]> git.proxmox.com Git - qemu.git/blob - block.c
dma-helpers: add accounting wrappers
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83
84 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
85 bool is_write, double elapsed_time, uint64_t *wait);
86 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
87 double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
89 bool is_write, int64_t *wait);
90
91 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
92 QTAILQ_HEAD_INITIALIZER(bdrv_states);
93
94 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
95 QLIST_HEAD_INITIALIZER(bdrv_drivers);
96
97 /* The device to use for VM snapshots */
98 static BlockDriverState *bs_snapshots;
99
100 /* If non-zero, use only whitelisted block drivers */
101 static int use_bdrv_whitelist;
102
103 #ifdef _WIN32
104 static int is_windows_drive_prefix(const char *filename)
105 {
106 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
107 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
108 filename[1] == ':');
109 }
110
111 int is_windows_drive(const char *filename)
112 {
113 if (is_windows_drive_prefix(filename) &&
114 filename[2] == '\0')
115 return 1;
116 if (strstart(filename, "\\\\.\\", NULL) ||
117 strstart(filename, "//./", NULL))
118 return 1;
119 return 0;
120 }
121 #endif
122
123 /* throttling disk I/O limits */
124 void bdrv_io_limits_disable(BlockDriverState *bs)
125 {
126 bs->io_limits_enabled = false;
127
128 while (qemu_co_queue_next(&bs->throttled_reqs));
129
130 if (bs->block_timer) {
131 qemu_del_timer(bs->block_timer);
132 qemu_free_timer(bs->block_timer);
133 bs->block_timer = NULL;
134 }
135
136 bs->slice_start = 0;
137 bs->slice_end = 0;
138 bs->slice_time = 0;
139 memset(&bs->io_base, 0, sizeof(bs->io_base));
140 }
141
142 static void bdrv_block_timer(void *opaque)
143 {
144 BlockDriverState *bs = opaque;
145
146 qemu_co_queue_next(&bs->throttled_reqs);
147 }
148
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151 qemu_co_queue_init(&bs->throttled_reqs);
152 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
154 bs->slice_start = qemu_get_clock_ns(vm_clock);
155 bs->slice_end = bs->slice_start + bs->slice_time;
156 memset(&bs->io_base, 0, sizeof(bs->io_base));
157 bs->io_limits_enabled = true;
158 }
159
160 bool bdrv_io_limits_enabled(BlockDriverState *bs)
161 {
162 BlockIOLimit *io_limits = &bs->io_limits;
163 return io_limits->bps[BLOCK_IO_LIMIT_READ]
164 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
165 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
166 || io_limits->iops[BLOCK_IO_LIMIT_READ]
167 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
168 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
169 }
170
171 static void bdrv_io_limits_intercept(BlockDriverState *bs,
172 bool is_write, int nb_sectors)
173 {
174 int64_t wait_time = -1;
175
176 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
177 qemu_co_queue_wait(&bs->throttled_reqs);
178 }
179
180 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
181 * throttled requests will not be dequeued until the current request is
182 * allowed to be serviced. So if the current request still exceeds the
183 * limits, it will be inserted to the head. All requests followed it will
184 * be still in throttled_reqs queue.
185 */
186
187 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
188 qemu_mod_timer(bs->block_timer,
189 wait_time + qemu_get_clock_ns(vm_clock));
190 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
191 }
192
193 qemu_co_queue_next(&bs->throttled_reqs);
194 }
195
196 /* check if the path starts with "<protocol>:" */
197 static int path_has_protocol(const char *path)
198 {
199 #ifdef _WIN32
200 if (is_windows_drive(path) ||
201 is_windows_drive_prefix(path)) {
202 return 0;
203 }
204 #endif
205
206 return strchr(path, ':') != NULL;
207 }
208
209 int path_is_absolute(const char *path)
210 {
211 const char *p;
212 #ifdef _WIN32
213 /* specific case for names like: "\\.\d:" */
214 if (*path == '/' || *path == '\\')
215 return 1;
216 #endif
217 p = strchr(path, ':');
218 if (p)
219 p++;
220 else
221 p = path;
222 #ifdef _WIN32
223 return (*p == '/' || *p == '\\');
224 #else
225 return (*p == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_register(BlockDriver *bdrv)
274 {
275 /* Block drivers without coroutine functions need emulation */
276 if (!bdrv->bdrv_co_readv) {
277 bdrv->bdrv_co_readv = bdrv_co_readv_em;
278 bdrv->bdrv_co_writev = bdrv_co_writev_em;
279
280 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
281 * the block driver lacks aio we need to emulate that too.
282 */
283 if (!bdrv->bdrv_aio_readv) {
284 /* add AIO emulation layer */
285 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
286 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
287 }
288 }
289
290 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
291 }
292
293 /* create a new block device (by default it is empty) */
294 BlockDriverState *bdrv_new(const char *device_name)
295 {
296 BlockDriverState *bs;
297
298 bs = g_malloc0(sizeof(BlockDriverState));
299 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
300 if (device_name[0] != '\0') {
301 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
302 }
303 bdrv_iostatus_disable(bs);
304 return bs;
305 }
306
307 BlockDriver *bdrv_find_format(const char *format_name)
308 {
309 BlockDriver *drv1;
310 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
311 if (!strcmp(drv1->format_name, format_name)) {
312 return drv1;
313 }
314 }
315 return NULL;
316 }
317
318 static int bdrv_is_whitelisted(BlockDriver *drv)
319 {
320 static const char *whitelist[] = {
321 CONFIG_BDRV_WHITELIST
322 };
323 const char **p;
324
325 if (!whitelist[0])
326 return 1; /* no whitelist, anything goes */
327
328 for (p = whitelist; *p; p++) {
329 if (!strcmp(drv->format_name, *p)) {
330 return 1;
331 }
332 }
333 return 0;
334 }
335
336 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
337 {
338 BlockDriver *drv = bdrv_find_format(format_name);
339 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
340 }
341
342 int bdrv_create(BlockDriver *drv, const char* filename,
343 QEMUOptionParameter *options)
344 {
345 if (!drv->bdrv_create)
346 return -ENOTSUP;
347
348 return drv->bdrv_create(filename, options);
349 }
350
351 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
352 {
353 BlockDriver *drv;
354
355 drv = bdrv_find_protocol(filename);
356 if (drv == NULL) {
357 return -ENOENT;
358 }
359
360 return bdrv_create(drv, filename, options);
361 }
362
363 #ifdef _WIN32
364 void get_tmp_filename(char *filename, int size)
365 {
366 char temp_dir[MAX_PATH];
367
368 GetTempPath(MAX_PATH, temp_dir);
369 GetTempFileName(temp_dir, "qem", 0, filename);
370 }
371 #else
372 void get_tmp_filename(char *filename, int size)
373 {
374 int fd;
375 const char *tmpdir;
376 /* XXX: race condition possible */
377 tmpdir = getenv("TMPDIR");
378 if (!tmpdir)
379 tmpdir = "/tmp";
380 snprintf(filename, size, "%s/vl.XXXXXX", tmpdir);
381 fd = mkstemp(filename);
382 close(fd);
383 }
384 #endif
385
386 /*
387 * Detect host devices. By convention, /dev/cdrom[N] is always
388 * recognized as a host CDROM.
389 */
390 static BlockDriver *find_hdev_driver(const char *filename)
391 {
392 int score_max = 0, score;
393 BlockDriver *drv = NULL, *d;
394
395 QLIST_FOREACH(d, &bdrv_drivers, list) {
396 if (d->bdrv_probe_device) {
397 score = d->bdrv_probe_device(filename);
398 if (score > score_max) {
399 score_max = score;
400 drv = d;
401 }
402 }
403 }
404
405 return drv;
406 }
407
408 BlockDriver *bdrv_find_protocol(const char *filename)
409 {
410 BlockDriver *drv1;
411 char protocol[128];
412 int len;
413 const char *p;
414
415 /* TODO Drivers without bdrv_file_open must be specified explicitly */
416
417 /*
418 * XXX(hch): we really should not let host device detection
419 * override an explicit protocol specification, but moving this
420 * later breaks access to device names with colons in them.
421 * Thanks to the brain-dead persistent naming schemes on udev-
422 * based Linux systems those actually are quite common.
423 */
424 drv1 = find_hdev_driver(filename);
425 if (drv1) {
426 return drv1;
427 }
428
429 if (!path_has_protocol(filename)) {
430 return bdrv_find_format("file");
431 }
432 p = strchr(filename, ':');
433 assert(p != NULL);
434 len = p - filename;
435 if (len > sizeof(protocol) - 1)
436 len = sizeof(protocol) - 1;
437 memcpy(protocol, filename, len);
438 protocol[len] = '\0';
439 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
440 if (drv1->protocol_name &&
441 !strcmp(drv1->protocol_name, protocol)) {
442 return drv1;
443 }
444 }
445 return NULL;
446 }
447
448 static int find_image_format(const char *filename, BlockDriver **pdrv)
449 {
450 int ret, score, score_max;
451 BlockDriver *drv1, *drv;
452 uint8_t buf[2048];
453 BlockDriverState *bs;
454
455 ret = bdrv_file_open(&bs, filename, 0);
456 if (ret < 0) {
457 *pdrv = NULL;
458 return ret;
459 }
460
461 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
462 if (bs->sg || !bdrv_is_inserted(bs)) {
463 bdrv_delete(bs);
464 drv = bdrv_find_format("raw");
465 if (!drv) {
466 ret = -ENOENT;
467 }
468 *pdrv = drv;
469 return ret;
470 }
471
472 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
473 bdrv_delete(bs);
474 if (ret < 0) {
475 *pdrv = NULL;
476 return ret;
477 }
478
479 score_max = 0;
480 drv = NULL;
481 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
482 if (drv1->bdrv_probe) {
483 score = drv1->bdrv_probe(buf, ret, filename);
484 if (score > score_max) {
485 score_max = score;
486 drv = drv1;
487 }
488 }
489 }
490 if (!drv) {
491 ret = -ENOENT;
492 }
493 *pdrv = drv;
494 return ret;
495 }
496
497 /**
498 * Set the current 'total_sectors' value
499 */
500 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
501 {
502 BlockDriver *drv = bs->drv;
503
504 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
505 if (bs->sg)
506 return 0;
507
508 /* query actual device if possible, otherwise just trust the hint */
509 if (drv->bdrv_getlength) {
510 int64_t length = drv->bdrv_getlength(bs);
511 if (length < 0) {
512 return length;
513 }
514 hint = length >> BDRV_SECTOR_BITS;
515 }
516
517 bs->total_sectors = hint;
518 return 0;
519 }
520
521 /**
522 * Set open flags for a given cache mode
523 *
524 * Return 0 on success, -1 if the cache mode was invalid.
525 */
526 int bdrv_parse_cache_flags(const char *mode, int *flags)
527 {
528 *flags &= ~BDRV_O_CACHE_MASK;
529
530 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
531 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
532 } else if (!strcmp(mode, "directsync")) {
533 *flags |= BDRV_O_NOCACHE;
534 } else if (!strcmp(mode, "writeback")) {
535 *flags |= BDRV_O_CACHE_WB;
536 } else if (!strcmp(mode, "unsafe")) {
537 *flags |= BDRV_O_CACHE_WB;
538 *flags |= BDRV_O_NO_FLUSH;
539 } else if (!strcmp(mode, "writethrough")) {
540 /* this is the default */
541 } else {
542 return -1;
543 }
544
545 return 0;
546 }
547
548 /**
549 * The copy-on-read flag is actually a reference count so multiple users may
550 * use the feature without worrying about clobbering its previous state.
551 * Copy-on-read stays enabled until all users have called to disable it.
552 */
553 void bdrv_enable_copy_on_read(BlockDriverState *bs)
554 {
555 bs->copy_on_read++;
556 }
557
558 void bdrv_disable_copy_on_read(BlockDriverState *bs)
559 {
560 assert(bs->copy_on_read > 0);
561 bs->copy_on_read--;
562 }
563
564 /*
565 * Common part for opening disk images and files
566 */
567 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
568 int flags, BlockDriver *drv)
569 {
570 int ret, open_flags;
571
572 assert(drv != NULL);
573
574 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
575
576 bs->file = NULL;
577 bs->total_sectors = 0;
578 bs->encrypted = 0;
579 bs->valid_key = 0;
580 bs->sg = 0;
581 bs->open_flags = flags;
582 bs->growable = 0;
583 bs->buffer_alignment = 512;
584
585 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
586 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
587 bdrv_enable_copy_on_read(bs);
588 }
589
590 pstrcpy(bs->filename, sizeof(bs->filename), filename);
591 bs->backing_file[0] = '\0';
592
593 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
594 return -ENOTSUP;
595 }
596
597 bs->drv = drv;
598 bs->opaque = g_malloc0(drv->instance_size);
599
600 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
601
602 /*
603 * Clear flags that are internal to the block layer before opening the
604 * image.
605 */
606 open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
607
608 /*
609 * Snapshots should be writable.
610 */
611 if (bs->is_temporary) {
612 open_flags |= BDRV_O_RDWR;
613 }
614
615 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
616
617 /* Open the image, either directly or using a protocol */
618 if (drv->bdrv_file_open) {
619 ret = drv->bdrv_file_open(bs, filename, open_flags);
620 } else {
621 ret = bdrv_file_open(&bs->file, filename, open_flags);
622 if (ret >= 0) {
623 ret = drv->bdrv_open(bs, open_flags);
624 }
625 }
626
627 if (ret < 0) {
628 goto free_and_fail;
629 }
630
631 ret = refresh_total_sectors(bs, bs->total_sectors);
632 if (ret < 0) {
633 goto free_and_fail;
634 }
635
636 #ifndef _WIN32
637 if (bs->is_temporary) {
638 unlink(filename);
639 }
640 #endif
641 return 0;
642
643 free_and_fail:
644 if (bs->file) {
645 bdrv_delete(bs->file);
646 bs->file = NULL;
647 }
648 g_free(bs->opaque);
649 bs->opaque = NULL;
650 bs->drv = NULL;
651 return ret;
652 }
653
654 /*
655 * Opens a file using a protocol (file, host_device, nbd, ...)
656 */
657 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
658 {
659 BlockDriverState *bs;
660 BlockDriver *drv;
661 int ret;
662
663 drv = bdrv_find_protocol(filename);
664 if (!drv) {
665 return -ENOENT;
666 }
667
668 bs = bdrv_new("");
669 ret = bdrv_open_common(bs, filename, flags, drv);
670 if (ret < 0) {
671 bdrv_delete(bs);
672 return ret;
673 }
674 bs->growable = 1;
675 *pbs = bs;
676 return 0;
677 }
678
679 /*
680 * Opens a disk image (raw, qcow2, vmdk, ...)
681 */
682 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
683 BlockDriver *drv)
684 {
685 int ret;
686 char tmp_filename[PATH_MAX];
687
688 if (flags & BDRV_O_SNAPSHOT) {
689 BlockDriverState *bs1;
690 int64_t total_size;
691 int is_protocol = 0;
692 BlockDriver *bdrv_qcow2;
693 QEMUOptionParameter *options;
694 char backing_filename[PATH_MAX];
695
696 /* if snapshot, we create a temporary backing file and open it
697 instead of opening 'filename' directly */
698
699 /* if there is a backing file, use it */
700 bs1 = bdrv_new("");
701 ret = bdrv_open(bs1, filename, 0, drv);
702 if (ret < 0) {
703 bdrv_delete(bs1);
704 return ret;
705 }
706 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
707
708 if (bs1->drv && bs1->drv->protocol_name)
709 is_protocol = 1;
710
711 bdrv_delete(bs1);
712
713 get_tmp_filename(tmp_filename, sizeof(tmp_filename));
714
715 /* Real path is meaningless for protocols */
716 if (is_protocol)
717 snprintf(backing_filename, sizeof(backing_filename),
718 "%s", filename);
719 else if (!realpath(filename, backing_filename))
720 return -errno;
721
722 bdrv_qcow2 = bdrv_find_format("qcow2");
723 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
724
725 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
726 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
727 if (drv) {
728 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
729 drv->format_name);
730 }
731
732 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
733 free_option_parameters(options);
734 if (ret < 0) {
735 return ret;
736 }
737
738 filename = tmp_filename;
739 drv = bdrv_qcow2;
740 bs->is_temporary = 1;
741 }
742
743 /* Find the right image format driver */
744 if (!drv) {
745 ret = find_image_format(filename, &drv);
746 }
747
748 if (!drv) {
749 goto unlink_and_fail;
750 }
751
752 /* Open the image */
753 ret = bdrv_open_common(bs, filename, flags, drv);
754 if (ret < 0) {
755 goto unlink_and_fail;
756 }
757
758 /* If there is a backing file, use it */
759 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
760 char backing_filename[PATH_MAX];
761 int back_flags;
762 BlockDriver *back_drv = NULL;
763
764 bs->backing_hd = bdrv_new("");
765
766 if (path_has_protocol(bs->backing_file)) {
767 pstrcpy(backing_filename, sizeof(backing_filename),
768 bs->backing_file);
769 } else {
770 path_combine(backing_filename, sizeof(backing_filename),
771 filename, bs->backing_file);
772 }
773
774 if (bs->backing_format[0] != '\0') {
775 back_drv = bdrv_find_format(bs->backing_format);
776 }
777
778 /* backing files always opened read-only */
779 back_flags =
780 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
781
782 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
783 if (ret < 0) {
784 bdrv_close(bs);
785 return ret;
786 }
787 if (bs->is_temporary) {
788 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
789 } else {
790 /* base image inherits from "parent" */
791 bs->backing_hd->keep_read_only = bs->keep_read_only;
792 }
793 }
794
795 if (!bdrv_key_required(bs)) {
796 bdrv_dev_change_media_cb(bs, true);
797 }
798
799 /* throttling disk I/O limits */
800 if (bs->io_limits_enabled) {
801 bdrv_io_limits_enable(bs);
802 }
803
804 return 0;
805
806 unlink_and_fail:
807 if (bs->is_temporary) {
808 unlink(filename);
809 }
810 return ret;
811 }
812
813 void bdrv_close(BlockDriverState *bs)
814 {
815 if (bs->drv) {
816 if (bs == bs_snapshots) {
817 bs_snapshots = NULL;
818 }
819 if (bs->backing_hd) {
820 bdrv_delete(bs->backing_hd);
821 bs->backing_hd = NULL;
822 }
823 bs->drv->bdrv_close(bs);
824 g_free(bs->opaque);
825 #ifdef _WIN32
826 if (bs->is_temporary) {
827 unlink(bs->filename);
828 }
829 #endif
830 bs->opaque = NULL;
831 bs->drv = NULL;
832 bs->copy_on_read = 0;
833
834 if (bs->file != NULL) {
835 bdrv_close(bs->file);
836 }
837
838 bdrv_dev_change_media_cb(bs, false);
839 }
840
841 /*throttling disk I/O limits*/
842 if (bs->io_limits_enabled) {
843 bdrv_io_limits_disable(bs);
844 }
845 }
846
847 void bdrv_close_all(void)
848 {
849 BlockDriverState *bs;
850
851 QTAILQ_FOREACH(bs, &bdrv_states, list) {
852 bdrv_close(bs);
853 }
854 }
855
856 /*
857 * Wait for pending requests to complete across all BlockDriverStates
858 *
859 * This function does not flush data to disk, use bdrv_flush_all() for that
860 * after calling this function.
861 */
862 void bdrv_drain_all(void)
863 {
864 BlockDriverState *bs;
865
866 qemu_aio_flush();
867
868 /* If requests are still pending there is a bug somewhere */
869 QTAILQ_FOREACH(bs, &bdrv_states, list) {
870 assert(QLIST_EMPTY(&bs->tracked_requests));
871 assert(qemu_co_queue_empty(&bs->throttled_reqs));
872 }
873 }
874
875 /* make a BlockDriverState anonymous by removing from bdrv_state list.
876 Also, NULL terminate the device_name to prevent double remove */
877 void bdrv_make_anon(BlockDriverState *bs)
878 {
879 if (bs->device_name[0] != '\0') {
880 QTAILQ_REMOVE(&bdrv_states, bs, list);
881 }
882 bs->device_name[0] = '\0';
883 }
884
885 void bdrv_delete(BlockDriverState *bs)
886 {
887 assert(!bs->dev);
888
889 /* remove from list, if necessary */
890 bdrv_make_anon(bs);
891
892 bdrv_close(bs);
893 if (bs->file != NULL) {
894 bdrv_delete(bs->file);
895 }
896
897 assert(bs != bs_snapshots);
898 g_free(bs);
899 }
900
901 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
902 /* TODO change to DeviceState *dev when all users are qdevified */
903 {
904 if (bs->dev) {
905 return -EBUSY;
906 }
907 bs->dev = dev;
908 bdrv_iostatus_reset(bs);
909 return 0;
910 }
911
912 /* TODO qdevified devices don't use this, remove when devices are qdevified */
913 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
914 {
915 if (bdrv_attach_dev(bs, dev) < 0) {
916 abort();
917 }
918 }
919
920 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
921 /* TODO change to DeviceState *dev when all users are qdevified */
922 {
923 assert(bs->dev == dev);
924 bs->dev = NULL;
925 bs->dev_ops = NULL;
926 bs->dev_opaque = NULL;
927 bs->buffer_alignment = 512;
928 }
929
930 /* TODO change to return DeviceState * when all users are qdevified */
931 void *bdrv_get_attached_dev(BlockDriverState *bs)
932 {
933 return bs->dev;
934 }
935
936 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
937 void *opaque)
938 {
939 bs->dev_ops = ops;
940 bs->dev_opaque = opaque;
941 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
942 bs_snapshots = NULL;
943 }
944 }
945
946 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
947 {
948 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
949 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
950 }
951 }
952
953 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
954 {
955 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
956 }
957
958 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
959 {
960 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
961 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
962 }
963 }
964
965 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
966 {
967 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
968 return bs->dev_ops->is_tray_open(bs->dev_opaque);
969 }
970 return false;
971 }
972
973 static void bdrv_dev_resize_cb(BlockDriverState *bs)
974 {
975 if (bs->dev_ops && bs->dev_ops->resize_cb) {
976 bs->dev_ops->resize_cb(bs->dev_opaque);
977 }
978 }
979
980 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
981 {
982 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
983 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
984 }
985 return false;
986 }
987
988 /*
989 * Run consistency checks on an image
990 *
991 * Returns 0 if the check could be completed (it doesn't mean that the image is
992 * free of errors) or -errno when an internal error occurred. The results of the
993 * check are stored in res.
994 */
995 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res)
996 {
997 if (bs->drv->bdrv_check == NULL) {
998 return -ENOTSUP;
999 }
1000
1001 memset(res, 0, sizeof(*res));
1002 return bs->drv->bdrv_check(bs, res);
1003 }
1004
1005 #define COMMIT_BUF_SECTORS 2048
1006
1007 /* commit COW file into the raw image */
1008 int bdrv_commit(BlockDriverState *bs)
1009 {
1010 BlockDriver *drv = bs->drv;
1011 BlockDriver *backing_drv;
1012 int64_t sector, total_sectors;
1013 int n, ro, open_flags;
1014 int ret = 0, rw_ret = 0;
1015 uint8_t *buf;
1016 char filename[1024];
1017 BlockDriverState *bs_rw, *bs_ro;
1018
1019 if (!drv)
1020 return -ENOMEDIUM;
1021
1022 if (!bs->backing_hd) {
1023 return -ENOTSUP;
1024 }
1025
1026 if (bs->backing_hd->keep_read_only) {
1027 return -EACCES;
1028 }
1029
1030 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1031 return -EBUSY;
1032 }
1033
1034 backing_drv = bs->backing_hd->drv;
1035 ro = bs->backing_hd->read_only;
1036 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1037 open_flags = bs->backing_hd->open_flags;
1038
1039 if (ro) {
1040 /* re-open as RW */
1041 bdrv_delete(bs->backing_hd);
1042 bs->backing_hd = NULL;
1043 bs_rw = bdrv_new("");
1044 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1045 backing_drv);
1046 if (rw_ret < 0) {
1047 bdrv_delete(bs_rw);
1048 /* try to re-open read-only */
1049 bs_ro = bdrv_new("");
1050 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1051 backing_drv);
1052 if (ret < 0) {
1053 bdrv_delete(bs_ro);
1054 /* drive not functional anymore */
1055 bs->drv = NULL;
1056 return ret;
1057 }
1058 bs->backing_hd = bs_ro;
1059 return rw_ret;
1060 }
1061 bs->backing_hd = bs_rw;
1062 }
1063
1064 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1065 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1066
1067 for (sector = 0; sector < total_sectors; sector += n) {
1068 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1069
1070 if (bdrv_read(bs, sector, buf, n) != 0) {
1071 ret = -EIO;
1072 goto ro_cleanup;
1073 }
1074
1075 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1076 ret = -EIO;
1077 goto ro_cleanup;
1078 }
1079 }
1080 }
1081
1082 if (drv->bdrv_make_empty) {
1083 ret = drv->bdrv_make_empty(bs);
1084 bdrv_flush(bs);
1085 }
1086
1087 /*
1088 * Make sure all data we wrote to the backing device is actually
1089 * stable on disk.
1090 */
1091 if (bs->backing_hd)
1092 bdrv_flush(bs->backing_hd);
1093
1094 ro_cleanup:
1095 g_free(buf);
1096
1097 if (ro) {
1098 /* re-open as RO */
1099 bdrv_delete(bs->backing_hd);
1100 bs->backing_hd = NULL;
1101 bs_ro = bdrv_new("");
1102 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1103 backing_drv);
1104 if (ret < 0) {
1105 bdrv_delete(bs_ro);
1106 /* drive not functional anymore */
1107 bs->drv = NULL;
1108 return ret;
1109 }
1110 bs->backing_hd = bs_ro;
1111 bs->backing_hd->keep_read_only = 0;
1112 }
1113
1114 return ret;
1115 }
1116
1117 void bdrv_commit_all(void)
1118 {
1119 BlockDriverState *bs;
1120
1121 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1122 bdrv_commit(bs);
1123 }
1124 }
1125
1126 struct BdrvTrackedRequest {
1127 BlockDriverState *bs;
1128 int64_t sector_num;
1129 int nb_sectors;
1130 bool is_write;
1131 QLIST_ENTRY(BdrvTrackedRequest) list;
1132 Coroutine *co; /* owner, used for deadlock detection */
1133 CoQueue wait_queue; /* coroutines blocked on this request */
1134 };
1135
1136 /**
1137 * Remove an active request from the tracked requests list
1138 *
1139 * This function should be called when a tracked request is completing.
1140 */
1141 static void tracked_request_end(BdrvTrackedRequest *req)
1142 {
1143 QLIST_REMOVE(req, list);
1144 qemu_co_queue_restart_all(&req->wait_queue);
1145 }
1146
1147 /**
1148 * Add an active request to the tracked requests list
1149 */
1150 static void tracked_request_begin(BdrvTrackedRequest *req,
1151 BlockDriverState *bs,
1152 int64_t sector_num,
1153 int nb_sectors, bool is_write)
1154 {
1155 *req = (BdrvTrackedRequest){
1156 .bs = bs,
1157 .sector_num = sector_num,
1158 .nb_sectors = nb_sectors,
1159 .is_write = is_write,
1160 .co = qemu_coroutine_self(),
1161 };
1162
1163 qemu_co_queue_init(&req->wait_queue);
1164
1165 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1166 }
1167
1168 /**
1169 * Round a region to cluster boundaries
1170 */
1171 static void round_to_clusters(BlockDriverState *bs,
1172 int64_t sector_num, int nb_sectors,
1173 int64_t *cluster_sector_num,
1174 int *cluster_nb_sectors)
1175 {
1176 BlockDriverInfo bdi;
1177
1178 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1179 *cluster_sector_num = sector_num;
1180 *cluster_nb_sectors = nb_sectors;
1181 } else {
1182 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1183 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1184 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1185 nb_sectors, c);
1186 }
1187 }
1188
1189 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1190 int64_t sector_num, int nb_sectors) {
1191 /* aaaa bbbb */
1192 if (sector_num >= req->sector_num + req->nb_sectors) {
1193 return false;
1194 }
1195 /* bbbb aaaa */
1196 if (req->sector_num >= sector_num + nb_sectors) {
1197 return false;
1198 }
1199 return true;
1200 }
1201
1202 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1203 int64_t sector_num, int nb_sectors)
1204 {
1205 BdrvTrackedRequest *req;
1206 int64_t cluster_sector_num;
1207 int cluster_nb_sectors;
1208 bool retry;
1209
1210 /* If we touch the same cluster it counts as an overlap. This guarantees
1211 * that allocating writes will be serialized and not race with each other
1212 * for the same cluster. For example, in copy-on-read it ensures that the
1213 * CoR read and write operations are atomic and guest writes cannot
1214 * interleave between them.
1215 */
1216 round_to_clusters(bs, sector_num, nb_sectors,
1217 &cluster_sector_num, &cluster_nb_sectors);
1218
1219 do {
1220 retry = false;
1221 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1222 if (tracked_request_overlaps(req, cluster_sector_num,
1223 cluster_nb_sectors)) {
1224 /* Hitting this means there was a reentrant request, for
1225 * example, a block driver issuing nested requests. This must
1226 * never happen since it means deadlock.
1227 */
1228 assert(qemu_coroutine_self() != req->co);
1229
1230 qemu_co_queue_wait(&req->wait_queue);
1231 retry = true;
1232 break;
1233 }
1234 }
1235 } while (retry);
1236 }
1237
1238 /*
1239 * Return values:
1240 * 0 - success
1241 * -EINVAL - backing format specified, but no file
1242 * -ENOSPC - can't update the backing file because no space is left in the
1243 * image file header
1244 * -ENOTSUP - format driver doesn't support changing the backing file
1245 */
1246 int bdrv_change_backing_file(BlockDriverState *bs,
1247 const char *backing_file, const char *backing_fmt)
1248 {
1249 BlockDriver *drv = bs->drv;
1250
1251 if (drv->bdrv_change_backing_file != NULL) {
1252 return drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1253 } else {
1254 return -ENOTSUP;
1255 }
1256 }
1257
1258 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1259 size_t size)
1260 {
1261 int64_t len;
1262
1263 if (!bdrv_is_inserted(bs))
1264 return -ENOMEDIUM;
1265
1266 if (bs->growable)
1267 return 0;
1268
1269 len = bdrv_getlength(bs);
1270
1271 if (offset < 0)
1272 return -EIO;
1273
1274 if ((offset > len) || (len - offset < size))
1275 return -EIO;
1276
1277 return 0;
1278 }
1279
1280 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1281 int nb_sectors)
1282 {
1283 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1284 nb_sectors * BDRV_SECTOR_SIZE);
1285 }
1286
1287 typedef struct RwCo {
1288 BlockDriverState *bs;
1289 int64_t sector_num;
1290 int nb_sectors;
1291 QEMUIOVector *qiov;
1292 bool is_write;
1293 int ret;
1294 } RwCo;
1295
1296 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1297 {
1298 RwCo *rwco = opaque;
1299
1300 if (!rwco->is_write) {
1301 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1302 rwco->nb_sectors, rwco->qiov, 0);
1303 } else {
1304 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1305 rwco->nb_sectors, rwco->qiov, 0);
1306 }
1307 }
1308
1309 /*
1310 * Process a synchronous request using coroutines
1311 */
1312 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1313 int nb_sectors, bool is_write)
1314 {
1315 QEMUIOVector qiov;
1316 struct iovec iov = {
1317 .iov_base = (void *)buf,
1318 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1319 };
1320 Coroutine *co;
1321 RwCo rwco = {
1322 .bs = bs,
1323 .sector_num = sector_num,
1324 .nb_sectors = nb_sectors,
1325 .qiov = &qiov,
1326 .is_write = is_write,
1327 .ret = NOT_DONE,
1328 };
1329
1330 qemu_iovec_init_external(&qiov, &iov, 1);
1331
1332 if (qemu_in_coroutine()) {
1333 /* Fast-path if already in coroutine context */
1334 bdrv_rw_co_entry(&rwco);
1335 } else {
1336 co = qemu_coroutine_create(bdrv_rw_co_entry);
1337 qemu_coroutine_enter(co, &rwco);
1338 while (rwco.ret == NOT_DONE) {
1339 qemu_aio_wait();
1340 }
1341 }
1342 return rwco.ret;
1343 }
1344
1345 /* return < 0 if error. See bdrv_write() for the return codes */
1346 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1347 uint8_t *buf, int nb_sectors)
1348 {
1349 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1350 }
1351
1352 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1353 int nb_sectors, int dirty)
1354 {
1355 int64_t start, end;
1356 unsigned long val, idx, bit;
1357
1358 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1359 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1360
1361 for (; start <= end; start++) {
1362 idx = start / (sizeof(unsigned long) * 8);
1363 bit = start % (sizeof(unsigned long) * 8);
1364 val = bs->dirty_bitmap[idx];
1365 if (dirty) {
1366 if (!(val & (1UL << bit))) {
1367 bs->dirty_count++;
1368 val |= 1UL << bit;
1369 }
1370 } else {
1371 if (val & (1UL << bit)) {
1372 bs->dirty_count--;
1373 val &= ~(1UL << bit);
1374 }
1375 }
1376 bs->dirty_bitmap[idx] = val;
1377 }
1378 }
1379
1380 /* Return < 0 if error. Important errors are:
1381 -EIO generic I/O error (may happen for all errors)
1382 -ENOMEDIUM No media inserted.
1383 -EINVAL Invalid sector number or nb_sectors
1384 -EACCES Trying to write a read-only device
1385 */
1386 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1387 const uint8_t *buf, int nb_sectors)
1388 {
1389 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1390 }
1391
1392 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1393 void *buf, int count1)
1394 {
1395 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1396 int len, nb_sectors, count;
1397 int64_t sector_num;
1398 int ret;
1399
1400 count = count1;
1401 /* first read to align to sector start */
1402 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1403 if (len > count)
1404 len = count;
1405 sector_num = offset >> BDRV_SECTOR_BITS;
1406 if (len > 0) {
1407 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1408 return ret;
1409 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1410 count -= len;
1411 if (count == 0)
1412 return count1;
1413 sector_num++;
1414 buf += len;
1415 }
1416
1417 /* read the sectors "in place" */
1418 nb_sectors = count >> BDRV_SECTOR_BITS;
1419 if (nb_sectors > 0) {
1420 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1421 return ret;
1422 sector_num += nb_sectors;
1423 len = nb_sectors << BDRV_SECTOR_BITS;
1424 buf += len;
1425 count -= len;
1426 }
1427
1428 /* add data from the last sector */
1429 if (count > 0) {
1430 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1431 return ret;
1432 memcpy(buf, tmp_buf, count);
1433 }
1434 return count1;
1435 }
1436
1437 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1438 const void *buf, int count1)
1439 {
1440 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1441 int len, nb_sectors, count;
1442 int64_t sector_num;
1443 int ret;
1444
1445 count = count1;
1446 /* first write to align to sector start */
1447 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1448 if (len > count)
1449 len = count;
1450 sector_num = offset >> BDRV_SECTOR_BITS;
1451 if (len > 0) {
1452 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1453 return ret;
1454 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1455 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1456 return ret;
1457 count -= len;
1458 if (count == 0)
1459 return count1;
1460 sector_num++;
1461 buf += len;
1462 }
1463
1464 /* write the sectors "in place" */
1465 nb_sectors = count >> BDRV_SECTOR_BITS;
1466 if (nb_sectors > 0) {
1467 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1468 return ret;
1469 sector_num += nb_sectors;
1470 len = nb_sectors << BDRV_SECTOR_BITS;
1471 buf += len;
1472 count -= len;
1473 }
1474
1475 /* add data from the last sector */
1476 if (count > 0) {
1477 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1478 return ret;
1479 memcpy(tmp_buf, buf, count);
1480 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1481 return ret;
1482 }
1483 return count1;
1484 }
1485
1486 /*
1487 * Writes to the file and ensures that no writes are reordered across this
1488 * request (acts as a barrier)
1489 *
1490 * Returns 0 on success, -errno in error cases.
1491 */
1492 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1493 const void *buf, int count)
1494 {
1495 int ret;
1496
1497 ret = bdrv_pwrite(bs, offset, buf, count);
1498 if (ret < 0) {
1499 return ret;
1500 }
1501
1502 /* No flush needed for cache modes that use O_DSYNC */
1503 if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1504 bdrv_flush(bs);
1505 }
1506
1507 return 0;
1508 }
1509
1510 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1511 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1512 {
1513 /* Perform I/O through a temporary buffer so that users who scribble over
1514 * their read buffer while the operation is in progress do not end up
1515 * modifying the image file. This is critical for zero-copy guest I/O
1516 * where anything might happen inside guest memory.
1517 */
1518 void *bounce_buffer;
1519
1520 BlockDriver *drv = bs->drv;
1521 struct iovec iov;
1522 QEMUIOVector bounce_qiov;
1523 int64_t cluster_sector_num;
1524 int cluster_nb_sectors;
1525 size_t skip_bytes;
1526 int ret;
1527
1528 /* Cover entire cluster so no additional backing file I/O is required when
1529 * allocating cluster in the image file.
1530 */
1531 round_to_clusters(bs, sector_num, nb_sectors,
1532 &cluster_sector_num, &cluster_nb_sectors);
1533
1534 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1535 cluster_sector_num, cluster_nb_sectors);
1536
1537 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1538 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1539 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1540
1541 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1542 &bounce_qiov);
1543 if (ret < 0) {
1544 goto err;
1545 }
1546
1547 if (drv->bdrv_co_write_zeroes &&
1548 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1549 ret = drv->bdrv_co_write_zeroes(bs, cluster_sector_num,
1550 cluster_nb_sectors);
1551 } else {
1552 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1553 &bounce_qiov);
1554 }
1555
1556 if (ret < 0) {
1557 /* It might be okay to ignore write errors for guest requests. If this
1558 * is a deliberate copy-on-read then we don't want to ignore the error.
1559 * Simply report it in all cases.
1560 */
1561 goto err;
1562 }
1563
1564 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1565 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1566 nb_sectors * BDRV_SECTOR_SIZE);
1567
1568 err:
1569 qemu_vfree(bounce_buffer);
1570 return ret;
1571 }
1572
1573 /*
1574 * Handle a read request in coroutine context
1575 */
1576 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1577 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1578 BdrvRequestFlags flags)
1579 {
1580 BlockDriver *drv = bs->drv;
1581 BdrvTrackedRequest req;
1582 int ret;
1583
1584 if (!drv) {
1585 return -ENOMEDIUM;
1586 }
1587 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1588 return -EIO;
1589 }
1590
1591 /* throttling disk read I/O */
1592 if (bs->io_limits_enabled) {
1593 bdrv_io_limits_intercept(bs, false, nb_sectors);
1594 }
1595
1596 if (bs->copy_on_read) {
1597 flags |= BDRV_REQ_COPY_ON_READ;
1598 }
1599 if (flags & BDRV_REQ_COPY_ON_READ) {
1600 bs->copy_on_read_in_flight++;
1601 }
1602
1603 if (bs->copy_on_read_in_flight) {
1604 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1605 }
1606
1607 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1608
1609 if (flags & BDRV_REQ_COPY_ON_READ) {
1610 int pnum;
1611
1612 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1613 if (ret < 0) {
1614 goto out;
1615 }
1616
1617 if (!ret || pnum != nb_sectors) {
1618 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1619 goto out;
1620 }
1621 }
1622
1623 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1624
1625 out:
1626 tracked_request_end(&req);
1627
1628 if (flags & BDRV_REQ_COPY_ON_READ) {
1629 bs->copy_on_read_in_flight--;
1630 }
1631
1632 return ret;
1633 }
1634
1635 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1636 int nb_sectors, QEMUIOVector *qiov)
1637 {
1638 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1639
1640 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1641 }
1642
1643 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1644 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1645 {
1646 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1647
1648 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1649 BDRV_REQ_COPY_ON_READ);
1650 }
1651
1652 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1653 int64_t sector_num, int nb_sectors)
1654 {
1655 BlockDriver *drv = bs->drv;
1656 QEMUIOVector qiov;
1657 struct iovec iov;
1658 int ret;
1659
1660 /* First try the efficient write zeroes operation */
1661 if (drv->bdrv_co_write_zeroes) {
1662 return drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1663 }
1664
1665 /* Fall back to bounce buffer if write zeroes is unsupported */
1666 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1667 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1668 memset(iov.iov_base, 0, iov.iov_len);
1669 qemu_iovec_init_external(&qiov, &iov, 1);
1670
1671 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1672
1673 qemu_vfree(iov.iov_base);
1674 return ret;
1675 }
1676
1677 /*
1678 * Handle a write request in coroutine context
1679 */
1680 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1681 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1682 BdrvRequestFlags flags)
1683 {
1684 BlockDriver *drv = bs->drv;
1685 BdrvTrackedRequest req;
1686 int ret;
1687
1688 if (!bs->drv) {
1689 return -ENOMEDIUM;
1690 }
1691 if (bs->read_only) {
1692 return -EACCES;
1693 }
1694 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1695 return -EIO;
1696 }
1697
1698 /* throttling disk write I/O */
1699 if (bs->io_limits_enabled) {
1700 bdrv_io_limits_intercept(bs, true, nb_sectors);
1701 }
1702
1703 if (bs->copy_on_read_in_flight) {
1704 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1705 }
1706
1707 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1708
1709 if (flags & BDRV_REQ_ZERO_WRITE) {
1710 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1711 } else {
1712 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1713 }
1714
1715 if (bs->dirty_bitmap) {
1716 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1717 }
1718
1719 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1720 bs->wr_highest_sector = sector_num + nb_sectors - 1;
1721 }
1722
1723 tracked_request_end(&req);
1724
1725 return ret;
1726 }
1727
1728 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1729 int nb_sectors, QEMUIOVector *qiov)
1730 {
1731 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1732
1733 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1734 }
1735
1736 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1737 int64_t sector_num, int nb_sectors)
1738 {
1739 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1740
1741 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1742 BDRV_REQ_ZERO_WRITE);
1743 }
1744
1745 /**
1746 * Truncate file to 'offset' bytes (needed only for file protocols)
1747 */
1748 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
1749 {
1750 BlockDriver *drv = bs->drv;
1751 int ret;
1752 if (!drv)
1753 return -ENOMEDIUM;
1754 if (!drv->bdrv_truncate)
1755 return -ENOTSUP;
1756 if (bs->read_only)
1757 return -EACCES;
1758 if (bdrv_in_use(bs))
1759 return -EBUSY;
1760 ret = drv->bdrv_truncate(bs, offset);
1761 if (ret == 0) {
1762 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
1763 bdrv_dev_resize_cb(bs);
1764 }
1765 return ret;
1766 }
1767
1768 /**
1769 * Length of a allocated file in bytes. Sparse files are counted by actual
1770 * allocated space. Return < 0 if error or unknown.
1771 */
1772 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
1773 {
1774 BlockDriver *drv = bs->drv;
1775 if (!drv) {
1776 return -ENOMEDIUM;
1777 }
1778 if (drv->bdrv_get_allocated_file_size) {
1779 return drv->bdrv_get_allocated_file_size(bs);
1780 }
1781 if (bs->file) {
1782 return bdrv_get_allocated_file_size(bs->file);
1783 }
1784 return -ENOTSUP;
1785 }
1786
1787 /**
1788 * Length of a file in bytes. Return < 0 if error or unknown.
1789 */
1790 int64_t bdrv_getlength(BlockDriverState *bs)
1791 {
1792 BlockDriver *drv = bs->drv;
1793 if (!drv)
1794 return -ENOMEDIUM;
1795
1796 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
1797 if (drv->bdrv_getlength) {
1798 return drv->bdrv_getlength(bs);
1799 }
1800 }
1801 return bs->total_sectors * BDRV_SECTOR_SIZE;
1802 }
1803
1804 /* return 0 as number of sectors if no device present or error */
1805 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
1806 {
1807 int64_t length;
1808 length = bdrv_getlength(bs);
1809 if (length < 0)
1810 length = 0;
1811 else
1812 length = length >> BDRV_SECTOR_BITS;
1813 *nb_sectors_ptr = length;
1814 }
1815
1816 struct partition {
1817 uint8_t boot_ind; /* 0x80 - active */
1818 uint8_t head; /* starting head */
1819 uint8_t sector; /* starting sector */
1820 uint8_t cyl; /* starting cylinder */
1821 uint8_t sys_ind; /* What partition type */
1822 uint8_t end_head; /* end head */
1823 uint8_t end_sector; /* end sector */
1824 uint8_t end_cyl; /* end cylinder */
1825 uint32_t start_sect; /* starting sector counting from 0 */
1826 uint32_t nr_sects; /* nr of sectors in partition */
1827 } QEMU_PACKED;
1828
1829 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
1830 static int guess_disk_lchs(BlockDriverState *bs,
1831 int *pcylinders, int *pheads, int *psectors)
1832 {
1833 uint8_t buf[BDRV_SECTOR_SIZE];
1834 int ret, i, heads, sectors, cylinders;
1835 struct partition *p;
1836 uint32_t nr_sects;
1837 uint64_t nb_sectors;
1838
1839 bdrv_get_geometry(bs, &nb_sectors);
1840
1841 ret = bdrv_read(bs, 0, buf, 1);
1842 if (ret < 0)
1843 return -1;
1844 /* test msdos magic */
1845 if (buf[510] != 0x55 || buf[511] != 0xaa)
1846 return -1;
1847 for(i = 0; i < 4; i++) {
1848 p = ((struct partition *)(buf + 0x1be)) + i;
1849 nr_sects = le32_to_cpu(p->nr_sects);
1850 if (nr_sects && p->end_head) {
1851 /* We make the assumption that the partition terminates on
1852 a cylinder boundary */
1853 heads = p->end_head + 1;
1854 sectors = p->end_sector & 63;
1855 if (sectors == 0)
1856 continue;
1857 cylinders = nb_sectors / (heads * sectors);
1858 if (cylinders < 1 || cylinders > 16383)
1859 continue;
1860 *pheads = heads;
1861 *psectors = sectors;
1862 *pcylinders = cylinders;
1863 #if 0
1864 printf("guessed geometry: LCHS=%d %d %d\n",
1865 cylinders, heads, sectors);
1866 #endif
1867 return 0;
1868 }
1869 }
1870 return -1;
1871 }
1872
1873 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
1874 {
1875 int translation, lba_detected = 0;
1876 int cylinders, heads, secs;
1877 uint64_t nb_sectors;
1878
1879 /* if a geometry hint is available, use it */
1880 bdrv_get_geometry(bs, &nb_sectors);
1881 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
1882 translation = bdrv_get_translation_hint(bs);
1883 if (cylinders != 0) {
1884 *pcyls = cylinders;
1885 *pheads = heads;
1886 *psecs = secs;
1887 } else {
1888 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
1889 if (heads > 16) {
1890 /* if heads > 16, it means that a BIOS LBA
1891 translation was active, so the default
1892 hardware geometry is OK */
1893 lba_detected = 1;
1894 goto default_geometry;
1895 } else {
1896 *pcyls = cylinders;
1897 *pheads = heads;
1898 *psecs = secs;
1899 /* disable any translation to be in sync with
1900 the logical geometry */
1901 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
1902 bdrv_set_translation_hint(bs,
1903 BIOS_ATA_TRANSLATION_NONE);
1904 }
1905 }
1906 } else {
1907 default_geometry:
1908 /* if no geometry, use a standard physical disk geometry */
1909 cylinders = nb_sectors / (16 * 63);
1910
1911 if (cylinders > 16383)
1912 cylinders = 16383;
1913 else if (cylinders < 2)
1914 cylinders = 2;
1915 *pcyls = cylinders;
1916 *pheads = 16;
1917 *psecs = 63;
1918 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
1919 if ((*pcyls * *pheads) <= 131072) {
1920 bdrv_set_translation_hint(bs,
1921 BIOS_ATA_TRANSLATION_LARGE);
1922 } else {
1923 bdrv_set_translation_hint(bs,
1924 BIOS_ATA_TRANSLATION_LBA);
1925 }
1926 }
1927 }
1928 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
1929 }
1930 }
1931
1932 void bdrv_set_geometry_hint(BlockDriverState *bs,
1933 int cyls, int heads, int secs)
1934 {
1935 bs->cyls = cyls;
1936 bs->heads = heads;
1937 bs->secs = secs;
1938 }
1939
1940 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
1941 {
1942 bs->translation = translation;
1943 }
1944
1945 void bdrv_get_geometry_hint(BlockDriverState *bs,
1946 int *pcyls, int *pheads, int *psecs)
1947 {
1948 *pcyls = bs->cyls;
1949 *pheads = bs->heads;
1950 *psecs = bs->secs;
1951 }
1952
1953 /* throttling disk io limits */
1954 void bdrv_set_io_limits(BlockDriverState *bs,
1955 BlockIOLimit *io_limits)
1956 {
1957 bs->io_limits = *io_limits;
1958 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
1959 }
1960
1961 /* Recognize floppy formats */
1962 typedef struct FDFormat {
1963 FDriveType drive;
1964 uint8_t last_sect;
1965 uint8_t max_track;
1966 uint8_t max_head;
1967 } FDFormat;
1968
1969 static const FDFormat fd_formats[] = {
1970 /* First entry is default format */
1971 /* 1.44 MB 3"1/2 floppy disks */
1972 { FDRIVE_DRV_144, 18, 80, 1, },
1973 { FDRIVE_DRV_144, 20, 80, 1, },
1974 { FDRIVE_DRV_144, 21, 80, 1, },
1975 { FDRIVE_DRV_144, 21, 82, 1, },
1976 { FDRIVE_DRV_144, 21, 83, 1, },
1977 { FDRIVE_DRV_144, 22, 80, 1, },
1978 { FDRIVE_DRV_144, 23, 80, 1, },
1979 { FDRIVE_DRV_144, 24, 80, 1, },
1980 /* 2.88 MB 3"1/2 floppy disks */
1981 { FDRIVE_DRV_288, 36, 80, 1, },
1982 { FDRIVE_DRV_288, 39, 80, 1, },
1983 { FDRIVE_DRV_288, 40, 80, 1, },
1984 { FDRIVE_DRV_288, 44, 80, 1, },
1985 { FDRIVE_DRV_288, 48, 80, 1, },
1986 /* 720 kB 3"1/2 floppy disks */
1987 { FDRIVE_DRV_144, 9, 80, 1, },
1988 { FDRIVE_DRV_144, 10, 80, 1, },
1989 { FDRIVE_DRV_144, 10, 82, 1, },
1990 { FDRIVE_DRV_144, 10, 83, 1, },
1991 { FDRIVE_DRV_144, 13, 80, 1, },
1992 { FDRIVE_DRV_144, 14, 80, 1, },
1993 /* 1.2 MB 5"1/4 floppy disks */
1994 { FDRIVE_DRV_120, 15, 80, 1, },
1995 { FDRIVE_DRV_120, 18, 80, 1, },
1996 { FDRIVE_DRV_120, 18, 82, 1, },
1997 { FDRIVE_DRV_120, 18, 83, 1, },
1998 { FDRIVE_DRV_120, 20, 80, 1, },
1999 /* 720 kB 5"1/4 floppy disks */
2000 { FDRIVE_DRV_120, 9, 80, 1, },
2001 { FDRIVE_DRV_120, 11, 80, 1, },
2002 /* 360 kB 5"1/4 floppy disks */
2003 { FDRIVE_DRV_120, 9, 40, 1, },
2004 { FDRIVE_DRV_120, 9, 40, 0, },
2005 { FDRIVE_DRV_120, 10, 41, 1, },
2006 { FDRIVE_DRV_120, 10, 42, 1, },
2007 /* 320 kB 5"1/4 floppy disks */
2008 { FDRIVE_DRV_120, 8, 40, 1, },
2009 { FDRIVE_DRV_120, 8, 40, 0, },
2010 /* 360 kB must match 5"1/4 better than 3"1/2... */
2011 { FDRIVE_DRV_144, 9, 80, 0, },
2012 /* end */
2013 { FDRIVE_DRV_NONE, -1, -1, 0, },
2014 };
2015
2016 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2017 int *max_track, int *last_sect,
2018 FDriveType drive_in, FDriveType *drive)
2019 {
2020 const FDFormat *parse;
2021 uint64_t nb_sectors, size;
2022 int i, first_match, match;
2023
2024 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2025 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2026 /* User defined disk */
2027 } else {
2028 bdrv_get_geometry(bs, &nb_sectors);
2029 match = -1;
2030 first_match = -1;
2031 for (i = 0; ; i++) {
2032 parse = &fd_formats[i];
2033 if (parse->drive == FDRIVE_DRV_NONE) {
2034 break;
2035 }
2036 if (drive_in == parse->drive ||
2037 drive_in == FDRIVE_DRV_NONE) {
2038 size = (parse->max_head + 1) * parse->max_track *
2039 parse->last_sect;
2040 if (nb_sectors == size) {
2041 match = i;
2042 break;
2043 }
2044 if (first_match == -1) {
2045 first_match = i;
2046 }
2047 }
2048 }
2049 if (match == -1) {
2050 if (first_match == -1) {
2051 match = 1;
2052 } else {
2053 match = first_match;
2054 }
2055 parse = &fd_formats[match];
2056 }
2057 *nb_heads = parse->max_head + 1;
2058 *max_track = parse->max_track;
2059 *last_sect = parse->last_sect;
2060 *drive = parse->drive;
2061 }
2062 }
2063
2064 int bdrv_get_translation_hint(BlockDriverState *bs)
2065 {
2066 return bs->translation;
2067 }
2068
2069 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2070 BlockErrorAction on_write_error)
2071 {
2072 bs->on_read_error = on_read_error;
2073 bs->on_write_error = on_write_error;
2074 }
2075
2076 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2077 {
2078 return is_read ? bs->on_read_error : bs->on_write_error;
2079 }
2080
2081 int bdrv_is_read_only(BlockDriverState *bs)
2082 {
2083 return bs->read_only;
2084 }
2085
2086 int bdrv_is_sg(BlockDriverState *bs)
2087 {
2088 return bs->sg;
2089 }
2090
2091 int bdrv_enable_write_cache(BlockDriverState *bs)
2092 {
2093 return bs->enable_write_cache;
2094 }
2095
2096 int bdrv_is_encrypted(BlockDriverState *bs)
2097 {
2098 if (bs->backing_hd && bs->backing_hd->encrypted)
2099 return 1;
2100 return bs->encrypted;
2101 }
2102
2103 int bdrv_key_required(BlockDriverState *bs)
2104 {
2105 BlockDriverState *backing_hd = bs->backing_hd;
2106
2107 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2108 return 1;
2109 return (bs->encrypted && !bs->valid_key);
2110 }
2111
2112 int bdrv_set_key(BlockDriverState *bs, const char *key)
2113 {
2114 int ret;
2115 if (bs->backing_hd && bs->backing_hd->encrypted) {
2116 ret = bdrv_set_key(bs->backing_hd, key);
2117 if (ret < 0)
2118 return ret;
2119 if (!bs->encrypted)
2120 return 0;
2121 }
2122 if (!bs->encrypted) {
2123 return -EINVAL;
2124 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2125 return -ENOMEDIUM;
2126 }
2127 ret = bs->drv->bdrv_set_key(bs, key);
2128 if (ret < 0) {
2129 bs->valid_key = 0;
2130 } else if (!bs->valid_key) {
2131 bs->valid_key = 1;
2132 /* call the change callback now, we skipped it on open */
2133 bdrv_dev_change_media_cb(bs, true);
2134 }
2135 return ret;
2136 }
2137
2138 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2139 {
2140 if (!bs->drv) {
2141 buf[0] = '\0';
2142 } else {
2143 pstrcpy(buf, buf_size, bs->drv->format_name);
2144 }
2145 }
2146
2147 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2148 void *opaque)
2149 {
2150 BlockDriver *drv;
2151
2152 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2153 it(opaque, drv->format_name);
2154 }
2155 }
2156
2157 BlockDriverState *bdrv_find(const char *name)
2158 {
2159 BlockDriverState *bs;
2160
2161 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2162 if (!strcmp(name, bs->device_name)) {
2163 return bs;
2164 }
2165 }
2166 return NULL;
2167 }
2168
2169 BlockDriverState *bdrv_next(BlockDriverState *bs)
2170 {
2171 if (!bs) {
2172 return QTAILQ_FIRST(&bdrv_states);
2173 }
2174 return QTAILQ_NEXT(bs, list);
2175 }
2176
2177 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2178 {
2179 BlockDriverState *bs;
2180
2181 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2182 it(opaque, bs);
2183 }
2184 }
2185
2186 const char *bdrv_get_device_name(BlockDriverState *bs)
2187 {
2188 return bs->device_name;
2189 }
2190
2191 void bdrv_flush_all(void)
2192 {
2193 BlockDriverState *bs;
2194
2195 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2196 if (!bdrv_is_read_only(bs) && bdrv_is_inserted(bs)) {
2197 bdrv_flush(bs);
2198 }
2199 }
2200 }
2201
2202 int bdrv_has_zero_init(BlockDriverState *bs)
2203 {
2204 assert(bs->drv);
2205
2206 if (bs->drv->bdrv_has_zero_init) {
2207 return bs->drv->bdrv_has_zero_init(bs);
2208 }
2209
2210 return 1;
2211 }
2212
2213 typedef struct BdrvCoIsAllocatedData {
2214 BlockDriverState *bs;
2215 int64_t sector_num;
2216 int nb_sectors;
2217 int *pnum;
2218 int ret;
2219 bool done;
2220 } BdrvCoIsAllocatedData;
2221
2222 /*
2223 * Returns true iff the specified sector is present in the disk image. Drivers
2224 * not implementing the functionality are assumed to not support backing files,
2225 * hence all their sectors are reported as allocated.
2226 *
2227 * If 'sector_num' is beyond the end of the disk image the return value is 0
2228 * and 'pnum' is set to 0.
2229 *
2230 * 'pnum' is set to the number of sectors (including and immediately following
2231 * the specified sector) that are known to be in the same
2232 * allocated/unallocated state.
2233 *
2234 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2235 * beyond the end of the disk image it will be clamped.
2236 */
2237 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2238 int nb_sectors, int *pnum)
2239 {
2240 int64_t n;
2241
2242 if (sector_num >= bs->total_sectors) {
2243 *pnum = 0;
2244 return 0;
2245 }
2246
2247 n = bs->total_sectors - sector_num;
2248 if (n < nb_sectors) {
2249 nb_sectors = n;
2250 }
2251
2252 if (!bs->drv->bdrv_co_is_allocated) {
2253 *pnum = nb_sectors;
2254 return 1;
2255 }
2256
2257 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2258 }
2259
2260 /* Coroutine wrapper for bdrv_is_allocated() */
2261 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2262 {
2263 BdrvCoIsAllocatedData *data = opaque;
2264 BlockDriverState *bs = data->bs;
2265
2266 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2267 data->pnum);
2268 data->done = true;
2269 }
2270
2271 /*
2272 * Synchronous wrapper around bdrv_co_is_allocated().
2273 *
2274 * See bdrv_co_is_allocated() for details.
2275 */
2276 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2277 int *pnum)
2278 {
2279 Coroutine *co;
2280 BdrvCoIsAllocatedData data = {
2281 .bs = bs,
2282 .sector_num = sector_num,
2283 .nb_sectors = nb_sectors,
2284 .pnum = pnum,
2285 .done = false,
2286 };
2287
2288 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2289 qemu_coroutine_enter(co, &data);
2290 while (!data.done) {
2291 qemu_aio_wait();
2292 }
2293 return data.ret;
2294 }
2295
2296 void bdrv_mon_event(const BlockDriverState *bdrv,
2297 BlockMonEventAction action, int is_read)
2298 {
2299 QObject *data;
2300 const char *action_str;
2301
2302 switch (action) {
2303 case BDRV_ACTION_REPORT:
2304 action_str = "report";
2305 break;
2306 case BDRV_ACTION_IGNORE:
2307 action_str = "ignore";
2308 break;
2309 case BDRV_ACTION_STOP:
2310 action_str = "stop";
2311 break;
2312 default:
2313 abort();
2314 }
2315
2316 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
2317 bdrv->device_name,
2318 action_str,
2319 is_read ? "read" : "write");
2320 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
2321
2322 qobject_decref(data);
2323 }
2324
2325 BlockInfoList *qmp_query_block(Error **errp)
2326 {
2327 BlockInfoList *head = NULL, *cur_item = NULL;
2328 BlockDriverState *bs;
2329
2330 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2331 BlockInfoList *info = g_malloc0(sizeof(*info));
2332
2333 info->value = g_malloc0(sizeof(*info->value));
2334 info->value->device = g_strdup(bs->device_name);
2335 info->value->type = g_strdup("unknown");
2336 info->value->locked = bdrv_dev_is_medium_locked(bs);
2337 info->value->removable = bdrv_dev_has_removable_media(bs);
2338
2339 if (bdrv_dev_has_removable_media(bs)) {
2340 info->value->has_tray_open = true;
2341 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2342 }
2343
2344 if (bdrv_iostatus_is_enabled(bs)) {
2345 info->value->has_io_status = true;
2346 info->value->io_status = bs->iostatus;
2347 }
2348
2349 if (bs->drv) {
2350 info->value->has_inserted = true;
2351 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2352 info->value->inserted->file = g_strdup(bs->filename);
2353 info->value->inserted->ro = bs->read_only;
2354 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2355 info->value->inserted->encrypted = bs->encrypted;
2356 if (bs->backing_file[0]) {
2357 info->value->inserted->has_backing_file = true;
2358 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2359 }
2360
2361 if (bs->io_limits_enabled) {
2362 info->value->inserted->bps =
2363 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2364 info->value->inserted->bps_rd =
2365 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2366 info->value->inserted->bps_wr =
2367 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2368 info->value->inserted->iops =
2369 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2370 info->value->inserted->iops_rd =
2371 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2372 info->value->inserted->iops_wr =
2373 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2374 }
2375 }
2376
2377 /* XXX: waiting for the qapi to support GSList */
2378 if (!cur_item) {
2379 head = cur_item = info;
2380 } else {
2381 cur_item->next = info;
2382 cur_item = info;
2383 }
2384 }
2385
2386 return head;
2387 }
2388
2389 /* Consider exposing this as a full fledged QMP command */
2390 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2391 {
2392 BlockStats *s;
2393
2394 s = g_malloc0(sizeof(*s));
2395
2396 if (bs->device_name[0]) {
2397 s->has_device = true;
2398 s->device = g_strdup(bs->device_name);
2399 }
2400
2401 s->stats = g_malloc0(sizeof(*s->stats));
2402 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2403 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2404 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2405 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2406 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2407 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2408 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2409 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2410 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2411
2412 if (bs->file) {
2413 s->has_parent = true;
2414 s->parent = qmp_query_blockstat(bs->file, NULL);
2415 }
2416
2417 return s;
2418 }
2419
2420 BlockStatsList *qmp_query_blockstats(Error **errp)
2421 {
2422 BlockStatsList *head = NULL, *cur_item = NULL;
2423 BlockDriverState *bs;
2424
2425 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2426 BlockStatsList *info = g_malloc0(sizeof(*info));
2427 info->value = qmp_query_blockstat(bs, NULL);
2428
2429 /* XXX: waiting for the qapi to support GSList */
2430 if (!cur_item) {
2431 head = cur_item = info;
2432 } else {
2433 cur_item->next = info;
2434 cur_item = info;
2435 }
2436 }
2437
2438 return head;
2439 }
2440
2441 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2442 {
2443 if (bs->backing_hd && bs->backing_hd->encrypted)
2444 return bs->backing_file;
2445 else if (bs->encrypted)
2446 return bs->filename;
2447 else
2448 return NULL;
2449 }
2450
2451 void bdrv_get_backing_filename(BlockDriverState *bs,
2452 char *filename, int filename_size)
2453 {
2454 pstrcpy(filename, filename_size, bs->backing_file);
2455 }
2456
2457 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2458 const uint8_t *buf, int nb_sectors)
2459 {
2460 BlockDriver *drv = bs->drv;
2461 if (!drv)
2462 return -ENOMEDIUM;
2463 if (!drv->bdrv_write_compressed)
2464 return -ENOTSUP;
2465 if (bdrv_check_request(bs, sector_num, nb_sectors))
2466 return -EIO;
2467
2468 if (bs->dirty_bitmap) {
2469 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2470 }
2471
2472 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2473 }
2474
2475 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2476 {
2477 BlockDriver *drv = bs->drv;
2478 if (!drv)
2479 return -ENOMEDIUM;
2480 if (!drv->bdrv_get_info)
2481 return -ENOTSUP;
2482 memset(bdi, 0, sizeof(*bdi));
2483 return drv->bdrv_get_info(bs, bdi);
2484 }
2485
2486 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2487 int64_t pos, int size)
2488 {
2489 BlockDriver *drv = bs->drv;
2490 if (!drv)
2491 return -ENOMEDIUM;
2492 if (drv->bdrv_save_vmstate)
2493 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2494 if (bs->file)
2495 return bdrv_save_vmstate(bs->file, buf, pos, size);
2496 return -ENOTSUP;
2497 }
2498
2499 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2500 int64_t pos, int size)
2501 {
2502 BlockDriver *drv = bs->drv;
2503 if (!drv)
2504 return -ENOMEDIUM;
2505 if (drv->bdrv_load_vmstate)
2506 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2507 if (bs->file)
2508 return bdrv_load_vmstate(bs->file, buf, pos, size);
2509 return -ENOTSUP;
2510 }
2511
2512 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2513 {
2514 BlockDriver *drv = bs->drv;
2515
2516 if (!drv || !drv->bdrv_debug_event) {
2517 return;
2518 }
2519
2520 return drv->bdrv_debug_event(bs, event);
2521
2522 }
2523
2524 /**************************************************************/
2525 /* handling of snapshots */
2526
2527 int bdrv_can_snapshot(BlockDriverState *bs)
2528 {
2529 BlockDriver *drv = bs->drv;
2530 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2531 return 0;
2532 }
2533
2534 if (!drv->bdrv_snapshot_create) {
2535 if (bs->file != NULL) {
2536 return bdrv_can_snapshot(bs->file);
2537 }
2538 return 0;
2539 }
2540
2541 return 1;
2542 }
2543
2544 int bdrv_is_snapshot(BlockDriverState *bs)
2545 {
2546 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2547 }
2548
2549 BlockDriverState *bdrv_snapshots(void)
2550 {
2551 BlockDriverState *bs;
2552
2553 if (bs_snapshots) {
2554 return bs_snapshots;
2555 }
2556
2557 bs = NULL;
2558 while ((bs = bdrv_next(bs))) {
2559 if (bdrv_can_snapshot(bs)) {
2560 bs_snapshots = bs;
2561 return bs;
2562 }
2563 }
2564 return NULL;
2565 }
2566
2567 int bdrv_snapshot_create(BlockDriverState *bs,
2568 QEMUSnapshotInfo *sn_info)
2569 {
2570 BlockDriver *drv = bs->drv;
2571 if (!drv)
2572 return -ENOMEDIUM;
2573 if (drv->bdrv_snapshot_create)
2574 return drv->bdrv_snapshot_create(bs, sn_info);
2575 if (bs->file)
2576 return bdrv_snapshot_create(bs->file, sn_info);
2577 return -ENOTSUP;
2578 }
2579
2580 int bdrv_snapshot_goto(BlockDriverState *bs,
2581 const char *snapshot_id)
2582 {
2583 BlockDriver *drv = bs->drv;
2584 int ret, open_ret;
2585
2586 if (!drv)
2587 return -ENOMEDIUM;
2588 if (drv->bdrv_snapshot_goto)
2589 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2590
2591 if (bs->file) {
2592 drv->bdrv_close(bs);
2593 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2594 open_ret = drv->bdrv_open(bs, bs->open_flags);
2595 if (open_ret < 0) {
2596 bdrv_delete(bs->file);
2597 bs->drv = NULL;
2598 return open_ret;
2599 }
2600 return ret;
2601 }
2602
2603 return -ENOTSUP;
2604 }
2605
2606 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2607 {
2608 BlockDriver *drv = bs->drv;
2609 if (!drv)
2610 return -ENOMEDIUM;
2611 if (drv->bdrv_snapshot_delete)
2612 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2613 if (bs->file)
2614 return bdrv_snapshot_delete(bs->file, snapshot_id);
2615 return -ENOTSUP;
2616 }
2617
2618 int bdrv_snapshot_list(BlockDriverState *bs,
2619 QEMUSnapshotInfo **psn_info)
2620 {
2621 BlockDriver *drv = bs->drv;
2622 if (!drv)
2623 return -ENOMEDIUM;
2624 if (drv->bdrv_snapshot_list)
2625 return drv->bdrv_snapshot_list(bs, psn_info);
2626 if (bs->file)
2627 return bdrv_snapshot_list(bs->file, psn_info);
2628 return -ENOTSUP;
2629 }
2630
2631 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2632 const char *snapshot_name)
2633 {
2634 BlockDriver *drv = bs->drv;
2635 if (!drv) {
2636 return -ENOMEDIUM;
2637 }
2638 if (!bs->read_only) {
2639 return -EINVAL;
2640 }
2641 if (drv->bdrv_snapshot_load_tmp) {
2642 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2643 }
2644 return -ENOTSUP;
2645 }
2646
2647 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2648 const char *backing_file)
2649 {
2650 if (!bs->drv) {
2651 return NULL;
2652 }
2653
2654 if (bs->backing_hd) {
2655 if (strcmp(bs->backing_file, backing_file) == 0) {
2656 return bs->backing_hd;
2657 } else {
2658 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2659 }
2660 }
2661
2662 return NULL;
2663 }
2664
2665 #define NB_SUFFIXES 4
2666
2667 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2668 {
2669 static const char suffixes[NB_SUFFIXES] = "KMGT";
2670 int64_t base;
2671 int i;
2672
2673 if (size <= 999) {
2674 snprintf(buf, buf_size, "%" PRId64, size);
2675 } else {
2676 base = 1024;
2677 for(i = 0; i < NB_SUFFIXES; i++) {
2678 if (size < (10 * base)) {
2679 snprintf(buf, buf_size, "%0.1f%c",
2680 (double)size / base,
2681 suffixes[i]);
2682 break;
2683 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2684 snprintf(buf, buf_size, "%" PRId64 "%c",
2685 ((size + (base >> 1)) / base),
2686 suffixes[i]);
2687 break;
2688 }
2689 base = base * 1024;
2690 }
2691 }
2692 return buf;
2693 }
2694
2695 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2696 {
2697 char buf1[128], date_buf[128], clock_buf[128];
2698 #ifdef _WIN32
2699 struct tm *ptm;
2700 #else
2701 struct tm tm;
2702 #endif
2703 time_t ti;
2704 int64_t secs;
2705
2706 if (!sn) {
2707 snprintf(buf, buf_size,
2708 "%-10s%-20s%7s%20s%15s",
2709 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2710 } else {
2711 ti = sn->date_sec;
2712 #ifdef _WIN32
2713 ptm = localtime(&ti);
2714 strftime(date_buf, sizeof(date_buf),
2715 "%Y-%m-%d %H:%M:%S", ptm);
2716 #else
2717 localtime_r(&ti, &tm);
2718 strftime(date_buf, sizeof(date_buf),
2719 "%Y-%m-%d %H:%M:%S", &tm);
2720 #endif
2721 secs = sn->vm_clock_nsec / 1000000000;
2722 snprintf(clock_buf, sizeof(clock_buf),
2723 "%02d:%02d:%02d.%03d",
2724 (int)(secs / 3600),
2725 (int)((secs / 60) % 60),
2726 (int)(secs % 60),
2727 (int)((sn->vm_clock_nsec / 1000000) % 1000));
2728 snprintf(buf, buf_size,
2729 "%-10s%-20s%7s%20s%15s",
2730 sn->id_str, sn->name,
2731 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2732 date_buf,
2733 clock_buf);
2734 }
2735 return buf;
2736 }
2737
2738 /**************************************************************/
2739 /* async I/Os */
2740
2741 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2742 QEMUIOVector *qiov, int nb_sectors,
2743 BlockDriverCompletionFunc *cb, void *opaque)
2744 {
2745 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2746
2747 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2748 cb, opaque, false);
2749 }
2750
2751 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2752 QEMUIOVector *qiov, int nb_sectors,
2753 BlockDriverCompletionFunc *cb, void *opaque)
2754 {
2755 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2756
2757 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2758 cb, opaque, true);
2759 }
2760
2761
2762 typedef struct MultiwriteCB {
2763 int error;
2764 int num_requests;
2765 int num_callbacks;
2766 struct {
2767 BlockDriverCompletionFunc *cb;
2768 void *opaque;
2769 QEMUIOVector *free_qiov;
2770 void *free_buf;
2771 } callbacks[];
2772 } MultiwriteCB;
2773
2774 static void multiwrite_user_cb(MultiwriteCB *mcb)
2775 {
2776 int i;
2777
2778 for (i = 0; i < mcb->num_callbacks; i++) {
2779 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
2780 if (mcb->callbacks[i].free_qiov) {
2781 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
2782 }
2783 g_free(mcb->callbacks[i].free_qiov);
2784 qemu_vfree(mcb->callbacks[i].free_buf);
2785 }
2786 }
2787
2788 static void multiwrite_cb(void *opaque, int ret)
2789 {
2790 MultiwriteCB *mcb = opaque;
2791
2792 trace_multiwrite_cb(mcb, ret);
2793
2794 if (ret < 0 && !mcb->error) {
2795 mcb->error = ret;
2796 }
2797
2798 mcb->num_requests--;
2799 if (mcb->num_requests == 0) {
2800 multiwrite_user_cb(mcb);
2801 g_free(mcb);
2802 }
2803 }
2804
2805 static int multiwrite_req_compare(const void *a, const void *b)
2806 {
2807 const BlockRequest *req1 = a, *req2 = b;
2808
2809 /*
2810 * Note that we can't simply subtract req2->sector from req1->sector
2811 * here as that could overflow the return value.
2812 */
2813 if (req1->sector > req2->sector) {
2814 return 1;
2815 } else if (req1->sector < req2->sector) {
2816 return -1;
2817 } else {
2818 return 0;
2819 }
2820 }
2821
2822 /*
2823 * Takes a bunch of requests and tries to merge them. Returns the number of
2824 * requests that remain after merging.
2825 */
2826 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
2827 int num_reqs, MultiwriteCB *mcb)
2828 {
2829 int i, outidx;
2830
2831 // Sort requests by start sector
2832 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
2833
2834 // Check if adjacent requests touch the same clusters. If so, combine them,
2835 // filling up gaps with zero sectors.
2836 outidx = 0;
2837 for (i = 1; i < num_reqs; i++) {
2838 int merge = 0;
2839 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
2840
2841 // This handles the cases that are valid for all block drivers, namely
2842 // exactly sequential writes and overlapping writes.
2843 if (reqs[i].sector <= oldreq_last) {
2844 merge = 1;
2845 }
2846
2847 // The block driver may decide that it makes sense to combine requests
2848 // even if there is a gap of some sectors between them. In this case,
2849 // the gap is filled with zeros (therefore only applicable for yet
2850 // unused space in format like qcow2).
2851 if (!merge && bs->drv->bdrv_merge_requests) {
2852 merge = bs->drv->bdrv_merge_requests(bs, &reqs[outidx], &reqs[i]);
2853 }
2854
2855 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
2856 merge = 0;
2857 }
2858
2859 if (merge) {
2860 size_t size;
2861 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
2862 qemu_iovec_init(qiov,
2863 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
2864
2865 // Add the first request to the merged one. If the requests are
2866 // overlapping, drop the last sectors of the first request.
2867 size = (reqs[i].sector - reqs[outidx].sector) << 9;
2868 qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
2869
2870 // We might need to add some zeros between the two requests
2871 if (reqs[i].sector > oldreq_last) {
2872 size_t zero_bytes = (reqs[i].sector - oldreq_last) << 9;
2873 uint8_t *buf = qemu_blockalign(bs, zero_bytes);
2874 memset(buf, 0, zero_bytes);
2875 qemu_iovec_add(qiov, buf, zero_bytes);
2876 mcb->callbacks[i].free_buf = buf;
2877 }
2878
2879 // Add the second request
2880 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
2881
2882 reqs[outidx].nb_sectors = qiov->size >> 9;
2883 reqs[outidx].qiov = qiov;
2884
2885 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
2886 } else {
2887 outidx++;
2888 reqs[outidx].sector = reqs[i].sector;
2889 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
2890 reqs[outidx].qiov = reqs[i].qiov;
2891 }
2892 }
2893
2894 return outidx + 1;
2895 }
2896
2897 /*
2898 * Submit multiple AIO write requests at once.
2899 *
2900 * On success, the function returns 0 and all requests in the reqs array have
2901 * been submitted. In error case this function returns -1, and any of the
2902 * requests may or may not be submitted yet. In particular, this means that the
2903 * callback will be called for some of the requests, for others it won't. The
2904 * caller must check the error field of the BlockRequest to wait for the right
2905 * callbacks (if error != 0, no callback will be called).
2906 *
2907 * The implementation may modify the contents of the reqs array, e.g. to merge
2908 * requests. However, the fields opaque and error are left unmodified as they
2909 * are used to signal failure for a single request to the caller.
2910 */
2911 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
2912 {
2913 MultiwriteCB *mcb;
2914 int i;
2915
2916 /* don't submit writes if we don't have a medium */
2917 if (bs->drv == NULL) {
2918 for (i = 0; i < num_reqs; i++) {
2919 reqs[i].error = -ENOMEDIUM;
2920 }
2921 return -1;
2922 }
2923
2924 if (num_reqs == 0) {
2925 return 0;
2926 }
2927
2928 // Create MultiwriteCB structure
2929 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
2930 mcb->num_requests = 0;
2931 mcb->num_callbacks = num_reqs;
2932
2933 for (i = 0; i < num_reqs; i++) {
2934 mcb->callbacks[i].cb = reqs[i].cb;
2935 mcb->callbacks[i].opaque = reqs[i].opaque;
2936 }
2937
2938 // Check for mergable requests
2939 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
2940
2941 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
2942
2943 /* Run the aio requests. */
2944 mcb->num_requests = num_reqs;
2945 for (i = 0; i < num_reqs; i++) {
2946 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
2947 reqs[i].nb_sectors, multiwrite_cb, mcb);
2948 }
2949
2950 return 0;
2951 }
2952
2953 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
2954 {
2955 acb->pool->cancel(acb);
2956 }
2957
2958 /* block I/O throttling */
2959 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
2960 bool is_write, double elapsed_time, uint64_t *wait)
2961 {
2962 uint64_t bps_limit = 0;
2963 double bytes_limit, bytes_base, bytes_res;
2964 double slice_time, wait_time;
2965
2966 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
2967 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2968 } else if (bs->io_limits.bps[is_write]) {
2969 bps_limit = bs->io_limits.bps[is_write];
2970 } else {
2971 if (wait) {
2972 *wait = 0;
2973 }
2974
2975 return false;
2976 }
2977
2978 slice_time = bs->slice_end - bs->slice_start;
2979 slice_time /= (NANOSECONDS_PER_SECOND);
2980 bytes_limit = bps_limit * slice_time;
2981 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
2982 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
2983 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
2984 }
2985
2986 /* bytes_base: the bytes of data which have been read/written; and
2987 * it is obtained from the history statistic info.
2988 * bytes_res: the remaining bytes of data which need to be read/written.
2989 * (bytes_base + bytes_res) / bps_limit: used to calcuate
2990 * the total time for completing reading/writting all data.
2991 */
2992 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
2993
2994 if (bytes_base + bytes_res <= bytes_limit) {
2995 if (wait) {
2996 *wait = 0;
2997 }
2998
2999 return false;
3000 }
3001
3002 /* Calc approx time to dispatch */
3003 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3004
3005 /* When the I/O rate at runtime exceeds the limits,
3006 * bs->slice_end need to be extended in order that the current statistic
3007 * info can be kept until the timer fire, so it is increased and tuned
3008 * based on the result of experiment.
3009 */
3010 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3011 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3012 if (wait) {
3013 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3014 }
3015
3016 return true;
3017 }
3018
3019 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3020 double elapsed_time, uint64_t *wait)
3021 {
3022 uint64_t iops_limit = 0;
3023 double ios_limit, ios_base;
3024 double slice_time, wait_time;
3025
3026 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3027 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3028 } else if (bs->io_limits.iops[is_write]) {
3029 iops_limit = bs->io_limits.iops[is_write];
3030 } else {
3031 if (wait) {
3032 *wait = 0;
3033 }
3034
3035 return false;
3036 }
3037
3038 slice_time = bs->slice_end - bs->slice_start;
3039 slice_time /= (NANOSECONDS_PER_SECOND);
3040 ios_limit = iops_limit * slice_time;
3041 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3042 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3043 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3044 }
3045
3046 if (ios_base + 1 <= ios_limit) {
3047 if (wait) {
3048 *wait = 0;
3049 }
3050
3051 return false;
3052 }
3053
3054 /* Calc approx time to dispatch */
3055 wait_time = (ios_base + 1) / iops_limit;
3056 if (wait_time > elapsed_time) {
3057 wait_time = wait_time - elapsed_time;
3058 } else {
3059 wait_time = 0;
3060 }
3061
3062 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3063 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3064 if (wait) {
3065 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3066 }
3067
3068 return true;
3069 }
3070
3071 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3072 bool is_write, int64_t *wait)
3073 {
3074 int64_t now, max_wait;
3075 uint64_t bps_wait = 0, iops_wait = 0;
3076 double elapsed_time;
3077 int bps_ret, iops_ret;
3078
3079 now = qemu_get_clock_ns(vm_clock);
3080 if ((bs->slice_start < now)
3081 && (bs->slice_end > now)) {
3082 bs->slice_end = now + bs->slice_time;
3083 } else {
3084 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3085 bs->slice_start = now;
3086 bs->slice_end = now + bs->slice_time;
3087
3088 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3089 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3090
3091 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3092 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3093 }
3094
3095 elapsed_time = now - bs->slice_start;
3096 elapsed_time /= (NANOSECONDS_PER_SECOND);
3097
3098 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3099 is_write, elapsed_time, &bps_wait);
3100 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3101 elapsed_time, &iops_wait);
3102 if (bps_ret || iops_ret) {
3103 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3104 if (wait) {
3105 *wait = max_wait;
3106 }
3107
3108 now = qemu_get_clock_ns(vm_clock);
3109 if (bs->slice_end < now + max_wait) {
3110 bs->slice_end = now + max_wait;
3111 }
3112
3113 return true;
3114 }
3115
3116 if (wait) {
3117 *wait = 0;
3118 }
3119
3120 return false;
3121 }
3122
3123 /**************************************************************/
3124 /* async block device emulation */
3125
3126 typedef struct BlockDriverAIOCBSync {
3127 BlockDriverAIOCB common;
3128 QEMUBH *bh;
3129 int ret;
3130 /* vector translation state */
3131 QEMUIOVector *qiov;
3132 uint8_t *bounce;
3133 int is_write;
3134 } BlockDriverAIOCBSync;
3135
3136 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3137 {
3138 BlockDriverAIOCBSync *acb =
3139 container_of(blockacb, BlockDriverAIOCBSync, common);
3140 qemu_bh_delete(acb->bh);
3141 acb->bh = NULL;
3142 qemu_aio_release(acb);
3143 }
3144
3145 static AIOPool bdrv_em_aio_pool = {
3146 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3147 .cancel = bdrv_aio_cancel_em,
3148 };
3149
3150 static void bdrv_aio_bh_cb(void *opaque)
3151 {
3152 BlockDriverAIOCBSync *acb = opaque;
3153
3154 if (!acb->is_write)
3155 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3156 qemu_vfree(acb->bounce);
3157 acb->common.cb(acb->common.opaque, acb->ret);
3158 qemu_bh_delete(acb->bh);
3159 acb->bh = NULL;
3160 qemu_aio_release(acb);
3161 }
3162
3163 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3164 int64_t sector_num,
3165 QEMUIOVector *qiov,
3166 int nb_sectors,
3167 BlockDriverCompletionFunc *cb,
3168 void *opaque,
3169 int is_write)
3170
3171 {
3172 BlockDriverAIOCBSync *acb;
3173
3174 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3175 acb->is_write = is_write;
3176 acb->qiov = qiov;
3177 acb->bounce = qemu_blockalign(bs, qiov->size);
3178 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3179
3180 if (is_write) {
3181 qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3182 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3183 } else {
3184 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3185 }
3186
3187 qemu_bh_schedule(acb->bh);
3188
3189 return &acb->common;
3190 }
3191
3192 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3193 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3194 BlockDriverCompletionFunc *cb, void *opaque)
3195 {
3196 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3197 }
3198
3199 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3200 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3201 BlockDriverCompletionFunc *cb, void *opaque)
3202 {
3203 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3204 }
3205
3206
3207 typedef struct BlockDriverAIOCBCoroutine {
3208 BlockDriverAIOCB common;
3209 BlockRequest req;
3210 bool is_write;
3211 QEMUBH* bh;
3212 } BlockDriverAIOCBCoroutine;
3213
3214 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3215 {
3216 qemu_aio_flush();
3217 }
3218
3219 static AIOPool bdrv_em_co_aio_pool = {
3220 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3221 .cancel = bdrv_aio_co_cancel_em,
3222 };
3223
3224 static void bdrv_co_em_bh(void *opaque)
3225 {
3226 BlockDriverAIOCBCoroutine *acb = opaque;
3227
3228 acb->common.cb(acb->common.opaque, acb->req.error);
3229 qemu_bh_delete(acb->bh);
3230 qemu_aio_release(acb);
3231 }
3232
3233 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3234 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3235 {
3236 BlockDriverAIOCBCoroutine *acb = opaque;
3237 BlockDriverState *bs = acb->common.bs;
3238
3239 if (!acb->is_write) {
3240 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3241 acb->req.nb_sectors, acb->req.qiov, 0);
3242 } else {
3243 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3244 acb->req.nb_sectors, acb->req.qiov, 0);
3245 }
3246
3247 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3248 qemu_bh_schedule(acb->bh);
3249 }
3250
3251 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3252 int64_t sector_num,
3253 QEMUIOVector *qiov,
3254 int nb_sectors,
3255 BlockDriverCompletionFunc *cb,
3256 void *opaque,
3257 bool is_write)
3258 {
3259 Coroutine *co;
3260 BlockDriverAIOCBCoroutine *acb;
3261
3262 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3263 acb->req.sector = sector_num;
3264 acb->req.nb_sectors = nb_sectors;
3265 acb->req.qiov = qiov;
3266 acb->is_write = is_write;
3267
3268 co = qemu_coroutine_create(bdrv_co_do_rw);
3269 qemu_coroutine_enter(co, acb);
3270
3271 return &acb->common;
3272 }
3273
3274 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3275 {
3276 BlockDriverAIOCBCoroutine *acb = opaque;
3277 BlockDriverState *bs = acb->common.bs;
3278
3279 acb->req.error = bdrv_co_flush(bs);
3280 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3281 qemu_bh_schedule(acb->bh);
3282 }
3283
3284 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3285 BlockDriverCompletionFunc *cb, void *opaque)
3286 {
3287 trace_bdrv_aio_flush(bs, opaque);
3288
3289 Coroutine *co;
3290 BlockDriverAIOCBCoroutine *acb;
3291
3292 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3293 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3294 qemu_coroutine_enter(co, acb);
3295
3296 return &acb->common;
3297 }
3298
3299 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3300 {
3301 BlockDriverAIOCBCoroutine *acb = opaque;
3302 BlockDriverState *bs = acb->common.bs;
3303
3304 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3305 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3306 qemu_bh_schedule(acb->bh);
3307 }
3308
3309 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3310 int64_t sector_num, int nb_sectors,
3311 BlockDriverCompletionFunc *cb, void *opaque)
3312 {
3313 Coroutine *co;
3314 BlockDriverAIOCBCoroutine *acb;
3315
3316 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3317
3318 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3319 acb->req.sector = sector_num;
3320 acb->req.nb_sectors = nb_sectors;
3321 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3322 qemu_coroutine_enter(co, acb);
3323
3324 return &acb->common;
3325 }
3326
3327 void bdrv_init(void)
3328 {
3329 module_call_init(MODULE_INIT_BLOCK);
3330 }
3331
3332 void bdrv_init_with_whitelist(void)
3333 {
3334 use_bdrv_whitelist = 1;
3335 bdrv_init();
3336 }
3337
3338 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3339 BlockDriverCompletionFunc *cb, void *opaque)
3340 {
3341 BlockDriverAIOCB *acb;
3342
3343 if (pool->free_aiocb) {
3344 acb = pool->free_aiocb;
3345 pool->free_aiocb = acb->next;
3346 } else {
3347 acb = g_malloc0(pool->aiocb_size);
3348 acb->pool = pool;
3349 }
3350 acb->bs = bs;
3351 acb->cb = cb;
3352 acb->opaque = opaque;
3353 return acb;
3354 }
3355
3356 void qemu_aio_release(void *p)
3357 {
3358 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3359 AIOPool *pool = acb->pool;
3360 acb->next = pool->free_aiocb;
3361 pool->free_aiocb = acb;
3362 }
3363
3364 /**************************************************************/
3365 /* Coroutine block device emulation */
3366
3367 typedef struct CoroutineIOCompletion {
3368 Coroutine *coroutine;
3369 int ret;
3370 } CoroutineIOCompletion;
3371
3372 static void bdrv_co_io_em_complete(void *opaque, int ret)
3373 {
3374 CoroutineIOCompletion *co = opaque;
3375
3376 co->ret = ret;
3377 qemu_coroutine_enter(co->coroutine, NULL);
3378 }
3379
3380 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3381 int nb_sectors, QEMUIOVector *iov,
3382 bool is_write)
3383 {
3384 CoroutineIOCompletion co = {
3385 .coroutine = qemu_coroutine_self(),
3386 };
3387 BlockDriverAIOCB *acb;
3388
3389 if (is_write) {
3390 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3391 bdrv_co_io_em_complete, &co);
3392 } else {
3393 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3394 bdrv_co_io_em_complete, &co);
3395 }
3396
3397 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3398 if (!acb) {
3399 return -EIO;
3400 }
3401 qemu_coroutine_yield();
3402
3403 return co.ret;
3404 }
3405
3406 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3407 int64_t sector_num, int nb_sectors,
3408 QEMUIOVector *iov)
3409 {
3410 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3411 }
3412
3413 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3414 int64_t sector_num, int nb_sectors,
3415 QEMUIOVector *iov)
3416 {
3417 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3418 }
3419
3420 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3421 {
3422 RwCo *rwco = opaque;
3423
3424 rwco->ret = bdrv_co_flush(rwco->bs);
3425 }
3426
3427 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3428 {
3429 int ret;
3430
3431 if (!bs->drv) {
3432 return 0;
3433 }
3434
3435 /* Write back cached data to the OS even with cache=unsafe */
3436 if (bs->drv->bdrv_co_flush_to_os) {
3437 ret = bs->drv->bdrv_co_flush_to_os(bs);
3438 if (ret < 0) {
3439 return ret;
3440 }
3441 }
3442
3443 /* But don't actually force it to the disk with cache=unsafe */
3444 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3445 return 0;
3446 }
3447
3448 if (bs->drv->bdrv_co_flush_to_disk) {
3449 return bs->drv->bdrv_co_flush_to_disk(bs);
3450 } else if (bs->drv->bdrv_aio_flush) {
3451 BlockDriverAIOCB *acb;
3452 CoroutineIOCompletion co = {
3453 .coroutine = qemu_coroutine_self(),
3454 };
3455
3456 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3457 if (acb == NULL) {
3458 return -EIO;
3459 } else {
3460 qemu_coroutine_yield();
3461 return co.ret;
3462 }
3463 } else {
3464 /*
3465 * Some block drivers always operate in either writethrough or unsafe
3466 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3467 * know how the server works (because the behaviour is hardcoded or
3468 * depends on server-side configuration), so we can't ensure that
3469 * everything is safe on disk. Returning an error doesn't work because
3470 * that would break guests even if the server operates in writethrough
3471 * mode.
3472 *
3473 * Let's hope the user knows what he's doing.
3474 */
3475 return 0;
3476 }
3477 }
3478
3479 void bdrv_invalidate_cache(BlockDriverState *bs)
3480 {
3481 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3482 bs->drv->bdrv_invalidate_cache(bs);
3483 }
3484 }
3485
3486 void bdrv_invalidate_cache_all(void)
3487 {
3488 BlockDriverState *bs;
3489
3490 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3491 bdrv_invalidate_cache(bs);
3492 }
3493 }
3494
3495 int bdrv_flush(BlockDriverState *bs)
3496 {
3497 Coroutine *co;
3498 RwCo rwco = {
3499 .bs = bs,
3500 .ret = NOT_DONE,
3501 };
3502
3503 if (qemu_in_coroutine()) {
3504 /* Fast-path if already in coroutine context */
3505 bdrv_flush_co_entry(&rwco);
3506 } else {
3507 co = qemu_coroutine_create(bdrv_flush_co_entry);
3508 qemu_coroutine_enter(co, &rwco);
3509 while (rwco.ret == NOT_DONE) {
3510 qemu_aio_wait();
3511 }
3512 }
3513
3514 return rwco.ret;
3515 }
3516
3517 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3518 {
3519 RwCo *rwco = opaque;
3520
3521 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3522 }
3523
3524 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3525 int nb_sectors)
3526 {
3527 if (!bs->drv) {
3528 return -ENOMEDIUM;
3529 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3530 return -EIO;
3531 } else if (bs->read_only) {
3532 return -EROFS;
3533 } else if (bs->drv->bdrv_co_discard) {
3534 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3535 } else if (bs->drv->bdrv_aio_discard) {
3536 BlockDriverAIOCB *acb;
3537 CoroutineIOCompletion co = {
3538 .coroutine = qemu_coroutine_self(),
3539 };
3540
3541 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3542 bdrv_co_io_em_complete, &co);
3543 if (acb == NULL) {
3544 return -EIO;
3545 } else {
3546 qemu_coroutine_yield();
3547 return co.ret;
3548 }
3549 } else {
3550 return 0;
3551 }
3552 }
3553
3554 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3555 {
3556 Coroutine *co;
3557 RwCo rwco = {
3558 .bs = bs,
3559 .sector_num = sector_num,
3560 .nb_sectors = nb_sectors,
3561 .ret = NOT_DONE,
3562 };
3563
3564 if (qemu_in_coroutine()) {
3565 /* Fast-path if already in coroutine context */
3566 bdrv_discard_co_entry(&rwco);
3567 } else {
3568 co = qemu_coroutine_create(bdrv_discard_co_entry);
3569 qemu_coroutine_enter(co, &rwco);
3570 while (rwco.ret == NOT_DONE) {
3571 qemu_aio_wait();
3572 }
3573 }
3574
3575 return rwco.ret;
3576 }
3577
3578 /**************************************************************/
3579 /* removable device support */
3580
3581 /**
3582 * Return TRUE if the media is present
3583 */
3584 int bdrv_is_inserted(BlockDriverState *bs)
3585 {
3586 BlockDriver *drv = bs->drv;
3587
3588 if (!drv)
3589 return 0;
3590 if (!drv->bdrv_is_inserted)
3591 return 1;
3592 return drv->bdrv_is_inserted(bs);
3593 }
3594
3595 /**
3596 * Return whether the media changed since the last call to this
3597 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3598 */
3599 int bdrv_media_changed(BlockDriverState *bs)
3600 {
3601 BlockDriver *drv = bs->drv;
3602
3603 if (drv && drv->bdrv_media_changed) {
3604 return drv->bdrv_media_changed(bs);
3605 }
3606 return -ENOTSUP;
3607 }
3608
3609 /**
3610 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3611 */
3612 void bdrv_eject(BlockDriverState *bs, int eject_flag)
3613 {
3614 BlockDriver *drv = bs->drv;
3615
3616 if (drv && drv->bdrv_eject) {
3617 drv->bdrv_eject(bs, eject_flag);
3618 }
3619 }
3620
3621 /**
3622 * Lock or unlock the media (if it is locked, the user won't be able
3623 * to eject it manually).
3624 */
3625 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3626 {
3627 BlockDriver *drv = bs->drv;
3628
3629 trace_bdrv_lock_medium(bs, locked);
3630
3631 if (drv && drv->bdrv_lock_medium) {
3632 drv->bdrv_lock_medium(bs, locked);
3633 }
3634 }
3635
3636 /* needed for generic scsi interface */
3637
3638 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3639 {
3640 BlockDriver *drv = bs->drv;
3641
3642 if (drv && drv->bdrv_ioctl)
3643 return drv->bdrv_ioctl(bs, req, buf);
3644 return -ENOTSUP;
3645 }
3646
3647 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3648 unsigned long int req, void *buf,
3649 BlockDriverCompletionFunc *cb, void *opaque)
3650 {
3651 BlockDriver *drv = bs->drv;
3652
3653 if (drv && drv->bdrv_aio_ioctl)
3654 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3655 return NULL;
3656 }
3657
3658 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3659 {
3660 bs->buffer_alignment = align;
3661 }
3662
3663 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3664 {
3665 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3666 }
3667
3668 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3669 {
3670 int64_t bitmap_size;
3671
3672 bs->dirty_count = 0;
3673 if (enable) {
3674 if (!bs->dirty_bitmap) {
3675 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3676 BDRV_SECTORS_PER_DIRTY_CHUNK * 8 - 1;
3677 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * 8;
3678
3679 bs->dirty_bitmap = g_malloc0(bitmap_size);
3680 }
3681 } else {
3682 if (bs->dirty_bitmap) {
3683 g_free(bs->dirty_bitmap);
3684 bs->dirty_bitmap = NULL;
3685 }
3686 }
3687 }
3688
3689 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3690 {
3691 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3692
3693 if (bs->dirty_bitmap &&
3694 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3695 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3696 (1UL << (chunk % (sizeof(unsigned long) * 8))));
3697 } else {
3698 return 0;
3699 }
3700 }
3701
3702 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3703 int nr_sectors)
3704 {
3705 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3706 }
3707
3708 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3709 {
3710 return bs->dirty_count;
3711 }
3712
3713 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3714 {
3715 assert(bs->in_use != in_use);
3716 bs->in_use = in_use;
3717 }
3718
3719 int bdrv_in_use(BlockDriverState *bs)
3720 {
3721 return bs->in_use;
3722 }
3723
3724 void bdrv_iostatus_enable(BlockDriverState *bs)
3725 {
3726 bs->iostatus_enabled = true;
3727 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3728 }
3729
3730 /* The I/O status is only enabled if the drive explicitly
3731 * enables it _and_ the VM is configured to stop on errors */
3732 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3733 {
3734 return (bs->iostatus_enabled &&
3735 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3736 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
3737 bs->on_read_error == BLOCK_ERR_STOP_ANY));
3738 }
3739
3740 void bdrv_iostatus_disable(BlockDriverState *bs)
3741 {
3742 bs->iostatus_enabled = false;
3743 }
3744
3745 void bdrv_iostatus_reset(BlockDriverState *bs)
3746 {
3747 if (bdrv_iostatus_is_enabled(bs)) {
3748 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3749 }
3750 }
3751
3752 /* XXX: Today this is set by device models because it makes the implementation
3753 quite simple. However, the block layer knows about the error, so it's
3754 possible to implement this without device models being involved */
3755 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3756 {
3757 if (bdrv_iostatus_is_enabled(bs) &&
3758 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3759 assert(error >= 0);
3760 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
3761 BLOCK_DEVICE_IO_STATUS_FAILED;
3762 }
3763 }
3764
3765 void
3766 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
3767 enum BlockAcctType type)
3768 {
3769 assert(type < BDRV_MAX_IOTYPE);
3770
3771 cookie->bytes = bytes;
3772 cookie->start_time_ns = get_clock();
3773 cookie->type = type;
3774 }
3775
3776 void
3777 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
3778 {
3779 assert(cookie->type < BDRV_MAX_IOTYPE);
3780
3781 bs->nr_bytes[cookie->type] += cookie->bytes;
3782 bs->nr_ops[cookie->type]++;
3783 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
3784 }
3785
3786 int bdrv_img_create(const char *filename, const char *fmt,
3787 const char *base_filename, const char *base_fmt,
3788 char *options, uint64_t img_size, int flags)
3789 {
3790 QEMUOptionParameter *param = NULL, *create_options = NULL;
3791 QEMUOptionParameter *backing_fmt, *backing_file, *size;
3792 BlockDriverState *bs = NULL;
3793 BlockDriver *drv, *proto_drv;
3794 BlockDriver *backing_drv = NULL;
3795 int ret = 0;
3796
3797 /* Find driver and parse its options */
3798 drv = bdrv_find_format(fmt);
3799 if (!drv) {
3800 error_report("Unknown file format '%s'", fmt);
3801 ret = -EINVAL;
3802 goto out;
3803 }
3804
3805 proto_drv = bdrv_find_protocol(filename);
3806 if (!proto_drv) {
3807 error_report("Unknown protocol '%s'", filename);
3808 ret = -EINVAL;
3809 goto out;
3810 }
3811
3812 create_options = append_option_parameters(create_options,
3813 drv->create_options);
3814 create_options = append_option_parameters(create_options,
3815 proto_drv->create_options);
3816
3817 /* Create parameter list with default values */
3818 param = parse_option_parameters("", create_options, param);
3819
3820 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
3821
3822 /* Parse -o options */
3823 if (options) {
3824 param = parse_option_parameters(options, create_options, param);
3825 if (param == NULL) {
3826 error_report("Invalid options for file format '%s'.", fmt);
3827 ret = -EINVAL;
3828 goto out;
3829 }
3830 }
3831
3832 if (base_filename) {
3833 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
3834 base_filename)) {
3835 error_report("Backing file not supported for file format '%s'",
3836 fmt);
3837 ret = -EINVAL;
3838 goto out;
3839 }
3840 }
3841
3842 if (base_fmt) {
3843 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
3844 error_report("Backing file format not supported for file "
3845 "format '%s'", fmt);
3846 ret = -EINVAL;
3847 goto out;
3848 }
3849 }
3850
3851 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
3852 if (backing_file && backing_file->value.s) {
3853 if (!strcmp(filename, backing_file->value.s)) {
3854 error_report("Error: Trying to create an image with the "
3855 "same filename as the backing file");
3856 ret = -EINVAL;
3857 goto out;
3858 }
3859 }
3860
3861 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
3862 if (backing_fmt && backing_fmt->value.s) {
3863 backing_drv = bdrv_find_format(backing_fmt->value.s);
3864 if (!backing_drv) {
3865 error_report("Unknown backing file format '%s'",
3866 backing_fmt->value.s);
3867 ret = -EINVAL;
3868 goto out;
3869 }
3870 }
3871
3872 // The size for the image must always be specified, with one exception:
3873 // If we are using a backing file, we can obtain the size from there
3874 size = get_option_parameter(param, BLOCK_OPT_SIZE);
3875 if (size && size->value.n == -1) {
3876 if (backing_file && backing_file->value.s) {
3877 uint64_t size;
3878 char buf[32];
3879
3880 bs = bdrv_new("");
3881
3882 ret = bdrv_open(bs, backing_file->value.s, flags, backing_drv);
3883 if (ret < 0) {
3884 error_report("Could not open '%s'", backing_file->value.s);
3885 goto out;
3886 }
3887 bdrv_get_geometry(bs, &size);
3888 size *= 512;
3889
3890 snprintf(buf, sizeof(buf), "%" PRId64, size);
3891 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
3892 } else {
3893 error_report("Image creation needs a size parameter");
3894 ret = -EINVAL;
3895 goto out;
3896 }
3897 }
3898
3899 printf("Formatting '%s', fmt=%s ", filename, fmt);
3900 print_option_parameters(param);
3901 puts("");
3902
3903 ret = bdrv_create(drv, filename, param);
3904
3905 if (ret < 0) {
3906 if (ret == -ENOTSUP) {
3907 error_report("Formatting or formatting option not supported for "
3908 "file format '%s'", fmt);
3909 } else if (ret == -EFBIG) {
3910 error_report("The image size is too large for file format '%s'",
3911 fmt);
3912 } else {
3913 error_report("%s: error while creating %s: %s", filename, fmt,
3914 strerror(-ret));
3915 }
3916 }
3917
3918 out:
3919 free_option_parameters(create_options);
3920 free_option_parameters(param);
3921
3922 if (bs) {
3923 bdrv_delete(bs);
3924 }
3925
3926 return ret;
3927 }
3928
3929 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
3930 BlockDriverCompletionFunc *cb, void *opaque)
3931 {
3932 BlockJob *job;
3933
3934 if (bs->job || bdrv_in_use(bs)) {
3935 return NULL;
3936 }
3937 bdrv_set_in_use(bs, 1);
3938
3939 job = g_malloc0(job_type->instance_size);
3940 job->job_type = job_type;
3941 job->bs = bs;
3942 job->cb = cb;
3943 job->opaque = opaque;
3944 bs->job = job;
3945 return job;
3946 }
3947
3948 void block_job_complete(BlockJob *job, int ret)
3949 {
3950 BlockDriverState *bs = job->bs;
3951
3952 assert(bs->job == job);
3953 job->cb(job->opaque, ret);
3954 bs->job = NULL;
3955 g_free(job);
3956 bdrv_set_in_use(bs, 0);
3957 }
3958
3959 int block_job_set_speed(BlockJob *job, int64_t value)
3960 {
3961 if (!job->job_type->set_speed) {
3962 return -ENOTSUP;
3963 }
3964 return job->job_type->set_speed(job, value);
3965 }
3966
3967 void block_job_cancel(BlockJob *job)
3968 {
3969 job->cancelled = true;
3970 }
3971
3972 bool block_job_is_cancelled(BlockJob *job)
3973 {
3974 return job->cancelled;
3975 }