]> git.proxmox.com Git - qemu.git/blob - block.c
usb-bt: Return NAK instead of STALL when interrupt ep has no data
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "notify.h"
34 #include "qemu-coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu-timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55 BDRV_REQ_COPY_ON_READ = 0x1,
56 BDRV_REQ_ZERO_WRITE = 0x2,
57 } BdrvRequestFlags;
58
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65 BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors,
71 QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77 BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79 int64_t sector_num,
80 QEMUIOVector *qiov,
81 int nb_sectors,
82 BlockDriverCompletionFunc *cb,
83 void *opaque,
84 bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87 int64_t sector_num, int nb_sectors);
88
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90 bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92 double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94 bool is_write, int64_t *wait);
95
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97 QTAILQ_HEAD_INITIALIZER(bdrv_states);
98
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100 QLIST_HEAD_INITIALIZER(bdrv_drivers);
101
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113 filename[1] == ':');
114 }
115
116 int is_windows_drive(const char *filename)
117 {
118 if (is_windows_drive_prefix(filename) &&
119 filename[2] == '\0')
120 return 1;
121 if (strstart(filename, "\\\\.\\", NULL) ||
122 strstart(filename, "//./", NULL))
123 return 1;
124 return 0;
125 }
126 #endif
127
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131 bs->io_limits_enabled = false;
132
133 while (qemu_co_queue_next(&bs->throttled_reqs));
134
135 if (bs->block_timer) {
136 qemu_del_timer(bs->block_timer);
137 qemu_free_timer(bs->block_timer);
138 bs->block_timer = NULL;
139 }
140
141 bs->slice_start = 0;
142 bs->slice_end = 0;
143 bs->slice_time = 0;
144 memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146
147 static void bdrv_block_timer(void *opaque)
148 {
149 BlockDriverState *bs = opaque;
150
151 qemu_co_queue_next(&bs->throttled_reqs);
152 }
153
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156 qemu_co_queue_init(&bs->throttled_reqs);
157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
159 bs->slice_start = qemu_get_clock_ns(vm_clock);
160 bs->slice_end = bs->slice_start + bs->slice_time;
161 memset(&bs->io_base, 0, sizeof(bs->io_base));
162 bs->io_limits_enabled = true;
163 }
164
165 bool bdrv_io_limits_enabled(BlockDriverState *bs)
166 {
167 BlockIOLimit *io_limits = &bs->io_limits;
168 return io_limits->bps[BLOCK_IO_LIMIT_READ]
169 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
171 || io_limits->iops[BLOCK_IO_LIMIT_READ]
172 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
173 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
174 }
175
176 static void bdrv_io_limits_intercept(BlockDriverState *bs,
177 bool is_write, int nb_sectors)
178 {
179 int64_t wait_time = -1;
180
181 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
182 qemu_co_queue_wait(&bs->throttled_reqs);
183 }
184
185 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
186 * throttled requests will not be dequeued until the current request is
187 * allowed to be serviced. So if the current request still exceeds the
188 * limits, it will be inserted to the head. All requests followed it will
189 * be still in throttled_reqs queue.
190 */
191
192 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
193 qemu_mod_timer(bs->block_timer,
194 wait_time + qemu_get_clock_ns(vm_clock));
195 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
196 }
197
198 qemu_co_queue_next(&bs->throttled_reqs);
199 }
200
201 /* check if the path starts with "<protocol>:" */
202 static int path_has_protocol(const char *path)
203 {
204 const char *p;
205
206 #ifdef _WIN32
207 if (is_windows_drive(path) ||
208 is_windows_drive_prefix(path)) {
209 return 0;
210 }
211 p = path + strcspn(path, ":/\\");
212 #else
213 p = path + strcspn(path, ":/");
214 #endif
215
216 return *p == ':';
217 }
218
219 int path_is_absolute(const char *path)
220 {
221 #ifdef _WIN32
222 /* specific case for names like: "\\.\d:" */
223 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
224 return 1;
225 }
226 return (*path == '/' || *path == '\\');
227 #else
228 return (*path == '/');
229 #endif
230 }
231
232 /* if filename is absolute, just copy it to dest. Otherwise, build a
233 path to it by considering it is relative to base_path. URL are
234 supported. */
235 void path_combine(char *dest, int dest_size,
236 const char *base_path,
237 const char *filename)
238 {
239 const char *p, *p1;
240 int len;
241
242 if (dest_size <= 0)
243 return;
244 if (path_is_absolute(filename)) {
245 pstrcpy(dest, dest_size, filename);
246 } else {
247 p = strchr(base_path, ':');
248 if (p)
249 p++;
250 else
251 p = base_path;
252 p1 = strrchr(base_path, '/');
253 #ifdef _WIN32
254 {
255 const char *p2;
256 p2 = strrchr(base_path, '\\');
257 if (!p1 || p2 > p1)
258 p1 = p2;
259 }
260 #endif
261 if (p1)
262 p1++;
263 else
264 p1 = base_path;
265 if (p1 > p)
266 p = p1;
267 len = p - base_path;
268 if (len > dest_size - 1)
269 len = dest_size - 1;
270 memcpy(dest, base_path, len);
271 dest[len] = '\0';
272 pstrcat(dest, dest_size, filename);
273 }
274 }
275
276 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
277 {
278 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
279 pstrcpy(dest, sz, bs->backing_file);
280 } else {
281 path_combine(dest, sz, bs->filename, bs->backing_file);
282 }
283 }
284
285 void bdrv_register(BlockDriver *bdrv)
286 {
287 /* Block drivers without coroutine functions need emulation */
288 if (!bdrv->bdrv_co_readv) {
289 bdrv->bdrv_co_readv = bdrv_co_readv_em;
290 bdrv->bdrv_co_writev = bdrv_co_writev_em;
291
292 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
293 * the block driver lacks aio we need to emulate that too.
294 */
295 if (!bdrv->bdrv_aio_readv) {
296 /* add AIO emulation layer */
297 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
298 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
299 }
300 }
301
302 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
303 }
304
305 /* create a new block device (by default it is empty) */
306 BlockDriverState *bdrv_new(const char *device_name)
307 {
308 BlockDriverState *bs;
309
310 bs = g_malloc0(sizeof(BlockDriverState));
311 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
312 if (device_name[0] != '\0') {
313 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
314 }
315 bdrv_iostatus_disable(bs);
316 notifier_list_init(&bs->close_notifiers);
317
318 return bs;
319 }
320
321 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
322 {
323 notifier_list_add(&bs->close_notifiers, notify);
324 }
325
326 BlockDriver *bdrv_find_format(const char *format_name)
327 {
328 BlockDriver *drv1;
329 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
330 if (!strcmp(drv1->format_name, format_name)) {
331 return drv1;
332 }
333 }
334 return NULL;
335 }
336
337 static int bdrv_is_whitelisted(BlockDriver *drv)
338 {
339 static const char *whitelist[] = {
340 CONFIG_BDRV_WHITELIST
341 };
342 const char **p;
343
344 if (!whitelist[0])
345 return 1; /* no whitelist, anything goes */
346
347 for (p = whitelist; *p; p++) {
348 if (!strcmp(drv->format_name, *p)) {
349 return 1;
350 }
351 }
352 return 0;
353 }
354
355 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
356 {
357 BlockDriver *drv = bdrv_find_format(format_name);
358 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
359 }
360
361 typedef struct CreateCo {
362 BlockDriver *drv;
363 char *filename;
364 QEMUOptionParameter *options;
365 int ret;
366 } CreateCo;
367
368 static void coroutine_fn bdrv_create_co_entry(void *opaque)
369 {
370 CreateCo *cco = opaque;
371 assert(cco->drv);
372
373 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
374 }
375
376 int bdrv_create(BlockDriver *drv, const char* filename,
377 QEMUOptionParameter *options)
378 {
379 int ret;
380
381 Coroutine *co;
382 CreateCo cco = {
383 .drv = drv,
384 .filename = g_strdup(filename),
385 .options = options,
386 .ret = NOT_DONE,
387 };
388
389 if (!drv->bdrv_create) {
390 ret = -ENOTSUP;
391 goto out;
392 }
393
394 if (qemu_in_coroutine()) {
395 /* Fast-path if already in coroutine context */
396 bdrv_create_co_entry(&cco);
397 } else {
398 co = qemu_coroutine_create(bdrv_create_co_entry);
399 qemu_coroutine_enter(co, &cco);
400 while (cco.ret == NOT_DONE) {
401 qemu_aio_wait();
402 }
403 }
404
405 ret = cco.ret;
406
407 out:
408 g_free(cco.filename);
409 return ret;
410 }
411
412 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
413 {
414 BlockDriver *drv;
415
416 drv = bdrv_find_protocol(filename);
417 if (drv == NULL) {
418 return -ENOENT;
419 }
420
421 return bdrv_create(drv, filename, options);
422 }
423
424 /*
425 * Create a uniquely-named empty temporary file.
426 * Return 0 upon success, otherwise a negative errno value.
427 */
428 int get_tmp_filename(char *filename, int size)
429 {
430 #ifdef _WIN32
431 char temp_dir[MAX_PATH];
432 /* GetTempFileName requires that its output buffer (4th param)
433 have length MAX_PATH or greater. */
434 assert(size >= MAX_PATH);
435 return (GetTempPath(MAX_PATH, temp_dir)
436 && GetTempFileName(temp_dir, "qem", 0, filename)
437 ? 0 : -GetLastError());
438 #else
439 int fd;
440 const char *tmpdir;
441 tmpdir = getenv("TMPDIR");
442 if (!tmpdir)
443 tmpdir = "/tmp";
444 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
445 return -EOVERFLOW;
446 }
447 fd = mkstemp(filename);
448 if (fd < 0) {
449 return -errno;
450 }
451 if (close(fd) != 0) {
452 unlink(filename);
453 return -errno;
454 }
455 return 0;
456 #endif
457 }
458
459 /*
460 * Detect host devices. By convention, /dev/cdrom[N] is always
461 * recognized as a host CDROM.
462 */
463 static BlockDriver *find_hdev_driver(const char *filename)
464 {
465 int score_max = 0, score;
466 BlockDriver *drv = NULL, *d;
467
468 QLIST_FOREACH(d, &bdrv_drivers, list) {
469 if (d->bdrv_probe_device) {
470 score = d->bdrv_probe_device(filename);
471 if (score > score_max) {
472 score_max = score;
473 drv = d;
474 }
475 }
476 }
477
478 return drv;
479 }
480
481 BlockDriver *bdrv_find_protocol(const char *filename)
482 {
483 BlockDriver *drv1;
484 char protocol[128];
485 int len;
486 const char *p;
487
488 /* TODO Drivers without bdrv_file_open must be specified explicitly */
489
490 /*
491 * XXX(hch): we really should not let host device detection
492 * override an explicit protocol specification, but moving this
493 * later breaks access to device names with colons in them.
494 * Thanks to the brain-dead persistent naming schemes on udev-
495 * based Linux systems those actually are quite common.
496 */
497 drv1 = find_hdev_driver(filename);
498 if (drv1) {
499 return drv1;
500 }
501
502 if (!path_has_protocol(filename)) {
503 return bdrv_find_format("file");
504 }
505 p = strchr(filename, ':');
506 assert(p != NULL);
507 len = p - filename;
508 if (len > sizeof(protocol) - 1)
509 len = sizeof(protocol) - 1;
510 memcpy(protocol, filename, len);
511 protocol[len] = '\0';
512 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
513 if (drv1->protocol_name &&
514 !strcmp(drv1->protocol_name, protocol)) {
515 return drv1;
516 }
517 }
518 return NULL;
519 }
520
521 static int find_image_format(const char *filename, BlockDriver **pdrv)
522 {
523 int ret, score, score_max;
524 BlockDriver *drv1, *drv;
525 uint8_t buf[2048];
526 BlockDriverState *bs;
527
528 ret = bdrv_file_open(&bs, filename, 0);
529 if (ret < 0) {
530 *pdrv = NULL;
531 return ret;
532 }
533
534 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
535 if (bs->sg || !bdrv_is_inserted(bs)) {
536 bdrv_delete(bs);
537 drv = bdrv_find_format("raw");
538 if (!drv) {
539 ret = -ENOENT;
540 }
541 *pdrv = drv;
542 return ret;
543 }
544
545 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
546 bdrv_delete(bs);
547 if (ret < 0) {
548 *pdrv = NULL;
549 return ret;
550 }
551
552 score_max = 0;
553 drv = NULL;
554 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
555 if (drv1->bdrv_probe) {
556 score = drv1->bdrv_probe(buf, ret, filename);
557 if (score > score_max) {
558 score_max = score;
559 drv = drv1;
560 }
561 }
562 }
563 if (!drv) {
564 ret = -ENOENT;
565 }
566 *pdrv = drv;
567 return ret;
568 }
569
570 /**
571 * Set the current 'total_sectors' value
572 */
573 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
574 {
575 BlockDriver *drv = bs->drv;
576
577 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
578 if (bs->sg)
579 return 0;
580
581 /* query actual device if possible, otherwise just trust the hint */
582 if (drv->bdrv_getlength) {
583 int64_t length = drv->bdrv_getlength(bs);
584 if (length < 0) {
585 return length;
586 }
587 hint = length >> BDRV_SECTOR_BITS;
588 }
589
590 bs->total_sectors = hint;
591 return 0;
592 }
593
594 /**
595 * Set open flags for a given cache mode
596 *
597 * Return 0 on success, -1 if the cache mode was invalid.
598 */
599 int bdrv_parse_cache_flags(const char *mode, int *flags)
600 {
601 *flags &= ~BDRV_O_CACHE_MASK;
602
603 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
604 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
605 } else if (!strcmp(mode, "directsync")) {
606 *flags |= BDRV_O_NOCACHE;
607 } else if (!strcmp(mode, "writeback")) {
608 *flags |= BDRV_O_CACHE_WB;
609 } else if (!strcmp(mode, "unsafe")) {
610 *flags |= BDRV_O_CACHE_WB;
611 *flags |= BDRV_O_NO_FLUSH;
612 } else if (!strcmp(mode, "writethrough")) {
613 /* this is the default */
614 } else {
615 return -1;
616 }
617
618 return 0;
619 }
620
621 /**
622 * The copy-on-read flag is actually a reference count so multiple users may
623 * use the feature without worrying about clobbering its previous state.
624 * Copy-on-read stays enabled until all users have called to disable it.
625 */
626 void bdrv_enable_copy_on_read(BlockDriverState *bs)
627 {
628 bs->copy_on_read++;
629 }
630
631 void bdrv_disable_copy_on_read(BlockDriverState *bs)
632 {
633 assert(bs->copy_on_read > 0);
634 bs->copy_on_read--;
635 }
636
637 /*
638 * Common part for opening disk images and files
639 */
640 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
641 int flags, BlockDriver *drv)
642 {
643 int ret, open_flags;
644
645 assert(drv != NULL);
646 assert(bs->file == NULL);
647
648 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
649
650 bs->open_flags = flags;
651 bs->buffer_alignment = 512;
652
653 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
654 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
655 bdrv_enable_copy_on_read(bs);
656 }
657
658 pstrcpy(bs->filename, sizeof(bs->filename), filename);
659
660 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
661 return -ENOTSUP;
662 }
663
664 bs->drv = drv;
665 bs->opaque = g_malloc0(drv->instance_size);
666
667 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
668 open_flags = flags | BDRV_O_CACHE_WB;
669
670 /*
671 * Clear flags that are internal to the block layer before opening the
672 * image.
673 */
674 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
675
676 /*
677 * Snapshots should be writable.
678 */
679 if (bs->is_temporary) {
680 open_flags |= BDRV_O_RDWR;
681 }
682
683 bs->read_only = !(open_flags & BDRV_O_RDWR);
684
685 /* Open the image, either directly or using a protocol */
686 if (drv->bdrv_file_open) {
687 ret = drv->bdrv_file_open(bs, filename, open_flags);
688 } else {
689 ret = bdrv_file_open(&bs->file, filename, open_flags);
690 if (ret >= 0) {
691 ret = drv->bdrv_open(bs, open_flags);
692 }
693 }
694
695 if (ret < 0) {
696 goto free_and_fail;
697 }
698
699 ret = refresh_total_sectors(bs, bs->total_sectors);
700 if (ret < 0) {
701 goto free_and_fail;
702 }
703
704 #ifndef _WIN32
705 if (bs->is_temporary) {
706 unlink(filename);
707 }
708 #endif
709 return 0;
710
711 free_and_fail:
712 if (bs->file) {
713 bdrv_delete(bs->file);
714 bs->file = NULL;
715 }
716 g_free(bs->opaque);
717 bs->opaque = NULL;
718 bs->drv = NULL;
719 return ret;
720 }
721
722 /*
723 * Opens a file using a protocol (file, host_device, nbd, ...)
724 */
725 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
726 {
727 BlockDriverState *bs;
728 BlockDriver *drv;
729 int ret;
730
731 drv = bdrv_find_protocol(filename);
732 if (!drv) {
733 return -ENOENT;
734 }
735
736 bs = bdrv_new("");
737 ret = bdrv_open_common(bs, filename, flags, drv);
738 if (ret < 0) {
739 bdrv_delete(bs);
740 return ret;
741 }
742 bs->growable = 1;
743 *pbs = bs;
744 return 0;
745 }
746
747 int bdrv_open_backing_file(BlockDriverState *bs)
748 {
749 char backing_filename[PATH_MAX];
750 int back_flags, ret;
751 BlockDriver *back_drv = NULL;
752
753 if (bs->backing_hd != NULL) {
754 return 0;
755 }
756
757 bs->open_flags &= ~BDRV_O_NO_BACKING;
758 if (bs->backing_file[0] == '\0') {
759 return 0;
760 }
761
762 bs->backing_hd = bdrv_new("");
763 bdrv_get_full_backing_filename(bs, backing_filename,
764 sizeof(backing_filename));
765
766 if (bs->backing_format[0] != '\0') {
767 back_drv = bdrv_find_format(bs->backing_format);
768 }
769
770 /* backing files always opened read-only */
771 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
772
773 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
774 if (ret < 0) {
775 bdrv_delete(bs->backing_hd);
776 bs->backing_hd = NULL;
777 bs->open_flags |= BDRV_O_NO_BACKING;
778 return ret;
779 }
780 return 0;
781 }
782
783 /*
784 * Opens a disk image (raw, qcow2, vmdk, ...)
785 */
786 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
787 BlockDriver *drv)
788 {
789 int ret;
790 char tmp_filename[PATH_MAX];
791
792 if (flags & BDRV_O_SNAPSHOT) {
793 BlockDriverState *bs1;
794 int64_t total_size;
795 int is_protocol = 0;
796 BlockDriver *bdrv_qcow2;
797 QEMUOptionParameter *options;
798 char backing_filename[PATH_MAX];
799
800 /* if snapshot, we create a temporary backing file and open it
801 instead of opening 'filename' directly */
802
803 /* if there is a backing file, use it */
804 bs1 = bdrv_new("");
805 ret = bdrv_open(bs1, filename, 0, drv);
806 if (ret < 0) {
807 bdrv_delete(bs1);
808 return ret;
809 }
810 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
811
812 if (bs1->drv && bs1->drv->protocol_name)
813 is_protocol = 1;
814
815 bdrv_delete(bs1);
816
817 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
818 if (ret < 0) {
819 return ret;
820 }
821
822 /* Real path is meaningless for protocols */
823 if (is_protocol)
824 snprintf(backing_filename, sizeof(backing_filename),
825 "%s", filename);
826 else if (!realpath(filename, backing_filename))
827 return -errno;
828
829 bdrv_qcow2 = bdrv_find_format("qcow2");
830 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
831
832 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
833 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
834 if (drv) {
835 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
836 drv->format_name);
837 }
838
839 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
840 free_option_parameters(options);
841 if (ret < 0) {
842 return ret;
843 }
844
845 filename = tmp_filename;
846 drv = bdrv_qcow2;
847 bs->is_temporary = 1;
848 }
849
850 /* Find the right image format driver */
851 if (!drv) {
852 ret = find_image_format(filename, &drv);
853 }
854
855 if (!drv) {
856 goto unlink_and_fail;
857 }
858
859 if (flags & BDRV_O_RDWR) {
860 flags |= BDRV_O_ALLOW_RDWR;
861 }
862
863 /* Open the image */
864 ret = bdrv_open_common(bs, filename, flags, drv);
865 if (ret < 0) {
866 goto unlink_and_fail;
867 }
868
869 /* If there is a backing file, use it */
870 if ((flags & BDRV_O_NO_BACKING) == 0) {
871 ret = bdrv_open_backing_file(bs);
872 if (ret < 0) {
873 bdrv_close(bs);
874 return ret;
875 }
876 }
877
878 if (!bdrv_key_required(bs)) {
879 bdrv_dev_change_media_cb(bs, true);
880 }
881
882 /* throttling disk I/O limits */
883 if (bs->io_limits_enabled) {
884 bdrv_io_limits_enable(bs);
885 }
886
887 return 0;
888
889 unlink_and_fail:
890 if (bs->is_temporary) {
891 unlink(filename);
892 }
893 return ret;
894 }
895
896 typedef struct BlockReopenQueueEntry {
897 bool prepared;
898 BDRVReopenState state;
899 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
900 } BlockReopenQueueEntry;
901
902 /*
903 * Adds a BlockDriverState to a simple queue for an atomic, transactional
904 * reopen of multiple devices.
905 *
906 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
907 * already performed, or alternatively may be NULL a new BlockReopenQueue will
908 * be created and initialized. This newly created BlockReopenQueue should be
909 * passed back in for subsequent calls that are intended to be of the same
910 * atomic 'set'.
911 *
912 * bs is the BlockDriverState to add to the reopen queue.
913 *
914 * flags contains the open flags for the associated bs
915 *
916 * returns a pointer to bs_queue, which is either the newly allocated
917 * bs_queue, or the existing bs_queue being used.
918 *
919 */
920 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
921 BlockDriverState *bs, int flags)
922 {
923 assert(bs != NULL);
924
925 BlockReopenQueueEntry *bs_entry;
926 if (bs_queue == NULL) {
927 bs_queue = g_new0(BlockReopenQueue, 1);
928 QSIMPLEQ_INIT(bs_queue);
929 }
930
931 if (bs->file) {
932 bdrv_reopen_queue(bs_queue, bs->file, flags);
933 }
934
935 bs_entry = g_new0(BlockReopenQueueEntry, 1);
936 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
937
938 bs_entry->state.bs = bs;
939 bs_entry->state.flags = flags;
940
941 return bs_queue;
942 }
943
944 /*
945 * Reopen multiple BlockDriverStates atomically & transactionally.
946 *
947 * The queue passed in (bs_queue) must have been built up previous
948 * via bdrv_reopen_queue().
949 *
950 * Reopens all BDS specified in the queue, with the appropriate
951 * flags. All devices are prepared for reopen, and failure of any
952 * device will cause all device changes to be abandonded, and intermediate
953 * data cleaned up.
954 *
955 * If all devices prepare successfully, then the changes are committed
956 * to all devices.
957 *
958 */
959 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
960 {
961 int ret = -1;
962 BlockReopenQueueEntry *bs_entry, *next;
963 Error *local_err = NULL;
964
965 assert(bs_queue != NULL);
966
967 bdrv_drain_all();
968
969 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
970 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
971 error_propagate(errp, local_err);
972 goto cleanup;
973 }
974 bs_entry->prepared = true;
975 }
976
977 /* If we reach this point, we have success and just need to apply the
978 * changes
979 */
980 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
981 bdrv_reopen_commit(&bs_entry->state);
982 }
983
984 ret = 0;
985
986 cleanup:
987 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
988 if (ret && bs_entry->prepared) {
989 bdrv_reopen_abort(&bs_entry->state);
990 }
991 g_free(bs_entry);
992 }
993 g_free(bs_queue);
994 return ret;
995 }
996
997
998 /* Reopen a single BlockDriverState with the specified flags. */
999 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1000 {
1001 int ret = -1;
1002 Error *local_err = NULL;
1003 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1004
1005 ret = bdrv_reopen_multiple(queue, &local_err);
1006 if (local_err != NULL) {
1007 error_propagate(errp, local_err);
1008 }
1009 return ret;
1010 }
1011
1012
1013 /*
1014 * Prepares a BlockDriverState for reopen. All changes are staged in the
1015 * 'opaque' field of the BDRVReopenState, which is used and allocated by
1016 * the block driver layer .bdrv_reopen_prepare()
1017 *
1018 * bs is the BlockDriverState to reopen
1019 * flags are the new open flags
1020 * queue is the reopen queue
1021 *
1022 * Returns 0 on success, non-zero on error. On error errp will be set
1023 * as well.
1024 *
1025 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1026 * It is the responsibility of the caller to then call the abort() or
1027 * commit() for any other BDS that have been left in a prepare() state
1028 *
1029 */
1030 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1031 Error **errp)
1032 {
1033 int ret = -1;
1034 Error *local_err = NULL;
1035 BlockDriver *drv;
1036
1037 assert(reopen_state != NULL);
1038 assert(reopen_state->bs->drv != NULL);
1039 drv = reopen_state->bs->drv;
1040
1041 /* if we are to stay read-only, do not allow permission change
1042 * to r/w */
1043 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1044 reopen_state->flags & BDRV_O_RDWR) {
1045 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1046 reopen_state->bs->device_name);
1047 goto error;
1048 }
1049
1050
1051 ret = bdrv_flush(reopen_state->bs);
1052 if (ret) {
1053 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1054 strerror(-ret));
1055 goto error;
1056 }
1057
1058 if (drv->bdrv_reopen_prepare) {
1059 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1060 if (ret) {
1061 if (local_err != NULL) {
1062 error_propagate(errp, local_err);
1063 } else {
1064 error_set(errp, QERR_OPEN_FILE_FAILED,
1065 reopen_state->bs->filename);
1066 }
1067 goto error;
1068 }
1069 } else {
1070 /* It is currently mandatory to have a bdrv_reopen_prepare()
1071 * handler for each supported drv. */
1072 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1073 drv->format_name, reopen_state->bs->device_name,
1074 "reopening of file");
1075 ret = -1;
1076 goto error;
1077 }
1078
1079 ret = 0;
1080
1081 error:
1082 return ret;
1083 }
1084
1085 /*
1086 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1087 * makes them final by swapping the staging BlockDriverState contents into
1088 * the active BlockDriverState contents.
1089 */
1090 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1091 {
1092 BlockDriver *drv;
1093
1094 assert(reopen_state != NULL);
1095 drv = reopen_state->bs->drv;
1096 assert(drv != NULL);
1097
1098 /* If there are any driver level actions to take */
1099 if (drv->bdrv_reopen_commit) {
1100 drv->bdrv_reopen_commit(reopen_state);
1101 }
1102
1103 /* set BDS specific flags now */
1104 reopen_state->bs->open_flags = reopen_state->flags;
1105 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1106 BDRV_O_CACHE_WB);
1107 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1108 }
1109
1110 /*
1111 * Abort the reopen, and delete and free the staged changes in
1112 * reopen_state
1113 */
1114 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1115 {
1116 BlockDriver *drv;
1117
1118 assert(reopen_state != NULL);
1119 drv = reopen_state->bs->drv;
1120 assert(drv != NULL);
1121
1122 if (drv->bdrv_reopen_abort) {
1123 drv->bdrv_reopen_abort(reopen_state);
1124 }
1125 }
1126
1127
1128 void bdrv_close(BlockDriverState *bs)
1129 {
1130 bdrv_flush(bs);
1131 if (bs->job) {
1132 block_job_cancel_sync(bs->job);
1133 }
1134 bdrv_drain_all();
1135 notifier_list_notify(&bs->close_notifiers, bs);
1136
1137 if (bs->drv) {
1138 if (bs == bs_snapshots) {
1139 bs_snapshots = NULL;
1140 }
1141 if (bs->backing_hd) {
1142 bdrv_delete(bs->backing_hd);
1143 bs->backing_hd = NULL;
1144 }
1145 bs->drv->bdrv_close(bs);
1146 g_free(bs->opaque);
1147 #ifdef _WIN32
1148 if (bs->is_temporary) {
1149 unlink(bs->filename);
1150 }
1151 #endif
1152 bs->opaque = NULL;
1153 bs->drv = NULL;
1154 bs->copy_on_read = 0;
1155 bs->backing_file[0] = '\0';
1156 bs->backing_format[0] = '\0';
1157 bs->total_sectors = 0;
1158 bs->encrypted = 0;
1159 bs->valid_key = 0;
1160 bs->sg = 0;
1161 bs->growable = 0;
1162
1163 if (bs->file != NULL) {
1164 bdrv_delete(bs->file);
1165 bs->file = NULL;
1166 }
1167 }
1168
1169 bdrv_dev_change_media_cb(bs, false);
1170
1171 /*throttling disk I/O limits*/
1172 if (bs->io_limits_enabled) {
1173 bdrv_io_limits_disable(bs);
1174 }
1175 }
1176
1177 void bdrv_close_all(void)
1178 {
1179 BlockDriverState *bs;
1180
1181 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1182 bdrv_close(bs);
1183 }
1184 }
1185
1186 /*
1187 * Wait for pending requests to complete across all BlockDriverStates
1188 *
1189 * This function does not flush data to disk, use bdrv_flush_all() for that
1190 * after calling this function.
1191 *
1192 * Note that completion of an asynchronous I/O operation can trigger any
1193 * number of other I/O operations on other devices---for example a coroutine
1194 * can be arbitrarily complex and a constant flow of I/O can come until the
1195 * coroutine is complete. Because of this, it is not possible to have a
1196 * function to drain a single device's I/O queue.
1197 */
1198 void bdrv_drain_all(void)
1199 {
1200 BlockDriverState *bs;
1201 bool busy;
1202
1203 do {
1204 busy = qemu_aio_wait();
1205
1206 /* FIXME: We do not have timer support here, so this is effectively
1207 * a busy wait.
1208 */
1209 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1210 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1211 qemu_co_queue_restart_all(&bs->throttled_reqs);
1212 busy = true;
1213 }
1214 }
1215 } while (busy);
1216
1217 /* If requests are still pending there is a bug somewhere */
1218 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1219 assert(QLIST_EMPTY(&bs->tracked_requests));
1220 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1221 }
1222 }
1223
1224 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1225 Also, NULL terminate the device_name to prevent double remove */
1226 void bdrv_make_anon(BlockDriverState *bs)
1227 {
1228 if (bs->device_name[0] != '\0') {
1229 QTAILQ_REMOVE(&bdrv_states, bs, list);
1230 }
1231 bs->device_name[0] = '\0';
1232 }
1233
1234 static void bdrv_rebind(BlockDriverState *bs)
1235 {
1236 if (bs->drv && bs->drv->bdrv_rebind) {
1237 bs->drv->bdrv_rebind(bs);
1238 }
1239 }
1240
1241 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1242 BlockDriverState *bs_src)
1243 {
1244 /* move some fields that need to stay attached to the device */
1245 bs_dest->open_flags = bs_src->open_flags;
1246
1247 /* dev info */
1248 bs_dest->dev_ops = bs_src->dev_ops;
1249 bs_dest->dev_opaque = bs_src->dev_opaque;
1250 bs_dest->dev = bs_src->dev;
1251 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1252 bs_dest->copy_on_read = bs_src->copy_on_read;
1253
1254 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1255
1256 /* i/o timing parameters */
1257 bs_dest->slice_time = bs_src->slice_time;
1258 bs_dest->slice_start = bs_src->slice_start;
1259 bs_dest->slice_end = bs_src->slice_end;
1260 bs_dest->io_limits = bs_src->io_limits;
1261 bs_dest->io_base = bs_src->io_base;
1262 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1263 bs_dest->block_timer = bs_src->block_timer;
1264 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1265
1266 /* r/w error */
1267 bs_dest->on_read_error = bs_src->on_read_error;
1268 bs_dest->on_write_error = bs_src->on_write_error;
1269
1270 /* i/o status */
1271 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1272 bs_dest->iostatus = bs_src->iostatus;
1273
1274 /* dirty bitmap */
1275 bs_dest->dirty_count = bs_src->dirty_count;
1276 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1277
1278 /* job */
1279 bs_dest->in_use = bs_src->in_use;
1280 bs_dest->job = bs_src->job;
1281
1282 /* keep the same entry in bdrv_states */
1283 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1284 bs_src->device_name);
1285 bs_dest->list = bs_src->list;
1286 }
1287
1288 /*
1289 * Swap bs contents for two image chains while they are live,
1290 * while keeping required fields on the BlockDriverState that is
1291 * actually attached to a device.
1292 *
1293 * This will modify the BlockDriverState fields, and swap contents
1294 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1295 *
1296 * bs_new is required to be anonymous.
1297 *
1298 * This function does not create any image files.
1299 */
1300 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1301 {
1302 BlockDriverState tmp;
1303
1304 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1305 assert(bs_new->device_name[0] == '\0');
1306 assert(bs_new->dirty_bitmap == NULL);
1307 assert(bs_new->job == NULL);
1308 assert(bs_new->dev == NULL);
1309 assert(bs_new->in_use == 0);
1310 assert(bs_new->io_limits_enabled == false);
1311 assert(bs_new->block_timer == NULL);
1312
1313 tmp = *bs_new;
1314 *bs_new = *bs_old;
1315 *bs_old = tmp;
1316
1317 /* there are some fields that should not be swapped, move them back */
1318 bdrv_move_feature_fields(&tmp, bs_old);
1319 bdrv_move_feature_fields(bs_old, bs_new);
1320 bdrv_move_feature_fields(bs_new, &tmp);
1321
1322 /* bs_new shouldn't be in bdrv_states even after the swap! */
1323 assert(bs_new->device_name[0] == '\0');
1324
1325 /* Check a few fields that should remain attached to the device */
1326 assert(bs_new->dev == NULL);
1327 assert(bs_new->job == NULL);
1328 assert(bs_new->in_use == 0);
1329 assert(bs_new->io_limits_enabled == false);
1330 assert(bs_new->block_timer == NULL);
1331
1332 bdrv_rebind(bs_new);
1333 bdrv_rebind(bs_old);
1334 }
1335
1336 /*
1337 * Add new bs contents at the top of an image chain while the chain is
1338 * live, while keeping required fields on the top layer.
1339 *
1340 * This will modify the BlockDriverState fields, and swap contents
1341 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1342 *
1343 * bs_new is required to be anonymous.
1344 *
1345 * This function does not create any image files.
1346 */
1347 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1348 {
1349 bdrv_swap(bs_new, bs_top);
1350
1351 /* The contents of 'tmp' will become bs_top, as we are
1352 * swapping bs_new and bs_top contents. */
1353 bs_top->backing_hd = bs_new;
1354 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1355 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1356 bs_new->filename);
1357 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1358 bs_new->drv ? bs_new->drv->format_name : "");
1359 }
1360
1361 void bdrv_delete(BlockDriverState *bs)
1362 {
1363 assert(!bs->dev);
1364 assert(!bs->job);
1365 assert(!bs->in_use);
1366
1367 /* remove from list, if necessary */
1368 bdrv_make_anon(bs);
1369
1370 bdrv_close(bs);
1371
1372 assert(bs != bs_snapshots);
1373 g_free(bs);
1374 }
1375
1376 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1377 /* TODO change to DeviceState *dev when all users are qdevified */
1378 {
1379 if (bs->dev) {
1380 return -EBUSY;
1381 }
1382 bs->dev = dev;
1383 bdrv_iostatus_reset(bs);
1384 return 0;
1385 }
1386
1387 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1388 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1389 {
1390 if (bdrv_attach_dev(bs, dev) < 0) {
1391 abort();
1392 }
1393 }
1394
1395 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1396 /* TODO change to DeviceState *dev when all users are qdevified */
1397 {
1398 assert(bs->dev == dev);
1399 bs->dev = NULL;
1400 bs->dev_ops = NULL;
1401 bs->dev_opaque = NULL;
1402 bs->buffer_alignment = 512;
1403 }
1404
1405 /* TODO change to return DeviceState * when all users are qdevified */
1406 void *bdrv_get_attached_dev(BlockDriverState *bs)
1407 {
1408 return bs->dev;
1409 }
1410
1411 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1412 void *opaque)
1413 {
1414 bs->dev_ops = ops;
1415 bs->dev_opaque = opaque;
1416 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1417 bs_snapshots = NULL;
1418 }
1419 }
1420
1421 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1422 enum MonitorEvent ev,
1423 BlockErrorAction action, bool is_read)
1424 {
1425 QObject *data;
1426 const char *action_str;
1427
1428 switch (action) {
1429 case BDRV_ACTION_REPORT:
1430 action_str = "report";
1431 break;
1432 case BDRV_ACTION_IGNORE:
1433 action_str = "ignore";
1434 break;
1435 case BDRV_ACTION_STOP:
1436 action_str = "stop";
1437 break;
1438 default:
1439 abort();
1440 }
1441
1442 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1443 bdrv->device_name,
1444 action_str,
1445 is_read ? "read" : "write");
1446 monitor_protocol_event(ev, data);
1447
1448 qobject_decref(data);
1449 }
1450
1451 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1452 {
1453 QObject *data;
1454
1455 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1456 bdrv_get_device_name(bs), ejected);
1457 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1458
1459 qobject_decref(data);
1460 }
1461
1462 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1463 {
1464 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1465 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1466 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1467 if (tray_was_closed) {
1468 /* tray open */
1469 bdrv_emit_qmp_eject_event(bs, true);
1470 }
1471 if (load) {
1472 /* tray close */
1473 bdrv_emit_qmp_eject_event(bs, false);
1474 }
1475 }
1476 }
1477
1478 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1479 {
1480 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1481 }
1482
1483 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1484 {
1485 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1486 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1487 }
1488 }
1489
1490 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1491 {
1492 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1493 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1494 }
1495 return false;
1496 }
1497
1498 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1499 {
1500 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1501 bs->dev_ops->resize_cb(bs->dev_opaque);
1502 }
1503 }
1504
1505 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1506 {
1507 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1508 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1509 }
1510 return false;
1511 }
1512
1513 /*
1514 * Run consistency checks on an image
1515 *
1516 * Returns 0 if the check could be completed (it doesn't mean that the image is
1517 * free of errors) or -errno when an internal error occurred. The results of the
1518 * check are stored in res.
1519 */
1520 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1521 {
1522 if (bs->drv->bdrv_check == NULL) {
1523 return -ENOTSUP;
1524 }
1525
1526 memset(res, 0, sizeof(*res));
1527 return bs->drv->bdrv_check(bs, res, fix);
1528 }
1529
1530 #define COMMIT_BUF_SECTORS 2048
1531
1532 /* commit COW file into the raw image */
1533 int bdrv_commit(BlockDriverState *bs)
1534 {
1535 BlockDriver *drv = bs->drv;
1536 int64_t sector, total_sectors;
1537 int n, ro, open_flags;
1538 int ret = 0;
1539 uint8_t *buf;
1540 char filename[PATH_MAX];
1541
1542 if (!drv)
1543 return -ENOMEDIUM;
1544
1545 if (!bs->backing_hd) {
1546 return -ENOTSUP;
1547 }
1548
1549 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1550 return -EBUSY;
1551 }
1552
1553 ro = bs->backing_hd->read_only;
1554 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1555 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1556 open_flags = bs->backing_hd->open_flags;
1557
1558 if (ro) {
1559 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1560 return -EACCES;
1561 }
1562 }
1563
1564 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1565 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1566
1567 for (sector = 0; sector < total_sectors; sector += n) {
1568 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1569
1570 if (bdrv_read(bs, sector, buf, n) != 0) {
1571 ret = -EIO;
1572 goto ro_cleanup;
1573 }
1574
1575 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1576 ret = -EIO;
1577 goto ro_cleanup;
1578 }
1579 }
1580 }
1581
1582 if (drv->bdrv_make_empty) {
1583 ret = drv->bdrv_make_empty(bs);
1584 bdrv_flush(bs);
1585 }
1586
1587 /*
1588 * Make sure all data we wrote to the backing device is actually
1589 * stable on disk.
1590 */
1591 if (bs->backing_hd)
1592 bdrv_flush(bs->backing_hd);
1593
1594 ro_cleanup:
1595 g_free(buf);
1596
1597 if (ro) {
1598 /* ignoring error return here */
1599 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1600 }
1601
1602 return ret;
1603 }
1604
1605 int bdrv_commit_all(void)
1606 {
1607 BlockDriverState *bs;
1608
1609 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1610 int ret = bdrv_commit(bs);
1611 if (ret < 0) {
1612 return ret;
1613 }
1614 }
1615 return 0;
1616 }
1617
1618 struct BdrvTrackedRequest {
1619 BlockDriverState *bs;
1620 int64_t sector_num;
1621 int nb_sectors;
1622 bool is_write;
1623 QLIST_ENTRY(BdrvTrackedRequest) list;
1624 Coroutine *co; /* owner, used for deadlock detection */
1625 CoQueue wait_queue; /* coroutines blocked on this request */
1626 };
1627
1628 /**
1629 * Remove an active request from the tracked requests list
1630 *
1631 * This function should be called when a tracked request is completing.
1632 */
1633 static void tracked_request_end(BdrvTrackedRequest *req)
1634 {
1635 QLIST_REMOVE(req, list);
1636 qemu_co_queue_restart_all(&req->wait_queue);
1637 }
1638
1639 /**
1640 * Add an active request to the tracked requests list
1641 */
1642 static void tracked_request_begin(BdrvTrackedRequest *req,
1643 BlockDriverState *bs,
1644 int64_t sector_num,
1645 int nb_sectors, bool is_write)
1646 {
1647 *req = (BdrvTrackedRequest){
1648 .bs = bs,
1649 .sector_num = sector_num,
1650 .nb_sectors = nb_sectors,
1651 .is_write = is_write,
1652 .co = qemu_coroutine_self(),
1653 };
1654
1655 qemu_co_queue_init(&req->wait_queue);
1656
1657 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1658 }
1659
1660 /**
1661 * Round a region to cluster boundaries
1662 */
1663 static void round_to_clusters(BlockDriverState *bs,
1664 int64_t sector_num, int nb_sectors,
1665 int64_t *cluster_sector_num,
1666 int *cluster_nb_sectors)
1667 {
1668 BlockDriverInfo bdi;
1669
1670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1671 *cluster_sector_num = sector_num;
1672 *cluster_nb_sectors = nb_sectors;
1673 } else {
1674 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1675 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1676 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1677 nb_sectors, c);
1678 }
1679 }
1680
1681 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1682 int64_t sector_num, int nb_sectors) {
1683 /* aaaa bbbb */
1684 if (sector_num >= req->sector_num + req->nb_sectors) {
1685 return false;
1686 }
1687 /* bbbb aaaa */
1688 if (req->sector_num >= sector_num + nb_sectors) {
1689 return false;
1690 }
1691 return true;
1692 }
1693
1694 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1695 int64_t sector_num, int nb_sectors)
1696 {
1697 BdrvTrackedRequest *req;
1698 int64_t cluster_sector_num;
1699 int cluster_nb_sectors;
1700 bool retry;
1701
1702 /* If we touch the same cluster it counts as an overlap. This guarantees
1703 * that allocating writes will be serialized and not race with each other
1704 * for the same cluster. For example, in copy-on-read it ensures that the
1705 * CoR read and write operations are atomic and guest writes cannot
1706 * interleave between them.
1707 */
1708 round_to_clusters(bs, sector_num, nb_sectors,
1709 &cluster_sector_num, &cluster_nb_sectors);
1710
1711 do {
1712 retry = false;
1713 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1714 if (tracked_request_overlaps(req, cluster_sector_num,
1715 cluster_nb_sectors)) {
1716 /* Hitting this means there was a reentrant request, for
1717 * example, a block driver issuing nested requests. This must
1718 * never happen since it means deadlock.
1719 */
1720 assert(qemu_coroutine_self() != req->co);
1721
1722 qemu_co_queue_wait(&req->wait_queue);
1723 retry = true;
1724 break;
1725 }
1726 }
1727 } while (retry);
1728 }
1729
1730 /*
1731 * Return values:
1732 * 0 - success
1733 * -EINVAL - backing format specified, but no file
1734 * -ENOSPC - can't update the backing file because no space is left in the
1735 * image file header
1736 * -ENOTSUP - format driver doesn't support changing the backing file
1737 */
1738 int bdrv_change_backing_file(BlockDriverState *bs,
1739 const char *backing_file, const char *backing_fmt)
1740 {
1741 BlockDriver *drv = bs->drv;
1742 int ret;
1743
1744 /* Backing file format doesn't make sense without a backing file */
1745 if (backing_fmt && !backing_file) {
1746 return -EINVAL;
1747 }
1748
1749 if (drv->bdrv_change_backing_file != NULL) {
1750 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1751 } else {
1752 ret = -ENOTSUP;
1753 }
1754
1755 if (ret == 0) {
1756 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1757 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1758 }
1759 return ret;
1760 }
1761
1762 /*
1763 * Finds the image layer in the chain that has 'bs' as its backing file.
1764 *
1765 * active is the current topmost image.
1766 *
1767 * Returns NULL if bs is not found in active's image chain,
1768 * or if active == bs.
1769 */
1770 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1771 BlockDriverState *bs)
1772 {
1773 BlockDriverState *overlay = NULL;
1774 BlockDriverState *intermediate;
1775
1776 assert(active != NULL);
1777 assert(bs != NULL);
1778
1779 /* if bs is the same as active, then by definition it has no overlay
1780 */
1781 if (active == bs) {
1782 return NULL;
1783 }
1784
1785 intermediate = active;
1786 while (intermediate->backing_hd) {
1787 if (intermediate->backing_hd == bs) {
1788 overlay = intermediate;
1789 break;
1790 }
1791 intermediate = intermediate->backing_hd;
1792 }
1793
1794 return overlay;
1795 }
1796
1797 typedef struct BlkIntermediateStates {
1798 BlockDriverState *bs;
1799 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1800 } BlkIntermediateStates;
1801
1802
1803 /*
1804 * Drops images above 'base' up to and including 'top', and sets the image
1805 * above 'top' to have base as its backing file.
1806 *
1807 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1808 * information in 'bs' can be properly updated.
1809 *
1810 * E.g., this will convert the following chain:
1811 * bottom <- base <- intermediate <- top <- active
1812 *
1813 * to
1814 *
1815 * bottom <- base <- active
1816 *
1817 * It is allowed for bottom==base, in which case it converts:
1818 *
1819 * base <- intermediate <- top <- active
1820 *
1821 * to
1822 *
1823 * base <- active
1824 *
1825 * Error conditions:
1826 * if active == top, that is considered an error
1827 *
1828 */
1829 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1830 BlockDriverState *base)
1831 {
1832 BlockDriverState *intermediate;
1833 BlockDriverState *base_bs = NULL;
1834 BlockDriverState *new_top_bs = NULL;
1835 BlkIntermediateStates *intermediate_state, *next;
1836 int ret = -EIO;
1837
1838 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1839 QSIMPLEQ_INIT(&states_to_delete);
1840
1841 if (!top->drv || !base->drv) {
1842 goto exit;
1843 }
1844
1845 new_top_bs = bdrv_find_overlay(active, top);
1846
1847 if (new_top_bs == NULL) {
1848 /* we could not find the image above 'top', this is an error */
1849 goto exit;
1850 }
1851
1852 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1853 * to do, no intermediate images */
1854 if (new_top_bs->backing_hd == base) {
1855 ret = 0;
1856 goto exit;
1857 }
1858
1859 intermediate = top;
1860
1861 /* now we will go down through the list, and add each BDS we find
1862 * into our deletion queue, until we hit the 'base'
1863 */
1864 while (intermediate) {
1865 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1866 intermediate_state->bs = intermediate;
1867 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1868
1869 if (intermediate->backing_hd == base) {
1870 base_bs = intermediate->backing_hd;
1871 break;
1872 }
1873 intermediate = intermediate->backing_hd;
1874 }
1875 if (base_bs == NULL) {
1876 /* something went wrong, we did not end at the base. safely
1877 * unravel everything, and exit with error */
1878 goto exit;
1879 }
1880
1881 /* success - we can delete the intermediate states, and link top->base */
1882 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1883 base_bs->drv ? base_bs->drv->format_name : "");
1884 if (ret) {
1885 goto exit;
1886 }
1887 new_top_bs->backing_hd = base_bs;
1888
1889
1890 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1891 /* so that bdrv_close() does not recursively close the chain */
1892 intermediate_state->bs->backing_hd = NULL;
1893 bdrv_delete(intermediate_state->bs);
1894 }
1895 ret = 0;
1896
1897 exit:
1898 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1899 g_free(intermediate_state);
1900 }
1901 return ret;
1902 }
1903
1904
1905 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1906 size_t size)
1907 {
1908 int64_t len;
1909
1910 if (!bdrv_is_inserted(bs))
1911 return -ENOMEDIUM;
1912
1913 if (bs->growable)
1914 return 0;
1915
1916 len = bdrv_getlength(bs);
1917
1918 if (offset < 0)
1919 return -EIO;
1920
1921 if ((offset > len) || (len - offset < size))
1922 return -EIO;
1923
1924 return 0;
1925 }
1926
1927 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1928 int nb_sectors)
1929 {
1930 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1931 nb_sectors * BDRV_SECTOR_SIZE);
1932 }
1933
1934 typedef struct RwCo {
1935 BlockDriverState *bs;
1936 int64_t sector_num;
1937 int nb_sectors;
1938 QEMUIOVector *qiov;
1939 bool is_write;
1940 int ret;
1941 } RwCo;
1942
1943 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1944 {
1945 RwCo *rwco = opaque;
1946
1947 if (!rwco->is_write) {
1948 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1949 rwco->nb_sectors, rwco->qiov, 0);
1950 } else {
1951 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1952 rwco->nb_sectors, rwco->qiov, 0);
1953 }
1954 }
1955
1956 /*
1957 * Process a synchronous request using coroutines
1958 */
1959 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1960 int nb_sectors, bool is_write)
1961 {
1962 QEMUIOVector qiov;
1963 struct iovec iov = {
1964 .iov_base = (void *)buf,
1965 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1966 };
1967 Coroutine *co;
1968 RwCo rwco = {
1969 .bs = bs,
1970 .sector_num = sector_num,
1971 .nb_sectors = nb_sectors,
1972 .qiov = &qiov,
1973 .is_write = is_write,
1974 .ret = NOT_DONE,
1975 };
1976
1977 qemu_iovec_init_external(&qiov, &iov, 1);
1978
1979 /**
1980 * In sync call context, when the vcpu is blocked, this throttling timer
1981 * will not fire; so the I/O throttling function has to be disabled here
1982 * if it has been enabled.
1983 */
1984 if (bs->io_limits_enabled) {
1985 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1986 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1987 bdrv_io_limits_disable(bs);
1988 }
1989
1990 if (qemu_in_coroutine()) {
1991 /* Fast-path if already in coroutine context */
1992 bdrv_rw_co_entry(&rwco);
1993 } else {
1994 co = qemu_coroutine_create(bdrv_rw_co_entry);
1995 qemu_coroutine_enter(co, &rwco);
1996 while (rwco.ret == NOT_DONE) {
1997 qemu_aio_wait();
1998 }
1999 }
2000 return rwco.ret;
2001 }
2002
2003 /* return < 0 if error. See bdrv_write() for the return codes */
2004 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2005 uint8_t *buf, int nb_sectors)
2006 {
2007 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2008 }
2009
2010 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2011 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2012 uint8_t *buf, int nb_sectors)
2013 {
2014 bool enabled;
2015 int ret;
2016
2017 enabled = bs->io_limits_enabled;
2018 bs->io_limits_enabled = false;
2019 ret = bdrv_read(bs, 0, buf, 1);
2020 bs->io_limits_enabled = enabled;
2021 return ret;
2022 }
2023
2024 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
2025
2026 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
2027 int nb_sectors, int dirty)
2028 {
2029 int64_t start, end;
2030 unsigned long val, idx, bit;
2031
2032 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2033 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2034
2035 for (; start <= end; start++) {
2036 idx = start / BITS_PER_LONG;
2037 bit = start % BITS_PER_LONG;
2038 val = bs->dirty_bitmap[idx];
2039 if (dirty) {
2040 if (!(val & (1UL << bit))) {
2041 bs->dirty_count++;
2042 val |= 1UL << bit;
2043 }
2044 } else {
2045 if (val & (1UL << bit)) {
2046 bs->dirty_count--;
2047 val &= ~(1UL << bit);
2048 }
2049 }
2050 bs->dirty_bitmap[idx] = val;
2051 }
2052 }
2053
2054 /* Return < 0 if error. Important errors are:
2055 -EIO generic I/O error (may happen for all errors)
2056 -ENOMEDIUM No media inserted.
2057 -EINVAL Invalid sector number or nb_sectors
2058 -EACCES Trying to write a read-only device
2059 */
2060 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2061 const uint8_t *buf, int nb_sectors)
2062 {
2063 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2064 }
2065
2066 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2067 void *buf, int count1)
2068 {
2069 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2070 int len, nb_sectors, count;
2071 int64_t sector_num;
2072 int ret;
2073
2074 count = count1;
2075 /* first read to align to sector start */
2076 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2077 if (len > count)
2078 len = count;
2079 sector_num = offset >> BDRV_SECTOR_BITS;
2080 if (len > 0) {
2081 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2082 return ret;
2083 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2084 count -= len;
2085 if (count == 0)
2086 return count1;
2087 sector_num++;
2088 buf += len;
2089 }
2090
2091 /* read the sectors "in place" */
2092 nb_sectors = count >> BDRV_SECTOR_BITS;
2093 if (nb_sectors > 0) {
2094 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2095 return ret;
2096 sector_num += nb_sectors;
2097 len = nb_sectors << BDRV_SECTOR_BITS;
2098 buf += len;
2099 count -= len;
2100 }
2101
2102 /* add data from the last sector */
2103 if (count > 0) {
2104 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2105 return ret;
2106 memcpy(buf, tmp_buf, count);
2107 }
2108 return count1;
2109 }
2110
2111 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2112 const void *buf, int count1)
2113 {
2114 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2115 int len, nb_sectors, count;
2116 int64_t sector_num;
2117 int ret;
2118
2119 count = count1;
2120 /* first write to align to sector start */
2121 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2122 if (len > count)
2123 len = count;
2124 sector_num = offset >> BDRV_SECTOR_BITS;
2125 if (len > 0) {
2126 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2127 return ret;
2128 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2129 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2130 return ret;
2131 count -= len;
2132 if (count == 0)
2133 return count1;
2134 sector_num++;
2135 buf += len;
2136 }
2137
2138 /* write the sectors "in place" */
2139 nb_sectors = count >> BDRV_SECTOR_BITS;
2140 if (nb_sectors > 0) {
2141 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2142 return ret;
2143 sector_num += nb_sectors;
2144 len = nb_sectors << BDRV_SECTOR_BITS;
2145 buf += len;
2146 count -= len;
2147 }
2148
2149 /* add data from the last sector */
2150 if (count > 0) {
2151 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2152 return ret;
2153 memcpy(tmp_buf, buf, count);
2154 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2155 return ret;
2156 }
2157 return count1;
2158 }
2159
2160 /*
2161 * Writes to the file and ensures that no writes are reordered across this
2162 * request (acts as a barrier)
2163 *
2164 * Returns 0 on success, -errno in error cases.
2165 */
2166 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2167 const void *buf, int count)
2168 {
2169 int ret;
2170
2171 ret = bdrv_pwrite(bs, offset, buf, count);
2172 if (ret < 0) {
2173 return ret;
2174 }
2175
2176 /* No flush needed for cache modes that already do it */
2177 if (bs->enable_write_cache) {
2178 bdrv_flush(bs);
2179 }
2180
2181 return 0;
2182 }
2183
2184 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2185 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2186 {
2187 /* Perform I/O through a temporary buffer so that users who scribble over
2188 * their read buffer while the operation is in progress do not end up
2189 * modifying the image file. This is critical for zero-copy guest I/O
2190 * where anything might happen inside guest memory.
2191 */
2192 void *bounce_buffer;
2193
2194 BlockDriver *drv = bs->drv;
2195 struct iovec iov;
2196 QEMUIOVector bounce_qiov;
2197 int64_t cluster_sector_num;
2198 int cluster_nb_sectors;
2199 size_t skip_bytes;
2200 int ret;
2201
2202 /* Cover entire cluster so no additional backing file I/O is required when
2203 * allocating cluster in the image file.
2204 */
2205 round_to_clusters(bs, sector_num, nb_sectors,
2206 &cluster_sector_num, &cluster_nb_sectors);
2207
2208 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2209 cluster_sector_num, cluster_nb_sectors);
2210
2211 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2212 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2213 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2214
2215 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2216 &bounce_qiov);
2217 if (ret < 0) {
2218 goto err;
2219 }
2220
2221 if (drv->bdrv_co_write_zeroes &&
2222 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2223 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2224 cluster_nb_sectors);
2225 } else {
2226 /* This does not change the data on the disk, it is not necessary
2227 * to flush even in cache=writethrough mode.
2228 */
2229 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2230 &bounce_qiov);
2231 }
2232
2233 if (ret < 0) {
2234 /* It might be okay to ignore write errors for guest requests. If this
2235 * is a deliberate copy-on-read then we don't want to ignore the error.
2236 * Simply report it in all cases.
2237 */
2238 goto err;
2239 }
2240
2241 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2242 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2243 nb_sectors * BDRV_SECTOR_SIZE);
2244
2245 err:
2246 qemu_vfree(bounce_buffer);
2247 return ret;
2248 }
2249
2250 /*
2251 * Handle a read request in coroutine context
2252 */
2253 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2254 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2255 BdrvRequestFlags flags)
2256 {
2257 BlockDriver *drv = bs->drv;
2258 BdrvTrackedRequest req;
2259 int ret;
2260
2261 if (!drv) {
2262 return -ENOMEDIUM;
2263 }
2264 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2265 return -EIO;
2266 }
2267
2268 /* throttling disk read I/O */
2269 if (bs->io_limits_enabled) {
2270 bdrv_io_limits_intercept(bs, false, nb_sectors);
2271 }
2272
2273 if (bs->copy_on_read) {
2274 flags |= BDRV_REQ_COPY_ON_READ;
2275 }
2276 if (flags & BDRV_REQ_COPY_ON_READ) {
2277 bs->copy_on_read_in_flight++;
2278 }
2279
2280 if (bs->copy_on_read_in_flight) {
2281 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2282 }
2283
2284 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2285
2286 if (flags & BDRV_REQ_COPY_ON_READ) {
2287 int pnum;
2288
2289 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2290 if (ret < 0) {
2291 goto out;
2292 }
2293
2294 if (!ret || pnum != nb_sectors) {
2295 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2296 goto out;
2297 }
2298 }
2299
2300 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2301
2302 out:
2303 tracked_request_end(&req);
2304
2305 if (flags & BDRV_REQ_COPY_ON_READ) {
2306 bs->copy_on_read_in_flight--;
2307 }
2308
2309 return ret;
2310 }
2311
2312 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2313 int nb_sectors, QEMUIOVector *qiov)
2314 {
2315 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2316
2317 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2318 }
2319
2320 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2321 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2322 {
2323 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2324
2325 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2326 BDRV_REQ_COPY_ON_READ);
2327 }
2328
2329 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2330 int64_t sector_num, int nb_sectors)
2331 {
2332 BlockDriver *drv = bs->drv;
2333 QEMUIOVector qiov;
2334 struct iovec iov;
2335 int ret;
2336
2337 /* TODO Emulate only part of misaligned requests instead of letting block
2338 * drivers return -ENOTSUP and emulate everything */
2339
2340 /* First try the efficient write zeroes operation */
2341 if (drv->bdrv_co_write_zeroes) {
2342 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2343 if (ret != -ENOTSUP) {
2344 return ret;
2345 }
2346 }
2347
2348 /* Fall back to bounce buffer if write zeroes is unsupported */
2349 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2350 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2351 memset(iov.iov_base, 0, iov.iov_len);
2352 qemu_iovec_init_external(&qiov, &iov, 1);
2353
2354 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2355
2356 qemu_vfree(iov.iov_base);
2357 return ret;
2358 }
2359
2360 /*
2361 * Handle a write request in coroutine context
2362 */
2363 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2364 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2365 BdrvRequestFlags flags)
2366 {
2367 BlockDriver *drv = bs->drv;
2368 BdrvTrackedRequest req;
2369 int ret;
2370
2371 if (!bs->drv) {
2372 return -ENOMEDIUM;
2373 }
2374 if (bs->read_only) {
2375 return -EACCES;
2376 }
2377 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2378 return -EIO;
2379 }
2380
2381 /* throttling disk write I/O */
2382 if (bs->io_limits_enabled) {
2383 bdrv_io_limits_intercept(bs, true, nb_sectors);
2384 }
2385
2386 if (bs->copy_on_read_in_flight) {
2387 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2388 }
2389
2390 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2391
2392 if (flags & BDRV_REQ_ZERO_WRITE) {
2393 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2394 } else {
2395 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2396 }
2397
2398 if (ret == 0 && !bs->enable_write_cache) {
2399 ret = bdrv_co_flush(bs);
2400 }
2401
2402 if (bs->dirty_bitmap) {
2403 bdrv_set_dirty(bs, sector_num, nb_sectors);
2404 }
2405
2406 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2407 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2408 }
2409
2410 tracked_request_end(&req);
2411
2412 return ret;
2413 }
2414
2415 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2416 int nb_sectors, QEMUIOVector *qiov)
2417 {
2418 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2419
2420 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2421 }
2422
2423 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2424 int64_t sector_num, int nb_sectors)
2425 {
2426 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2427
2428 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2429 BDRV_REQ_ZERO_WRITE);
2430 }
2431
2432 /**
2433 * Truncate file to 'offset' bytes (needed only for file protocols)
2434 */
2435 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2436 {
2437 BlockDriver *drv = bs->drv;
2438 int ret;
2439 if (!drv)
2440 return -ENOMEDIUM;
2441 if (!drv->bdrv_truncate)
2442 return -ENOTSUP;
2443 if (bs->read_only)
2444 return -EACCES;
2445 if (bdrv_in_use(bs))
2446 return -EBUSY;
2447 ret = drv->bdrv_truncate(bs, offset);
2448 if (ret == 0) {
2449 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2450 bdrv_dev_resize_cb(bs);
2451 }
2452 return ret;
2453 }
2454
2455 /**
2456 * Length of a allocated file in bytes. Sparse files are counted by actual
2457 * allocated space. Return < 0 if error or unknown.
2458 */
2459 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2460 {
2461 BlockDriver *drv = bs->drv;
2462 if (!drv) {
2463 return -ENOMEDIUM;
2464 }
2465 if (drv->bdrv_get_allocated_file_size) {
2466 return drv->bdrv_get_allocated_file_size(bs);
2467 }
2468 if (bs->file) {
2469 return bdrv_get_allocated_file_size(bs->file);
2470 }
2471 return -ENOTSUP;
2472 }
2473
2474 /**
2475 * Length of a file in bytes. Return < 0 if error or unknown.
2476 */
2477 int64_t bdrv_getlength(BlockDriverState *bs)
2478 {
2479 BlockDriver *drv = bs->drv;
2480 if (!drv)
2481 return -ENOMEDIUM;
2482
2483 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2484 if (drv->bdrv_getlength) {
2485 return drv->bdrv_getlength(bs);
2486 }
2487 }
2488 return bs->total_sectors * BDRV_SECTOR_SIZE;
2489 }
2490
2491 /* return 0 as number of sectors if no device present or error */
2492 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2493 {
2494 int64_t length;
2495 length = bdrv_getlength(bs);
2496 if (length < 0)
2497 length = 0;
2498 else
2499 length = length >> BDRV_SECTOR_BITS;
2500 *nb_sectors_ptr = length;
2501 }
2502
2503 /* throttling disk io limits */
2504 void bdrv_set_io_limits(BlockDriverState *bs,
2505 BlockIOLimit *io_limits)
2506 {
2507 bs->io_limits = *io_limits;
2508 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2509 }
2510
2511 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2512 BlockdevOnError on_write_error)
2513 {
2514 bs->on_read_error = on_read_error;
2515 bs->on_write_error = on_write_error;
2516 }
2517
2518 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2519 {
2520 return is_read ? bs->on_read_error : bs->on_write_error;
2521 }
2522
2523 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2524 {
2525 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2526
2527 switch (on_err) {
2528 case BLOCKDEV_ON_ERROR_ENOSPC:
2529 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2530 case BLOCKDEV_ON_ERROR_STOP:
2531 return BDRV_ACTION_STOP;
2532 case BLOCKDEV_ON_ERROR_REPORT:
2533 return BDRV_ACTION_REPORT;
2534 case BLOCKDEV_ON_ERROR_IGNORE:
2535 return BDRV_ACTION_IGNORE;
2536 default:
2537 abort();
2538 }
2539 }
2540
2541 /* This is done by device models because, while the block layer knows
2542 * about the error, it does not know whether an operation comes from
2543 * the device or the block layer (from a job, for example).
2544 */
2545 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2546 bool is_read, int error)
2547 {
2548 assert(error >= 0);
2549 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2550 if (action == BDRV_ACTION_STOP) {
2551 vm_stop(RUN_STATE_IO_ERROR);
2552 bdrv_iostatus_set_err(bs, error);
2553 }
2554 }
2555
2556 int bdrv_is_read_only(BlockDriverState *bs)
2557 {
2558 return bs->read_only;
2559 }
2560
2561 int bdrv_is_sg(BlockDriverState *bs)
2562 {
2563 return bs->sg;
2564 }
2565
2566 int bdrv_enable_write_cache(BlockDriverState *bs)
2567 {
2568 return bs->enable_write_cache;
2569 }
2570
2571 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2572 {
2573 bs->enable_write_cache = wce;
2574
2575 /* so a reopen() will preserve wce */
2576 if (wce) {
2577 bs->open_flags |= BDRV_O_CACHE_WB;
2578 } else {
2579 bs->open_flags &= ~BDRV_O_CACHE_WB;
2580 }
2581 }
2582
2583 int bdrv_is_encrypted(BlockDriverState *bs)
2584 {
2585 if (bs->backing_hd && bs->backing_hd->encrypted)
2586 return 1;
2587 return bs->encrypted;
2588 }
2589
2590 int bdrv_key_required(BlockDriverState *bs)
2591 {
2592 BlockDriverState *backing_hd = bs->backing_hd;
2593
2594 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2595 return 1;
2596 return (bs->encrypted && !bs->valid_key);
2597 }
2598
2599 int bdrv_set_key(BlockDriverState *bs, const char *key)
2600 {
2601 int ret;
2602 if (bs->backing_hd && bs->backing_hd->encrypted) {
2603 ret = bdrv_set_key(bs->backing_hd, key);
2604 if (ret < 0)
2605 return ret;
2606 if (!bs->encrypted)
2607 return 0;
2608 }
2609 if (!bs->encrypted) {
2610 return -EINVAL;
2611 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2612 return -ENOMEDIUM;
2613 }
2614 ret = bs->drv->bdrv_set_key(bs, key);
2615 if (ret < 0) {
2616 bs->valid_key = 0;
2617 } else if (!bs->valid_key) {
2618 bs->valid_key = 1;
2619 /* call the change callback now, we skipped it on open */
2620 bdrv_dev_change_media_cb(bs, true);
2621 }
2622 return ret;
2623 }
2624
2625 const char *bdrv_get_format_name(BlockDriverState *bs)
2626 {
2627 return bs->drv ? bs->drv->format_name : NULL;
2628 }
2629
2630 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2631 void *opaque)
2632 {
2633 BlockDriver *drv;
2634
2635 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2636 it(opaque, drv->format_name);
2637 }
2638 }
2639
2640 BlockDriverState *bdrv_find(const char *name)
2641 {
2642 BlockDriverState *bs;
2643
2644 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2645 if (!strcmp(name, bs->device_name)) {
2646 return bs;
2647 }
2648 }
2649 return NULL;
2650 }
2651
2652 BlockDriverState *bdrv_next(BlockDriverState *bs)
2653 {
2654 if (!bs) {
2655 return QTAILQ_FIRST(&bdrv_states);
2656 }
2657 return QTAILQ_NEXT(bs, list);
2658 }
2659
2660 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2661 {
2662 BlockDriverState *bs;
2663
2664 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2665 it(opaque, bs);
2666 }
2667 }
2668
2669 const char *bdrv_get_device_name(BlockDriverState *bs)
2670 {
2671 return bs->device_name;
2672 }
2673
2674 int bdrv_get_flags(BlockDriverState *bs)
2675 {
2676 return bs->open_flags;
2677 }
2678
2679 void bdrv_flush_all(void)
2680 {
2681 BlockDriverState *bs;
2682
2683 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2684 bdrv_flush(bs);
2685 }
2686 }
2687
2688 int bdrv_has_zero_init(BlockDriverState *bs)
2689 {
2690 assert(bs->drv);
2691
2692 if (bs->drv->bdrv_has_zero_init) {
2693 return bs->drv->bdrv_has_zero_init(bs);
2694 }
2695
2696 return 1;
2697 }
2698
2699 typedef struct BdrvCoIsAllocatedData {
2700 BlockDriverState *bs;
2701 int64_t sector_num;
2702 int nb_sectors;
2703 int *pnum;
2704 int ret;
2705 bool done;
2706 } BdrvCoIsAllocatedData;
2707
2708 /*
2709 * Returns true iff the specified sector is present in the disk image. Drivers
2710 * not implementing the functionality are assumed to not support backing files,
2711 * hence all their sectors are reported as allocated.
2712 *
2713 * If 'sector_num' is beyond the end of the disk image the return value is 0
2714 * and 'pnum' is set to 0.
2715 *
2716 * 'pnum' is set to the number of sectors (including and immediately following
2717 * the specified sector) that are known to be in the same
2718 * allocated/unallocated state.
2719 *
2720 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2721 * beyond the end of the disk image it will be clamped.
2722 */
2723 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2724 int nb_sectors, int *pnum)
2725 {
2726 int64_t n;
2727
2728 if (sector_num >= bs->total_sectors) {
2729 *pnum = 0;
2730 return 0;
2731 }
2732
2733 n = bs->total_sectors - sector_num;
2734 if (n < nb_sectors) {
2735 nb_sectors = n;
2736 }
2737
2738 if (!bs->drv->bdrv_co_is_allocated) {
2739 *pnum = nb_sectors;
2740 return 1;
2741 }
2742
2743 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2744 }
2745
2746 /* Coroutine wrapper for bdrv_is_allocated() */
2747 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2748 {
2749 BdrvCoIsAllocatedData *data = opaque;
2750 BlockDriverState *bs = data->bs;
2751
2752 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2753 data->pnum);
2754 data->done = true;
2755 }
2756
2757 /*
2758 * Synchronous wrapper around bdrv_co_is_allocated().
2759 *
2760 * See bdrv_co_is_allocated() for details.
2761 */
2762 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2763 int *pnum)
2764 {
2765 Coroutine *co;
2766 BdrvCoIsAllocatedData data = {
2767 .bs = bs,
2768 .sector_num = sector_num,
2769 .nb_sectors = nb_sectors,
2770 .pnum = pnum,
2771 .done = false,
2772 };
2773
2774 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2775 qemu_coroutine_enter(co, &data);
2776 while (!data.done) {
2777 qemu_aio_wait();
2778 }
2779 return data.ret;
2780 }
2781
2782 /*
2783 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2784 *
2785 * Return true if the given sector is allocated in any image between
2786 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2787 * sector is allocated in any image of the chain. Return false otherwise.
2788 *
2789 * 'pnum' is set to the number of sectors (including and immediately following
2790 * the specified sector) that are known to be in the same
2791 * allocated/unallocated state.
2792 *
2793 */
2794 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2795 BlockDriverState *base,
2796 int64_t sector_num,
2797 int nb_sectors, int *pnum)
2798 {
2799 BlockDriverState *intermediate;
2800 int ret, n = nb_sectors;
2801
2802 intermediate = top;
2803 while (intermediate && intermediate != base) {
2804 int pnum_inter;
2805 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2806 &pnum_inter);
2807 if (ret < 0) {
2808 return ret;
2809 } else if (ret) {
2810 *pnum = pnum_inter;
2811 return 1;
2812 }
2813
2814 /*
2815 * [sector_num, nb_sectors] is unallocated on top but intermediate
2816 * might have
2817 *
2818 * [sector_num+x, nr_sectors] allocated.
2819 */
2820 if (n > pnum_inter) {
2821 n = pnum_inter;
2822 }
2823
2824 intermediate = intermediate->backing_hd;
2825 }
2826
2827 *pnum = n;
2828 return 0;
2829 }
2830
2831 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2832 {
2833 BlockInfo *info = g_malloc0(sizeof(*info));
2834 info->device = g_strdup(bs->device_name);
2835 info->type = g_strdup("unknown");
2836 info->locked = bdrv_dev_is_medium_locked(bs);
2837 info->removable = bdrv_dev_has_removable_media(bs);
2838
2839 if (bdrv_dev_has_removable_media(bs)) {
2840 info->has_tray_open = true;
2841 info->tray_open = bdrv_dev_is_tray_open(bs);
2842 }
2843
2844 if (bdrv_iostatus_is_enabled(bs)) {
2845 info->has_io_status = true;
2846 info->io_status = bs->iostatus;
2847 }
2848
2849 if (bs->dirty_bitmap) {
2850 info->has_dirty = true;
2851 info->dirty = g_malloc0(sizeof(*info->dirty));
2852 info->dirty->count = bdrv_get_dirty_count(bs) *
2853 BDRV_SECTORS_PER_DIRTY_CHUNK * BDRV_SECTOR_SIZE;
2854 }
2855
2856 if (bs->drv) {
2857 info->has_inserted = true;
2858 info->inserted = g_malloc0(sizeof(*info->inserted));
2859 info->inserted->file = g_strdup(bs->filename);
2860 info->inserted->ro = bs->read_only;
2861 info->inserted->drv = g_strdup(bs->drv->format_name);
2862 info->inserted->encrypted = bs->encrypted;
2863 info->inserted->encryption_key_missing = bdrv_key_required(bs);
2864
2865 if (bs->backing_file[0]) {
2866 info->inserted->has_backing_file = true;
2867 info->inserted->backing_file = g_strdup(bs->backing_file);
2868 }
2869
2870 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
2871
2872 if (bs->io_limits_enabled) {
2873 info->inserted->bps =
2874 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2875 info->inserted->bps_rd =
2876 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2877 info->inserted->bps_wr =
2878 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2879 info->inserted->iops =
2880 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2881 info->inserted->iops_rd =
2882 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2883 info->inserted->iops_wr =
2884 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2885 }
2886 }
2887 return info;
2888 }
2889
2890 BlockInfoList *qmp_query_block(Error **errp)
2891 {
2892 BlockInfoList *head = NULL, **p_next = &head;
2893 BlockDriverState *bs;
2894
2895 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2896 BlockInfoList *info = g_malloc0(sizeof(*info));
2897 info->value = bdrv_query_info(bs);
2898
2899 *p_next = info;
2900 p_next = &info->next;
2901 }
2902
2903 return head;
2904 }
2905
2906 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
2907 {
2908 BlockStats *s;
2909
2910 s = g_malloc0(sizeof(*s));
2911
2912 if (bs->device_name[0]) {
2913 s->has_device = true;
2914 s->device = g_strdup(bs->device_name);
2915 }
2916
2917 s->stats = g_malloc0(sizeof(*s->stats));
2918 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2919 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2920 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2921 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2922 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2923 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2924 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2925 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2926 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2927
2928 if (bs->file) {
2929 s->has_parent = true;
2930 s->parent = bdrv_query_stats(bs->file);
2931 }
2932
2933 return s;
2934 }
2935
2936 BlockStatsList *qmp_query_blockstats(Error **errp)
2937 {
2938 BlockStatsList *head = NULL, **p_next = &head;
2939 BlockDriverState *bs;
2940
2941 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2942 BlockStatsList *info = g_malloc0(sizeof(*info));
2943 info->value = bdrv_query_stats(bs);
2944
2945 *p_next = info;
2946 p_next = &info->next;
2947 }
2948
2949 return head;
2950 }
2951
2952 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2953 {
2954 if (bs->backing_hd && bs->backing_hd->encrypted)
2955 return bs->backing_file;
2956 else if (bs->encrypted)
2957 return bs->filename;
2958 else
2959 return NULL;
2960 }
2961
2962 void bdrv_get_backing_filename(BlockDriverState *bs,
2963 char *filename, int filename_size)
2964 {
2965 pstrcpy(filename, filename_size, bs->backing_file);
2966 }
2967
2968 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2969 const uint8_t *buf, int nb_sectors)
2970 {
2971 BlockDriver *drv = bs->drv;
2972 if (!drv)
2973 return -ENOMEDIUM;
2974 if (!drv->bdrv_write_compressed)
2975 return -ENOTSUP;
2976 if (bdrv_check_request(bs, sector_num, nb_sectors))
2977 return -EIO;
2978
2979 assert(!bs->dirty_bitmap);
2980
2981 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2982 }
2983
2984 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2985 {
2986 BlockDriver *drv = bs->drv;
2987 if (!drv)
2988 return -ENOMEDIUM;
2989 if (!drv->bdrv_get_info)
2990 return -ENOTSUP;
2991 memset(bdi, 0, sizeof(*bdi));
2992 return drv->bdrv_get_info(bs, bdi);
2993 }
2994
2995 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2996 int64_t pos, int size)
2997 {
2998 BlockDriver *drv = bs->drv;
2999 if (!drv)
3000 return -ENOMEDIUM;
3001 if (drv->bdrv_save_vmstate)
3002 return drv->bdrv_save_vmstate(bs, buf, pos, size);
3003 if (bs->file)
3004 return bdrv_save_vmstate(bs->file, buf, pos, size);
3005 return -ENOTSUP;
3006 }
3007
3008 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3009 int64_t pos, int size)
3010 {
3011 BlockDriver *drv = bs->drv;
3012 if (!drv)
3013 return -ENOMEDIUM;
3014 if (drv->bdrv_load_vmstate)
3015 return drv->bdrv_load_vmstate(bs, buf, pos, size);
3016 if (bs->file)
3017 return bdrv_load_vmstate(bs->file, buf, pos, size);
3018 return -ENOTSUP;
3019 }
3020
3021 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3022 {
3023 BlockDriver *drv = bs->drv;
3024
3025 if (!drv || !drv->bdrv_debug_event) {
3026 return;
3027 }
3028
3029 drv->bdrv_debug_event(bs, event);
3030
3031 }
3032
3033 /**************************************************************/
3034 /* handling of snapshots */
3035
3036 int bdrv_can_snapshot(BlockDriverState *bs)
3037 {
3038 BlockDriver *drv = bs->drv;
3039 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3040 return 0;
3041 }
3042
3043 if (!drv->bdrv_snapshot_create) {
3044 if (bs->file != NULL) {
3045 return bdrv_can_snapshot(bs->file);
3046 }
3047 return 0;
3048 }
3049
3050 return 1;
3051 }
3052
3053 int bdrv_is_snapshot(BlockDriverState *bs)
3054 {
3055 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3056 }
3057
3058 BlockDriverState *bdrv_snapshots(void)
3059 {
3060 BlockDriverState *bs;
3061
3062 if (bs_snapshots) {
3063 return bs_snapshots;
3064 }
3065
3066 bs = NULL;
3067 while ((bs = bdrv_next(bs))) {
3068 if (bdrv_can_snapshot(bs)) {
3069 bs_snapshots = bs;
3070 return bs;
3071 }
3072 }
3073 return NULL;
3074 }
3075
3076 int bdrv_snapshot_create(BlockDriverState *bs,
3077 QEMUSnapshotInfo *sn_info)
3078 {
3079 BlockDriver *drv = bs->drv;
3080 if (!drv)
3081 return -ENOMEDIUM;
3082 if (drv->bdrv_snapshot_create)
3083 return drv->bdrv_snapshot_create(bs, sn_info);
3084 if (bs->file)
3085 return bdrv_snapshot_create(bs->file, sn_info);
3086 return -ENOTSUP;
3087 }
3088
3089 int bdrv_snapshot_goto(BlockDriverState *bs,
3090 const char *snapshot_id)
3091 {
3092 BlockDriver *drv = bs->drv;
3093 int ret, open_ret;
3094
3095 if (!drv)
3096 return -ENOMEDIUM;
3097 if (drv->bdrv_snapshot_goto)
3098 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3099
3100 if (bs->file) {
3101 drv->bdrv_close(bs);
3102 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3103 open_ret = drv->bdrv_open(bs, bs->open_flags);
3104 if (open_ret < 0) {
3105 bdrv_delete(bs->file);
3106 bs->drv = NULL;
3107 return open_ret;
3108 }
3109 return ret;
3110 }
3111
3112 return -ENOTSUP;
3113 }
3114
3115 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3116 {
3117 BlockDriver *drv = bs->drv;
3118 if (!drv)
3119 return -ENOMEDIUM;
3120 if (drv->bdrv_snapshot_delete)
3121 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3122 if (bs->file)
3123 return bdrv_snapshot_delete(bs->file, snapshot_id);
3124 return -ENOTSUP;
3125 }
3126
3127 int bdrv_snapshot_list(BlockDriverState *bs,
3128 QEMUSnapshotInfo **psn_info)
3129 {
3130 BlockDriver *drv = bs->drv;
3131 if (!drv)
3132 return -ENOMEDIUM;
3133 if (drv->bdrv_snapshot_list)
3134 return drv->bdrv_snapshot_list(bs, psn_info);
3135 if (bs->file)
3136 return bdrv_snapshot_list(bs->file, psn_info);
3137 return -ENOTSUP;
3138 }
3139
3140 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3141 const char *snapshot_name)
3142 {
3143 BlockDriver *drv = bs->drv;
3144 if (!drv) {
3145 return -ENOMEDIUM;
3146 }
3147 if (!bs->read_only) {
3148 return -EINVAL;
3149 }
3150 if (drv->bdrv_snapshot_load_tmp) {
3151 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3152 }
3153 return -ENOTSUP;
3154 }
3155
3156 /* backing_file can either be relative, or absolute, or a protocol. If it is
3157 * relative, it must be relative to the chain. So, passing in bs->filename
3158 * from a BDS as backing_file should not be done, as that may be relative to
3159 * the CWD rather than the chain. */
3160 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3161 const char *backing_file)
3162 {
3163 char *filename_full = NULL;
3164 char *backing_file_full = NULL;
3165 char *filename_tmp = NULL;
3166 int is_protocol = 0;
3167 BlockDriverState *curr_bs = NULL;
3168 BlockDriverState *retval = NULL;
3169
3170 if (!bs || !bs->drv || !backing_file) {
3171 return NULL;
3172 }
3173
3174 filename_full = g_malloc(PATH_MAX);
3175 backing_file_full = g_malloc(PATH_MAX);
3176 filename_tmp = g_malloc(PATH_MAX);
3177
3178 is_protocol = path_has_protocol(backing_file);
3179
3180 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3181
3182 /* If either of the filename paths is actually a protocol, then
3183 * compare unmodified paths; otherwise make paths relative */
3184 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3185 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3186 retval = curr_bs->backing_hd;
3187 break;
3188 }
3189 } else {
3190 /* If not an absolute filename path, make it relative to the current
3191 * image's filename path */
3192 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3193 backing_file);
3194
3195 /* We are going to compare absolute pathnames */
3196 if (!realpath(filename_tmp, filename_full)) {
3197 continue;
3198 }
3199
3200 /* We need to make sure the backing filename we are comparing against
3201 * is relative to the current image filename (or absolute) */
3202 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3203 curr_bs->backing_file);
3204
3205 if (!realpath(filename_tmp, backing_file_full)) {
3206 continue;
3207 }
3208
3209 if (strcmp(backing_file_full, filename_full) == 0) {
3210 retval = curr_bs->backing_hd;
3211 break;
3212 }
3213 }
3214 }
3215
3216 g_free(filename_full);
3217 g_free(backing_file_full);
3218 g_free(filename_tmp);
3219 return retval;
3220 }
3221
3222 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3223 {
3224 if (!bs->drv) {
3225 return 0;
3226 }
3227
3228 if (!bs->backing_hd) {
3229 return 0;
3230 }
3231
3232 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3233 }
3234
3235 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3236 {
3237 BlockDriverState *curr_bs = NULL;
3238
3239 if (!bs) {
3240 return NULL;
3241 }
3242
3243 curr_bs = bs;
3244
3245 while (curr_bs->backing_hd) {
3246 curr_bs = curr_bs->backing_hd;
3247 }
3248 return curr_bs;
3249 }
3250
3251 #define NB_SUFFIXES 4
3252
3253 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3254 {
3255 static const char suffixes[NB_SUFFIXES] = "KMGT";
3256 int64_t base;
3257 int i;
3258
3259 if (size <= 999) {
3260 snprintf(buf, buf_size, "%" PRId64, size);
3261 } else {
3262 base = 1024;
3263 for(i = 0; i < NB_SUFFIXES; i++) {
3264 if (size < (10 * base)) {
3265 snprintf(buf, buf_size, "%0.1f%c",
3266 (double)size / base,
3267 suffixes[i]);
3268 break;
3269 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3270 snprintf(buf, buf_size, "%" PRId64 "%c",
3271 ((size + (base >> 1)) / base),
3272 suffixes[i]);
3273 break;
3274 }
3275 base = base * 1024;
3276 }
3277 }
3278 return buf;
3279 }
3280
3281 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3282 {
3283 char buf1[128], date_buf[128], clock_buf[128];
3284 #ifdef _WIN32
3285 struct tm *ptm;
3286 #else
3287 struct tm tm;
3288 #endif
3289 time_t ti;
3290 int64_t secs;
3291
3292 if (!sn) {
3293 snprintf(buf, buf_size,
3294 "%-10s%-20s%7s%20s%15s",
3295 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3296 } else {
3297 ti = sn->date_sec;
3298 #ifdef _WIN32
3299 ptm = localtime(&ti);
3300 strftime(date_buf, sizeof(date_buf),
3301 "%Y-%m-%d %H:%M:%S", ptm);
3302 #else
3303 localtime_r(&ti, &tm);
3304 strftime(date_buf, sizeof(date_buf),
3305 "%Y-%m-%d %H:%M:%S", &tm);
3306 #endif
3307 secs = sn->vm_clock_nsec / 1000000000;
3308 snprintf(clock_buf, sizeof(clock_buf),
3309 "%02d:%02d:%02d.%03d",
3310 (int)(secs / 3600),
3311 (int)((secs / 60) % 60),
3312 (int)(secs % 60),
3313 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3314 snprintf(buf, buf_size,
3315 "%-10s%-20s%7s%20s%15s",
3316 sn->id_str, sn->name,
3317 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3318 date_buf,
3319 clock_buf);
3320 }
3321 return buf;
3322 }
3323
3324 /**************************************************************/
3325 /* async I/Os */
3326
3327 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3328 QEMUIOVector *qiov, int nb_sectors,
3329 BlockDriverCompletionFunc *cb, void *opaque)
3330 {
3331 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3332
3333 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3334 cb, opaque, false);
3335 }
3336
3337 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3338 QEMUIOVector *qiov, int nb_sectors,
3339 BlockDriverCompletionFunc *cb, void *opaque)
3340 {
3341 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3342
3343 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3344 cb, opaque, true);
3345 }
3346
3347
3348 typedef struct MultiwriteCB {
3349 int error;
3350 int num_requests;
3351 int num_callbacks;
3352 struct {
3353 BlockDriverCompletionFunc *cb;
3354 void *opaque;
3355 QEMUIOVector *free_qiov;
3356 } callbacks[];
3357 } MultiwriteCB;
3358
3359 static void multiwrite_user_cb(MultiwriteCB *mcb)
3360 {
3361 int i;
3362
3363 for (i = 0; i < mcb->num_callbacks; i++) {
3364 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3365 if (mcb->callbacks[i].free_qiov) {
3366 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3367 }
3368 g_free(mcb->callbacks[i].free_qiov);
3369 }
3370 }
3371
3372 static void multiwrite_cb(void *opaque, int ret)
3373 {
3374 MultiwriteCB *mcb = opaque;
3375
3376 trace_multiwrite_cb(mcb, ret);
3377
3378 if (ret < 0 && !mcb->error) {
3379 mcb->error = ret;
3380 }
3381
3382 mcb->num_requests--;
3383 if (mcb->num_requests == 0) {
3384 multiwrite_user_cb(mcb);
3385 g_free(mcb);
3386 }
3387 }
3388
3389 static int multiwrite_req_compare(const void *a, const void *b)
3390 {
3391 const BlockRequest *req1 = a, *req2 = b;
3392
3393 /*
3394 * Note that we can't simply subtract req2->sector from req1->sector
3395 * here as that could overflow the return value.
3396 */
3397 if (req1->sector > req2->sector) {
3398 return 1;
3399 } else if (req1->sector < req2->sector) {
3400 return -1;
3401 } else {
3402 return 0;
3403 }
3404 }
3405
3406 /*
3407 * Takes a bunch of requests and tries to merge them. Returns the number of
3408 * requests that remain after merging.
3409 */
3410 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3411 int num_reqs, MultiwriteCB *mcb)
3412 {
3413 int i, outidx;
3414
3415 // Sort requests by start sector
3416 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3417
3418 // Check if adjacent requests touch the same clusters. If so, combine them,
3419 // filling up gaps with zero sectors.
3420 outidx = 0;
3421 for (i = 1; i < num_reqs; i++) {
3422 int merge = 0;
3423 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3424
3425 // Handle exactly sequential writes and overlapping writes.
3426 if (reqs[i].sector <= oldreq_last) {
3427 merge = 1;
3428 }
3429
3430 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3431 merge = 0;
3432 }
3433
3434 if (merge) {
3435 size_t size;
3436 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3437 qemu_iovec_init(qiov,
3438 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3439
3440 // Add the first request to the merged one. If the requests are
3441 // overlapping, drop the last sectors of the first request.
3442 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3443 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3444
3445 // We should need to add any zeros between the two requests
3446 assert (reqs[i].sector <= oldreq_last);
3447
3448 // Add the second request
3449 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3450
3451 reqs[outidx].nb_sectors = qiov->size >> 9;
3452 reqs[outidx].qiov = qiov;
3453
3454 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3455 } else {
3456 outidx++;
3457 reqs[outidx].sector = reqs[i].sector;
3458 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3459 reqs[outidx].qiov = reqs[i].qiov;
3460 }
3461 }
3462
3463 return outidx + 1;
3464 }
3465
3466 /*
3467 * Submit multiple AIO write requests at once.
3468 *
3469 * On success, the function returns 0 and all requests in the reqs array have
3470 * been submitted. In error case this function returns -1, and any of the
3471 * requests may or may not be submitted yet. In particular, this means that the
3472 * callback will be called for some of the requests, for others it won't. The
3473 * caller must check the error field of the BlockRequest to wait for the right
3474 * callbacks (if error != 0, no callback will be called).
3475 *
3476 * The implementation may modify the contents of the reqs array, e.g. to merge
3477 * requests. However, the fields opaque and error are left unmodified as they
3478 * are used to signal failure for a single request to the caller.
3479 */
3480 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3481 {
3482 MultiwriteCB *mcb;
3483 int i;
3484
3485 /* don't submit writes if we don't have a medium */
3486 if (bs->drv == NULL) {
3487 for (i = 0; i < num_reqs; i++) {
3488 reqs[i].error = -ENOMEDIUM;
3489 }
3490 return -1;
3491 }
3492
3493 if (num_reqs == 0) {
3494 return 0;
3495 }
3496
3497 // Create MultiwriteCB structure
3498 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3499 mcb->num_requests = 0;
3500 mcb->num_callbacks = num_reqs;
3501
3502 for (i = 0; i < num_reqs; i++) {
3503 mcb->callbacks[i].cb = reqs[i].cb;
3504 mcb->callbacks[i].opaque = reqs[i].opaque;
3505 }
3506
3507 // Check for mergable requests
3508 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3509
3510 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3511
3512 /* Run the aio requests. */
3513 mcb->num_requests = num_reqs;
3514 for (i = 0; i < num_reqs; i++) {
3515 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3516 reqs[i].nb_sectors, multiwrite_cb, mcb);
3517 }
3518
3519 return 0;
3520 }
3521
3522 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3523 {
3524 acb->aiocb_info->cancel(acb);
3525 }
3526
3527 /* block I/O throttling */
3528 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3529 bool is_write, double elapsed_time, uint64_t *wait)
3530 {
3531 uint64_t bps_limit = 0;
3532 double bytes_limit, bytes_base, bytes_res;
3533 double slice_time, wait_time;
3534
3535 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3536 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3537 } else if (bs->io_limits.bps[is_write]) {
3538 bps_limit = bs->io_limits.bps[is_write];
3539 } else {
3540 if (wait) {
3541 *wait = 0;
3542 }
3543
3544 return false;
3545 }
3546
3547 slice_time = bs->slice_end - bs->slice_start;
3548 slice_time /= (NANOSECONDS_PER_SECOND);
3549 bytes_limit = bps_limit * slice_time;
3550 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3551 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3552 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3553 }
3554
3555 /* bytes_base: the bytes of data which have been read/written; and
3556 * it is obtained from the history statistic info.
3557 * bytes_res: the remaining bytes of data which need to be read/written.
3558 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3559 * the total time for completing reading/writting all data.
3560 */
3561 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3562
3563 if (bytes_base + bytes_res <= bytes_limit) {
3564 if (wait) {
3565 *wait = 0;
3566 }
3567
3568 return false;
3569 }
3570
3571 /* Calc approx time to dispatch */
3572 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3573
3574 /* When the I/O rate at runtime exceeds the limits,
3575 * bs->slice_end need to be extended in order that the current statistic
3576 * info can be kept until the timer fire, so it is increased and tuned
3577 * based on the result of experiment.
3578 */
3579 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3580 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3581 if (wait) {
3582 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3583 }
3584
3585 return true;
3586 }
3587
3588 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3589 double elapsed_time, uint64_t *wait)
3590 {
3591 uint64_t iops_limit = 0;
3592 double ios_limit, ios_base;
3593 double slice_time, wait_time;
3594
3595 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3596 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3597 } else if (bs->io_limits.iops[is_write]) {
3598 iops_limit = bs->io_limits.iops[is_write];
3599 } else {
3600 if (wait) {
3601 *wait = 0;
3602 }
3603
3604 return false;
3605 }
3606
3607 slice_time = bs->slice_end - bs->slice_start;
3608 slice_time /= (NANOSECONDS_PER_SECOND);
3609 ios_limit = iops_limit * slice_time;
3610 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3611 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3612 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3613 }
3614
3615 if (ios_base + 1 <= ios_limit) {
3616 if (wait) {
3617 *wait = 0;
3618 }
3619
3620 return false;
3621 }
3622
3623 /* Calc approx time to dispatch */
3624 wait_time = (ios_base + 1) / iops_limit;
3625 if (wait_time > elapsed_time) {
3626 wait_time = wait_time - elapsed_time;
3627 } else {
3628 wait_time = 0;
3629 }
3630
3631 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3632 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3633 if (wait) {
3634 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3635 }
3636
3637 return true;
3638 }
3639
3640 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3641 bool is_write, int64_t *wait)
3642 {
3643 int64_t now, max_wait;
3644 uint64_t bps_wait = 0, iops_wait = 0;
3645 double elapsed_time;
3646 int bps_ret, iops_ret;
3647
3648 now = qemu_get_clock_ns(vm_clock);
3649 if ((bs->slice_start < now)
3650 && (bs->slice_end > now)) {
3651 bs->slice_end = now + bs->slice_time;
3652 } else {
3653 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3654 bs->slice_start = now;
3655 bs->slice_end = now + bs->slice_time;
3656
3657 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3658 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3659
3660 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3661 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3662 }
3663
3664 elapsed_time = now - bs->slice_start;
3665 elapsed_time /= (NANOSECONDS_PER_SECOND);
3666
3667 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3668 is_write, elapsed_time, &bps_wait);
3669 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3670 elapsed_time, &iops_wait);
3671 if (bps_ret || iops_ret) {
3672 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3673 if (wait) {
3674 *wait = max_wait;
3675 }
3676
3677 now = qemu_get_clock_ns(vm_clock);
3678 if (bs->slice_end < now + max_wait) {
3679 bs->slice_end = now + max_wait;
3680 }
3681
3682 return true;
3683 }
3684
3685 if (wait) {
3686 *wait = 0;
3687 }
3688
3689 return false;
3690 }
3691
3692 /**************************************************************/
3693 /* async block device emulation */
3694
3695 typedef struct BlockDriverAIOCBSync {
3696 BlockDriverAIOCB common;
3697 QEMUBH *bh;
3698 int ret;
3699 /* vector translation state */
3700 QEMUIOVector *qiov;
3701 uint8_t *bounce;
3702 int is_write;
3703 } BlockDriverAIOCBSync;
3704
3705 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3706 {
3707 BlockDriverAIOCBSync *acb =
3708 container_of(blockacb, BlockDriverAIOCBSync, common);
3709 qemu_bh_delete(acb->bh);
3710 acb->bh = NULL;
3711 qemu_aio_release(acb);
3712 }
3713
3714 static const AIOCBInfo bdrv_em_aiocb_info = {
3715 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3716 .cancel = bdrv_aio_cancel_em,
3717 };
3718
3719 static void bdrv_aio_bh_cb(void *opaque)
3720 {
3721 BlockDriverAIOCBSync *acb = opaque;
3722
3723 if (!acb->is_write)
3724 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3725 qemu_vfree(acb->bounce);
3726 acb->common.cb(acb->common.opaque, acb->ret);
3727 qemu_bh_delete(acb->bh);
3728 acb->bh = NULL;
3729 qemu_aio_release(acb);
3730 }
3731
3732 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3733 int64_t sector_num,
3734 QEMUIOVector *qiov,
3735 int nb_sectors,
3736 BlockDriverCompletionFunc *cb,
3737 void *opaque,
3738 int is_write)
3739
3740 {
3741 BlockDriverAIOCBSync *acb;
3742
3743 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3744 acb->is_write = is_write;
3745 acb->qiov = qiov;
3746 acb->bounce = qemu_blockalign(bs, qiov->size);
3747 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3748
3749 if (is_write) {
3750 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3751 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3752 } else {
3753 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3754 }
3755
3756 qemu_bh_schedule(acb->bh);
3757
3758 return &acb->common;
3759 }
3760
3761 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3762 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3763 BlockDriverCompletionFunc *cb, void *opaque)
3764 {
3765 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3766 }
3767
3768 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3769 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3770 BlockDriverCompletionFunc *cb, void *opaque)
3771 {
3772 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3773 }
3774
3775
3776 typedef struct BlockDriverAIOCBCoroutine {
3777 BlockDriverAIOCB common;
3778 BlockRequest req;
3779 bool is_write;
3780 QEMUBH* bh;
3781 } BlockDriverAIOCBCoroutine;
3782
3783 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3784 {
3785 qemu_aio_flush();
3786 }
3787
3788 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3789 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3790 .cancel = bdrv_aio_co_cancel_em,
3791 };
3792
3793 static void bdrv_co_em_bh(void *opaque)
3794 {
3795 BlockDriverAIOCBCoroutine *acb = opaque;
3796
3797 acb->common.cb(acb->common.opaque, acb->req.error);
3798 qemu_bh_delete(acb->bh);
3799 qemu_aio_release(acb);
3800 }
3801
3802 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3803 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3804 {
3805 BlockDriverAIOCBCoroutine *acb = opaque;
3806 BlockDriverState *bs = acb->common.bs;
3807
3808 if (!acb->is_write) {
3809 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3810 acb->req.nb_sectors, acb->req.qiov, 0);
3811 } else {
3812 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3813 acb->req.nb_sectors, acb->req.qiov, 0);
3814 }
3815
3816 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3817 qemu_bh_schedule(acb->bh);
3818 }
3819
3820 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3821 int64_t sector_num,
3822 QEMUIOVector *qiov,
3823 int nb_sectors,
3824 BlockDriverCompletionFunc *cb,
3825 void *opaque,
3826 bool is_write)
3827 {
3828 Coroutine *co;
3829 BlockDriverAIOCBCoroutine *acb;
3830
3831 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3832 acb->req.sector = sector_num;
3833 acb->req.nb_sectors = nb_sectors;
3834 acb->req.qiov = qiov;
3835 acb->is_write = is_write;
3836
3837 co = qemu_coroutine_create(bdrv_co_do_rw);
3838 qemu_coroutine_enter(co, acb);
3839
3840 return &acb->common;
3841 }
3842
3843 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3844 {
3845 BlockDriverAIOCBCoroutine *acb = opaque;
3846 BlockDriverState *bs = acb->common.bs;
3847
3848 acb->req.error = bdrv_co_flush(bs);
3849 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3850 qemu_bh_schedule(acb->bh);
3851 }
3852
3853 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3854 BlockDriverCompletionFunc *cb, void *opaque)
3855 {
3856 trace_bdrv_aio_flush(bs, opaque);
3857
3858 Coroutine *co;
3859 BlockDriverAIOCBCoroutine *acb;
3860
3861 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3862 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3863 qemu_coroutine_enter(co, acb);
3864
3865 return &acb->common;
3866 }
3867
3868 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3869 {
3870 BlockDriverAIOCBCoroutine *acb = opaque;
3871 BlockDriverState *bs = acb->common.bs;
3872
3873 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3874 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3875 qemu_bh_schedule(acb->bh);
3876 }
3877
3878 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3879 int64_t sector_num, int nb_sectors,
3880 BlockDriverCompletionFunc *cb, void *opaque)
3881 {
3882 Coroutine *co;
3883 BlockDriverAIOCBCoroutine *acb;
3884
3885 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3886
3887 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3888 acb->req.sector = sector_num;
3889 acb->req.nb_sectors = nb_sectors;
3890 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3891 qemu_coroutine_enter(co, acb);
3892
3893 return &acb->common;
3894 }
3895
3896 void bdrv_init(void)
3897 {
3898 module_call_init(MODULE_INIT_BLOCK);
3899 }
3900
3901 void bdrv_init_with_whitelist(void)
3902 {
3903 use_bdrv_whitelist = 1;
3904 bdrv_init();
3905 }
3906
3907 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
3908 BlockDriverCompletionFunc *cb, void *opaque)
3909 {
3910 BlockDriverAIOCB *acb;
3911
3912 acb = g_slice_alloc(aiocb_info->aiocb_size);
3913 acb->aiocb_info = aiocb_info;
3914 acb->bs = bs;
3915 acb->cb = cb;
3916 acb->opaque = opaque;
3917 return acb;
3918 }
3919
3920 void qemu_aio_release(void *p)
3921 {
3922 BlockDriverAIOCB *acb = p;
3923 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
3924 }
3925
3926 /**************************************************************/
3927 /* Coroutine block device emulation */
3928
3929 typedef struct CoroutineIOCompletion {
3930 Coroutine *coroutine;
3931 int ret;
3932 } CoroutineIOCompletion;
3933
3934 static void bdrv_co_io_em_complete(void *opaque, int ret)
3935 {
3936 CoroutineIOCompletion *co = opaque;
3937
3938 co->ret = ret;
3939 qemu_coroutine_enter(co->coroutine, NULL);
3940 }
3941
3942 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3943 int nb_sectors, QEMUIOVector *iov,
3944 bool is_write)
3945 {
3946 CoroutineIOCompletion co = {
3947 .coroutine = qemu_coroutine_self(),
3948 };
3949 BlockDriverAIOCB *acb;
3950
3951 if (is_write) {
3952 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3953 bdrv_co_io_em_complete, &co);
3954 } else {
3955 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3956 bdrv_co_io_em_complete, &co);
3957 }
3958
3959 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3960 if (!acb) {
3961 return -EIO;
3962 }
3963 qemu_coroutine_yield();
3964
3965 return co.ret;
3966 }
3967
3968 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3969 int64_t sector_num, int nb_sectors,
3970 QEMUIOVector *iov)
3971 {
3972 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3973 }
3974
3975 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3976 int64_t sector_num, int nb_sectors,
3977 QEMUIOVector *iov)
3978 {
3979 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3980 }
3981
3982 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3983 {
3984 RwCo *rwco = opaque;
3985
3986 rwco->ret = bdrv_co_flush(rwco->bs);
3987 }
3988
3989 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3990 {
3991 int ret;
3992
3993 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3994 return 0;
3995 }
3996
3997 /* Write back cached data to the OS even with cache=unsafe */
3998 if (bs->drv->bdrv_co_flush_to_os) {
3999 ret = bs->drv->bdrv_co_flush_to_os(bs);
4000 if (ret < 0) {
4001 return ret;
4002 }
4003 }
4004
4005 /* But don't actually force it to the disk with cache=unsafe */
4006 if (bs->open_flags & BDRV_O_NO_FLUSH) {
4007 goto flush_parent;
4008 }
4009
4010 if (bs->drv->bdrv_co_flush_to_disk) {
4011 ret = bs->drv->bdrv_co_flush_to_disk(bs);
4012 } else if (bs->drv->bdrv_aio_flush) {
4013 BlockDriverAIOCB *acb;
4014 CoroutineIOCompletion co = {
4015 .coroutine = qemu_coroutine_self(),
4016 };
4017
4018 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4019 if (acb == NULL) {
4020 ret = -EIO;
4021 } else {
4022 qemu_coroutine_yield();
4023 ret = co.ret;
4024 }
4025 } else {
4026 /*
4027 * Some block drivers always operate in either writethrough or unsafe
4028 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4029 * know how the server works (because the behaviour is hardcoded or
4030 * depends on server-side configuration), so we can't ensure that
4031 * everything is safe on disk. Returning an error doesn't work because
4032 * that would break guests even if the server operates in writethrough
4033 * mode.
4034 *
4035 * Let's hope the user knows what he's doing.
4036 */
4037 ret = 0;
4038 }
4039 if (ret < 0) {
4040 return ret;
4041 }
4042
4043 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4044 * in the case of cache=unsafe, so there are no useless flushes.
4045 */
4046 flush_parent:
4047 return bdrv_co_flush(bs->file);
4048 }
4049
4050 void bdrv_invalidate_cache(BlockDriverState *bs)
4051 {
4052 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4053 bs->drv->bdrv_invalidate_cache(bs);
4054 }
4055 }
4056
4057 void bdrv_invalidate_cache_all(void)
4058 {
4059 BlockDriverState *bs;
4060
4061 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4062 bdrv_invalidate_cache(bs);
4063 }
4064 }
4065
4066 void bdrv_clear_incoming_migration_all(void)
4067 {
4068 BlockDriverState *bs;
4069
4070 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4071 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4072 }
4073 }
4074
4075 int bdrv_flush(BlockDriverState *bs)
4076 {
4077 Coroutine *co;
4078 RwCo rwco = {
4079 .bs = bs,
4080 .ret = NOT_DONE,
4081 };
4082
4083 if (qemu_in_coroutine()) {
4084 /* Fast-path if already in coroutine context */
4085 bdrv_flush_co_entry(&rwco);
4086 } else {
4087 co = qemu_coroutine_create(bdrv_flush_co_entry);
4088 qemu_coroutine_enter(co, &rwco);
4089 while (rwco.ret == NOT_DONE) {
4090 qemu_aio_wait();
4091 }
4092 }
4093
4094 return rwco.ret;
4095 }
4096
4097 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4098 {
4099 RwCo *rwco = opaque;
4100
4101 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4102 }
4103
4104 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4105 int nb_sectors)
4106 {
4107 if (!bs->drv) {
4108 return -ENOMEDIUM;
4109 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4110 return -EIO;
4111 } else if (bs->read_only) {
4112 return -EROFS;
4113 } else if (bs->drv->bdrv_co_discard) {
4114 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4115 } else if (bs->drv->bdrv_aio_discard) {
4116 BlockDriverAIOCB *acb;
4117 CoroutineIOCompletion co = {
4118 .coroutine = qemu_coroutine_self(),
4119 };
4120
4121 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4122 bdrv_co_io_em_complete, &co);
4123 if (acb == NULL) {
4124 return -EIO;
4125 } else {
4126 qemu_coroutine_yield();
4127 return co.ret;
4128 }
4129 } else {
4130 return 0;
4131 }
4132 }
4133
4134 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4135 {
4136 Coroutine *co;
4137 RwCo rwco = {
4138 .bs = bs,
4139 .sector_num = sector_num,
4140 .nb_sectors = nb_sectors,
4141 .ret = NOT_DONE,
4142 };
4143
4144 if (qemu_in_coroutine()) {
4145 /* Fast-path if already in coroutine context */
4146 bdrv_discard_co_entry(&rwco);
4147 } else {
4148 co = qemu_coroutine_create(bdrv_discard_co_entry);
4149 qemu_coroutine_enter(co, &rwco);
4150 while (rwco.ret == NOT_DONE) {
4151 qemu_aio_wait();
4152 }
4153 }
4154
4155 return rwco.ret;
4156 }
4157
4158 /**************************************************************/
4159 /* removable device support */
4160
4161 /**
4162 * Return TRUE if the media is present
4163 */
4164 int bdrv_is_inserted(BlockDriverState *bs)
4165 {
4166 BlockDriver *drv = bs->drv;
4167
4168 if (!drv)
4169 return 0;
4170 if (!drv->bdrv_is_inserted)
4171 return 1;
4172 return drv->bdrv_is_inserted(bs);
4173 }
4174
4175 /**
4176 * Return whether the media changed since the last call to this
4177 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4178 */
4179 int bdrv_media_changed(BlockDriverState *bs)
4180 {
4181 BlockDriver *drv = bs->drv;
4182
4183 if (drv && drv->bdrv_media_changed) {
4184 return drv->bdrv_media_changed(bs);
4185 }
4186 return -ENOTSUP;
4187 }
4188
4189 /**
4190 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4191 */
4192 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4193 {
4194 BlockDriver *drv = bs->drv;
4195
4196 if (drv && drv->bdrv_eject) {
4197 drv->bdrv_eject(bs, eject_flag);
4198 }
4199
4200 if (bs->device_name[0] != '\0') {
4201 bdrv_emit_qmp_eject_event(bs, eject_flag);
4202 }
4203 }
4204
4205 /**
4206 * Lock or unlock the media (if it is locked, the user won't be able
4207 * to eject it manually).
4208 */
4209 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4210 {
4211 BlockDriver *drv = bs->drv;
4212
4213 trace_bdrv_lock_medium(bs, locked);
4214
4215 if (drv && drv->bdrv_lock_medium) {
4216 drv->bdrv_lock_medium(bs, locked);
4217 }
4218 }
4219
4220 /* needed for generic scsi interface */
4221
4222 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4223 {
4224 BlockDriver *drv = bs->drv;
4225
4226 if (drv && drv->bdrv_ioctl)
4227 return drv->bdrv_ioctl(bs, req, buf);
4228 return -ENOTSUP;
4229 }
4230
4231 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4232 unsigned long int req, void *buf,
4233 BlockDriverCompletionFunc *cb, void *opaque)
4234 {
4235 BlockDriver *drv = bs->drv;
4236
4237 if (drv && drv->bdrv_aio_ioctl)
4238 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4239 return NULL;
4240 }
4241
4242 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4243 {
4244 bs->buffer_alignment = align;
4245 }
4246
4247 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4248 {
4249 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4250 }
4251
4252 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4253 {
4254 int64_t bitmap_size;
4255
4256 bs->dirty_count = 0;
4257 if (enable) {
4258 if (!bs->dirty_bitmap) {
4259 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4260 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4261 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4262
4263 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4264 }
4265 } else {
4266 if (bs->dirty_bitmap) {
4267 g_free(bs->dirty_bitmap);
4268 bs->dirty_bitmap = NULL;
4269 }
4270 }
4271 }
4272
4273 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4274 {
4275 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4276
4277 if (bs->dirty_bitmap &&
4278 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4279 return !!(bs->dirty_bitmap[chunk / BITS_PER_LONG] &
4280 (1UL << (chunk % BITS_PER_LONG)));
4281 } else {
4282 return 0;
4283 }
4284 }
4285
4286 int64_t bdrv_get_next_dirty(BlockDriverState *bs, int64_t sector)
4287 {
4288 int64_t chunk;
4289 int bit, elem;
4290
4291 /* Avoid an infinite loop. */
4292 assert(bs->dirty_count > 0);
4293
4294 sector = (sector | (BDRV_SECTORS_PER_DIRTY_CHUNK - 1)) + 1;
4295 chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4296
4297 QEMU_BUILD_BUG_ON(sizeof(bs->dirty_bitmap[0]) * 8 != BITS_PER_LONG);
4298 elem = chunk / BITS_PER_LONG;
4299 bit = chunk % BITS_PER_LONG;
4300 for (;;) {
4301 if (sector >= bs->total_sectors) {
4302 sector = 0;
4303 bit = elem = 0;
4304 }
4305 if (bit == 0 && bs->dirty_bitmap[elem] == 0) {
4306 sector += BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4307 elem++;
4308 } else {
4309 if (bs->dirty_bitmap[elem] & (1UL << bit)) {
4310 return sector;
4311 }
4312 sector += BDRV_SECTORS_PER_DIRTY_CHUNK;
4313 if (++bit == BITS_PER_LONG) {
4314 bit = 0;
4315 elem++;
4316 }
4317 }
4318 }
4319 }
4320
4321 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4322 int nr_sectors)
4323 {
4324 set_dirty_bitmap(bs, cur_sector, nr_sectors, 1);
4325 }
4326
4327 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4328 int nr_sectors)
4329 {
4330 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4331 }
4332
4333 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4334 {
4335 return bs->dirty_count;
4336 }
4337
4338 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4339 {
4340 assert(bs->in_use != in_use);
4341 bs->in_use = in_use;
4342 }
4343
4344 int bdrv_in_use(BlockDriverState *bs)
4345 {
4346 return bs->in_use;
4347 }
4348
4349 void bdrv_iostatus_enable(BlockDriverState *bs)
4350 {
4351 bs->iostatus_enabled = true;
4352 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4353 }
4354
4355 /* The I/O status is only enabled if the drive explicitly
4356 * enables it _and_ the VM is configured to stop on errors */
4357 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4358 {
4359 return (bs->iostatus_enabled &&
4360 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4361 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4362 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4363 }
4364
4365 void bdrv_iostatus_disable(BlockDriverState *bs)
4366 {
4367 bs->iostatus_enabled = false;
4368 }
4369
4370 void bdrv_iostatus_reset(BlockDriverState *bs)
4371 {
4372 if (bdrv_iostatus_is_enabled(bs)) {
4373 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4374 if (bs->job) {
4375 block_job_iostatus_reset(bs->job);
4376 }
4377 }
4378 }
4379
4380 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4381 {
4382 assert(bdrv_iostatus_is_enabled(bs));
4383 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4384 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4385 BLOCK_DEVICE_IO_STATUS_FAILED;
4386 }
4387 }
4388
4389 void
4390 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4391 enum BlockAcctType type)
4392 {
4393 assert(type < BDRV_MAX_IOTYPE);
4394
4395 cookie->bytes = bytes;
4396 cookie->start_time_ns = get_clock();
4397 cookie->type = type;
4398 }
4399
4400 void
4401 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4402 {
4403 assert(cookie->type < BDRV_MAX_IOTYPE);
4404
4405 bs->nr_bytes[cookie->type] += cookie->bytes;
4406 bs->nr_ops[cookie->type]++;
4407 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4408 }
4409
4410 int bdrv_img_create(const char *filename, const char *fmt,
4411 const char *base_filename, const char *base_fmt,
4412 char *options, uint64_t img_size, int flags)
4413 {
4414 QEMUOptionParameter *param = NULL, *create_options = NULL;
4415 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4416 BlockDriverState *bs = NULL;
4417 BlockDriver *drv, *proto_drv;
4418 BlockDriver *backing_drv = NULL;
4419 int ret = 0;
4420
4421 /* Find driver and parse its options */
4422 drv = bdrv_find_format(fmt);
4423 if (!drv) {
4424 error_report("Unknown file format '%s'", fmt);
4425 ret = -EINVAL;
4426 goto out;
4427 }
4428
4429 proto_drv = bdrv_find_protocol(filename);
4430 if (!proto_drv) {
4431 error_report("Unknown protocol '%s'", filename);
4432 ret = -EINVAL;
4433 goto out;
4434 }
4435
4436 create_options = append_option_parameters(create_options,
4437 drv->create_options);
4438 create_options = append_option_parameters(create_options,
4439 proto_drv->create_options);
4440
4441 /* Create parameter list with default values */
4442 param = parse_option_parameters("", create_options, param);
4443
4444 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4445
4446 /* Parse -o options */
4447 if (options) {
4448 param = parse_option_parameters(options, create_options, param);
4449 if (param == NULL) {
4450 error_report("Invalid options for file format '%s'.", fmt);
4451 ret = -EINVAL;
4452 goto out;
4453 }
4454 }
4455
4456 if (base_filename) {
4457 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4458 base_filename)) {
4459 error_report("Backing file not supported for file format '%s'",
4460 fmt);
4461 ret = -EINVAL;
4462 goto out;
4463 }
4464 }
4465
4466 if (base_fmt) {
4467 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4468 error_report("Backing file format not supported for file "
4469 "format '%s'", fmt);
4470 ret = -EINVAL;
4471 goto out;
4472 }
4473 }
4474
4475 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4476 if (backing_file && backing_file->value.s) {
4477 if (!strcmp(filename, backing_file->value.s)) {
4478 error_report("Error: Trying to create an image with the "
4479 "same filename as the backing file");
4480 ret = -EINVAL;
4481 goto out;
4482 }
4483 }
4484
4485 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4486 if (backing_fmt && backing_fmt->value.s) {
4487 backing_drv = bdrv_find_format(backing_fmt->value.s);
4488 if (!backing_drv) {
4489 error_report("Unknown backing file format '%s'",
4490 backing_fmt->value.s);
4491 ret = -EINVAL;
4492 goto out;
4493 }
4494 }
4495
4496 // The size for the image must always be specified, with one exception:
4497 // If we are using a backing file, we can obtain the size from there
4498 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4499 if (size && size->value.n == -1) {
4500 if (backing_file && backing_file->value.s) {
4501 uint64_t size;
4502 char buf[32];
4503 int back_flags;
4504
4505 /* backing files always opened read-only */
4506 back_flags =
4507 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4508
4509 bs = bdrv_new("");
4510
4511 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4512 if (ret < 0) {
4513 error_report("Could not open '%s'", backing_file->value.s);
4514 goto out;
4515 }
4516 bdrv_get_geometry(bs, &size);
4517 size *= 512;
4518
4519 snprintf(buf, sizeof(buf), "%" PRId64, size);
4520 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4521 } else {
4522 error_report("Image creation needs a size parameter");
4523 ret = -EINVAL;
4524 goto out;
4525 }
4526 }
4527
4528 printf("Formatting '%s', fmt=%s ", filename, fmt);
4529 print_option_parameters(param);
4530 puts("");
4531
4532 ret = bdrv_create(drv, filename, param);
4533
4534 if (ret < 0) {
4535 if (ret == -ENOTSUP) {
4536 error_report("Formatting or formatting option not supported for "
4537 "file format '%s'", fmt);
4538 } else if (ret == -EFBIG) {
4539 error_report("The image size is too large for file format '%s'",
4540 fmt);
4541 } else {
4542 error_report("%s: error while creating %s: %s", filename, fmt,
4543 strerror(-ret));
4544 }
4545 }
4546
4547 out:
4548 free_option_parameters(create_options);
4549 free_option_parameters(param);
4550
4551 if (bs) {
4552 bdrv_delete(bs);
4553 }
4554
4555 return ret;
4556 }