]> git.proxmox.com Git - qemu.git/blob - block.c
smbios: Clean up smbios_add_field() parameters
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor/monitor.h"
28 #include "block/block_int.h"
29 #include "block/blockjob.h"
30 #include "qemu/module.h"
31 #include "qapi/qmp/qjson.h"
32 #include "sysemu/sysemu.h"
33 #include "qemu/notify.h"
34 #include "block/coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu/timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55 BDRV_REQ_COPY_ON_READ = 0x1,
56 BDRV_REQ_ZERO_WRITE = 0x2,
57 } BdrvRequestFlags;
58
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65 BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors,
71 QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77 BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79 int64_t sector_num,
80 QEMUIOVector *qiov,
81 int nb_sectors,
82 BlockDriverCompletionFunc *cb,
83 void *opaque,
84 bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87 int64_t sector_num, int nb_sectors);
88
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90 bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92 double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94 bool is_write, int64_t *wait);
95
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97 QTAILQ_HEAD_INITIALIZER(bdrv_states);
98
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100 QLIST_HEAD_INITIALIZER(bdrv_drivers);
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 }
141
142 static void bdrv_block_timer(void *opaque)
143 {
144 BlockDriverState *bs = opaque;
145
146 qemu_co_queue_next(&bs->throttled_reqs);
147 }
148
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151 qemu_co_queue_init(&bs->throttled_reqs);
152 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153 bs->io_limits_enabled = true;
154 }
155
156 bool bdrv_io_limits_enabled(BlockDriverState *bs)
157 {
158 BlockIOLimit *io_limits = &bs->io_limits;
159 return io_limits->bps[BLOCK_IO_LIMIT_READ]
160 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
161 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
162 || io_limits->iops[BLOCK_IO_LIMIT_READ]
163 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
164 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
165 }
166
167 static void bdrv_io_limits_intercept(BlockDriverState *bs,
168 bool is_write, int nb_sectors)
169 {
170 int64_t wait_time = -1;
171
172 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
173 qemu_co_queue_wait(&bs->throttled_reqs);
174 }
175
176 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
177 * throttled requests will not be dequeued until the current request is
178 * allowed to be serviced. So if the current request still exceeds the
179 * limits, it will be inserted to the head. All requests followed it will
180 * be still in throttled_reqs queue.
181 */
182
183 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
184 qemu_mod_timer(bs->block_timer,
185 wait_time + qemu_get_clock_ns(vm_clock));
186 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
187 }
188
189 qemu_co_queue_next(&bs->throttled_reqs);
190 }
191
192 /* check if the path starts with "<protocol>:" */
193 static int path_has_protocol(const char *path)
194 {
195 const char *p;
196
197 #ifdef _WIN32
198 if (is_windows_drive(path) ||
199 is_windows_drive_prefix(path)) {
200 return 0;
201 }
202 p = path + strcspn(path, ":/\\");
203 #else
204 p = path + strcspn(path, ":/");
205 #endif
206
207 return *p == ':';
208 }
209
210 int path_is_absolute(const char *path)
211 {
212 #ifdef _WIN32
213 /* specific case for names like: "\\.\d:" */
214 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
215 return 1;
216 }
217 return (*path == '/' || *path == '\\');
218 #else
219 return (*path == '/');
220 #endif
221 }
222
223 /* if filename is absolute, just copy it to dest. Otherwise, build a
224 path to it by considering it is relative to base_path. URL are
225 supported. */
226 void path_combine(char *dest, int dest_size,
227 const char *base_path,
228 const char *filename)
229 {
230 const char *p, *p1;
231 int len;
232
233 if (dest_size <= 0)
234 return;
235 if (path_is_absolute(filename)) {
236 pstrcpy(dest, dest_size, filename);
237 } else {
238 p = strchr(base_path, ':');
239 if (p)
240 p++;
241 else
242 p = base_path;
243 p1 = strrchr(base_path, '/');
244 #ifdef _WIN32
245 {
246 const char *p2;
247 p2 = strrchr(base_path, '\\');
248 if (!p1 || p2 > p1)
249 p1 = p2;
250 }
251 #endif
252 if (p1)
253 p1++;
254 else
255 p1 = base_path;
256 if (p1 > p)
257 p = p1;
258 len = p - base_path;
259 if (len > dest_size - 1)
260 len = dest_size - 1;
261 memcpy(dest, base_path, len);
262 dest[len] = '\0';
263 pstrcat(dest, dest_size, filename);
264 }
265 }
266
267 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
268 {
269 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
270 pstrcpy(dest, sz, bs->backing_file);
271 } else {
272 path_combine(dest, sz, bs->filename, bs->backing_file);
273 }
274 }
275
276 void bdrv_register(BlockDriver *bdrv)
277 {
278 /* Block drivers without coroutine functions need emulation */
279 if (!bdrv->bdrv_co_readv) {
280 bdrv->bdrv_co_readv = bdrv_co_readv_em;
281 bdrv->bdrv_co_writev = bdrv_co_writev_em;
282
283 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
284 * the block driver lacks aio we need to emulate that too.
285 */
286 if (!bdrv->bdrv_aio_readv) {
287 /* add AIO emulation layer */
288 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
289 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
290 }
291 }
292
293 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
294 }
295
296 /* create a new block device (by default it is empty) */
297 BlockDriverState *bdrv_new(const char *device_name)
298 {
299 BlockDriverState *bs;
300
301 bs = g_malloc0(sizeof(BlockDriverState));
302 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
303 if (device_name[0] != '\0') {
304 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
305 }
306 bdrv_iostatus_disable(bs);
307 notifier_list_init(&bs->close_notifiers);
308
309 return bs;
310 }
311
312 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
313 {
314 notifier_list_add(&bs->close_notifiers, notify);
315 }
316
317 BlockDriver *bdrv_find_format(const char *format_name)
318 {
319 BlockDriver *drv1;
320 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
321 if (!strcmp(drv1->format_name, format_name)) {
322 return drv1;
323 }
324 }
325 return NULL;
326 }
327
328 static int bdrv_is_whitelisted(BlockDriver *drv, bool read_only)
329 {
330 static const char *whitelist_rw[] = {
331 CONFIG_BDRV_RW_WHITELIST
332 };
333 static const char *whitelist_ro[] = {
334 CONFIG_BDRV_RO_WHITELIST
335 };
336 const char **p;
337
338 if (!whitelist_rw[0] && !whitelist_ro[0]) {
339 return 1; /* no whitelist, anything goes */
340 }
341
342 for (p = whitelist_rw; *p; p++) {
343 if (!strcmp(drv->format_name, *p)) {
344 return 1;
345 }
346 }
347 if (read_only) {
348 for (p = whitelist_ro; *p; p++) {
349 if (!strcmp(drv->format_name, *p)) {
350 return 1;
351 }
352 }
353 }
354 return 0;
355 }
356
357 BlockDriver *bdrv_find_whitelisted_format(const char *format_name,
358 bool read_only)
359 {
360 BlockDriver *drv = bdrv_find_format(format_name);
361 return drv && bdrv_is_whitelisted(drv, read_only) ? drv : NULL;
362 }
363
364 typedef struct CreateCo {
365 BlockDriver *drv;
366 char *filename;
367 QEMUOptionParameter *options;
368 int ret;
369 } CreateCo;
370
371 static void coroutine_fn bdrv_create_co_entry(void *opaque)
372 {
373 CreateCo *cco = opaque;
374 assert(cco->drv);
375
376 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
377 }
378
379 int bdrv_create(BlockDriver *drv, const char* filename,
380 QEMUOptionParameter *options)
381 {
382 int ret;
383
384 Coroutine *co;
385 CreateCo cco = {
386 .drv = drv,
387 .filename = g_strdup(filename),
388 .options = options,
389 .ret = NOT_DONE,
390 };
391
392 if (!drv->bdrv_create) {
393 ret = -ENOTSUP;
394 goto out;
395 }
396
397 if (qemu_in_coroutine()) {
398 /* Fast-path if already in coroutine context */
399 bdrv_create_co_entry(&cco);
400 } else {
401 co = qemu_coroutine_create(bdrv_create_co_entry);
402 qemu_coroutine_enter(co, &cco);
403 while (cco.ret == NOT_DONE) {
404 qemu_aio_wait();
405 }
406 }
407
408 ret = cco.ret;
409
410 out:
411 g_free(cco.filename);
412 return ret;
413 }
414
415 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
416 {
417 BlockDriver *drv;
418
419 drv = bdrv_find_protocol(filename);
420 if (drv == NULL) {
421 return -ENOENT;
422 }
423
424 return bdrv_create(drv, filename, options);
425 }
426
427 /*
428 * Create a uniquely-named empty temporary file.
429 * Return 0 upon success, otherwise a negative errno value.
430 */
431 int get_tmp_filename(char *filename, int size)
432 {
433 #ifdef _WIN32
434 char temp_dir[MAX_PATH];
435 /* GetTempFileName requires that its output buffer (4th param)
436 have length MAX_PATH or greater. */
437 assert(size >= MAX_PATH);
438 return (GetTempPath(MAX_PATH, temp_dir)
439 && GetTempFileName(temp_dir, "qem", 0, filename)
440 ? 0 : -GetLastError());
441 #else
442 int fd;
443 const char *tmpdir;
444 tmpdir = getenv("TMPDIR");
445 if (!tmpdir)
446 tmpdir = "/tmp";
447 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
448 return -EOVERFLOW;
449 }
450 fd = mkstemp(filename);
451 if (fd < 0) {
452 return -errno;
453 }
454 if (close(fd) != 0) {
455 unlink(filename);
456 return -errno;
457 }
458 return 0;
459 #endif
460 }
461
462 /*
463 * Detect host devices. By convention, /dev/cdrom[N] is always
464 * recognized as a host CDROM.
465 */
466 static BlockDriver *find_hdev_driver(const char *filename)
467 {
468 int score_max = 0, score;
469 BlockDriver *drv = NULL, *d;
470
471 QLIST_FOREACH(d, &bdrv_drivers, list) {
472 if (d->bdrv_probe_device) {
473 score = d->bdrv_probe_device(filename);
474 if (score > score_max) {
475 score_max = score;
476 drv = d;
477 }
478 }
479 }
480
481 return drv;
482 }
483
484 BlockDriver *bdrv_find_protocol(const char *filename)
485 {
486 BlockDriver *drv1;
487 char protocol[128];
488 int len;
489 const char *p;
490
491 /* TODO Drivers without bdrv_file_open must be specified explicitly */
492
493 /*
494 * XXX(hch): we really should not let host device detection
495 * override an explicit protocol specification, but moving this
496 * later breaks access to device names with colons in them.
497 * Thanks to the brain-dead persistent naming schemes on udev-
498 * based Linux systems those actually are quite common.
499 */
500 drv1 = find_hdev_driver(filename);
501 if (drv1) {
502 return drv1;
503 }
504
505 if (!path_has_protocol(filename)) {
506 return bdrv_find_format("file");
507 }
508 p = strchr(filename, ':');
509 assert(p != NULL);
510 len = p - filename;
511 if (len > sizeof(protocol) - 1)
512 len = sizeof(protocol) - 1;
513 memcpy(protocol, filename, len);
514 protocol[len] = '\0';
515 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
516 if (drv1->protocol_name &&
517 !strcmp(drv1->protocol_name, protocol)) {
518 return drv1;
519 }
520 }
521 return NULL;
522 }
523
524 static int find_image_format(BlockDriverState *bs, const char *filename,
525 BlockDriver **pdrv)
526 {
527 int score, score_max;
528 BlockDriver *drv1, *drv;
529 uint8_t buf[2048];
530 int ret = 0;
531
532 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
533 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) {
534 drv = bdrv_find_format("raw");
535 if (!drv) {
536 ret = -ENOENT;
537 }
538 *pdrv = drv;
539 return ret;
540 }
541
542 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
543 if (ret < 0) {
544 *pdrv = NULL;
545 return ret;
546 }
547
548 score_max = 0;
549 drv = NULL;
550 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
551 if (drv1->bdrv_probe) {
552 score = drv1->bdrv_probe(buf, ret, filename);
553 if (score > score_max) {
554 score_max = score;
555 drv = drv1;
556 }
557 }
558 }
559 if (!drv) {
560 ret = -ENOENT;
561 }
562 *pdrv = drv;
563 return ret;
564 }
565
566 /**
567 * Set the current 'total_sectors' value
568 */
569 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
570 {
571 BlockDriver *drv = bs->drv;
572
573 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
574 if (bs->sg)
575 return 0;
576
577 /* query actual device if possible, otherwise just trust the hint */
578 if (drv->bdrv_getlength) {
579 int64_t length = drv->bdrv_getlength(bs);
580 if (length < 0) {
581 return length;
582 }
583 hint = length >> BDRV_SECTOR_BITS;
584 }
585
586 bs->total_sectors = hint;
587 return 0;
588 }
589
590 /**
591 * Set open flags for a given discard mode
592 *
593 * Return 0 on success, -1 if the discard mode was invalid.
594 */
595 int bdrv_parse_discard_flags(const char *mode, int *flags)
596 {
597 *flags &= ~BDRV_O_UNMAP;
598
599 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) {
600 /* do nothing */
601 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) {
602 *flags |= BDRV_O_UNMAP;
603 } else {
604 return -1;
605 }
606
607 return 0;
608 }
609
610 /**
611 * Set open flags for a given cache mode
612 *
613 * Return 0 on success, -1 if the cache mode was invalid.
614 */
615 int bdrv_parse_cache_flags(const char *mode, int *flags)
616 {
617 *flags &= ~BDRV_O_CACHE_MASK;
618
619 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
620 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
621 } else if (!strcmp(mode, "directsync")) {
622 *flags |= BDRV_O_NOCACHE;
623 } else if (!strcmp(mode, "writeback")) {
624 *flags |= BDRV_O_CACHE_WB;
625 } else if (!strcmp(mode, "unsafe")) {
626 *flags |= BDRV_O_CACHE_WB;
627 *flags |= BDRV_O_NO_FLUSH;
628 } else if (!strcmp(mode, "writethrough")) {
629 /* this is the default */
630 } else {
631 return -1;
632 }
633
634 return 0;
635 }
636
637 /**
638 * The copy-on-read flag is actually a reference count so multiple users may
639 * use the feature without worrying about clobbering its previous state.
640 * Copy-on-read stays enabled until all users have called to disable it.
641 */
642 void bdrv_enable_copy_on_read(BlockDriverState *bs)
643 {
644 bs->copy_on_read++;
645 }
646
647 void bdrv_disable_copy_on_read(BlockDriverState *bs)
648 {
649 assert(bs->copy_on_read > 0);
650 bs->copy_on_read--;
651 }
652
653 static int bdrv_open_flags(BlockDriverState *bs, int flags)
654 {
655 int open_flags = flags | BDRV_O_CACHE_WB;
656
657 /*
658 * Clear flags that are internal to the block layer before opening the
659 * image.
660 */
661 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
662
663 /*
664 * Snapshots should be writable.
665 */
666 if (bs->is_temporary) {
667 open_flags |= BDRV_O_RDWR;
668 }
669
670 return open_flags;
671 }
672
673 /*
674 * Common part for opening disk images and files
675 *
676 * Removes all processed options from *options.
677 */
678 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
679 QDict *options, int flags, BlockDriver *drv)
680 {
681 int ret, open_flags;
682 const char *filename;
683
684 assert(drv != NULL);
685 assert(bs->file == NULL);
686 assert(options != NULL && bs->options != options);
687
688 if (file != NULL) {
689 filename = file->filename;
690 } else {
691 filename = qdict_get_try_str(options, "filename");
692 }
693
694 trace_bdrv_open_common(bs, filename ?: "", flags, drv->format_name);
695
696 /* bdrv_open() with directly using a protocol as drv. This layer is already
697 * opened, so assign it to bs (while file becomes a closed BlockDriverState)
698 * and return immediately. */
699 if (file != NULL && drv->bdrv_file_open) {
700 bdrv_swap(file, bs);
701 return 0;
702 }
703
704 bs->open_flags = flags;
705 bs->buffer_alignment = 512;
706 open_flags = bdrv_open_flags(bs, flags);
707 bs->read_only = !(open_flags & BDRV_O_RDWR);
708
709 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv, bs->read_only)) {
710 return -ENOTSUP;
711 }
712
713 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
714 if (!bs->read_only && (flags & BDRV_O_COPY_ON_READ)) {
715 bdrv_enable_copy_on_read(bs);
716 }
717
718 if (filename != NULL) {
719 pstrcpy(bs->filename, sizeof(bs->filename), filename);
720 } else {
721 bs->filename[0] = '\0';
722 }
723
724 bs->drv = drv;
725 bs->opaque = g_malloc0(drv->instance_size);
726
727 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
728
729 /* Open the image, either directly or using a protocol */
730 if (drv->bdrv_file_open) {
731 assert(file == NULL);
732 assert(drv->bdrv_parse_filename || filename != NULL);
733 ret = drv->bdrv_file_open(bs, options, open_flags);
734 } else {
735 if (file == NULL) {
736 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't use '%s' as a "
737 "block driver for the protocol level",
738 drv->format_name);
739 ret = -EINVAL;
740 goto free_and_fail;
741 }
742 assert(file != NULL);
743 bs->file = file;
744 ret = drv->bdrv_open(bs, options, open_flags);
745 }
746
747 if (ret < 0) {
748 goto free_and_fail;
749 }
750
751 ret = refresh_total_sectors(bs, bs->total_sectors);
752 if (ret < 0) {
753 goto free_and_fail;
754 }
755
756 #ifndef _WIN32
757 if (bs->is_temporary) {
758 assert(filename != NULL);
759 unlink(filename);
760 }
761 #endif
762 return 0;
763
764 free_and_fail:
765 bs->file = NULL;
766 g_free(bs->opaque);
767 bs->opaque = NULL;
768 bs->drv = NULL;
769 return ret;
770 }
771
772 /*
773 * Opens a file using a protocol (file, host_device, nbd, ...)
774 *
775 * options is a QDict of options to pass to the block drivers, or NULL for an
776 * empty set of options. The reference to the QDict belongs to the block layer
777 * after the call (even on failure), so if the caller intends to reuse the
778 * dictionary, it needs to use QINCREF() before calling bdrv_file_open.
779 */
780 int bdrv_file_open(BlockDriverState **pbs, const char *filename,
781 QDict *options, int flags)
782 {
783 BlockDriverState *bs;
784 BlockDriver *drv;
785 const char *drvname;
786 int ret;
787
788 /* NULL means an empty set of options */
789 if (options == NULL) {
790 options = qdict_new();
791 }
792
793 bs = bdrv_new("");
794 bs->options = options;
795 options = qdict_clone_shallow(options);
796
797 /* Fetch the file name from the options QDict if necessary */
798 if (!filename) {
799 filename = qdict_get_try_str(options, "filename");
800 } else if (filename && !qdict_haskey(options, "filename")) {
801 qdict_put(options, "filename", qstring_from_str(filename));
802 } else {
803 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't specify 'file' and "
804 "'filename' options at the same time");
805 ret = -EINVAL;
806 goto fail;
807 }
808
809 /* Find the right block driver */
810 drvname = qdict_get_try_str(options, "driver");
811 if (drvname) {
812 drv = bdrv_find_whitelisted_format(drvname, !(flags & BDRV_O_RDWR));
813 qdict_del(options, "driver");
814 } else if (filename) {
815 drv = bdrv_find_protocol(filename);
816 } else {
817 qerror_report(ERROR_CLASS_GENERIC_ERROR,
818 "Must specify either driver or file");
819 drv = NULL;
820 }
821
822 if (!drv) {
823 ret = -ENOENT;
824 goto fail;
825 }
826
827 /* Parse the filename and open it */
828 if (drv->bdrv_parse_filename && filename) {
829 Error *local_err = NULL;
830 drv->bdrv_parse_filename(filename, options, &local_err);
831 if (error_is_set(&local_err)) {
832 qerror_report_err(local_err);
833 error_free(local_err);
834 ret = -EINVAL;
835 goto fail;
836 }
837 qdict_del(options, "filename");
838 } else if (!drv->bdrv_parse_filename && !filename) {
839 qerror_report(ERROR_CLASS_GENERIC_ERROR,
840 "The '%s' block driver requires a file name",
841 drv->format_name);
842 ret = -EINVAL;
843 goto fail;
844 }
845
846 ret = bdrv_open_common(bs, NULL, options, flags, drv);
847 if (ret < 0) {
848 goto fail;
849 }
850
851 /* Check if any unknown options were used */
852 if (qdict_size(options) != 0) {
853 const QDictEntry *entry = qdict_first(options);
854 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't "
855 "support the option '%s'",
856 drv->format_name, entry->key);
857 ret = -EINVAL;
858 goto fail;
859 }
860 QDECREF(options);
861
862 bs->growable = 1;
863 *pbs = bs;
864 return 0;
865
866 fail:
867 QDECREF(options);
868 if (!bs->drv) {
869 QDECREF(bs->options);
870 }
871 bdrv_delete(bs);
872 return ret;
873 }
874
875 /*
876 * Opens the backing file for a BlockDriverState if not yet open
877 *
878 * options is a QDict of options to pass to the block drivers, or NULL for an
879 * empty set of options. The reference to the QDict is transferred to this
880 * function (even on failure), so if the caller intends to reuse the dictionary,
881 * it needs to use QINCREF() before calling bdrv_file_open.
882 */
883 int bdrv_open_backing_file(BlockDriverState *bs, QDict *options)
884 {
885 char backing_filename[PATH_MAX];
886 int back_flags, ret;
887 BlockDriver *back_drv = NULL;
888
889 if (bs->backing_hd != NULL) {
890 QDECREF(options);
891 return 0;
892 }
893
894 /* NULL means an empty set of options */
895 if (options == NULL) {
896 options = qdict_new();
897 }
898
899 bs->open_flags &= ~BDRV_O_NO_BACKING;
900 if (qdict_haskey(options, "file.filename")) {
901 backing_filename[0] = '\0';
902 } else if (bs->backing_file[0] == '\0' && qdict_size(options) == 0) {
903 QDECREF(options);
904 return 0;
905 }
906
907 bs->backing_hd = bdrv_new("");
908 bdrv_get_full_backing_filename(bs, backing_filename,
909 sizeof(backing_filename));
910
911 if (bs->backing_format[0] != '\0') {
912 back_drv = bdrv_find_format(bs->backing_format);
913 }
914
915 /* backing files always opened read-only */
916 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
917
918 ret = bdrv_open(bs->backing_hd,
919 *backing_filename ? backing_filename : NULL, options,
920 back_flags, back_drv);
921 if (ret < 0) {
922 bdrv_delete(bs->backing_hd);
923 bs->backing_hd = NULL;
924 bs->open_flags |= BDRV_O_NO_BACKING;
925 return ret;
926 }
927 return 0;
928 }
929
930 static void extract_subqdict(QDict *src, QDict **dst, const char *start)
931 {
932 const QDictEntry *entry, *next;
933 const char *p;
934
935 *dst = qdict_new();
936 entry = qdict_first(src);
937
938 while (entry != NULL) {
939 next = qdict_next(src, entry);
940 if (strstart(entry->key, start, &p)) {
941 qobject_incref(entry->value);
942 qdict_put_obj(*dst, p, entry->value);
943 qdict_del(src, entry->key);
944 }
945 entry = next;
946 }
947 }
948
949 /*
950 * Opens a disk image (raw, qcow2, vmdk, ...)
951 *
952 * options is a QDict of options to pass to the block drivers, or NULL for an
953 * empty set of options. The reference to the QDict belongs to the block layer
954 * after the call (even on failure), so if the caller intends to reuse the
955 * dictionary, it needs to use QINCREF() before calling bdrv_open.
956 */
957 int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options,
958 int flags, BlockDriver *drv)
959 {
960 int ret;
961 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
962 char tmp_filename[PATH_MAX + 1];
963 BlockDriverState *file = NULL;
964 QDict *file_options = NULL;
965
966 /* NULL means an empty set of options */
967 if (options == NULL) {
968 options = qdict_new();
969 }
970
971 bs->options = options;
972 options = qdict_clone_shallow(options);
973
974 /* For snapshot=on, create a temporary qcow2 overlay */
975 if (flags & BDRV_O_SNAPSHOT) {
976 BlockDriverState *bs1;
977 int64_t total_size;
978 BlockDriver *bdrv_qcow2;
979 QEMUOptionParameter *create_options;
980 char backing_filename[PATH_MAX];
981
982 if (qdict_size(options) != 0) {
983 error_report("Can't use snapshot=on with driver-specific options");
984 ret = -EINVAL;
985 goto fail;
986 }
987 assert(filename != NULL);
988
989 /* if snapshot, we create a temporary backing file and open it
990 instead of opening 'filename' directly */
991
992 /* if there is a backing file, use it */
993 bs1 = bdrv_new("");
994 ret = bdrv_open(bs1, filename, NULL, 0, drv);
995 if (ret < 0) {
996 bdrv_delete(bs1);
997 goto fail;
998 }
999 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
1000
1001 bdrv_delete(bs1);
1002
1003 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
1004 if (ret < 0) {
1005 goto fail;
1006 }
1007
1008 /* Real path is meaningless for protocols */
1009 if (path_has_protocol(filename)) {
1010 snprintf(backing_filename, sizeof(backing_filename),
1011 "%s", filename);
1012 } else if (!realpath(filename, backing_filename)) {
1013 ret = -errno;
1014 goto fail;
1015 }
1016
1017 bdrv_qcow2 = bdrv_find_format("qcow2");
1018 create_options = parse_option_parameters("", bdrv_qcow2->create_options,
1019 NULL);
1020
1021 set_option_parameter_int(create_options, BLOCK_OPT_SIZE, total_size);
1022 set_option_parameter(create_options, BLOCK_OPT_BACKING_FILE,
1023 backing_filename);
1024 if (drv) {
1025 set_option_parameter(create_options, BLOCK_OPT_BACKING_FMT,
1026 drv->format_name);
1027 }
1028
1029 ret = bdrv_create(bdrv_qcow2, tmp_filename, create_options);
1030 free_option_parameters(create_options);
1031 if (ret < 0) {
1032 goto fail;
1033 }
1034
1035 filename = tmp_filename;
1036 drv = bdrv_qcow2;
1037 bs->is_temporary = 1;
1038 }
1039
1040 /* Open image file without format layer */
1041 if (flags & BDRV_O_RDWR) {
1042 flags |= BDRV_O_ALLOW_RDWR;
1043 }
1044
1045 extract_subqdict(options, &file_options, "file.");
1046
1047 ret = bdrv_file_open(&file, filename, file_options,
1048 bdrv_open_flags(bs, flags));
1049 if (ret < 0) {
1050 goto fail;
1051 }
1052
1053 /* Find the right image format driver */
1054 if (!drv) {
1055 ret = find_image_format(file, filename, &drv);
1056 }
1057
1058 if (!drv) {
1059 goto unlink_and_fail;
1060 }
1061
1062 /* Open the image */
1063 ret = bdrv_open_common(bs, file, options, flags, drv);
1064 if (ret < 0) {
1065 goto unlink_and_fail;
1066 }
1067
1068 if (bs->file != file) {
1069 bdrv_delete(file);
1070 file = NULL;
1071 }
1072
1073 /* If there is a backing file, use it */
1074 if ((flags & BDRV_O_NO_BACKING) == 0) {
1075 QDict *backing_options;
1076
1077 extract_subqdict(options, &backing_options, "backing.");
1078 ret = bdrv_open_backing_file(bs, backing_options);
1079 if (ret < 0) {
1080 goto close_and_fail;
1081 }
1082 }
1083
1084 /* Check if any unknown options were used */
1085 if (qdict_size(options) != 0) {
1086 const QDictEntry *entry = qdict_first(options);
1087 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by "
1088 "device '%s' doesn't support the option '%s'",
1089 drv->format_name, bs->device_name, entry->key);
1090
1091 ret = -EINVAL;
1092 goto close_and_fail;
1093 }
1094 QDECREF(options);
1095
1096 if (!bdrv_key_required(bs)) {
1097 bdrv_dev_change_media_cb(bs, true);
1098 }
1099
1100 /* throttling disk I/O limits */
1101 if (bs->io_limits_enabled) {
1102 bdrv_io_limits_enable(bs);
1103 }
1104
1105 return 0;
1106
1107 unlink_and_fail:
1108 if (file != NULL) {
1109 bdrv_delete(file);
1110 }
1111 if (bs->is_temporary) {
1112 unlink(filename);
1113 }
1114 fail:
1115 QDECREF(bs->options);
1116 QDECREF(options);
1117 bs->options = NULL;
1118 return ret;
1119
1120 close_and_fail:
1121 bdrv_close(bs);
1122 QDECREF(options);
1123 return ret;
1124 }
1125
1126 typedef struct BlockReopenQueueEntry {
1127 bool prepared;
1128 BDRVReopenState state;
1129 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
1130 } BlockReopenQueueEntry;
1131
1132 /*
1133 * Adds a BlockDriverState to a simple queue for an atomic, transactional
1134 * reopen of multiple devices.
1135 *
1136 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
1137 * already performed, or alternatively may be NULL a new BlockReopenQueue will
1138 * be created and initialized. This newly created BlockReopenQueue should be
1139 * passed back in for subsequent calls that are intended to be of the same
1140 * atomic 'set'.
1141 *
1142 * bs is the BlockDriverState to add to the reopen queue.
1143 *
1144 * flags contains the open flags for the associated bs
1145 *
1146 * returns a pointer to bs_queue, which is either the newly allocated
1147 * bs_queue, or the existing bs_queue being used.
1148 *
1149 */
1150 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
1151 BlockDriverState *bs, int flags)
1152 {
1153 assert(bs != NULL);
1154
1155 BlockReopenQueueEntry *bs_entry;
1156 if (bs_queue == NULL) {
1157 bs_queue = g_new0(BlockReopenQueue, 1);
1158 QSIMPLEQ_INIT(bs_queue);
1159 }
1160
1161 if (bs->file) {
1162 bdrv_reopen_queue(bs_queue, bs->file, flags);
1163 }
1164
1165 bs_entry = g_new0(BlockReopenQueueEntry, 1);
1166 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
1167
1168 bs_entry->state.bs = bs;
1169 bs_entry->state.flags = flags;
1170
1171 return bs_queue;
1172 }
1173
1174 /*
1175 * Reopen multiple BlockDriverStates atomically & transactionally.
1176 *
1177 * The queue passed in (bs_queue) must have been built up previous
1178 * via bdrv_reopen_queue().
1179 *
1180 * Reopens all BDS specified in the queue, with the appropriate
1181 * flags. All devices are prepared for reopen, and failure of any
1182 * device will cause all device changes to be abandonded, and intermediate
1183 * data cleaned up.
1184 *
1185 * If all devices prepare successfully, then the changes are committed
1186 * to all devices.
1187 *
1188 */
1189 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
1190 {
1191 int ret = -1;
1192 BlockReopenQueueEntry *bs_entry, *next;
1193 Error *local_err = NULL;
1194
1195 assert(bs_queue != NULL);
1196
1197 bdrv_drain_all();
1198
1199 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1200 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
1201 error_propagate(errp, local_err);
1202 goto cleanup;
1203 }
1204 bs_entry->prepared = true;
1205 }
1206
1207 /* If we reach this point, we have success and just need to apply the
1208 * changes
1209 */
1210 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1211 bdrv_reopen_commit(&bs_entry->state);
1212 }
1213
1214 ret = 0;
1215
1216 cleanup:
1217 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
1218 if (ret && bs_entry->prepared) {
1219 bdrv_reopen_abort(&bs_entry->state);
1220 }
1221 g_free(bs_entry);
1222 }
1223 g_free(bs_queue);
1224 return ret;
1225 }
1226
1227
1228 /* Reopen a single BlockDriverState with the specified flags. */
1229 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1230 {
1231 int ret = -1;
1232 Error *local_err = NULL;
1233 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1234
1235 ret = bdrv_reopen_multiple(queue, &local_err);
1236 if (local_err != NULL) {
1237 error_propagate(errp, local_err);
1238 }
1239 return ret;
1240 }
1241
1242
1243 /*
1244 * Prepares a BlockDriverState for reopen. All changes are staged in the
1245 * 'opaque' field of the BDRVReopenState, which is used and allocated by
1246 * the block driver layer .bdrv_reopen_prepare()
1247 *
1248 * bs is the BlockDriverState to reopen
1249 * flags are the new open flags
1250 * queue is the reopen queue
1251 *
1252 * Returns 0 on success, non-zero on error. On error errp will be set
1253 * as well.
1254 *
1255 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1256 * It is the responsibility of the caller to then call the abort() or
1257 * commit() for any other BDS that have been left in a prepare() state
1258 *
1259 */
1260 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1261 Error **errp)
1262 {
1263 int ret = -1;
1264 Error *local_err = NULL;
1265 BlockDriver *drv;
1266
1267 assert(reopen_state != NULL);
1268 assert(reopen_state->bs->drv != NULL);
1269 drv = reopen_state->bs->drv;
1270
1271 /* if we are to stay read-only, do not allow permission change
1272 * to r/w */
1273 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1274 reopen_state->flags & BDRV_O_RDWR) {
1275 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1276 reopen_state->bs->device_name);
1277 goto error;
1278 }
1279
1280
1281 ret = bdrv_flush(reopen_state->bs);
1282 if (ret) {
1283 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1284 strerror(-ret));
1285 goto error;
1286 }
1287
1288 if (drv->bdrv_reopen_prepare) {
1289 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1290 if (ret) {
1291 if (local_err != NULL) {
1292 error_propagate(errp, local_err);
1293 } else {
1294 error_set(errp, QERR_OPEN_FILE_FAILED,
1295 reopen_state->bs->filename);
1296 }
1297 goto error;
1298 }
1299 } else {
1300 /* It is currently mandatory to have a bdrv_reopen_prepare()
1301 * handler for each supported drv. */
1302 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1303 drv->format_name, reopen_state->bs->device_name,
1304 "reopening of file");
1305 ret = -1;
1306 goto error;
1307 }
1308
1309 ret = 0;
1310
1311 error:
1312 return ret;
1313 }
1314
1315 /*
1316 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1317 * makes them final by swapping the staging BlockDriverState contents into
1318 * the active BlockDriverState contents.
1319 */
1320 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1321 {
1322 BlockDriver *drv;
1323
1324 assert(reopen_state != NULL);
1325 drv = reopen_state->bs->drv;
1326 assert(drv != NULL);
1327
1328 /* If there are any driver level actions to take */
1329 if (drv->bdrv_reopen_commit) {
1330 drv->bdrv_reopen_commit(reopen_state);
1331 }
1332
1333 /* set BDS specific flags now */
1334 reopen_state->bs->open_flags = reopen_state->flags;
1335 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1336 BDRV_O_CACHE_WB);
1337 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1338 }
1339
1340 /*
1341 * Abort the reopen, and delete and free the staged changes in
1342 * reopen_state
1343 */
1344 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1345 {
1346 BlockDriver *drv;
1347
1348 assert(reopen_state != NULL);
1349 drv = reopen_state->bs->drv;
1350 assert(drv != NULL);
1351
1352 if (drv->bdrv_reopen_abort) {
1353 drv->bdrv_reopen_abort(reopen_state);
1354 }
1355 }
1356
1357
1358 void bdrv_close(BlockDriverState *bs)
1359 {
1360 bdrv_flush(bs);
1361 if (bs->job) {
1362 block_job_cancel_sync(bs->job);
1363 }
1364 bdrv_drain_all();
1365 notifier_list_notify(&bs->close_notifiers, bs);
1366
1367 if (bs->drv) {
1368 if (bs->backing_hd) {
1369 bdrv_delete(bs->backing_hd);
1370 bs->backing_hd = NULL;
1371 }
1372 bs->drv->bdrv_close(bs);
1373 g_free(bs->opaque);
1374 #ifdef _WIN32
1375 if (bs->is_temporary) {
1376 unlink(bs->filename);
1377 }
1378 #endif
1379 bs->opaque = NULL;
1380 bs->drv = NULL;
1381 bs->copy_on_read = 0;
1382 bs->backing_file[0] = '\0';
1383 bs->backing_format[0] = '\0';
1384 bs->total_sectors = 0;
1385 bs->encrypted = 0;
1386 bs->valid_key = 0;
1387 bs->sg = 0;
1388 bs->growable = 0;
1389 QDECREF(bs->options);
1390 bs->options = NULL;
1391
1392 if (bs->file != NULL) {
1393 bdrv_delete(bs->file);
1394 bs->file = NULL;
1395 }
1396 }
1397
1398 bdrv_dev_change_media_cb(bs, false);
1399
1400 /*throttling disk I/O limits*/
1401 if (bs->io_limits_enabled) {
1402 bdrv_io_limits_disable(bs);
1403 }
1404 }
1405
1406 void bdrv_close_all(void)
1407 {
1408 BlockDriverState *bs;
1409
1410 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1411 bdrv_close(bs);
1412 }
1413 }
1414
1415 /*
1416 * Wait for pending requests to complete across all BlockDriverStates
1417 *
1418 * This function does not flush data to disk, use bdrv_flush_all() for that
1419 * after calling this function.
1420 *
1421 * Note that completion of an asynchronous I/O operation can trigger any
1422 * number of other I/O operations on other devices---for example a coroutine
1423 * can be arbitrarily complex and a constant flow of I/O can come until the
1424 * coroutine is complete. Because of this, it is not possible to have a
1425 * function to drain a single device's I/O queue.
1426 */
1427 void bdrv_drain_all(void)
1428 {
1429 BlockDriverState *bs;
1430 bool busy;
1431
1432 do {
1433 busy = qemu_aio_wait();
1434
1435 /* FIXME: We do not have timer support here, so this is effectively
1436 * a busy wait.
1437 */
1438 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1439 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1440 qemu_co_queue_restart_all(&bs->throttled_reqs);
1441 busy = true;
1442 }
1443 }
1444 } while (busy);
1445
1446 /* If requests are still pending there is a bug somewhere */
1447 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1448 assert(QLIST_EMPTY(&bs->tracked_requests));
1449 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1450 }
1451 }
1452
1453 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1454 Also, NULL terminate the device_name to prevent double remove */
1455 void bdrv_make_anon(BlockDriverState *bs)
1456 {
1457 if (bs->device_name[0] != '\0') {
1458 QTAILQ_REMOVE(&bdrv_states, bs, list);
1459 }
1460 bs->device_name[0] = '\0';
1461 }
1462
1463 static void bdrv_rebind(BlockDriverState *bs)
1464 {
1465 if (bs->drv && bs->drv->bdrv_rebind) {
1466 bs->drv->bdrv_rebind(bs);
1467 }
1468 }
1469
1470 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1471 BlockDriverState *bs_src)
1472 {
1473 /* move some fields that need to stay attached to the device */
1474 bs_dest->open_flags = bs_src->open_flags;
1475
1476 /* dev info */
1477 bs_dest->dev_ops = bs_src->dev_ops;
1478 bs_dest->dev_opaque = bs_src->dev_opaque;
1479 bs_dest->dev = bs_src->dev;
1480 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1481 bs_dest->copy_on_read = bs_src->copy_on_read;
1482
1483 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1484
1485 /* i/o timing parameters */
1486 bs_dest->slice_start = bs_src->slice_start;
1487 bs_dest->slice_end = bs_src->slice_end;
1488 bs_dest->slice_submitted = bs_src->slice_submitted;
1489 bs_dest->io_limits = bs_src->io_limits;
1490 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1491 bs_dest->block_timer = bs_src->block_timer;
1492 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1493
1494 /* r/w error */
1495 bs_dest->on_read_error = bs_src->on_read_error;
1496 bs_dest->on_write_error = bs_src->on_write_error;
1497
1498 /* i/o status */
1499 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1500 bs_dest->iostatus = bs_src->iostatus;
1501
1502 /* dirty bitmap */
1503 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1504
1505 /* job */
1506 bs_dest->in_use = bs_src->in_use;
1507 bs_dest->job = bs_src->job;
1508
1509 /* keep the same entry in bdrv_states */
1510 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1511 bs_src->device_name);
1512 bs_dest->list = bs_src->list;
1513 }
1514
1515 /*
1516 * Swap bs contents for two image chains while they are live,
1517 * while keeping required fields on the BlockDriverState that is
1518 * actually attached to a device.
1519 *
1520 * This will modify the BlockDriverState fields, and swap contents
1521 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1522 *
1523 * bs_new is required to be anonymous.
1524 *
1525 * This function does not create any image files.
1526 */
1527 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1528 {
1529 BlockDriverState tmp;
1530
1531 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1532 assert(bs_new->device_name[0] == '\0');
1533 assert(bs_new->dirty_bitmap == NULL);
1534 assert(bs_new->job == NULL);
1535 assert(bs_new->dev == NULL);
1536 assert(bs_new->in_use == 0);
1537 assert(bs_new->io_limits_enabled == false);
1538 assert(bs_new->block_timer == NULL);
1539
1540 tmp = *bs_new;
1541 *bs_new = *bs_old;
1542 *bs_old = tmp;
1543
1544 /* there are some fields that should not be swapped, move them back */
1545 bdrv_move_feature_fields(&tmp, bs_old);
1546 bdrv_move_feature_fields(bs_old, bs_new);
1547 bdrv_move_feature_fields(bs_new, &tmp);
1548
1549 /* bs_new shouldn't be in bdrv_states even after the swap! */
1550 assert(bs_new->device_name[0] == '\0');
1551
1552 /* Check a few fields that should remain attached to the device */
1553 assert(bs_new->dev == NULL);
1554 assert(bs_new->job == NULL);
1555 assert(bs_new->in_use == 0);
1556 assert(bs_new->io_limits_enabled == false);
1557 assert(bs_new->block_timer == NULL);
1558
1559 bdrv_rebind(bs_new);
1560 bdrv_rebind(bs_old);
1561 }
1562
1563 /*
1564 * Add new bs contents at the top of an image chain while the chain is
1565 * live, while keeping required fields on the top layer.
1566 *
1567 * This will modify the BlockDriverState fields, and swap contents
1568 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1569 *
1570 * bs_new is required to be anonymous.
1571 *
1572 * This function does not create any image files.
1573 */
1574 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1575 {
1576 bdrv_swap(bs_new, bs_top);
1577
1578 /* The contents of 'tmp' will become bs_top, as we are
1579 * swapping bs_new and bs_top contents. */
1580 bs_top->backing_hd = bs_new;
1581 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1582 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1583 bs_new->filename);
1584 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1585 bs_new->drv ? bs_new->drv->format_name : "");
1586 }
1587
1588 void bdrv_delete(BlockDriverState *bs)
1589 {
1590 assert(!bs->dev);
1591 assert(!bs->job);
1592 assert(!bs->in_use);
1593
1594 /* remove from list, if necessary */
1595 bdrv_make_anon(bs);
1596
1597 bdrv_close(bs);
1598
1599 g_free(bs);
1600 }
1601
1602 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1603 /* TODO change to DeviceState *dev when all users are qdevified */
1604 {
1605 if (bs->dev) {
1606 return -EBUSY;
1607 }
1608 bs->dev = dev;
1609 bdrv_iostatus_reset(bs);
1610 return 0;
1611 }
1612
1613 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1614 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1615 {
1616 if (bdrv_attach_dev(bs, dev) < 0) {
1617 abort();
1618 }
1619 }
1620
1621 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1622 /* TODO change to DeviceState *dev when all users are qdevified */
1623 {
1624 assert(bs->dev == dev);
1625 bs->dev = NULL;
1626 bs->dev_ops = NULL;
1627 bs->dev_opaque = NULL;
1628 bs->buffer_alignment = 512;
1629 }
1630
1631 /* TODO change to return DeviceState * when all users are qdevified */
1632 void *bdrv_get_attached_dev(BlockDriverState *bs)
1633 {
1634 return bs->dev;
1635 }
1636
1637 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1638 void *opaque)
1639 {
1640 bs->dev_ops = ops;
1641 bs->dev_opaque = opaque;
1642 }
1643
1644 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1645 enum MonitorEvent ev,
1646 BlockErrorAction action, bool is_read)
1647 {
1648 QObject *data;
1649 const char *action_str;
1650
1651 switch (action) {
1652 case BDRV_ACTION_REPORT:
1653 action_str = "report";
1654 break;
1655 case BDRV_ACTION_IGNORE:
1656 action_str = "ignore";
1657 break;
1658 case BDRV_ACTION_STOP:
1659 action_str = "stop";
1660 break;
1661 default:
1662 abort();
1663 }
1664
1665 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1666 bdrv->device_name,
1667 action_str,
1668 is_read ? "read" : "write");
1669 monitor_protocol_event(ev, data);
1670
1671 qobject_decref(data);
1672 }
1673
1674 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1675 {
1676 QObject *data;
1677
1678 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1679 bdrv_get_device_name(bs), ejected);
1680 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1681
1682 qobject_decref(data);
1683 }
1684
1685 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1686 {
1687 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1688 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1689 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1690 if (tray_was_closed) {
1691 /* tray open */
1692 bdrv_emit_qmp_eject_event(bs, true);
1693 }
1694 if (load) {
1695 /* tray close */
1696 bdrv_emit_qmp_eject_event(bs, false);
1697 }
1698 }
1699 }
1700
1701 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1702 {
1703 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1704 }
1705
1706 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1707 {
1708 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1709 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1710 }
1711 }
1712
1713 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1714 {
1715 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1716 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1717 }
1718 return false;
1719 }
1720
1721 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1722 {
1723 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1724 bs->dev_ops->resize_cb(bs->dev_opaque);
1725 }
1726 }
1727
1728 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1729 {
1730 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1731 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1732 }
1733 return false;
1734 }
1735
1736 /*
1737 * Run consistency checks on an image
1738 *
1739 * Returns 0 if the check could be completed (it doesn't mean that the image is
1740 * free of errors) or -errno when an internal error occurred. The results of the
1741 * check are stored in res.
1742 */
1743 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1744 {
1745 if (bs->drv->bdrv_check == NULL) {
1746 return -ENOTSUP;
1747 }
1748
1749 memset(res, 0, sizeof(*res));
1750 return bs->drv->bdrv_check(bs, res, fix);
1751 }
1752
1753 #define COMMIT_BUF_SECTORS 2048
1754
1755 /* commit COW file into the raw image */
1756 int bdrv_commit(BlockDriverState *bs)
1757 {
1758 BlockDriver *drv = bs->drv;
1759 int64_t sector, total_sectors;
1760 int n, ro, open_flags;
1761 int ret = 0;
1762 uint8_t *buf;
1763 char filename[PATH_MAX];
1764
1765 if (!drv)
1766 return -ENOMEDIUM;
1767
1768 if (!bs->backing_hd) {
1769 return -ENOTSUP;
1770 }
1771
1772 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1773 return -EBUSY;
1774 }
1775
1776 ro = bs->backing_hd->read_only;
1777 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1778 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1779 open_flags = bs->backing_hd->open_flags;
1780
1781 if (ro) {
1782 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1783 return -EACCES;
1784 }
1785 }
1786
1787 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1788 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1789
1790 for (sector = 0; sector < total_sectors; sector += n) {
1791 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1792
1793 if (bdrv_read(bs, sector, buf, n) != 0) {
1794 ret = -EIO;
1795 goto ro_cleanup;
1796 }
1797
1798 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1799 ret = -EIO;
1800 goto ro_cleanup;
1801 }
1802 }
1803 }
1804
1805 if (drv->bdrv_make_empty) {
1806 ret = drv->bdrv_make_empty(bs);
1807 bdrv_flush(bs);
1808 }
1809
1810 /*
1811 * Make sure all data we wrote to the backing device is actually
1812 * stable on disk.
1813 */
1814 if (bs->backing_hd)
1815 bdrv_flush(bs->backing_hd);
1816
1817 ro_cleanup:
1818 g_free(buf);
1819
1820 if (ro) {
1821 /* ignoring error return here */
1822 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1823 }
1824
1825 return ret;
1826 }
1827
1828 int bdrv_commit_all(void)
1829 {
1830 BlockDriverState *bs;
1831
1832 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1833 if (bs->drv && bs->backing_hd) {
1834 int ret = bdrv_commit(bs);
1835 if (ret < 0) {
1836 return ret;
1837 }
1838 }
1839 }
1840 return 0;
1841 }
1842
1843 struct BdrvTrackedRequest {
1844 BlockDriverState *bs;
1845 int64_t sector_num;
1846 int nb_sectors;
1847 bool is_write;
1848 QLIST_ENTRY(BdrvTrackedRequest) list;
1849 Coroutine *co; /* owner, used for deadlock detection */
1850 CoQueue wait_queue; /* coroutines blocked on this request */
1851 };
1852
1853 /**
1854 * Remove an active request from the tracked requests list
1855 *
1856 * This function should be called when a tracked request is completing.
1857 */
1858 static void tracked_request_end(BdrvTrackedRequest *req)
1859 {
1860 QLIST_REMOVE(req, list);
1861 qemu_co_queue_restart_all(&req->wait_queue);
1862 }
1863
1864 /**
1865 * Add an active request to the tracked requests list
1866 */
1867 static void tracked_request_begin(BdrvTrackedRequest *req,
1868 BlockDriverState *bs,
1869 int64_t sector_num,
1870 int nb_sectors, bool is_write)
1871 {
1872 *req = (BdrvTrackedRequest){
1873 .bs = bs,
1874 .sector_num = sector_num,
1875 .nb_sectors = nb_sectors,
1876 .is_write = is_write,
1877 .co = qemu_coroutine_self(),
1878 };
1879
1880 qemu_co_queue_init(&req->wait_queue);
1881
1882 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1883 }
1884
1885 /**
1886 * Round a region to cluster boundaries
1887 */
1888 void bdrv_round_to_clusters(BlockDriverState *bs,
1889 int64_t sector_num, int nb_sectors,
1890 int64_t *cluster_sector_num,
1891 int *cluster_nb_sectors)
1892 {
1893 BlockDriverInfo bdi;
1894
1895 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1896 *cluster_sector_num = sector_num;
1897 *cluster_nb_sectors = nb_sectors;
1898 } else {
1899 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1900 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1901 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1902 nb_sectors, c);
1903 }
1904 }
1905
1906 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1907 int64_t sector_num, int nb_sectors) {
1908 /* aaaa bbbb */
1909 if (sector_num >= req->sector_num + req->nb_sectors) {
1910 return false;
1911 }
1912 /* bbbb aaaa */
1913 if (req->sector_num >= sector_num + nb_sectors) {
1914 return false;
1915 }
1916 return true;
1917 }
1918
1919 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1920 int64_t sector_num, int nb_sectors)
1921 {
1922 BdrvTrackedRequest *req;
1923 int64_t cluster_sector_num;
1924 int cluster_nb_sectors;
1925 bool retry;
1926
1927 /* If we touch the same cluster it counts as an overlap. This guarantees
1928 * that allocating writes will be serialized and not race with each other
1929 * for the same cluster. For example, in copy-on-read it ensures that the
1930 * CoR read and write operations are atomic and guest writes cannot
1931 * interleave between them.
1932 */
1933 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
1934 &cluster_sector_num, &cluster_nb_sectors);
1935
1936 do {
1937 retry = false;
1938 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1939 if (tracked_request_overlaps(req, cluster_sector_num,
1940 cluster_nb_sectors)) {
1941 /* Hitting this means there was a reentrant request, for
1942 * example, a block driver issuing nested requests. This must
1943 * never happen since it means deadlock.
1944 */
1945 assert(qemu_coroutine_self() != req->co);
1946
1947 qemu_co_queue_wait(&req->wait_queue);
1948 retry = true;
1949 break;
1950 }
1951 }
1952 } while (retry);
1953 }
1954
1955 /*
1956 * Return values:
1957 * 0 - success
1958 * -EINVAL - backing format specified, but no file
1959 * -ENOSPC - can't update the backing file because no space is left in the
1960 * image file header
1961 * -ENOTSUP - format driver doesn't support changing the backing file
1962 */
1963 int bdrv_change_backing_file(BlockDriverState *bs,
1964 const char *backing_file, const char *backing_fmt)
1965 {
1966 BlockDriver *drv = bs->drv;
1967 int ret;
1968
1969 /* Backing file format doesn't make sense without a backing file */
1970 if (backing_fmt && !backing_file) {
1971 return -EINVAL;
1972 }
1973
1974 if (drv->bdrv_change_backing_file != NULL) {
1975 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1976 } else {
1977 ret = -ENOTSUP;
1978 }
1979
1980 if (ret == 0) {
1981 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1982 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1983 }
1984 return ret;
1985 }
1986
1987 /*
1988 * Finds the image layer in the chain that has 'bs' as its backing file.
1989 *
1990 * active is the current topmost image.
1991 *
1992 * Returns NULL if bs is not found in active's image chain,
1993 * or if active == bs.
1994 */
1995 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1996 BlockDriverState *bs)
1997 {
1998 BlockDriverState *overlay = NULL;
1999 BlockDriverState *intermediate;
2000
2001 assert(active != NULL);
2002 assert(bs != NULL);
2003
2004 /* if bs is the same as active, then by definition it has no overlay
2005 */
2006 if (active == bs) {
2007 return NULL;
2008 }
2009
2010 intermediate = active;
2011 while (intermediate->backing_hd) {
2012 if (intermediate->backing_hd == bs) {
2013 overlay = intermediate;
2014 break;
2015 }
2016 intermediate = intermediate->backing_hd;
2017 }
2018
2019 return overlay;
2020 }
2021
2022 typedef struct BlkIntermediateStates {
2023 BlockDriverState *bs;
2024 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
2025 } BlkIntermediateStates;
2026
2027
2028 /*
2029 * Drops images above 'base' up to and including 'top', and sets the image
2030 * above 'top' to have base as its backing file.
2031 *
2032 * Requires that the overlay to 'top' is opened r/w, so that the backing file
2033 * information in 'bs' can be properly updated.
2034 *
2035 * E.g., this will convert the following chain:
2036 * bottom <- base <- intermediate <- top <- active
2037 *
2038 * to
2039 *
2040 * bottom <- base <- active
2041 *
2042 * It is allowed for bottom==base, in which case it converts:
2043 *
2044 * base <- intermediate <- top <- active
2045 *
2046 * to
2047 *
2048 * base <- active
2049 *
2050 * Error conditions:
2051 * if active == top, that is considered an error
2052 *
2053 */
2054 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
2055 BlockDriverState *base)
2056 {
2057 BlockDriverState *intermediate;
2058 BlockDriverState *base_bs = NULL;
2059 BlockDriverState *new_top_bs = NULL;
2060 BlkIntermediateStates *intermediate_state, *next;
2061 int ret = -EIO;
2062
2063 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
2064 QSIMPLEQ_INIT(&states_to_delete);
2065
2066 if (!top->drv || !base->drv) {
2067 goto exit;
2068 }
2069
2070 new_top_bs = bdrv_find_overlay(active, top);
2071
2072 if (new_top_bs == NULL) {
2073 /* we could not find the image above 'top', this is an error */
2074 goto exit;
2075 }
2076
2077 /* special case of new_top_bs->backing_hd already pointing to base - nothing
2078 * to do, no intermediate images */
2079 if (new_top_bs->backing_hd == base) {
2080 ret = 0;
2081 goto exit;
2082 }
2083
2084 intermediate = top;
2085
2086 /* now we will go down through the list, and add each BDS we find
2087 * into our deletion queue, until we hit the 'base'
2088 */
2089 while (intermediate) {
2090 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
2091 intermediate_state->bs = intermediate;
2092 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
2093
2094 if (intermediate->backing_hd == base) {
2095 base_bs = intermediate->backing_hd;
2096 break;
2097 }
2098 intermediate = intermediate->backing_hd;
2099 }
2100 if (base_bs == NULL) {
2101 /* something went wrong, we did not end at the base. safely
2102 * unravel everything, and exit with error */
2103 goto exit;
2104 }
2105
2106 /* success - we can delete the intermediate states, and link top->base */
2107 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
2108 base_bs->drv ? base_bs->drv->format_name : "");
2109 if (ret) {
2110 goto exit;
2111 }
2112 new_top_bs->backing_hd = base_bs;
2113
2114
2115 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
2116 /* so that bdrv_close() does not recursively close the chain */
2117 intermediate_state->bs->backing_hd = NULL;
2118 bdrv_delete(intermediate_state->bs);
2119 }
2120 ret = 0;
2121
2122 exit:
2123 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
2124 g_free(intermediate_state);
2125 }
2126 return ret;
2127 }
2128
2129
2130 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
2131 size_t size)
2132 {
2133 int64_t len;
2134
2135 if (!bdrv_is_inserted(bs))
2136 return -ENOMEDIUM;
2137
2138 if (bs->growable)
2139 return 0;
2140
2141 len = bdrv_getlength(bs);
2142
2143 if (offset < 0)
2144 return -EIO;
2145
2146 if ((offset > len) || (len - offset < size))
2147 return -EIO;
2148
2149 return 0;
2150 }
2151
2152 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
2153 int nb_sectors)
2154 {
2155 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
2156 nb_sectors * BDRV_SECTOR_SIZE);
2157 }
2158
2159 typedef struct RwCo {
2160 BlockDriverState *bs;
2161 int64_t sector_num;
2162 int nb_sectors;
2163 QEMUIOVector *qiov;
2164 bool is_write;
2165 int ret;
2166 } RwCo;
2167
2168 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
2169 {
2170 RwCo *rwco = opaque;
2171
2172 if (!rwco->is_write) {
2173 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
2174 rwco->nb_sectors, rwco->qiov, 0);
2175 } else {
2176 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
2177 rwco->nb_sectors, rwco->qiov, 0);
2178 }
2179 }
2180
2181 /*
2182 * Process a vectored synchronous request using coroutines
2183 */
2184 static int bdrv_rwv_co(BlockDriverState *bs, int64_t sector_num,
2185 QEMUIOVector *qiov, bool is_write)
2186 {
2187 Coroutine *co;
2188 RwCo rwco = {
2189 .bs = bs,
2190 .sector_num = sector_num,
2191 .nb_sectors = qiov->size >> BDRV_SECTOR_BITS,
2192 .qiov = qiov,
2193 .is_write = is_write,
2194 .ret = NOT_DONE,
2195 };
2196 assert((qiov->size & (BDRV_SECTOR_SIZE - 1)) == 0);
2197
2198 /**
2199 * In sync call context, when the vcpu is blocked, this throttling timer
2200 * will not fire; so the I/O throttling function has to be disabled here
2201 * if it has been enabled.
2202 */
2203 if (bs->io_limits_enabled) {
2204 fprintf(stderr, "Disabling I/O throttling on '%s' due "
2205 "to synchronous I/O.\n", bdrv_get_device_name(bs));
2206 bdrv_io_limits_disable(bs);
2207 }
2208
2209 if (qemu_in_coroutine()) {
2210 /* Fast-path if already in coroutine context */
2211 bdrv_rw_co_entry(&rwco);
2212 } else {
2213 co = qemu_coroutine_create(bdrv_rw_co_entry);
2214 qemu_coroutine_enter(co, &rwco);
2215 while (rwco.ret == NOT_DONE) {
2216 qemu_aio_wait();
2217 }
2218 }
2219 return rwco.ret;
2220 }
2221
2222 /*
2223 * Process a synchronous request using coroutines
2224 */
2225 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
2226 int nb_sectors, bool is_write)
2227 {
2228 QEMUIOVector qiov;
2229 struct iovec iov = {
2230 .iov_base = (void *)buf,
2231 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
2232 };
2233
2234 qemu_iovec_init_external(&qiov, &iov, 1);
2235 return bdrv_rwv_co(bs, sector_num, &qiov, is_write);
2236 }
2237
2238 /* return < 0 if error. See bdrv_write() for the return codes */
2239 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2240 uint8_t *buf, int nb_sectors)
2241 {
2242 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2243 }
2244
2245 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2246 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2247 uint8_t *buf, int nb_sectors)
2248 {
2249 bool enabled;
2250 int ret;
2251
2252 enabled = bs->io_limits_enabled;
2253 bs->io_limits_enabled = false;
2254 ret = bdrv_read(bs, 0, buf, 1);
2255 bs->io_limits_enabled = enabled;
2256 return ret;
2257 }
2258
2259 /* Return < 0 if error. Important errors are:
2260 -EIO generic I/O error (may happen for all errors)
2261 -ENOMEDIUM No media inserted.
2262 -EINVAL Invalid sector number or nb_sectors
2263 -EACCES Trying to write a read-only device
2264 */
2265 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2266 const uint8_t *buf, int nb_sectors)
2267 {
2268 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2269 }
2270
2271 int bdrv_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov)
2272 {
2273 return bdrv_rwv_co(bs, sector_num, qiov, true);
2274 }
2275
2276 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2277 void *buf, int count1)
2278 {
2279 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2280 int len, nb_sectors, count;
2281 int64_t sector_num;
2282 int ret;
2283
2284 count = count1;
2285 /* first read to align to sector start */
2286 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2287 if (len > count)
2288 len = count;
2289 sector_num = offset >> BDRV_SECTOR_BITS;
2290 if (len > 0) {
2291 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2292 return ret;
2293 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2294 count -= len;
2295 if (count == 0)
2296 return count1;
2297 sector_num++;
2298 buf += len;
2299 }
2300
2301 /* read the sectors "in place" */
2302 nb_sectors = count >> BDRV_SECTOR_BITS;
2303 if (nb_sectors > 0) {
2304 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2305 return ret;
2306 sector_num += nb_sectors;
2307 len = nb_sectors << BDRV_SECTOR_BITS;
2308 buf += len;
2309 count -= len;
2310 }
2311
2312 /* add data from the last sector */
2313 if (count > 0) {
2314 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2315 return ret;
2316 memcpy(buf, tmp_buf, count);
2317 }
2318 return count1;
2319 }
2320
2321 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
2322 {
2323 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2324 int len, nb_sectors, count;
2325 int64_t sector_num;
2326 int ret;
2327
2328 count = qiov->size;
2329
2330 /* first write to align to sector start */
2331 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2332 if (len > count)
2333 len = count;
2334 sector_num = offset >> BDRV_SECTOR_BITS;
2335 if (len > 0) {
2336 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2337 return ret;
2338 qemu_iovec_to_buf(qiov, 0, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)),
2339 len);
2340 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2341 return ret;
2342 count -= len;
2343 if (count == 0)
2344 return qiov->size;
2345 sector_num++;
2346 }
2347
2348 /* write the sectors "in place" */
2349 nb_sectors = count >> BDRV_SECTOR_BITS;
2350 if (nb_sectors > 0) {
2351 QEMUIOVector qiov_inplace;
2352
2353 qemu_iovec_init(&qiov_inplace, qiov->niov);
2354 qemu_iovec_concat(&qiov_inplace, qiov, len,
2355 nb_sectors << BDRV_SECTOR_BITS);
2356 ret = bdrv_writev(bs, sector_num, &qiov_inplace);
2357 qemu_iovec_destroy(&qiov_inplace);
2358 if (ret < 0) {
2359 return ret;
2360 }
2361
2362 sector_num += nb_sectors;
2363 len = nb_sectors << BDRV_SECTOR_BITS;
2364 count -= len;
2365 }
2366
2367 /* add data from the last sector */
2368 if (count > 0) {
2369 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2370 return ret;
2371 qemu_iovec_to_buf(qiov, qiov->size - count, tmp_buf, count);
2372 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2373 return ret;
2374 }
2375 return qiov->size;
2376 }
2377
2378 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2379 const void *buf, int count1)
2380 {
2381 QEMUIOVector qiov;
2382 struct iovec iov = {
2383 .iov_base = (void *) buf,
2384 .iov_len = count1,
2385 };
2386
2387 qemu_iovec_init_external(&qiov, &iov, 1);
2388 return bdrv_pwritev(bs, offset, &qiov);
2389 }
2390
2391 /*
2392 * Writes to the file and ensures that no writes are reordered across this
2393 * request (acts as a barrier)
2394 *
2395 * Returns 0 on success, -errno in error cases.
2396 */
2397 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2398 const void *buf, int count)
2399 {
2400 int ret;
2401
2402 ret = bdrv_pwrite(bs, offset, buf, count);
2403 if (ret < 0) {
2404 return ret;
2405 }
2406
2407 /* No flush needed for cache modes that already do it */
2408 if (bs->enable_write_cache) {
2409 bdrv_flush(bs);
2410 }
2411
2412 return 0;
2413 }
2414
2415 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2416 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2417 {
2418 /* Perform I/O through a temporary buffer so that users who scribble over
2419 * their read buffer while the operation is in progress do not end up
2420 * modifying the image file. This is critical for zero-copy guest I/O
2421 * where anything might happen inside guest memory.
2422 */
2423 void *bounce_buffer;
2424
2425 BlockDriver *drv = bs->drv;
2426 struct iovec iov;
2427 QEMUIOVector bounce_qiov;
2428 int64_t cluster_sector_num;
2429 int cluster_nb_sectors;
2430 size_t skip_bytes;
2431 int ret;
2432
2433 /* Cover entire cluster so no additional backing file I/O is required when
2434 * allocating cluster in the image file.
2435 */
2436 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
2437 &cluster_sector_num, &cluster_nb_sectors);
2438
2439 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2440 cluster_sector_num, cluster_nb_sectors);
2441
2442 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2443 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2444 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2445
2446 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2447 &bounce_qiov);
2448 if (ret < 0) {
2449 goto err;
2450 }
2451
2452 if (drv->bdrv_co_write_zeroes &&
2453 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2454 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2455 cluster_nb_sectors);
2456 } else {
2457 /* This does not change the data on the disk, it is not necessary
2458 * to flush even in cache=writethrough mode.
2459 */
2460 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2461 &bounce_qiov);
2462 }
2463
2464 if (ret < 0) {
2465 /* It might be okay to ignore write errors for guest requests. If this
2466 * is a deliberate copy-on-read then we don't want to ignore the error.
2467 * Simply report it in all cases.
2468 */
2469 goto err;
2470 }
2471
2472 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2473 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2474 nb_sectors * BDRV_SECTOR_SIZE);
2475
2476 err:
2477 qemu_vfree(bounce_buffer);
2478 return ret;
2479 }
2480
2481 /*
2482 * Handle a read request in coroutine context
2483 */
2484 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2485 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2486 BdrvRequestFlags flags)
2487 {
2488 BlockDriver *drv = bs->drv;
2489 BdrvTrackedRequest req;
2490 int ret;
2491
2492 if (!drv) {
2493 return -ENOMEDIUM;
2494 }
2495 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2496 return -EIO;
2497 }
2498
2499 /* throttling disk read I/O */
2500 if (bs->io_limits_enabled) {
2501 bdrv_io_limits_intercept(bs, false, nb_sectors);
2502 }
2503
2504 if (bs->copy_on_read) {
2505 flags |= BDRV_REQ_COPY_ON_READ;
2506 }
2507 if (flags & BDRV_REQ_COPY_ON_READ) {
2508 bs->copy_on_read_in_flight++;
2509 }
2510
2511 if (bs->copy_on_read_in_flight) {
2512 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2513 }
2514
2515 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2516
2517 if (flags & BDRV_REQ_COPY_ON_READ) {
2518 int pnum;
2519
2520 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2521 if (ret < 0) {
2522 goto out;
2523 }
2524
2525 if (!ret || pnum != nb_sectors) {
2526 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2527 goto out;
2528 }
2529 }
2530
2531 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2532
2533 out:
2534 tracked_request_end(&req);
2535
2536 if (flags & BDRV_REQ_COPY_ON_READ) {
2537 bs->copy_on_read_in_flight--;
2538 }
2539
2540 return ret;
2541 }
2542
2543 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2544 int nb_sectors, QEMUIOVector *qiov)
2545 {
2546 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2547
2548 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2549 }
2550
2551 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2552 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2553 {
2554 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2555
2556 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2557 BDRV_REQ_COPY_ON_READ);
2558 }
2559
2560 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2561 int64_t sector_num, int nb_sectors)
2562 {
2563 BlockDriver *drv = bs->drv;
2564 QEMUIOVector qiov;
2565 struct iovec iov;
2566 int ret;
2567
2568 /* TODO Emulate only part of misaligned requests instead of letting block
2569 * drivers return -ENOTSUP and emulate everything */
2570
2571 /* First try the efficient write zeroes operation */
2572 if (drv->bdrv_co_write_zeroes) {
2573 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2574 if (ret != -ENOTSUP) {
2575 return ret;
2576 }
2577 }
2578
2579 /* Fall back to bounce buffer if write zeroes is unsupported */
2580 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2581 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2582 memset(iov.iov_base, 0, iov.iov_len);
2583 qemu_iovec_init_external(&qiov, &iov, 1);
2584
2585 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2586
2587 qemu_vfree(iov.iov_base);
2588 return ret;
2589 }
2590
2591 /*
2592 * Handle a write request in coroutine context
2593 */
2594 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2595 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2596 BdrvRequestFlags flags)
2597 {
2598 BlockDriver *drv = bs->drv;
2599 BdrvTrackedRequest req;
2600 int ret;
2601
2602 if (!bs->drv) {
2603 return -ENOMEDIUM;
2604 }
2605 if (bs->read_only) {
2606 return -EACCES;
2607 }
2608 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2609 return -EIO;
2610 }
2611
2612 /* throttling disk write I/O */
2613 if (bs->io_limits_enabled) {
2614 bdrv_io_limits_intercept(bs, true, nb_sectors);
2615 }
2616
2617 if (bs->copy_on_read_in_flight) {
2618 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2619 }
2620
2621 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2622
2623 if (flags & BDRV_REQ_ZERO_WRITE) {
2624 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2625 } else {
2626 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2627 }
2628
2629 if (ret == 0 && !bs->enable_write_cache) {
2630 ret = bdrv_co_flush(bs);
2631 }
2632
2633 if (bs->dirty_bitmap) {
2634 bdrv_set_dirty(bs, sector_num, nb_sectors);
2635 }
2636
2637 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2638 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2639 }
2640
2641 tracked_request_end(&req);
2642
2643 return ret;
2644 }
2645
2646 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2647 int nb_sectors, QEMUIOVector *qiov)
2648 {
2649 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2650
2651 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2652 }
2653
2654 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2655 int64_t sector_num, int nb_sectors)
2656 {
2657 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2658
2659 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2660 BDRV_REQ_ZERO_WRITE);
2661 }
2662
2663 /**
2664 * Truncate file to 'offset' bytes (needed only for file protocols)
2665 */
2666 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2667 {
2668 BlockDriver *drv = bs->drv;
2669 int ret;
2670 if (!drv)
2671 return -ENOMEDIUM;
2672 if (!drv->bdrv_truncate)
2673 return -ENOTSUP;
2674 if (bs->read_only)
2675 return -EACCES;
2676 if (bdrv_in_use(bs))
2677 return -EBUSY;
2678 ret = drv->bdrv_truncate(bs, offset);
2679 if (ret == 0) {
2680 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2681 bdrv_dev_resize_cb(bs);
2682 }
2683 return ret;
2684 }
2685
2686 /**
2687 * Length of a allocated file in bytes. Sparse files are counted by actual
2688 * allocated space. Return < 0 if error or unknown.
2689 */
2690 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2691 {
2692 BlockDriver *drv = bs->drv;
2693 if (!drv) {
2694 return -ENOMEDIUM;
2695 }
2696 if (drv->bdrv_get_allocated_file_size) {
2697 return drv->bdrv_get_allocated_file_size(bs);
2698 }
2699 if (bs->file) {
2700 return bdrv_get_allocated_file_size(bs->file);
2701 }
2702 return -ENOTSUP;
2703 }
2704
2705 /**
2706 * Length of a file in bytes. Return < 0 if error or unknown.
2707 */
2708 int64_t bdrv_getlength(BlockDriverState *bs)
2709 {
2710 BlockDriver *drv = bs->drv;
2711 if (!drv)
2712 return -ENOMEDIUM;
2713
2714 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2715 if (drv->bdrv_getlength) {
2716 return drv->bdrv_getlength(bs);
2717 }
2718 }
2719 return bs->total_sectors * BDRV_SECTOR_SIZE;
2720 }
2721
2722 /* return 0 as number of sectors if no device present or error */
2723 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2724 {
2725 int64_t length;
2726 length = bdrv_getlength(bs);
2727 if (length < 0)
2728 length = 0;
2729 else
2730 length = length >> BDRV_SECTOR_BITS;
2731 *nb_sectors_ptr = length;
2732 }
2733
2734 /* throttling disk io limits */
2735 void bdrv_set_io_limits(BlockDriverState *bs,
2736 BlockIOLimit *io_limits)
2737 {
2738 bs->io_limits = *io_limits;
2739 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2740 }
2741
2742 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2743 BlockdevOnError on_write_error)
2744 {
2745 bs->on_read_error = on_read_error;
2746 bs->on_write_error = on_write_error;
2747 }
2748
2749 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2750 {
2751 return is_read ? bs->on_read_error : bs->on_write_error;
2752 }
2753
2754 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2755 {
2756 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2757
2758 switch (on_err) {
2759 case BLOCKDEV_ON_ERROR_ENOSPC:
2760 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2761 case BLOCKDEV_ON_ERROR_STOP:
2762 return BDRV_ACTION_STOP;
2763 case BLOCKDEV_ON_ERROR_REPORT:
2764 return BDRV_ACTION_REPORT;
2765 case BLOCKDEV_ON_ERROR_IGNORE:
2766 return BDRV_ACTION_IGNORE;
2767 default:
2768 abort();
2769 }
2770 }
2771
2772 /* This is done by device models because, while the block layer knows
2773 * about the error, it does not know whether an operation comes from
2774 * the device or the block layer (from a job, for example).
2775 */
2776 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2777 bool is_read, int error)
2778 {
2779 assert(error >= 0);
2780 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2781 if (action == BDRV_ACTION_STOP) {
2782 vm_stop(RUN_STATE_IO_ERROR);
2783 bdrv_iostatus_set_err(bs, error);
2784 }
2785 }
2786
2787 int bdrv_is_read_only(BlockDriverState *bs)
2788 {
2789 return bs->read_only;
2790 }
2791
2792 int bdrv_is_sg(BlockDriverState *bs)
2793 {
2794 return bs->sg;
2795 }
2796
2797 int bdrv_enable_write_cache(BlockDriverState *bs)
2798 {
2799 return bs->enable_write_cache;
2800 }
2801
2802 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2803 {
2804 bs->enable_write_cache = wce;
2805
2806 /* so a reopen() will preserve wce */
2807 if (wce) {
2808 bs->open_flags |= BDRV_O_CACHE_WB;
2809 } else {
2810 bs->open_flags &= ~BDRV_O_CACHE_WB;
2811 }
2812 }
2813
2814 int bdrv_is_encrypted(BlockDriverState *bs)
2815 {
2816 if (bs->backing_hd && bs->backing_hd->encrypted)
2817 return 1;
2818 return bs->encrypted;
2819 }
2820
2821 int bdrv_key_required(BlockDriverState *bs)
2822 {
2823 BlockDriverState *backing_hd = bs->backing_hd;
2824
2825 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2826 return 1;
2827 return (bs->encrypted && !bs->valid_key);
2828 }
2829
2830 int bdrv_set_key(BlockDriverState *bs, const char *key)
2831 {
2832 int ret;
2833 if (bs->backing_hd && bs->backing_hd->encrypted) {
2834 ret = bdrv_set_key(bs->backing_hd, key);
2835 if (ret < 0)
2836 return ret;
2837 if (!bs->encrypted)
2838 return 0;
2839 }
2840 if (!bs->encrypted) {
2841 return -EINVAL;
2842 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2843 return -ENOMEDIUM;
2844 }
2845 ret = bs->drv->bdrv_set_key(bs, key);
2846 if (ret < 0) {
2847 bs->valid_key = 0;
2848 } else if (!bs->valid_key) {
2849 bs->valid_key = 1;
2850 /* call the change callback now, we skipped it on open */
2851 bdrv_dev_change_media_cb(bs, true);
2852 }
2853 return ret;
2854 }
2855
2856 const char *bdrv_get_format_name(BlockDriverState *bs)
2857 {
2858 return bs->drv ? bs->drv->format_name : NULL;
2859 }
2860
2861 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2862 void *opaque)
2863 {
2864 BlockDriver *drv;
2865
2866 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2867 it(opaque, drv->format_name);
2868 }
2869 }
2870
2871 BlockDriverState *bdrv_find(const char *name)
2872 {
2873 BlockDriverState *bs;
2874
2875 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2876 if (!strcmp(name, bs->device_name)) {
2877 return bs;
2878 }
2879 }
2880 return NULL;
2881 }
2882
2883 BlockDriverState *bdrv_next(BlockDriverState *bs)
2884 {
2885 if (!bs) {
2886 return QTAILQ_FIRST(&bdrv_states);
2887 }
2888 return QTAILQ_NEXT(bs, list);
2889 }
2890
2891 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2892 {
2893 BlockDriverState *bs;
2894
2895 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2896 it(opaque, bs);
2897 }
2898 }
2899
2900 const char *bdrv_get_device_name(BlockDriverState *bs)
2901 {
2902 return bs->device_name;
2903 }
2904
2905 int bdrv_get_flags(BlockDriverState *bs)
2906 {
2907 return bs->open_flags;
2908 }
2909
2910 void bdrv_flush_all(void)
2911 {
2912 BlockDriverState *bs;
2913
2914 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2915 bdrv_flush(bs);
2916 }
2917 }
2918
2919 int bdrv_has_zero_init(BlockDriverState *bs)
2920 {
2921 assert(bs->drv);
2922
2923 if (bs->drv->bdrv_has_zero_init) {
2924 return bs->drv->bdrv_has_zero_init(bs);
2925 }
2926
2927 return 1;
2928 }
2929
2930 typedef struct BdrvCoIsAllocatedData {
2931 BlockDriverState *bs;
2932 BlockDriverState *base;
2933 int64_t sector_num;
2934 int nb_sectors;
2935 int *pnum;
2936 int ret;
2937 bool done;
2938 } BdrvCoIsAllocatedData;
2939
2940 /*
2941 * Returns true iff the specified sector is present in the disk image. Drivers
2942 * not implementing the functionality are assumed to not support backing files,
2943 * hence all their sectors are reported as allocated.
2944 *
2945 * If 'sector_num' is beyond the end of the disk image the return value is 0
2946 * and 'pnum' is set to 0.
2947 *
2948 * 'pnum' is set to the number of sectors (including and immediately following
2949 * the specified sector) that are known to be in the same
2950 * allocated/unallocated state.
2951 *
2952 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2953 * beyond the end of the disk image it will be clamped.
2954 */
2955 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2956 int nb_sectors, int *pnum)
2957 {
2958 int64_t n;
2959
2960 if (sector_num >= bs->total_sectors) {
2961 *pnum = 0;
2962 return 0;
2963 }
2964
2965 n = bs->total_sectors - sector_num;
2966 if (n < nb_sectors) {
2967 nb_sectors = n;
2968 }
2969
2970 if (!bs->drv->bdrv_co_is_allocated) {
2971 *pnum = nb_sectors;
2972 return 1;
2973 }
2974
2975 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2976 }
2977
2978 /* Coroutine wrapper for bdrv_is_allocated() */
2979 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2980 {
2981 BdrvCoIsAllocatedData *data = opaque;
2982 BlockDriverState *bs = data->bs;
2983
2984 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2985 data->pnum);
2986 data->done = true;
2987 }
2988
2989 /*
2990 * Synchronous wrapper around bdrv_co_is_allocated().
2991 *
2992 * See bdrv_co_is_allocated() for details.
2993 */
2994 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2995 int *pnum)
2996 {
2997 Coroutine *co;
2998 BdrvCoIsAllocatedData data = {
2999 .bs = bs,
3000 .sector_num = sector_num,
3001 .nb_sectors = nb_sectors,
3002 .pnum = pnum,
3003 .done = false,
3004 };
3005
3006 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
3007 qemu_coroutine_enter(co, &data);
3008 while (!data.done) {
3009 qemu_aio_wait();
3010 }
3011 return data.ret;
3012 }
3013
3014 /*
3015 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
3016 *
3017 * Return true if the given sector is allocated in any image between
3018 * BASE and TOP (inclusive). BASE can be NULL to check if the given
3019 * sector is allocated in any image of the chain. Return false otherwise.
3020 *
3021 * 'pnum' is set to the number of sectors (including and immediately following
3022 * the specified sector) that are known to be in the same
3023 * allocated/unallocated state.
3024 *
3025 */
3026 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
3027 BlockDriverState *base,
3028 int64_t sector_num,
3029 int nb_sectors, int *pnum)
3030 {
3031 BlockDriverState *intermediate;
3032 int ret, n = nb_sectors;
3033
3034 intermediate = top;
3035 while (intermediate && intermediate != base) {
3036 int pnum_inter;
3037 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
3038 &pnum_inter);
3039 if (ret < 0) {
3040 return ret;
3041 } else if (ret) {
3042 *pnum = pnum_inter;
3043 return 1;
3044 }
3045
3046 /*
3047 * [sector_num, nb_sectors] is unallocated on top but intermediate
3048 * might have
3049 *
3050 * [sector_num+x, nr_sectors] allocated.
3051 */
3052 if (n > pnum_inter &&
3053 (intermediate == top ||
3054 sector_num + pnum_inter < intermediate->total_sectors)) {
3055 n = pnum_inter;
3056 }
3057
3058 intermediate = intermediate->backing_hd;
3059 }
3060
3061 *pnum = n;
3062 return 0;
3063 }
3064
3065 /* Coroutine wrapper for bdrv_is_allocated_above() */
3066 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque)
3067 {
3068 BdrvCoIsAllocatedData *data = opaque;
3069 BlockDriverState *top = data->bs;
3070 BlockDriverState *base = data->base;
3071
3072 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num,
3073 data->nb_sectors, data->pnum);
3074 data->done = true;
3075 }
3076
3077 /*
3078 * Synchronous wrapper around bdrv_co_is_allocated_above().
3079 *
3080 * See bdrv_co_is_allocated_above() for details.
3081 */
3082 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
3083 int64_t sector_num, int nb_sectors, int *pnum)
3084 {
3085 Coroutine *co;
3086 BdrvCoIsAllocatedData data = {
3087 .bs = top,
3088 .base = base,
3089 .sector_num = sector_num,
3090 .nb_sectors = nb_sectors,
3091 .pnum = pnum,
3092 .done = false,
3093 };
3094
3095 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry);
3096 qemu_coroutine_enter(co, &data);
3097 while (!data.done) {
3098 qemu_aio_wait();
3099 }
3100 return data.ret;
3101 }
3102
3103 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
3104 {
3105 if (bs->backing_hd && bs->backing_hd->encrypted)
3106 return bs->backing_file;
3107 else if (bs->encrypted)
3108 return bs->filename;
3109 else
3110 return NULL;
3111 }
3112
3113 void bdrv_get_backing_filename(BlockDriverState *bs,
3114 char *filename, int filename_size)
3115 {
3116 pstrcpy(filename, filename_size, bs->backing_file);
3117 }
3118
3119 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
3120 const uint8_t *buf, int nb_sectors)
3121 {
3122 BlockDriver *drv = bs->drv;
3123 if (!drv)
3124 return -ENOMEDIUM;
3125 if (!drv->bdrv_write_compressed)
3126 return -ENOTSUP;
3127 if (bdrv_check_request(bs, sector_num, nb_sectors))
3128 return -EIO;
3129
3130 assert(!bs->dirty_bitmap);
3131
3132 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
3133 }
3134
3135 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
3136 {
3137 BlockDriver *drv = bs->drv;
3138 if (!drv)
3139 return -ENOMEDIUM;
3140 if (!drv->bdrv_get_info)
3141 return -ENOTSUP;
3142 memset(bdi, 0, sizeof(*bdi));
3143 return drv->bdrv_get_info(bs, bdi);
3144 }
3145
3146 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
3147 int64_t pos, int size)
3148 {
3149 QEMUIOVector qiov;
3150 struct iovec iov = {
3151 .iov_base = (void *) buf,
3152 .iov_len = size,
3153 };
3154
3155 qemu_iovec_init_external(&qiov, &iov, 1);
3156 return bdrv_writev_vmstate(bs, &qiov, pos);
3157 }
3158
3159 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
3160 {
3161 BlockDriver *drv = bs->drv;
3162
3163 if (!drv) {
3164 return -ENOMEDIUM;
3165 } else if (drv->bdrv_save_vmstate) {
3166 return drv->bdrv_save_vmstate(bs, qiov, pos);
3167 } else if (bs->file) {
3168 return bdrv_writev_vmstate(bs->file, qiov, pos);
3169 }
3170
3171 return -ENOTSUP;
3172 }
3173
3174 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3175 int64_t pos, int size)
3176 {
3177 BlockDriver *drv = bs->drv;
3178 if (!drv)
3179 return -ENOMEDIUM;
3180 if (drv->bdrv_load_vmstate)
3181 return drv->bdrv_load_vmstate(bs, buf, pos, size);
3182 if (bs->file)
3183 return bdrv_load_vmstate(bs->file, buf, pos, size);
3184 return -ENOTSUP;
3185 }
3186
3187 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3188 {
3189 if (!bs || !bs->drv || !bs->drv->bdrv_debug_event) {
3190 return;
3191 }
3192
3193 bs->drv->bdrv_debug_event(bs, event);
3194 }
3195
3196 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
3197 const char *tag)
3198 {
3199 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
3200 bs = bs->file;
3201 }
3202
3203 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
3204 return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
3205 }
3206
3207 return -ENOTSUP;
3208 }
3209
3210 int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
3211 {
3212 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) {
3213 bs = bs->file;
3214 }
3215
3216 if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
3217 return bs->drv->bdrv_debug_resume(bs, tag);
3218 }
3219
3220 return -ENOTSUP;
3221 }
3222
3223 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
3224 {
3225 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
3226 bs = bs->file;
3227 }
3228
3229 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
3230 return bs->drv->bdrv_debug_is_suspended(bs, tag);
3231 }
3232
3233 return false;
3234 }
3235
3236 int bdrv_is_snapshot(BlockDriverState *bs)
3237 {
3238 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3239 }
3240
3241 /* backing_file can either be relative, or absolute, or a protocol. If it is
3242 * relative, it must be relative to the chain. So, passing in bs->filename
3243 * from a BDS as backing_file should not be done, as that may be relative to
3244 * the CWD rather than the chain. */
3245 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3246 const char *backing_file)
3247 {
3248 char *filename_full = NULL;
3249 char *backing_file_full = NULL;
3250 char *filename_tmp = NULL;
3251 int is_protocol = 0;
3252 BlockDriverState *curr_bs = NULL;
3253 BlockDriverState *retval = NULL;
3254
3255 if (!bs || !bs->drv || !backing_file) {
3256 return NULL;
3257 }
3258
3259 filename_full = g_malloc(PATH_MAX);
3260 backing_file_full = g_malloc(PATH_MAX);
3261 filename_tmp = g_malloc(PATH_MAX);
3262
3263 is_protocol = path_has_protocol(backing_file);
3264
3265 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3266
3267 /* If either of the filename paths is actually a protocol, then
3268 * compare unmodified paths; otherwise make paths relative */
3269 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3270 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3271 retval = curr_bs->backing_hd;
3272 break;
3273 }
3274 } else {
3275 /* If not an absolute filename path, make it relative to the current
3276 * image's filename path */
3277 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3278 backing_file);
3279
3280 /* We are going to compare absolute pathnames */
3281 if (!realpath(filename_tmp, filename_full)) {
3282 continue;
3283 }
3284
3285 /* We need to make sure the backing filename we are comparing against
3286 * is relative to the current image filename (or absolute) */
3287 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3288 curr_bs->backing_file);
3289
3290 if (!realpath(filename_tmp, backing_file_full)) {
3291 continue;
3292 }
3293
3294 if (strcmp(backing_file_full, filename_full) == 0) {
3295 retval = curr_bs->backing_hd;
3296 break;
3297 }
3298 }
3299 }
3300
3301 g_free(filename_full);
3302 g_free(backing_file_full);
3303 g_free(filename_tmp);
3304 return retval;
3305 }
3306
3307 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3308 {
3309 if (!bs->drv) {
3310 return 0;
3311 }
3312
3313 if (!bs->backing_hd) {
3314 return 0;
3315 }
3316
3317 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3318 }
3319
3320 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3321 {
3322 BlockDriverState *curr_bs = NULL;
3323
3324 if (!bs) {
3325 return NULL;
3326 }
3327
3328 curr_bs = bs;
3329
3330 while (curr_bs->backing_hd) {
3331 curr_bs = curr_bs->backing_hd;
3332 }
3333 return curr_bs;
3334 }
3335
3336 /**************************************************************/
3337 /* async I/Os */
3338
3339 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3340 QEMUIOVector *qiov, int nb_sectors,
3341 BlockDriverCompletionFunc *cb, void *opaque)
3342 {
3343 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3344
3345 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3346 cb, opaque, false);
3347 }
3348
3349 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3350 QEMUIOVector *qiov, int nb_sectors,
3351 BlockDriverCompletionFunc *cb, void *opaque)
3352 {
3353 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3354
3355 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3356 cb, opaque, true);
3357 }
3358
3359
3360 typedef struct MultiwriteCB {
3361 int error;
3362 int num_requests;
3363 int num_callbacks;
3364 struct {
3365 BlockDriverCompletionFunc *cb;
3366 void *opaque;
3367 QEMUIOVector *free_qiov;
3368 } callbacks[];
3369 } MultiwriteCB;
3370
3371 static void multiwrite_user_cb(MultiwriteCB *mcb)
3372 {
3373 int i;
3374
3375 for (i = 0; i < mcb->num_callbacks; i++) {
3376 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3377 if (mcb->callbacks[i].free_qiov) {
3378 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3379 }
3380 g_free(mcb->callbacks[i].free_qiov);
3381 }
3382 }
3383
3384 static void multiwrite_cb(void *opaque, int ret)
3385 {
3386 MultiwriteCB *mcb = opaque;
3387
3388 trace_multiwrite_cb(mcb, ret);
3389
3390 if (ret < 0 && !mcb->error) {
3391 mcb->error = ret;
3392 }
3393
3394 mcb->num_requests--;
3395 if (mcb->num_requests == 0) {
3396 multiwrite_user_cb(mcb);
3397 g_free(mcb);
3398 }
3399 }
3400
3401 static int multiwrite_req_compare(const void *a, const void *b)
3402 {
3403 const BlockRequest *req1 = a, *req2 = b;
3404
3405 /*
3406 * Note that we can't simply subtract req2->sector from req1->sector
3407 * here as that could overflow the return value.
3408 */
3409 if (req1->sector > req2->sector) {
3410 return 1;
3411 } else if (req1->sector < req2->sector) {
3412 return -1;
3413 } else {
3414 return 0;
3415 }
3416 }
3417
3418 /*
3419 * Takes a bunch of requests and tries to merge them. Returns the number of
3420 * requests that remain after merging.
3421 */
3422 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3423 int num_reqs, MultiwriteCB *mcb)
3424 {
3425 int i, outidx;
3426
3427 // Sort requests by start sector
3428 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3429
3430 // Check if adjacent requests touch the same clusters. If so, combine them,
3431 // filling up gaps with zero sectors.
3432 outidx = 0;
3433 for (i = 1; i < num_reqs; i++) {
3434 int merge = 0;
3435 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3436
3437 // Handle exactly sequential writes and overlapping writes.
3438 if (reqs[i].sector <= oldreq_last) {
3439 merge = 1;
3440 }
3441
3442 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3443 merge = 0;
3444 }
3445
3446 if (merge) {
3447 size_t size;
3448 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3449 qemu_iovec_init(qiov,
3450 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3451
3452 // Add the first request to the merged one. If the requests are
3453 // overlapping, drop the last sectors of the first request.
3454 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3455 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3456
3457 // We should need to add any zeros between the two requests
3458 assert (reqs[i].sector <= oldreq_last);
3459
3460 // Add the second request
3461 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3462
3463 reqs[outidx].nb_sectors = qiov->size >> 9;
3464 reqs[outidx].qiov = qiov;
3465
3466 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3467 } else {
3468 outidx++;
3469 reqs[outidx].sector = reqs[i].sector;
3470 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3471 reqs[outidx].qiov = reqs[i].qiov;
3472 }
3473 }
3474
3475 return outidx + 1;
3476 }
3477
3478 /*
3479 * Submit multiple AIO write requests at once.
3480 *
3481 * On success, the function returns 0 and all requests in the reqs array have
3482 * been submitted. In error case this function returns -1, and any of the
3483 * requests may or may not be submitted yet. In particular, this means that the
3484 * callback will be called for some of the requests, for others it won't. The
3485 * caller must check the error field of the BlockRequest to wait for the right
3486 * callbacks (if error != 0, no callback will be called).
3487 *
3488 * The implementation may modify the contents of the reqs array, e.g. to merge
3489 * requests. However, the fields opaque and error are left unmodified as they
3490 * are used to signal failure for a single request to the caller.
3491 */
3492 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3493 {
3494 MultiwriteCB *mcb;
3495 int i;
3496
3497 /* don't submit writes if we don't have a medium */
3498 if (bs->drv == NULL) {
3499 for (i = 0; i < num_reqs; i++) {
3500 reqs[i].error = -ENOMEDIUM;
3501 }
3502 return -1;
3503 }
3504
3505 if (num_reqs == 0) {
3506 return 0;
3507 }
3508
3509 // Create MultiwriteCB structure
3510 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3511 mcb->num_requests = 0;
3512 mcb->num_callbacks = num_reqs;
3513
3514 for (i = 0; i < num_reqs; i++) {
3515 mcb->callbacks[i].cb = reqs[i].cb;
3516 mcb->callbacks[i].opaque = reqs[i].opaque;
3517 }
3518
3519 // Check for mergable requests
3520 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3521
3522 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3523
3524 /* Run the aio requests. */
3525 mcb->num_requests = num_reqs;
3526 for (i = 0; i < num_reqs; i++) {
3527 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3528 reqs[i].nb_sectors, multiwrite_cb, mcb);
3529 }
3530
3531 return 0;
3532 }
3533
3534 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3535 {
3536 acb->aiocb_info->cancel(acb);
3537 }
3538
3539 /* block I/O throttling */
3540 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3541 bool is_write, double elapsed_time, uint64_t *wait)
3542 {
3543 uint64_t bps_limit = 0;
3544 uint64_t extension;
3545 double bytes_limit, bytes_base, bytes_res;
3546 double slice_time, wait_time;
3547
3548 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3549 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3550 } else if (bs->io_limits.bps[is_write]) {
3551 bps_limit = bs->io_limits.bps[is_write];
3552 } else {
3553 if (wait) {
3554 *wait = 0;
3555 }
3556
3557 return false;
3558 }
3559
3560 slice_time = bs->slice_end - bs->slice_start;
3561 slice_time /= (NANOSECONDS_PER_SECOND);
3562 bytes_limit = bps_limit * slice_time;
3563 bytes_base = bs->slice_submitted.bytes[is_write];
3564 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3565 bytes_base += bs->slice_submitted.bytes[!is_write];
3566 }
3567
3568 /* bytes_base: the bytes of data which have been read/written; and
3569 * it is obtained from the history statistic info.
3570 * bytes_res: the remaining bytes of data which need to be read/written.
3571 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3572 * the total time for completing reading/writting all data.
3573 */
3574 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3575
3576 if (bytes_base + bytes_res <= bytes_limit) {
3577 if (wait) {
3578 *wait = 0;
3579 }
3580
3581 return false;
3582 }
3583
3584 /* Calc approx time to dispatch */
3585 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3586
3587 /* When the I/O rate at runtime exceeds the limits,
3588 * bs->slice_end need to be extended in order that the current statistic
3589 * info can be kept until the timer fire, so it is increased and tuned
3590 * based on the result of experiment.
3591 */
3592 extension = wait_time * NANOSECONDS_PER_SECOND;
3593 extension = DIV_ROUND_UP(extension, BLOCK_IO_SLICE_TIME) *
3594 BLOCK_IO_SLICE_TIME;
3595 bs->slice_end += extension;
3596 if (wait) {
3597 *wait = wait_time * NANOSECONDS_PER_SECOND;
3598 }
3599
3600 return true;
3601 }
3602
3603 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3604 double elapsed_time, uint64_t *wait)
3605 {
3606 uint64_t iops_limit = 0;
3607 double ios_limit, ios_base;
3608 double slice_time, wait_time;
3609
3610 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3611 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3612 } else if (bs->io_limits.iops[is_write]) {
3613 iops_limit = bs->io_limits.iops[is_write];
3614 } else {
3615 if (wait) {
3616 *wait = 0;
3617 }
3618
3619 return false;
3620 }
3621
3622 slice_time = bs->slice_end - bs->slice_start;
3623 slice_time /= (NANOSECONDS_PER_SECOND);
3624 ios_limit = iops_limit * slice_time;
3625 ios_base = bs->slice_submitted.ios[is_write];
3626 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3627 ios_base += bs->slice_submitted.ios[!is_write];
3628 }
3629
3630 if (ios_base + 1 <= ios_limit) {
3631 if (wait) {
3632 *wait = 0;
3633 }
3634
3635 return false;
3636 }
3637
3638 /* Calc approx time to dispatch, in seconds */
3639 wait_time = (ios_base + 1) / iops_limit;
3640 if (wait_time > elapsed_time) {
3641 wait_time = wait_time - elapsed_time;
3642 } else {
3643 wait_time = 0;
3644 }
3645
3646 /* Exceeded current slice, extend it by another slice time */
3647 bs->slice_end += BLOCK_IO_SLICE_TIME;
3648 if (wait) {
3649 *wait = wait_time * NANOSECONDS_PER_SECOND;
3650 }
3651
3652 return true;
3653 }
3654
3655 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3656 bool is_write, int64_t *wait)
3657 {
3658 int64_t now, max_wait;
3659 uint64_t bps_wait = 0, iops_wait = 0;
3660 double elapsed_time;
3661 int bps_ret, iops_ret;
3662
3663 now = qemu_get_clock_ns(vm_clock);
3664 if (now > bs->slice_end) {
3665 bs->slice_start = now;
3666 bs->slice_end = now + BLOCK_IO_SLICE_TIME;
3667 memset(&bs->slice_submitted, 0, sizeof(bs->slice_submitted));
3668 }
3669
3670 elapsed_time = now - bs->slice_start;
3671 elapsed_time /= (NANOSECONDS_PER_SECOND);
3672
3673 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3674 is_write, elapsed_time, &bps_wait);
3675 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3676 elapsed_time, &iops_wait);
3677 if (bps_ret || iops_ret) {
3678 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3679 if (wait) {
3680 *wait = max_wait;
3681 }
3682
3683 now = qemu_get_clock_ns(vm_clock);
3684 if (bs->slice_end < now + max_wait) {
3685 bs->slice_end = now + max_wait;
3686 }
3687
3688 return true;
3689 }
3690
3691 if (wait) {
3692 *wait = 0;
3693 }
3694
3695 bs->slice_submitted.bytes[is_write] += (int64_t)nb_sectors *
3696 BDRV_SECTOR_SIZE;
3697 bs->slice_submitted.ios[is_write]++;
3698
3699 return false;
3700 }
3701
3702 /**************************************************************/
3703 /* async block device emulation */
3704
3705 typedef struct BlockDriverAIOCBSync {
3706 BlockDriverAIOCB common;
3707 QEMUBH *bh;
3708 int ret;
3709 /* vector translation state */
3710 QEMUIOVector *qiov;
3711 uint8_t *bounce;
3712 int is_write;
3713 } BlockDriverAIOCBSync;
3714
3715 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3716 {
3717 BlockDriverAIOCBSync *acb =
3718 container_of(blockacb, BlockDriverAIOCBSync, common);
3719 qemu_bh_delete(acb->bh);
3720 acb->bh = NULL;
3721 qemu_aio_release(acb);
3722 }
3723
3724 static const AIOCBInfo bdrv_em_aiocb_info = {
3725 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3726 .cancel = bdrv_aio_cancel_em,
3727 };
3728
3729 static void bdrv_aio_bh_cb(void *opaque)
3730 {
3731 BlockDriverAIOCBSync *acb = opaque;
3732
3733 if (!acb->is_write)
3734 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3735 qemu_vfree(acb->bounce);
3736 acb->common.cb(acb->common.opaque, acb->ret);
3737 qemu_bh_delete(acb->bh);
3738 acb->bh = NULL;
3739 qemu_aio_release(acb);
3740 }
3741
3742 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3743 int64_t sector_num,
3744 QEMUIOVector *qiov,
3745 int nb_sectors,
3746 BlockDriverCompletionFunc *cb,
3747 void *opaque,
3748 int is_write)
3749
3750 {
3751 BlockDriverAIOCBSync *acb;
3752
3753 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3754 acb->is_write = is_write;
3755 acb->qiov = qiov;
3756 acb->bounce = qemu_blockalign(bs, qiov->size);
3757 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3758
3759 if (is_write) {
3760 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3761 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3762 } else {
3763 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3764 }
3765
3766 qemu_bh_schedule(acb->bh);
3767
3768 return &acb->common;
3769 }
3770
3771 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3772 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3773 BlockDriverCompletionFunc *cb, void *opaque)
3774 {
3775 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3776 }
3777
3778 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3779 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3780 BlockDriverCompletionFunc *cb, void *opaque)
3781 {
3782 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3783 }
3784
3785
3786 typedef struct BlockDriverAIOCBCoroutine {
3787 BlockDriverAIOCB common;
3788 BlockRequest req;
3789 bool is_write;
3790 bool *done;
3791 QEMUBH* bh;
3792 } BlockDriverAIOCBCoroutine;
3793
3794 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3795 {
3796 BlockDriverAIOCBCoroutine *acb =
3797 container_of(blockacb, BlockDriverAIOCBCoroutine, common);
3798 bool done = false;
3799
3800 acb->done = &done;
3801 while (!done) {
3802 qemu_aio_wait();
3803 }
3804 }
3805
3806 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3807 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3808 .cancel = bdrv_aio_co_cancel_em,
3809 };
3810
3811 static void bdrv_co_em_bh(void *opaque)
3812 {
3813 BlockDriverAIOCBCoroutine *acb = opaque;
3814
3815 acb->common.cb(acb->common.opaque, acb->req.error);
3816
3817 if (acb->done) {
3818 *acb->done = true;
3819 }
3820
3821 qemu_bh_delete(acb->bh);
3822 qemu_aio_release(acb);
3823 }
3824
3825 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3826 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3827 {
3828 BlockDriverAIOCBCoroutine *acb = opaque;
3829 BlockDriverState *bs = acb->common.bs;
3830
3831 if (!acb->is_write) {
3832 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3833 acb->req.nb_sectors, acb->req.qiov, 0);
3834 } else {
3835 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3836 acb->req.nb_sectors, acb->req.qiov, 0);
3837 }
3838
3839 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3840 qemu_bh_schedule(acb->bh);
3841 }
3842
3843 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3844 int64_t sector_num,
3845 QEMUIOVector *qiov,
3846 int nb_sectors,
3847 BlockDriverCompletionFunc *cb,
3848 void *opaque,
3849 bool is_write)
3850 {
3851 Coroutine *co;
3852 BlockDriverAIOCBCoroutine *acb;
3853
3854 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3855 acb->req.sector = sector_num;
3856 acb->req.nb_sectors = nb_sectors;
3857 acb->req.qiov = qiov;
3858 acb->is_write = is_write;
3859 acb->done = NULL;
3860
3861 co = qemu_coroutine_create(bdrv_co_do_rw);
3862 qemu_coroutine_enter(co, acb);
3863
3864 return &acb->common;
3865 }
3866
3867 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3868 {
3869 BlockDriverAIOCBCoroutine *acb = opaque;
3870 BlockDriverState *bs = acb->common.bs;
3871
3872 acb->req.error = bdrv_co_flush(bs);
3873 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3874 qemu_bh_schedule(acb->bh);
3875 }
3876
3877 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3878 BlockDriverCompletionFunc *cb, void *opaque)
3879 {
3880 trace_bdrv_aio_flush(bs, opaque);
3881
3882 Coroutine *co;
3883 BlockDriverAIOCBCoroutine *acb;
3884
3885 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3886 acb->done = NULL;
3887
3888 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3889 qemu_coroutine_enter(co, acb);
3890
3891 return &acb->common;
3892 }
3893
3894 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3895 {
3896 BlockDriverAIOCBCoroutine *acb = opaque;
3897 BlockDriverState *bs = acb->common.bs;
3898
3899 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3900 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3901 qemu_bh_schedule(acb->bh);
3902 }
3903
3904 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3905 int64_t sector_num, int nb_sectors,
3906 BlockDriverCompletionFunc *cb, void *opaque)
3907 {
3908 Coroutine *co;
3909 BlockDriverAIOCBCoroutine *acb;
3910
3911 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3912
3913 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3914 acb->req.sector = sector_num;
3915 acb->req.nb_sectors = nb_sectors;
3916 acb->done = NULL;
3917 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3918 qemu_coroutine_enter(co, acb);
3919
3920 return &acb->common;
3921 }
3922
3923 void bdrv_init(void)
3924 {
3925 module_call_init(MODULE_INIT_BLOCK);
3926 }
3927
3928 void bdrv_init_with_whitelist(void)
3929 {
3930 use_bdrv_whitelist = 1;
3931 bdrv_init();
3932 }
3933
3934 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
3935 BlockDriverCompletionFunc *cb, void *opaque)
3936 {
3937 BlockDriverAIOCB *acb;
3938
3939 acb = g_slice_alloc(aiocb_info->aiocb_size);
3940 acb->aiocb_info = aiocb_info;
3941 acb->bs = bs;
3942 acb->cb = cb;
3943 acb->opaque = opaque;
3944 return acb;
3945 }
3946
3947 void qemu_aio_release(void *p)
3948 {
3949 BlockDriverAIOCB *acb = p;
3950 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
3951 }
3952
3953 /**************************************************************/
3954 /* Coroutine block device emulation */
3955
3956 typedef struct CoroutineIOCompletion {
3957 Coroutine *coroutine;
3958 int ret;
3959 } CoroutineIOCompletion;
3960
3961 static void bdrv_co_io_em_complete(void *opaque, int ret)
3962 {
3963 CoroutineIOCompletion *co = opaque;
3964
3965 co->ret = ret;
3966 qemu_coroutine_enter(co->coroutine, NULL);
3967 }
3968
3969 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3970 int nb_sectors, QEMUIOVector *iov,
3971 bool is_write)
3972 {
3973 CoroutineIOCompletion co = {
3974 .coroutine = qemu_coroutine_self(),
3975 };
3976 BlockDriverAIOCB *acb;
3977
3978 if (is_write) {
3979 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3980 bdrv_co_io_em_complete, &co);
3981 } else {
3982 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3983 bdrv_co_io_em_complete, &co);
3984 }
3985
3986 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3987 if (!acb) {
3988 return -EIO;
3989 }
3990 qemu_coroutine_yield();
3991
3992 return co.ret;
3993 }
3994
3995 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3996 int64_t sector_num, int nb_sectors,
3997 QEMUIOVector *iov)
3998 {
3999 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
4000 }
4001
4002 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
4003 int64_t sector_num, int nb_sectors,
4004 QEMUIOVector *iov)
4005 {
4006 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
4007 }
4008
4009 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
4010 {
4011 RwCo *rwco = opaque;
4012
4013 rwco->ret = bdrv_co_flush(rwco->bs);
4014 }
4015
4016 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
4017 {
4018 int ret;
4019
4020 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
4021 return 0;
4022 }
4023
4024 /* Write back cached data to the OS even with cache=unsafe */
4025 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
4026 if (bs->drv->bdrv_co_flush_to_os) {
4027 ret = bs->drv->bdrv_co_flush_to_os(bs);
4028 if (ret < 0) {
4029 return ret;
4030 }
4031 }
4032
4033 /* But don't actually force it to the disk with cache=unsafe */
4034 if (bs->open_flags & BDRV_O_NO_FLUSH) {
4035 goto flush_parent;
4036 }
4037
4038 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
4039 if (bs->drv->bdrv_co_flush_to_disk) {
4040 ret = bs->drv->bdrv_co_flush_to_disk(bs);
4041 } else if (bs->drv->bdrv_aio_flush) {
4042 BlockDriverAIOCB *acb;
4043 CoroutineIOCompletion co = {
4044 .coroutine = qemu_coroutine_self(),
4045 };
4046
4047 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4048 if (acb == NULL) {
4049 ret = -EIO;
4050 } else {
4051 qemu_coroutine_yield();
4052 ret = co.ret;
4053 }
4054 } else {
4055 /*
4056 * Some block drivers always operate in either writethrough or unsafe
4057 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4058 * know how the server works (because the behaviour is hardcoded or
4059 * depends on server-side configuration), so we can't ensure that
4060 * everything is safe on disk. Returning an error doesn't work because
4061 * that would break guests even if the server operates in writethrough
4062 * mode.
4063 *
4064 * Let's hope the user knows what he's doing.
4065 */
4066 ret = 0;
4067 }
4068 if (ret < 0) {
4069 return ret;
4070 }
4071
4072 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4073 * in the case of cache=unsafe, so there are no useless flushes.
4074 */
4075 flush_parent:
4076 return bdrv_co_flush(bs->file);
4077 }
4078
4079 void bdrv_invalidate_cache(BlockDriverState *bs)
4080 {
4081 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4082 bs->drv->bdrv_invalidate_cache(bs);
4083 }
4084 }
4085
4086 void bdrv_invalidate_cache_all(void)
4087 {
4088 BlockDriverState *bs;
4089
4090 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4091 bdrv_invalidate_cache(bs);
4092 }
4093 }
4094
4095 void bdrv_clear_incoming_migration_all(void)
4096 {
4097 BlockDriverState *bs;
4098
4099 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4100 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4101 }
4102 }
4103
4104 int bdrv_flush(BlockDriverState *bs)
4105 {
4106 Coroutine *co;
4107 RwCo rwco = {
4108 .bs = bs,
4109 .ret = NOT_DONE,
4110 };
4111
4112 if (qemu_in_coroutine()) {
4113 /* Fast-path if already in coroutine context */
4114 bdrv_flush_co_entry(&rwco);
4115 } else {
4116 co = qemu_coroutine_create(bdrv_flush_co_entry);
4117 qemu_coroutine_enter(co, &rwco);
4118 while (rwco.ret == NOT_DONE) {
4119 qemu_aio_wait();
4120 }
4121 }
4122
4123 return rwco.ret;
4124 }
4125
4126 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4127 {
4128 RwCo *rwco = opaque;
4129
4130 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4131 }
4132
4133 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4134 int nb_sectors)
4135 {
4136 if (!bs->drv) {
4137 return -ENOMEDIUM;
4138 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4139 return -EIO;
4140 } else if (bs->read_only) {
4141 return -EROFS;
4142 }
4143
4144 if (bs->dirty_bitmap) {
4145 bdrv_reset_dirty(bs, sector_num, nb_sectors);
4146 }
4147
4148 /* Do nothing if disabled. */
4149 if (!(bs->open_flags & BDRV_O_UNMAP)) {
4150 return 0;
4151 }
4152
4153 if (bs->drv->bdrv_co_discard) {
4154 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4155 } else if (bs->drv->bdrv_aio_discard) {
4156 BlockDriverAIOCB *acb;
4157 CoroutineIOCompletion co = {
4158 .coroutine = qemu_coroutine_self(),
4159 };
4160
4161 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4162 bdrv_co_io_em_complete, &co);
4163 if (acb == NULL) {
4164 return -EIO;
4165 } else {
4166 qemu_coroutine_yield();
4167 return co.ret;
4168 }
4169 } else {
4170 return 0;
4171 }
4172 }
4173
4174 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4175 {
4176 Coroutine *co;
4177 RwCo rwco = {
4178 .bs = bs,
4179 .sector_num = sector_num,
4180 .nb_sectors = nb_sectors,
4181 .ret = NOT_DONE,
4182 };
4183
4184 if (qemu_in_coroutine()) {
4185 /* Fast-path if already in coroutine context */
4186 bdrv_discard_co_entry(&rwco);
4187 } else {
4188 co = qemu_coroutine_create(bdrv_discard_co_entry);
4189 qemu_coroutine_enter(co, &rwco);
4190 while (rwco.ret == NOT_DONE) {
4191 qemu_aio_wait();
4192 }
4193 }
4194
4195 return rwco.ret;
4196 }
4197
4198 /**************************************************************/
4199 /* removable device support */
4200
4201 /**
4202 * Return TRUE if the media is present
4203 */
4204 int bdrv_is_inserted(BlockDriverState *bs)
4205 {
4206 BlockDriver *drv = bs->drv;
4207
4208 if (!drv)
4209 return 0;
4210 if (!drv->bdrv_is_inserted)
4211 return 1;
4212 return drv->bdrv_is_inserted(bs);
4213 }
4214
4215 /**
4216 * Return whether the media changed since the last call to this
4217 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4218 */
4219 int bdrv_media_changed(BlockDriverState *bs)
4220 {
4221 BlockDriver *drv = bs->drv;
4222
4223 if (drv && drv->bdrv_media_changed) {
4224 return drv->bdrv_media_changed(bs);
4225 }
4226 return -ENOTSUP;
4227 }
4228
4229 /**
4230 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4231 */
4232 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4233 {
4234 BlockDriver *drv = bs->drv;
4235
4236 if (drv && drv->bdrv_eject) {
4237 drv->bdrv_eject(bs, eject_flag);
4238 }
4239
4240 if (bs->device_name[0] != '\0') {
4241 bdrv_emit_qmp_eject_event(bs, eject_flag);
4242 }
4243 }
4244
4245 /**
4246 * Lock or unlock the media (if it is locked, the user won't be able
4247 * to eject it manually).
4248 */
4249 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4250 {
4251 BlockDriver *drv = bs->drv;
4252
4253 trace_bdrv_lock_medium(bs, locked);
4254
4255 if (drv && drv->bdrv_lock_medium) {
4256 drv->bdrv_lock_medium(bs, locked);
4257 }
4258 }
4259
4260 /* needed for generic scsi interface */
4261
4262 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4263 {
4264 BlockDriver *drv = bs->drv;
4265
4266 if (drv && drv->bdrv_ioctl)
4267 return drv->bdrv_ioctl(bs, req, buf);
4268 return -ENOTSUP;
4269 }
4270
4271 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4272 unsigned long int req, void *buf,
4273 BlockDriverCompletionFunc *cb, void *opaque)
4274 {
4275 BlockDriver *drv = bs->drv;
4276
4277 if (drv && drv->bdrv_aio_ioctl)
4278 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4279 return NULL;
4280 }
4281
4282 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4283 {
4284 bs->buffer_alignment = align;
4285 }
4286
4287 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4288 {
4289 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4290 }
4291
4292 /*
4293 * Check if all memory in this vector is sector aligned.
4294 */
4295 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
4296 {
4297 int i;
4298
4299 for (i = 0; i < qiov->niov; i++) {
4300 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) {
4301 return false;
4302 }
4303 }
4304
4305 return true;
4306 }
4307
4308 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity)
4309 {
4310 int64_t bitmap_size;
4311
4312 assert((granularity & (granularity - 1)) == 0);
4313
4314 if (granularity) {
4315 granularity >>= BDRV_SECTOR_BITS;
4316 assert(!bs->dirty_bitmap);
4317 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS);
4318 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1);
4319 } else {
4320 if (bs->dirty_bitmap) {
4321 hbitmap_free(bs->dirty_bitmap);
4322 bs->dirty_bitmap = NULL;
4323 }
4324 }
4325 }
4326
4327 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4328 {
4329 if (bs->dirty_bitmap) {
4330 return hbitmap_get(bs->dirty_bitmap, sector);
4331 } else {
4332 return 0;
4333 }
4334 }
4335
4336 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi)
4337 {
4338 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0);
4339 }
4340
4341 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4342 int nr_sectors)
4343 {
4344 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors);
4345 }
4346
4347 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4348 int nr_sectors)
4349 {
4350 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors);
4351 }
4352
4353 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4354 {
4355 if (bs->dirty_bitmap) {
4356 return hbitmap_count(bs->dirty_bitmap);
4357 } else {
4358 return 0;
4359 }
4360 }
4361
4362 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4363 {
4364 assert(bs->in_use != in_use);
4365 bs->in_use = in_use;
4366 }
4367
4368 int bdrv_in_use(BlockDriverState *bs)
4369 {
4370 return bs->in_use;
4371 }
4372
4373 void bdrv_iostatus_enable(BlockDriverState *bs)
4374 {
4375 bs->iostatus_enabled = true;
4376 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4377 }
4378
4379 /* The I/O status is only enabled if the drive explicitly
4380 * enables it _and_ the VM is configured to stop on errors */
4381 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4382 {
4383 return (bs->iostatus_enabled &&
4384 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4385 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4386 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4387 }
4388
4389 void bdrv_iostatus_disable(BlockDriverState *bs)
4390 {
4391 bs->iostatus_enabled = false;
4392 }
4393
4394 void bdrv_iostatus_reset(BlockDriverState *bs)
4395 {
4396 if (bdrv_iostatus_is_enabled(bs)) {
4397 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4398 if (bs->job) {
4399 block_job_iostatus_reset(bs->job);
4400 }
4401 }
4402 }
4403
4404 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4405 {
4406 assert(bdrv_iostatus_is_enabled(bs));
4407 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4408 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4409 BLOCK_DEVICE_IO_STATUS_FAILED;
4410 }
4411 }
4412
4413 void
4414 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4415 enum BlockAcctType type)
4416 {
4417 assert(type < BDRV_MAX_IOTYPE);
4418
4419 cookie->bytes = bytes;
4420 cookie->start_time_ns = get_clock();
4421 cookie->type = type;
4422 }
4423
4424 void
4425 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4426 {
4427 assert(cookie->type < BDRV_MAX_IOTYPE);
4428
4429 bs->nr_bytes[cookie->type] += cookie->bytes;
4430 bs->nr_ops[cookie->type]++;
4431 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4432 }
4433
4434 void bdrv_img_create(const char *filename, const char *fmt,
4435 const char *base_filename, const char *base_fmt,
4436 char *options, uint64_t img_size, int flags,
4437 Error **errp, bool quiet)
4438 {
4439 QEMUOptionParameter *param = NULL, *create_options = NULL;
4440 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4441 BlockDriverState *bs = NULL;
4442 BlockDriver *drv, *proto_drv;
4443 BlockDriver *backing_drv = NULL;
4444 int ret = 0;
4445
4446 /* Find driver and parse its options */
4447 drv = bdrv_find_format(fmt);
4448 if (!drv) {
4449 error_setg(errp, "Unknown file format '%s'", fmt);
4450 return;
4451 }
4452
4453 proto_drv = bdrv_find_protocol(filename);
4454 if (!proto_drv) {
4455 error_setg(errp, "Unknown protocol '%s'", filename);
4456 return;
4457 }
4458
4459 create_options = append_option_parameters(create_options,
4460 drv->create_options);
4461 create_options = append_option_parameters(create_options,
4462 proto_drv->create_options);
4463
4464 /* Create parameter list with default values */
4465 param = parse_option_parameters("", create_options, param);
4466
4467 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4468
4469 /* Parse -o options */
4470 if (options) {
4471 param = parse_option_parameters(options, create_options, param);
4472 if (param == NULL) {
4473 error_setg(errp, "Invalid options for file format '%s'.", fmt);
4474 goto out;
4475 }
4476 }
4477
4478 if (base_filename) {
4479 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4480 base_filename)) {
4481 error_setg(errp, "Backing file not supported for file format '%s'",
4482 fmt);
4483 goto out;
4484 }
4485 }
4486
4487 if (base_fmt) {
4488 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4489 error_setg(errp, "Backing file format not supported for file "
4490 "format '%s'", fmt);
4491 goto out;
4492 }
4493 }
4494
4495 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4496 if (backing_file && backing_file->value.s) {
4497 if (!strcmp(filename, backing_file->value.s)) {
4498 error_setg(errp, "Error: Trying to create an image with the "
4499 "same filename as the backing file");
4500 goto out;
4501 }
4502 }
4503
4504 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4505 if (backing_fmt && backing_fmt->value.s) {
4506 backing_drv = bdrv_find_format(backing_fmt->value.s);
4507 if (!backing_drv) {
4508 error_setg(errp, "Unknown backing file format '%s'",
4509 backing_fmt->value.s);
4510 goto out;
4511 }
4512 }
4513
4514 // The size for the image must always be specified, with one exception:
4515 // If we are using a backing file, we can obtain the size from there
4516 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4517 if (size && size->value.n == -1) {
4518 if (backing_file && backing_file->value.s) {
4519 uint64_t size;
4520 char buf[32];
4521 int back_flags;
4522
4523 /* backing files always opened read-only */
4524 back_flags =
4525 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4526
4527 bs = bdrv_new("");
4528
4529 ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags,
4530 backing_drv);
4531 if (ret < 0) {
4532 error_setg_errno(errp, -ret, "Could not open '%s'",
4533 backing_file->value.s);
4534 goto out;
4535 }
4536 bdrv_get_geometry(bs, &size);
4537 size *= 512;
4538
4539 snprintf(buf, sizeof(buf), "%" PRId64, size);
4540 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4541 } else {
4542 error_setg(errp, "Image creation needs a size parameter");
4543 goto out;
4544 }
4545 }
4546
4547 if (!quiet) {
4548 printf("Formatting '%s', fmt=%s ", filename, fmt);
4549 print_option_parameters(param);
4550 puts("");
4551 }
4552 ret = bdrv_create(drv, filename, param);
4553 if (ret < 0) {
4554 if (ret == -ENOTSUP) {
4555 error_setg(errp,"Formatting or formatting option not supported for "
4556 "file format '%s'", fmt);
4557 } else if (ret == -EFBIG) {
4558 const char *cluster_size_hint = "";
4559 if (get_option_parameter(create_options, BLOCK_OPT_CLUSTER_SIZE)) {
4560 cluster_size_hint = " (try using a larger cluster size)";
4561 }
4562 error_setg(errp, "The image size is too large for file format '%s'%s",
4563 fmt, cluster_size_hint);
4564 } else {
4565 error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
4566 strerror(-ret));
4567 }
4568 }
4569
4570 out:
4571 free_option_parameters(create_options);
4572 free_option_parameters(param);
4573
4574 if (bs) {
4575 bdrv_delete(bs);
4576 }
4577 }
4578
4579 AioContext *bdrv_get_aio_context(BlockDriverState *bs)
4580 {
4581 /* Currently BlockDriverState always uses the main loop AioContext */
4582 return qemu_get_aio_context();
4583 }