rw);
3769 qemu_coroutine_enter(co, acb);
3770
3771 return &acb->common;
3772 }
3773
3774 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3775 {
3776 BlockDriverAIOCBCoroutine *acb = opaque;
3777 BlockDriverState *bs = acb->common.bs;
3778
3779 acb->req.error = bdrv_co_flush(bs);
3780 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3781 qemu_bh_schedule(acb->bh);
3782 }
3783
3784 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3785 BlockDriverCompletionFunc *cb, void *opaque)
3786 {
3787 trace_bdrv_aio_flush(bs, opaque);
3788
3789 Coroutine *co;
3790 BlockDriverAIOCBCoroutine *acb;
3791
3792 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3793 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3794 qemu_coroutine_enter(co, acb);
3795
3796 return &acb->common;
3797 }
3798
3799 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3800 {
3801 BlockDriverAIOCBCoroutine *acb = opaque;
3802 BlockDriverState *bs = acb->common.bs;
3803
3804 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3805 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3806 qemu_bh_schedule(acb->bh);
3807 }
3808
3809 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3810 int64_t sector_num, int nb_sectors,
3811 BlockDriverCompletionFunc *cb, void *opaque)
3812 {
3813 Coroutine *co;
3814 BlockDriverAIOCBCoroutine *acb;
3815
3816 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3817
3818 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3819 acb->req.sector = sector_num;
3820 acb->req.nb_sectors = nb_sectors;
3821 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3822 qemu_coroutine_enter(co, acb);
3823
3824 return &acb->common;
3825 }
3826
3827 void bdrv_init(void)
3828 {
3829 module_call_init(MODULE_INIT_BLOCK);
3830 }
3831
3832 void bdrv_init_with_whitelist(void)
3833 {
3834 use_bdrv_whitelist = 1;
3835 bdrv_init();
3836 }
3837
3838 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3839 BlockDriverCompletionFunc *cb, void *opaque)
3840 {
3841 BlockDriverAIOCB *acb;
3842
3843 if (pool->free_aiocb) {
3844 acb = pool->free_aiocb;
3845 pool->free_aiocb = acb->next;
3846 } else {
3847 acb = g_malloc0(pool->aiocb_size);
3848 acb->pool = pool;
3849 }
3850 acb->bs = bs;
3851 acb->cb = cb;
3852 acb->opaque = opaque;
3853 return acb;
3854 }
3855
3856 void qemu_aio_release(void *p)
3857 {
3858 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3859 AIOPool *pool = acb->pool;
3860 acb->next = pool->free_aiocb;
3861 pool->free_aiocb = acb;
3862 }
3863
3864 /**************************************************************/
3865 /* Coroutine block device emulation */
3866
3867 typedef struct CoroutineIOCompletion {
3868 Coroutine *coroutine;
3869 int ret;
3870 } CoroutineIOCompletion;
3871
3872 static void bdrv_co_io_em_complete(void *opaque, int ret)
3873 {
3874 CoroutineIOCompletion *co = opaque;
3875
3876 co->ret = ret;
3877 qemu_coroutine_enter(co->coroutine, NULL);
3878 }
3879
3880 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3881 int nb_sectors, QEMUIOVector *iov,
3882 bool is_write)
3883 {
3884 CoroutineIOCompletion co = {
3885 .coroutine = qemu_coroutine_self(),
3886 };
3887 BlockDriverAIOCB *acb;
3888
3889 if (is_write) {
3890 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3891 bdrv_co_io_em_complete, &co);
3892 } else {
3893 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3894 bdrv_co_io_em_complete, &co);
3895 }
3896
3897 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3898 if (!acb) {
3899 return -EIO;
3900 }
3901 qemu_coroutine_yield();
3902
3903 return co.ret;
3904 }
3905
3906 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3907 int64_t sector_num, int nb_sectors,
3908 QEMUIOVector *iov)
3909 {
3910 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3911 }
3912
3913 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3914 int64_t sector_num, int nb_sectors,
3915 QEMUIOVector *iov)
3916 {
3917 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3918 }
3919
3920 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3921 {
3922 RwCo *rwco = opaque;
3923
3924 rwco->ret = bdrv_co_flush(rwco->bs);
3925 }
3926
3927 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3928 {
3929 int ret;
3930
3931 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3932 return 0;
3933 }
3934
3935 /* Write back cached data to the OS even with cache=unsafe */
3936 if (bs->drv->bdrv_co_flush_to_os) {
3937 ret = bs->drv->bdrv_co_flush_to_os(bs);
3938 if (ret < 0) {
3939 return ret;
3940 }
3941 }
3942
3943 /* But don't actually force it to the disk with cache=unsafe */
3944 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3945 goto flush_parent;
3946 }
3947
3948 if (bs->drv->bdrv_co_flush_to_disk) {
3949 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3950 } else if (bs->drv->bdrv_aio_flush) {
3951 BlockDriverAIOCB *acb;
3952 CoroutineIOCompletion co = {
3953 .coroutine = qemu_coroutine_self(),
3954 };
3955
3956 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3957 if (acb == NULL) {
3958 ret = -EIO;
3959 } else {
3960 qemu_coroutine_yield();
3961 ret = co.ret;
3962 }
3963 } else {
3964 /*
3965 * Some block drivers always operate in either writethrough or unsafe
3966 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3967 * know how the server works (because the behaviour is hardcoded or
3968 * depends on server-side configuration), so we can't ensure that
3969 * everything is safe on disk. Returning an error doesn't work because
3970 * that would break guests even if the server operates in writethrough
3971 * mode.
3972 *
3973 * Let's hope the user knows what he's doing.
3974 */
3975 ret = 0;
3976 }
3977 if (ret < 0) {
3978 return ret;
3979 }
3980
3981 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3982 * in the case of cache=unsafe, so there are no useless flushes.
3983 */
3984 flush_parent:
3985 return bdrv_co_flush(bs->file);
3986 }
3987
3988 void bdrv_invalidate_cache(BlockDriverState *bs)
3989 {
3990 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3991 bs->drv->bdrv_invalidate_cache(bs);
3992 }
3993 }
3994
3995 void bdrv_invalidate_cache_all(void)
3996 {
3997 BlockDriverState *bs;
3998
3999 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4000 bdrv_invalidate_cache(bs);
4001 }
4002 }
4003
4004 void bdrv_clear_incoming_migration_all(void)
4005 {
4006 BlockDriverState *bs;
4007
4008 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4009 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4010 }
4011 }
4012
4013 int bdrv_flush(BlockDriverState *bs)
4014 {
4015 Coroutine *co;
4016 RwCo rwco = {
4017 .bs = bs,
4018 .ret = NOT_DONE,
4019 };
4020
4021 if (qemu_in_coroutine()) {
4022 /* Fast-path if already in coroutine context */
4023 bdrv_flush_co_entry(&rwco);
4024 } else {
4025 co = qemu_coroutine_create(bdrv_flush_co_entry);
4026 qemu_coroutine_enter(co, &rwco);
4027 while (rwco.ret == NOT_DONE) {
4028 qemu_aio_wait();
4029 }
4030 }
4031
4032 return rwco.ret;
4033 }
4034
4035 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4036 {
4037 RwCo *rwco = opaque;
4038
4039 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4040 }
4041
4042 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4043 int nb_sectors)
4044 {
4045 if (!bs->drv) {
4046 return -ENOMEDIUM;
4047 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4048 return -EIO;
4049 } else if (bs->read_only) {
4050 return -EROFS;
4051 } else if (bs->drv->bdrv_co_discard) {
4052 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4053 } else if (bs->drv->bdrv_aio_discard) {
4054 BlockDriverAIOCB *acb;
4055 CoroutineIOCompletion co = {
4056 .coroutine = qemu_coroutine_self(),
4057 };
4058
4059 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4060 bdrv_co_io_em_complete, &co);
4061 if (acb == NULL) {
4062 return -EIO;
4063 } else {
4064 qemu_coroutine_yield();
4065 return co.ret;
4066 }
4067 } else {
4068 return 0;
4069 }
4070 }
4071
4072 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4073 {
4074 Coroutine *co;
4075 RwCo rwco = {
4076 .bs = bs,
4077 .sector_num = sector_num,
4078 .nb_sectors = nb_sectors,
4079 .ret = NOT_DONE,
4080 };
4081
4082 if (qemu_in_coroutine()) {
4083 /* Fast-path if already in coroutine context */
4084 bdrv_discard_co_entry(&rwco);
4085 } else {
4086 co = qemu_coroutine_create(bdrv_discard_co_entry);
4087 qemu_coroutine_enter(co, &rwco);
4088 while (rwco.ret == NOT_DONE) {
4089 qemu_aio_wait();
4090 }
4091 }
4092
4093 return rwco.ret;
4094 }
4095
4096 /**************************************************************/
4097 /* removable device support */
4098
4099 /**
4100 * Return TRUE if the media is present
4101 */
4102 int bdrv_is_inserted(BlockDriverState *bs)
4103 {
4104 BlockDriver *drv = bs->drv;
4105
4106 if (!drv)
4107 return 0;
4108 if (!drv->bdrv_is_inserted)
4109 return 1;
4110 return drv->bdrv_is_inserted(bs);
4111 }
4112
4113 /**
4114 * Return whether the media changed since the last call to this
4115 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4116 */
4117 int bdrv_media_changed(BlockDriverState *bs)
4118 {
4119 BlockDriver *drv = bs->drv;
4120
4121 if (drv && drv->bdrv_media_changed) {
4122 return drv->bdrv_media_changed(bs);
4123 }
4124 return -ENOTSUP;
4125 }
4126
4127 /**
4128 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4129 */
4130 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4131 {
4132 BlockDriver *drv = bs->drv;
4133
4134 if (drv && drv->bdrv_eject) {
4135 drv->bdrv_eject(bs, eject_flag);
4136 }
4137
4138 if (bs->device_name[0] != '\0') {
4139 bdrv_emit_qmp_eject_event(bs, eject_flag);
4140 }
4141 }
4142
4143 /**
4144 * Lock or unlock the media (if it is locked, the user won't be able
4145 * to eject it manually).
4146 */
4147 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4148 {
4149 BlockDriver *drv = bs->drv;
4150
4151 trace_bdrv_lock_medium(bs, locked);
4152
4153 if (drv && drv->bdrv_lock_medium) {
4154 drv->bdrv_lock_medium(bs, locked);
4155 }
4156 }
4157
4158 /* needed for generic scsi interface */
4159
4160 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4161 {
4162 BlockDriver *drv = bs->drv;
4163
4164 if (drv && drv->bdrv_ioctl)
4165 return drv->bdrv_ioctl(bs, req, buf);
4166 return -ENOTSUP;
4167 }
4168
4169 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4170 unsigned long int req, void *buf,
4171 BlockDriverCompletionFunc *cb, void *opaque)
4172 {
4173 BlockDriver *drv = bs->drv;
4174
4175 if (drv && drv->bdrv_aio_ioctl)
4176 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4177 return NULL;
4178 }
4179
4180 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4181 {
4182 bs->buffer_alignment = align;
4183 }
4184
4185 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4186 {
4187 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4188 }
4189
4190 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4191 {
4192 int64_t bitmap_size;
4193
4194 bs->dirty_count = 0;
4195 if (enable) {
4196 if (!bs->dirty_bitmap) {
4197 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4198 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4199 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4200
4201 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4202 }
4203 } else {
4204 if (bs->dirty_bitmap) {
4205 g_free(bs->dirty_bitmap);
4206 bs->dirty_bitmap = NULL;
4207 }
4208 }
4209 }
4210
4211 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4212 {
4213 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4214
4215 if (bs->dirty_bitmap &&
4216 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4217 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4218 (1UL << (chunk % (sizeof(unsigned long) * 8))));
4219 } else {
4220 return 0;
4221 }
4222 }
4223
4224 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4225 int nr_sectors)
4226 {
4227 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4228 }
4229
4230 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4231 {
4232 return bs->dirty_count;
4233 }
4234
4235 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4236 {
4237 assert(bs->in_use != in_use);
4238 bs->in_use = in_use;
4239 }
4240
4241 int bdrv_in_use(BlockDriverState *bs)
4242 {
4243 return bs->in_use;
4244 }
4245
4246 void bdrv_iostatus_enable(BlockDriverState *bs)
4247 {
4248 bs->iostatus_enabled = true;
4249 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4250 }
4251
4252 /* The I/O status is only enabled if the drive explicitly
4253 * enables it _and_ the VM is configured to stop on errors */
4254 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4255 {
4256 return (bs->iostatus_enabled &&
4257 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4258 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4259 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4260 }
4261
4262 void bdrv_iostatus_disable(BlockDriverState *bs)
4263 {
4264 bs->iostatus_enabled = false;
4265 }
4266
4267 void bdrv_iostatus_reset(BlockDriverState *bs)
4268 {
4269 if (bdrv_iostatus_is_enabled(bs)) {
4270 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4271 }
4272 }
4273
4274 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4275 {
4276 assert(bdrv_iostatus_is_enabled(bs));
4277 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4278 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4279 BLOCK_DEVICE_IO_STATUS_FAILED;
4280 }
4281 }
4282
4283 void
4284 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4285 enum BlockAcctType type)
4286 {
4287 assert(type < BDRV_MAX_IOTYPE);
4288
4289 cookie->bytes = bytes;
4290 cookie->start_time_ns = get_clock();
4291 cookie->type = type;
4292 }
4293
4294 void
4295 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4296 {
4297 assert(cookie->type < BDRV_MAX_IOTYPE);
4298
4299 bs->nr_bytes[cookie->type] += cookie->bytes;
4300 bs->nr_ops[cookie->type]++;
4301 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4302 }
4303
4304 int bdrv_img_create(const char *filename, const char *fmt,
4305 const char *base_filename, const char *base_fmt,
4306 char *options, uint64_t img_size, int flags)
4307 {
4308 QEMUOptionParameter *param = NULL, *create_options = NULL;
4309 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4310 BlockDriverState *bs = NULL;
4311 BlockDriver *drv, *proto_drv;
4312 BlockDriver *backing_drv = NULL;
4313 int ret = 0;
4314
4315 /* Find driver and parse its options */
4316 drv = bdrv_find_format(fmt);
4317 if (!drv) {
4318 error_report("Unknown file format '%s'", fmt);
4319 ret = -EINVAL;
4320 goto out;
4321 }
4322
4323 proto_drv = bdrv_find_protocol(filename);
4324 if (!proto_drv) {
4325 error_report("Unknown protocol '%s'", filename);
4326 ret = -EINVAL;
4327 goto out;
4328 }
4329
4330 create_options = append_option_parameters(create_options,
4331 drv->create_options);
4332 create_options = append_option_parameters(create_options,
4333 proto_drv->create_options);
4334
4335 /* Create parameter list with default values */
4336 param = parse_option_parameters("", create_options, param);
4337
4338 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4339
4340 /* Parse -o options */
4341 if (options) {
4342 param = parse_option_parameters(options, create_options, param);
4343 if (param == NULL) {
4344 error_report("Invalid options for file format '%s'.", fmt);
4345 ret = -EINVAL;
4346 goto out;
4347 }
4348 }
4349
4350 if (base_filename) {
4351 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4352 base_filename)) {
4353 error_report("Backing file not supported for file format '%s'",
4354 fmt);
4355 ret = -EINVAL;
4356 goto out;
4357 }
4358 }
4359
4360 if (base_fmt) {
4361 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4362 error_report("Backing file format not supported for file "
4363 "format '%s'", fmt);
4364 ret = -EINVAL;
4365 goto out;
4366 }
4367 }
4368
4369 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4370 if (backing_file && backing_file->value.s) {
4371 if (!strcmp(filename, backing_file->value.s)) {
4372 error_report("Error: Trying to create an image with the "
4373 "same filename as the backing file");
4374 ret = -EINVAL;
4375 goto out;
4376 }
4377 }
4378
4379 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4380 if (backing_fmt && backing_fmt->value.s) {
4381 backing_drv = bdrv_find_format(backing_fmt->value.s);
4382 if (!backing_drv) {
4383 error_report("Unknown backing file format '%s'",
4384 backing_fmt->value.s);
4385 ret = -EINVAL;
4386 goto out;
4387 }
4388 }
4389
4390 // The size for the image must always be specified, with one exception:
4391 // If we are using a backing file, we can obtain the size from there
4392 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4393 if (size && size->value.n == -1) {
4394 if (backing_file && backing_file->value.s) {
4395 uint64_t size;
4396 char buf[32];
4397 int back_flags;
4398
4399 /* backing files always opened read-only */
4400 back_flags =
4401 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4402
4403 bs = bdrv_new("");
4404
4405 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4406 if (ret < 0) {
4407 error_report("Could not open '%s'", backing_file->value.s);
4408 goto out;
4409 }
4410 bdrv_get_geometry(bs, &size);
4411 size *= 512;
4412
4413 snprintf(buf, sizeof(buf), "%" PRId64, size);
4414 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4415 } else {
4416 error_report("Image creation needs a size parameter");
4417 ret = -EINVAL;
4418 goto out;
4419 }
4420 }
4421
4422 printf("Formatting '%s', fmt=%s ", filename, fmt);
4423 print_option_parameters(param);
4424 puts("");
4425
4426 ret = bdrv_create(drv, filename, param);
4427
4428 if (ret < 0) {
4429 if (ret == -ENOTSUP) {
4430 error_report("Formatting or formatting option not supported for "
4431 "file format '%s'", fmt);
4432 } else if (ret == -EFBIG) {
4433 error_report("The image size is too large for file format '%s'",
4434 fmt);
4435 } else {
4436 error_report("%s: error while creating %s: %s", filename, fmt,
4437 strerror(-ret));
4438 }
4439 }
4440
4441 out:
4442 free_option_parameters(create_options);
4443 free_option_parameters(param);
4444
4445 if (bs) {
4446 bdrv_delete(bs);
4447 }
4448
4449 return ret;
4450 }