]> git.proxmox.com Git - qemu.git/blob - block.c
tcg/i386: Add shortcuts for registers used in L constraint
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
84 int64_t sector_num, int nb_sectors);
85
86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
87 bool is_write, double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
89 double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
91 bool is_write, int64_t *wait);
92
93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
94 QTAILQ_HEAD_INITIALIZER(bdrv_states);
95
96 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
97 QLIST_HEAD_INITIALIZER(bdrv_drivers);
98
99 /* The device to use for VM snapshots */
100 static BlockDriverState *bs_snapshots;
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 bs->slice_time = 0;
141 memset(&bs->io_base, 0, sizeof(bs->io_base));
142 }
143
144 static void bdrv_block_timer(void *opaque)
145 {
146 BlockDriverState *bs = opaque;
147
148 qemu_co_queue_next(&bs->throttled_reqs);
149 }
150
151 void bdrv_io_limits_enable(BlockDriverState *bs)
152 {
153 qemu_co_queue_init(&bs->throttled_reqs);
154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
156 bs->slice_start = qemu_get_clock_ns(vm_clock);
157 bs->slice_end = bs->slice_start + bs->slice_time;
158 memset(&bs->io_base, 0, sizeof(bs->io_base));
159 bs->io_limits_enabled = true;
160 }
161
162 bool bdrv_io_limits_enabled(BlockDriverState *bs)
163 {
164 BlockIOLimit *io_limits = &bs->io_limits;
165 return io_limits->bps[BLOCK_IO_LIMIT_READ]
166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
168 || io_limits->iops[BLOCK_IO_LIMIT_READ]
169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
171 }
172
173 static void bdrv_io_limits_intercept(BlockDriverState *bs,
174 bool is_write, int nb_sectors)
175 {
176 int64_t wait_time = -1;
177
178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
179 qemu_co_queue_wait(&bs->throttled_reqs);
180 }
181
182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
183 * throttled requests will not be dequeued until the current request is
184 * allowed to be serviced. So if the current request still exceeds the
185 * limits, it will be inserted to the head. All requests followed it will
186 * be still in throttled_reqs queue.
187 */
188
189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
190 qemu_mod_timer(bs->block_timer,
191 wait_time + qemu_get_clock_ns(vm_clock));
192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
193 }
194
195 qemu_co_queue_next(&bs->throttled_reqs);
196 }
197
198 /* check if the path starts with "<protocol>:" */
199 static int path_has_protocol(const char *path)
200 {
201 const char *p;
202
203 #ifdef _WIN32
204 if (is_windows_drive(path) ||
205 is_windows_drive_prefix(path)) {
206 return 0;
207 }
208 p = path + strcspn(path, ":/\\");
209 #else
210 p = path + strcspn(path, ":/");
211 #endif
212
213 return *p == ':';
214 }
215
216 int path_is_absolute(const char *path)
217 {
218 #ifdef _WIN32
219 /* specific case for names like: "\\.\d:" */
220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
221 return 1;
222 }
223 return (*path == '/' || *path == '\\');
224 #else
225 return (*path == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
274 {
275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
276 pstrcpy(dest, sz, bs->backing_file);
277 } else {
278 path_combine(dest, sz, bs->filename, bs->backing_file);
279 }
280 }
281
282 void bdrv_register(BlockDriver *bdrv)
283 {
284 /* Block drivers without coroutine functions need emulation */
285 if (!bdrv->bdrv_co_readv) {
286 bdrv->bdrv_co_readv = bdrv_co_readv_em;
287 bdrv->bdrv_co_writev = bdrv_co_writev_em;
288
289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
290 * the block driver lacks aio we need to emulate that too.
291 */
292 if (!bdrv->bdrv_aio_readv) {
293 /* add AIO emulation layer */
294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
296 }
297 }
298
299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
300 }
301
302 /* create a new block device (by default it is empty) */
303 BlockDriverState *bdrv_new(const char *device_name)
304 {
305 BlockDriverState *bs;
306
307 bs = g_malloc0(sizeof(BlockDriverState));
308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
309 if (device_name[0] != '\0') {
310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
311 }
312 bdrv_iostatus_disable(bs);
313 return bs;
314 }
315
316 BlockDriver *bdrv_find_format(const char *format_name)
317 {
318 BlockDriver *drv1;
319 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
320 if (!strcmp(drv1->format_name, format_name)) {
321 return drv1;
322 }
323 }
324 return NULL;
325 }
326
327 static int bdrv_is_whitelisted(BlockDriver *drv)
328 {
329 static const char *whitelist[] = {
330 CONFIG_BDRV_WHITELIST
331 };
332 const char **p;
333
334 if (!whitelist[0])
335 return 1; /* no whitelist, anything goes */
336
337 for (p = whitelist; *p; p++) {
338 if (!strcmp(drv->format_name, *p)) {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
346 {
347 BlockDriver *drv = bdrv_find_format(format_name);
348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
349 }
350
351 typedef struct CreateCo {
352 BlockDriver *drv;
353 char *filename;
354 QEMUOptionParameter *options;
355 int ret;
356 } CreateCo;
357
358 static void coroutine_fn bdrv_create_co_entry(void *opaque)
359 {
360 CreateCo *cco = opaque;
361 assert(cco->drv);
362
363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
364 }
365
366 int bdrv_create(BlockDriver *drv, const char* filename,
367 QEMUOptionParameter *options)
368 {
369 int ret;
370
371 Coroutine *co;
372 CreateCo cco = {
373 .drv = drv,
374 .filename = g_strdup(filename),
375 .options = options,
376 .ret = NOT_DONE,
377 };
378
379 if (!drv->bdrv_create) {
380 return -ENOTSUP;
381 }
382
383 if (qemu_in_coroutine()) {
384 /* Fast-path if already in coroutine context */
385 bdrv_create_co_entry(&cco);
386 } else {
387 co = qemu_coroutine_create(bdrv_create_co_entry);
388 qemu_coroutine_enter(co, &cco);
389 while (cco.ret == NOT_DONE) {
390 qemu_aio_wait();
391 }
392 }
393
394 ret = cco.ret;
395 g_free(cco.filename);
396
397 return ret;
398 }
399
400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
401 {
402 BlockDriver *drv;
403
404 drv = bdrv_find_protocol(filename);
405 if (drv == NULL) {
406 return -ENOENT;
407 }
408
409 return bdrv_create(drv, filename, options);
410 }
411
412 /*
413 * Create a uniquely-named empty temporary file.
414 * Return 0 upon success, otherwise a negative errno value.
415 */
416 int get_tmp_filename(char *filename, int size)
417 {
418 #ifdef _WIN32
419 char temp_dir[MAX_PATH];
420 /* GetTempFileName requires that its output buffer (4th param)
421 have length MAX_PATH or greater. */
422 assert(size >= MAX_PATH);
423 return (GetTempPath(MAX_PATH, temp_dir)
424 && GetTempFileName(temp_dir, "qem", 0, filename)
425 ? 0 : -GetLastError());
426 #else
427 int fd;
428 const char *tmpdir;
429 tmpdir = getenv("TMPDIR");
430 if (!tmpdir)
431 tmpdir = "/tmp";
432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
433 return -EOVERFLOW;
434 }
435 fd = mkstemp(filename);
436 if (fd < 0) {
437 return -errno;
438 }
439 if (close(fd) != 0) {
440 unlink(filename);
441 return -errno;
442 }
443 return 0;
444 #endif
445 }
446
447 /*
448 * Detect host devices. By convention, /dev/cdrom[N] is always
449 * recognized as a host CDROM.
450 */
451 static BlockDriver *find_hdev_driver(const char *filename)
452 {
453 int score_max = 0, score;
454 BlockDriver *drv = NULL, *d;
455
456 QLIST_FOREACH(d, &bdrv_drivers, list) {
457 if (d->bdrv_probe_device) {
458 score = d->bdrv_probe_device(filename);
459 if (score > score_max) {
460 score_max = score;
461 drv = d;
462 }
463 }
464 }
465
466 return drv;
467 }
468
469 BlockDriver *bdrv_find_protocol(const char *filename)
470 {
471 BlockDriver *drv1;
472 char protocol[128];
473 int len;
474 const char *p;
475
476 /* TODO Drivers without bdrv_file_open must be specified explicitly */
477
478 /*
479 * XXX(hch): we really should not let host device detection
480 * override an explicit protocol specification, but moving this
481 * later breaks access to device names with colons in them.
482 * Thanks to the brain-dead persistent naming schemes on udev-
483 * based Linux systems those actually are quite common.
484 */
485 drv1 = find_hdev_driver(filename);
486 if (drv1) {
487 return drv1;
488 }
489
490 if (!path_has_protocol(filename)) {
491 return bdrv_find_format("file");
492 }
493 p = strchr(filename, ':');
494 assert(p != NULL);
495 len = p - filename;
496 if (len > sizeof(protocol) - 1)
497 len = sizeof(protocol) - 1;
498 memcpy(protocol, filename, len);
499 protocol[len] = '\0';
500 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
501 if (drv1->protocol_name &&
502 !strcmp(drv1->protocol_name, protocol)) {
503 return drv1;
504 }
505 }
506 return NULL;
507 }
508
509 static int find_image_format(const char *filename, BlockDriver **pdrv)
510 {
511 int ret, score, score_max;
512 BlockDriver *drv1, *drv;
513 uint8_t buf[2048];
514 BlockDriverState *bs;
515
516 ret = bdrv_file_open(&bs, filename, 0);
517 if (ret < 0) {
518 *pdrv = NULL;
519 return ret;
520 }
521
522 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
523 if (bs->sg || !bdrv_is_inserted(bs)) {
524 bdrv_delete(bs);
525 drv = bdrv_find_format("raw");
526 if (!drv) {
527 ret = -ENOENT;
528 }
529 *pdrv = drv;
530 return ret;
531 }
532
533 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
534 bdrv_delete(bs);
535 if (ret < 0) {
536 *pdrv = NULL;
537 return ret;
538 }
539
540 score_max = 0;
541 drv = NULL;
542 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
543 if (drv1->bdrv_probe) {
544 score = drv1->bdrv_probe(buf, ret, filename);
545 if (score > score_max) {
546 score_max = score;
547 drv = drv1;
548 }
549 }
550 }
551 if (!drv) {
552 ret = -ENOENT;
553 }
554 *pdrv = drv;
555 return ret;
556 }
557
558 /**
559 * Set the current 'total_sectors' value
560 */
561 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
562 {
563 BlockDriver *drv = bs->drv;
564
565 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
566 if (bs->sg)
567 return 0;
568
569 /* query actual device if possible, otherwise just trust the hint */
570 if (drv->bdrv_getlength) {
571 int64_t length = drv->bdrv_getlength(bs);
572 if (length < 0) {
573 return length;
574 }
575 hint = length >> BDRV_SECTOR_BITS;
576 }
577
578 bs->total_sectors = hint;
579 return 0;
580 }
581
582 /**
583 * Set open flags for a given cache mode
584 *
585 * Return 0 on success, -1 if the cache mode was invalid.
586 */
587 int bdrv_parse_cache_flags(const char *mode, int *flags)
588 {
589 *flags &= ~BDRV_O_CACHE_MASK;
590
591 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
592 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
593 } else if (!strcmp(mode, "directsync")) {
594 *flags |= BDRV_O_NOCACHE;
595 } else if (!strcmp(mode, "writeback")) {
596 *flags |= BDRV_O_CACHE_WB;
597 } else if (!strcmp(mode, "unsafe")) {
598 *flags |= BDRV_O_CACHE_WB;
599 *flags |= BDRV_O_NO_FLUSH;
600 } else if (!strcmp(mode, "writethrough")) {
601 /* this is the default */
602 } else {
603 return -1;
604 }
605
606 return 0;
607 }
608
609 /**
610 * The copy-on-read flag is actually a reference count so multiple users may
611 * use the feature without worrying about clobbering its previous state.
612 * Copy-on-read stays enabled until all users have called to disable it.
613 */
614 void bdrv_enable_copy_on_read(BlockDriverState *bs)
615 {
616 bs->copy_on_read++;
617 }
618
619 void bdrv_disable_copy_on_read(BlockDriverState *bs)
620 {
621 assert(bs->copy_on_read > 0);
622 bs->copy_on_read--;
623 }
624
625 /*
626 * Common part for opening disk images and files
627 */
628 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
629 int flags, BlockDriver *drv)
630 {
631 int ret, open_flags;
632
633 assert(drv != NULL);
634 assert(bs->file == NULL);
635
636 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
637
638 bs->open_flags = flags;
639 bs->buffer_alignment = 512;
640
641 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
642 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
643 bdrv_enable_copy_on_read(bs);
644 }
645
646 pstrcpy(bs->filename, sizeof(bs->filename), filename);
647
648 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
649 return -ENOTSUP;
650 }
651
652 bs->drv = drv;
653 bs->opaque = g_malloc0(drv->instance_size);
654
655 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
656 open_flags = flags | BDRV_O_CACHE_WB;
657
658 /*
659 * Clear flags that are internal to the block layer before opening the
660 * image.
661 */
662 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
663
664 /*
665 * Snapshots should be writable.
666 */
667 if (bs->is_temporary) {
668 open_flags |= BDRV_O_RDWR;
669 }
670
671 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
672
673 /* Open the image, either directly or using a protocol */
674 if (drv->bdrv_file_open) {
675 ret = drv->bdrv_file_open(bs, filename, open_flags);
676 } else {
677 ret = bdrv_file_open(&bs->file, filename, open_flags);
678 if (ret >= 0) {
679 ret = drv->bdrv_open(bs, open_flags);
680 }
681 }
682
683 if (ret < 0) {
684 goto free_and_fail;
685 }
686
687 ret = refresh_total_sectors(bs, bs->total_sectors);
688 if (ret < 0) {
689 goto free_and_fail;
690 }
691
692 #ifndef _WIN32
693 if (bs->is_temporary) {
694 unlink(filename);
695 }
696 #endif
697 return 0;
698
699 free_and_fail:
700 if (bs->file) {
701 bdrv_delete(bs->file);
702 bs->file = NULL;
703 }
704 g_free(bs->opaque);
705 bs->opaque = NULL;
706 bs->drv = NULL;
707 return ret;
708 }
709
710 /*
711 * Opens a file using a protocol (file, host_device, nbd, ...)
712 */
713 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
714 {
715 BlockDriverState *bs;
716 BlockDriver *drv;
717 int ret;
718
719 drv = bdrv_find_protocol(filename);
720 if (!drv) {
721 return -ENOENT;
722 }
723
724 bs = bdrv_new("");
725 ret = bdrv_open_common(bs, filename, flags, drv);
726 if (ret < 0) {
727 bdrv_delete(bs);
728 return ret;
729 }
730 bs->growable = 1;
731 *pbs = bs;
732 return 0;
733 }
734
735 /*
736 * Opens a disk image (raw, qcow2, vmdk, ...)
737 */
738 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
739 BlockDriver *drv)
740 {
741 int ret;
742 char tmp_filename[PATH_MAX];
743
744 if (flags & BDRV_O_SNAPSHOT) {
745 BlockDriverState *bs1;
746 int64_t total_size;
747 int is_protocol = 0;
748 BlockDriver *bdrv_qcow2;
749 QEMUOptionParameter *options;
750 char backing_filename[PATH_MAX];
751
752 /* if snapshot, we create a temporary backing file and open it
753 instead of opening 'filename' directly */
754
755 /* if there is a backing file, use it */
756 bs1 = bdrv_new("");
757 ret = bdrv_open(bs1, filename, 0, drv);
758 if (ret < 0) {
759 bdrv_delete(bs1);
760 return ret;
761 }
762 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
763
764 if (bs1->drv && bs1->drv->protocol_name)
765 is_protocol = 1;
766
767 bdrv_delete(bs1);
768
769 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
770 if (ret < 0) {
771 return ret;
772 }
773
774 /* Real path is meaningless for protocols */
775 if (is_protocol)
776 snprintf(backing_filename, sizeof(backing_filename),
777 "%s", filename);
778 else if (!realpath(filename, backing_filename))
779 return -errno;
780
781 bdrv_qcow2 = bdrv_find_format("qcow2");
782 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
783
784 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
785 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
786 if (drv) {
787 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
788 drv->format_name);
789 }
790
791 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
792 free_option_parameters(options);
793 if (ret < 0) {
794 return ret;
795 }
796
797 filename = tmp_filename;
798 drv = bdrv_qcow2;
799 bs->is_temporary = 1;
800 }
801
802 /* Find the right image format driver */
803 if (!drv) {
804 ret = find_image_format(filename, &drv);
805 }
806
807 if (!drv) {
808 goto unlink_and_fail;
809 }
810
811 /* Open the image */
812 ret = bdrv_open_common(bs, filename, flags, drv);
813 if (ret < 0) {
814 goto unlink_and_fail;
815 }
816
817 /* If there is a backing file, use it */
818 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
819 char backing_filename[PATH_MAX];
820 int back_flags;
821 BlockDriver *back_drv = NULL;
822
823 bs->backing_hd = bdrv_new("");
824 bdrv_get_full_backing_filename(bs, backing_filename,
825 sizeof(backing_filename));
826
827 if (bs->backing_format[0] != '\0') {
828 back_drv = bdrv_find_format(bs->backing_format);
829 }
830
831 /* backing files always opened read-only */
832 back_flags =
833 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
834
835 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
836 if (ret < 0) {
837 bdrv_close(bs);
838 return ret;
839 }
840 if (bs->is_temporary) {
841 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
842 } else {
843 /* base image inherits from "parent" */
844 bs->backing_hd->keep_read_only = bs->keep_read_only;
845 }
846 }
847
848 if (!bdrv_key_required(bs)) {
849 bdrv_dev_change_media_cb(bs, true);
850 }
851
852 /* throttling disk I/O limits */
853 if (bs->io_limits_enabled) {
854 bdrv_io_limits_enable(bs);
855 }
856
857 return 0;
858
859 unlink_and_fail:
860 if (bs->is_temporary) {
861 unlink(filename);
862 }
863 return ret;
864 }
865
866 void bdrv_close(BlockDriverState *bs)
867 {
868 bdrv_flush(bs);
869 if (bs->drv) {
870 if (bs->job) {
871 block_job_cancel_sync(bs->job);
872 }
873 bdrv_drain_all();
874
875 if (bs == bs_snapshots) {
876 bs_snapshots = NULL;
877 }
878 if (bs->backing_hd) {
879 bdrv_delete(bs->backing_hd);
880 bs->backing_hd = NULL;
881 }
882 bs->drv->bdrv_close(bs);
883 g_free(bs->opaque);
884 #ifdef _WIN32
885 if (bs->is_temporary) {
886 unlink(bs->filename);
887 }
888 #endif
889 bs->opaque = NULL;
890 bs->drv = NULL;
891 bs->copy_on_read = 0;
892 bs->backing_file[0] = '\0';
893 bs->backing_format[0] = '\0';
894 bs->total_sectors = 0;
895 bs->encrypted = 0;
896 bs->valid_key = 0;
897 bs->sg = 0;
898 bs->growable = 0;
899
900 if (bs->file != NULL) {
901 bdrv_delete(bs->file);
902 bs->file = NULL;
903 }
904 }
905
906 bdrv_dev_change_media_cb(bs, false);
907
908 /*throttling disk I/O limits*/
909 if (bs->io_limits_enabled) {
910 bdrv_io_limits_disable(bs);
911 }
912 }
913
914 void bdrv_close_all(void)
915 {
916 BlockDriverState *bs;
917
918 QTAILQ_FOREACH(bs, &bdrv_states, list) {
919 bdrv_close(bs);
920 }
921 }
922
923 /*
924 * Wait for pending requests to complete across all BlockDriverStates
925 *
926 * This function does not flush data to disk, use bdrv_flush_all() for that
927 * after calling this function.
928 *
929 * Note that completion of an asynchronous I/O operation can trigger any
930 * number of other I/O operations on other devices---for example a coroutine
931 * can be arbitrarily complex and a constant flow of I/O can come until the
932 * coroutine is complete. Because of this, it is not possible to have a
933 * function to drain a single device's I/O queue.
934 */
935 void bdrv_drain_all(void)
936 {
937 BlockDriverState *bs;
938 bool busy;
939
940 do {
941 busy = qemu_aio_wait();
942
943 /* FIXME: We do not have timer support here, so this is effectively
944 * a busy wait.
945 */
946 QTAILQ_FOREACH(bs, &bdrv_states, list) {
947 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
948 qemu_co_queue_restart_all(&bs->throttled_reqs);
949 busy = true;
950 }
951 }
952 } while (busy);
953
954 /* If requests are still pending there is a bug somewhere */
955 QTAILQ_FOREACH(bs, &bdrv_states, list) {
956 assert(QLIST_EMPTY(&bs->tracked_requests));
957 assert(qemu_co_queue_empty(&bs->throttled_reqs));
958 }
959 }
960
961 /* make a BlockDriverState anonymous by removing from bdrv_state list.
962 Also, NULL terminate the device_name to prevent double remove */
963 void bdrv_make_anon(BlockDriverState *bs)
964 {
965 if (bs->device_name[0] != '\0') {
966 QTAILQ_REMOVE(&bdrv_states, bs, list);
967 }
968 bs->device_name[0] = '\0';
969 }
970
971 static void bdrv_rebind(BlockDriverState *bs)
972 {
973 if (bs->drv && bs->drv->bdrv_rebind) {
974 bs->drv->bdrv_rebind(bs);
975 }
976 }
977
978 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
979 BlockDriverState *bs_src)
980 {
981 /* move some fields that need to stay attached to the device */
982 bs_dest->open_flags = bs_src->open_flags;
983
984 /* dev info */
985 bs_dest->dev_ops = bs_src->dev_ops;
986 bs_dest->dev_opaque = bs_src->dev_opaque;
987 bs_dest->dev = bs_src->dev;
988 bs_dest->buffer_alignment = bs_src->buffer_alignment;
989 bs_dest->copy_on_read = bs_src->copy_on_read;
990
991 bs_dest->enable_write_cache = bs_src->enable_write_cache;
992
993 /* i/o timing parameters */
994 bs_dest->slice_time = bs_src->slice_time;
995 bs_dest->slice_start = bs_src->slice_start;
996 bs_dest->slice_end = bs_src->slice_end;
997 bs_dest->io_limits = bs_src->io_limits;
998 bs_dest->io_base = bs_src->io_base;
999 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1000 bs_dest->block_timer = bs_src->block_timer;
1001 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1002
1003 /* r/w error */
1004 bs_dest->on_read_error = bs_src->on_read_error;
1005 bs_dest->on_write_error = bs_src->on_write_error;
1006
1007 /* i/o status */
1008 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1009 bs_dest->iostatus = bs_src->iostatus;
1010
1011 /* dirty bitmap */
1012 bs_dest->dirty_count = bs_src->dirty_count;
1013 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1014
1015 /* job */
1016 bs_dest->in_use = bs_src->in_use;
1017 bs_dest->job = bs_src->job;
1018
1019 /* keep the same entry in bdrv_states */
1020 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1021 bs_src->device_name);
1022 bs_dest->list = bs_src->list;
1023 }
1024
1025 /*
1026 * Swap bs contents for two image chains while they are live,
1027 * while keeping required fields on the BlockDriverState that is
1028 * actually attached to a device.
1029 *
1030 * This will modify the BlockDriverState fields, and swap contents
1031 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1032 *
1033 * bs_new is required to be anonymous.
1034 *
1035 * This function does not create any image files.
1036 */
1037 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1038 {
1039 BlockDriverState tmp;
1040
1041 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1042 assert(bs_new->device_name[0] == '\0');
1043 assert(bs_new->dirty_bitmap == NULL);
1044 assert(bs_new->job == NULL);
1045 assert(bs_new->dev == NULL);
1046 assert(bs_new->in_use == 0);
1047 assert(bs_new->io_limits_enabled == false);
1048 assert(bs_new->block_timer == NULL);
1049
1050 tmp = *bs_new;
1051 *bs_new = *bs_old;
1052 *bs_old = tmp;
1053
1054 /* there are some fields that should not be swapped, move them back */
1055 bdrv_move_feature_fields(&tmp, bs_old);
1056 bdrv_move_feature_fields(bs_old, bs_new);
1057 bdrv_move_feature_fields(bs_new, &tmp);
1058
1059 /* bs_new shouldn't be in bdrv_states even after the swap! */
1060 assert(bs_new->device_name[0] == '\0');
1061
1062 /* Check a few fields that should remain attached to the device */
1063 assert(bs_new->dev == NULL);
1064 assert(bs_new->job == NULL);
1065 assert(bs_new->in_use == 0);
1066 assert(bs_new->io_limits_enabled == false);
1067 assert(bs_new->block_timer == NULL);
1068
1069 bdrv_rebind(bs_new);
1070 bdrv_rebind(bs_old);
1071 }
1072
1073 /*
1074 * Add new bs contents at the top of an image chain while the chain is
1075 * live, while keeping required fields on the top layer.
1076 *
1077 * This will modify the BlockDriverState fields, and swap contents
1078 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1079 *
1080 * bs_new is required to be anonymous.
1081 *
1082 * This function does not create any image files.
1083 */
1084 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1085 {
1086 bdrv_swap(bs_new, bs_top);
1087
1088 /* The contents of 'tmp' will become bs_top, as we are
1089 * swapping bs_new and bs_top contents. */
1090 bs_top->backing_hd = bs_new;
1091 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1092 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1093 bs_new->filename);
1094 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1095 bs_new->drv ? bs_new->drv->format_name : "");
1096 }
1097
1098 void bdrv_delete(BlockDriverState *bs)
1099 {
1100 assert(!bs->dev);
1101 assert(!bs->job);
1102 assert(!bs->in_use);
1103
1104 /* remove from list, if necessary */
1105 bdrv_make_anon(bs);
1106
1107 bdrv_close(bs);
1108
1109 assert(bs != bs_snapshots);
1110 g_free(bs);
1111 }
1112
1113 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1114 /* TODO change to DeviceState *dev when all users are qdevified */
1115 {
1116 if (bs->dev) {
1117 return -EBUSY;
1118 }
1119 bs->dev = dev;
1120 bdrv_iostatus_reset(bs);
1121 return 0;
1122 }
1123
1124 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1125 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1126 {
1127 if (bdrv_attach_dev(bs, dev) < 0) {
1128 abort();
1129 }
1130 }
1131
1132 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1133 /* TODO change to DeviceState *dev when all users are qdevified */
1134 {
1135 assert(bs->dev == dev);
1136 bs->dev = NULL;
1137 bs->dev_ops = NULL;
1138 bs->dev_opaque = NULL;
1139 bs->buffer_alignment = 512;
1140 }
1141
1142 /* TODO change to return DeviceState * when all users are qdevified */
1143 void *bdrv_get_attached_dev(BlockDriverState *bs)
1144 {
1145 return bs->dev;
1146 }
1147
1148 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1149 void *opaque)
1150 {
1151 bs->dev_ops = ops;
1152 bs->dev_opaque = opaque;
1153 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1154 bs_snapshots = NULL;
1155 }
1156 }
1157
1158 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1159 BlockQMPEventAction action, int is_read)
1160 {
1161 QObject *data;
1162 const char *action_str;
1163
1164 switch (action) {
1165 case BDRV_ACTION_REPORT:
1166 action_str = "report";
1167 break;
1168 case BDRV_ACTION_IGNORE:
1169 action_str = "ignore";
1170 break;
1171 case BDRV_ACTION_STOP:
1172 action_str = "stop";
1173 break;
1174 default:
1175 abort();
1176 }
1177
1178 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1179 bdrv->device_name,
1180 action_str,
1181 is_read ? "read" : "write");
1182 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1183
1184 qobject_decref(data);
1185 }
1186
1187 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1188 {
1189 QObject *data;
1190
1191 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1192 bdrv_get_device_name(bs), ejected);
1193 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1194
1195 qobject_decref(data);
1196 }
1197
1198 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1199 {
1200 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1201 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1202 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1203 if (tray_was_closed) {
1204 /* tray open */
1205 bdrv_emit_qmp_eject_event(bs, true);
1206 }
1207 if (load) {
1208 /* tray close */
1209 bdrv_emit_qmp_eject_event(bs, false);
1210 }
1211 }
1212 }
1213
1214 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1215 {
1216 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1217 }
1218
1219 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1220 {
1221 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1222 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1223 }
1224 }
1225
1226 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1227 {
1228 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1229 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1230 }
1231 return false;
1232 }
1233
1234 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1235 {
1236 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1237 bs->dev_ops->resize_cb(bs->dev_opaque);
1238 }
1239 }
1240
1241 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1242 {
1243 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1244 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1245 }
1246 return false;
1247 }
1248
1249 /*
1250 * Run consistency checks on an image
1251 *
1252 * Returns 0 if the check could be completed (it doesn't mean that the image is
1253 * free of errors) or -errno when an internal error occurred. The results of the
1254 * check are stored in res.
1255 */
1256 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1257 {
1258 if (bs->drv->bdrv_check == NULL) {
1259 return -ENOTSUP;
1260 }
1261
1262 memset(res, 0, sizeof(*res));
1263 return bs->drv->bdrv_check(bs, res, fix);
1264 }
1265
1266 #define COMMIT_BUF_SECTORS 2048
1267
1268 /* commit COW file into the raw image */
1269 int bdrv_commit(BlockDriverState *bs)
1270 {
1271 BlockDriver *drv = bs->drv;
1272 BlockDriver *backing_drv;
1273 int64_t sector, total_sectors;
1274 int n, ro, open_flags;
1275 int ret = 0, rw_ret = 0;
1276 uint8_t *buf;
1277 char filename[1024];
1278 BlockDriverState *bs_rw, *bs_ro;
1279
1280 if (!drv)
1281 return -ENOMEDIUM;
1282
1283 if (!bs->backing_hd) {
1284 return -ENOTSUP;
1285 }
1286
1287 if (bs->backing_hd->keep_read_only) {
1288 return -EACCES;
1289 }
1290
1291 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1292 return -EBUSY;
1293 }
1294
1295 backing_drv = bs->backing_hd->drv;
1296 ro = bs->backing_hd->read_only;
1297 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1298 open_flags = bs->backing_hd->open_flags;
1299
1300 if (ro) {
1301 /* re-open as RW */
1302 bdrv_delete(bs->backing_hd);
1303 bs->backing_hd = NULL;
1304 bs_rw = bdrv_new("");
1305 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1306 backing_drv);
1307 if (rw_ret < 0) {
1308 bdrv_delete(bs_rw);
1309 /* try to re-open read-only */
1310 bs_ro = bdrv_new("");
1311 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1312 backing_drv);
1313 if (ret < 0) {
1314 bdrv_delete(bs_ro);
1315 /* drive not functional anymore */
1316 bs->drv = NULL;
1317 return ret;
1318 }
1319 bs->backing_hd = bs_ro;
1320 return rw_ret;
1321 }
1322 bs->backing_hd = bs_rw;
1323 }
1324
1325 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1326 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1327
1328 for (sector = 0; sector < total_sectors; sector += n) {
1329 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1330
1331 if (bdrv_read(bs, sector, buf, n) != 0) {
1332 ret = -EIO;
1333 goto ro_cleanup;
1334 }
1335
1336 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1337 ret = -EIO;
1338 goto ro_cleanup;
1339 }
1340 }
1341 }
1342
1343 if (drv->bdrv_make_empty) {
1344 ret = drv->bdrv_make_empty(bs);
1345 bdrv_flush(bs);
1346 }
1347
1348 /*
1349 * Make sure all data we wrote to the backing device is actually
1350 * stable on disk.
1351 */
1352 if (bs->backing_hd)
1353 bdrv_flush(bs->backing_hd);
1354
1355 ro_cleanup:
1356 g_free(buf);
1357
1358 if (ro) {
1359 /* re-open as RO */
1360 bdrv_delete(bs->backing_hd);
1361 bs->backing_hd = NULL;
1362 bs_ro = bdrv_new("");
1363 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1364 backing_drv);
1365 if (ret < 0) {
1366 bdrv_delete(bs_ro);
1367 /* drive not functional anymore */
1368 bs->drv = NULL;
1369 return ret;
1370 }
1371 bs->backing_hd = bs_ro;
1372 bs->backing_hd->keep_read_only = 0;
1373 }
1374
1375 return ret;
1376 }
1377
1378 int bdrv_commit_all(void)
1379 {
1380 BlockDriverState *bs;
1381
1382 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1383 int ret = bdrv_commit(bs);
1384 if (ret < 0) {
1385 return ret;
1386 }
1387 }
1388 return 0;
1389 }
1390
1391 struct BdrvTrackedRequest {
1392 BlockDriverState *bs;
1393 int64_t sector_num;
1394 int nb_sectors;
1395 bool is_write;
1396 QLIST_ENTRY(BdrvTrackedRequest) list;
1397 Coroutine *co; /* owner, used for deadlock detection */
1398 CoQueue wait_queue; /* coroutines blocked on this request */
1399 };
1400
1401 /**
1402 * Remove an active request from the tracked requests list
1403 *
1404 * This function should be called when a tracked request is completing.
1405 */
1406 static void tracked_request_end(BdrvTrackedRequest *req)
1407 {
1408 QLIST_REMOVE(req, list);
1409 qemu_co_queue_restart_all(&req->wait_queue);
1410 }
1411
1412 /**
1413 * Add an active request to the tracked requests list
1414 */
1415 static void tracked_request_begin(BdrvTrackedRequest *req,
1416 BlockDriverState *bs,
1417 int64_t sector_num,
1418 int nb_sectors, bool is_write)
1419 {
1420 *req = (BdrvTrackedRequest){
1421 .bs = bs,
1422 .sector_num = sector_num,
1423 .nb_sectors = nb_sectors,
1424 .is_write = is_write,
1425 .co = qemu_coroutine_self(),
1426 };
1427
1428 qemu_co_queue_init(&req->wait_queue);
1429
1430 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1431 }
1432
1433 /**
1434 * Round a region to cluster boundaries
1435 */
1436 static void round_to_clusters(BlockDriverState *bs,
1437 int64_t sector_num, int nb_sectors,
1438 int64_t *cluster_sector_num,
1439 int *cluster_nb_sectors)
1440 {
1441 BlockDriverInfo bdi;
1442
1443 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1444 *cluster_sector_num = sector_num;
1445 *cluster_nb_sectors = nb_sectors;
1446 } else {
1447 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1448 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1449 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1450 nb_sectors, c);
1451 }
1452 }
1453
1454 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1455 int64_t sector_num, int nb_sectors) {
1456 /* aaaa bbbb */
1457 if (sector_num >= req->sector_num + req->nb_sectors) {
1458 return false;
1459 }
1460 /* bbbb aaaa */
1461 if (req->sector_num >= sector_num + nb_sectors) {
1462 return false;
1463 }
1464 return true;
1465 }
1466
1467 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1468 int64_t sector_num, int nb_sectors)
1469 {
1470 BdrvTrackedRequest *req;
1471 int64_t cluster_sector_num;
1472 int cluster_nb_sectors;
1473 bool retry;
1474
1475 /* If we touch the same cluster it counts as an overlap. This guarantees
1476 * that allocating writes will be serialized and not race with each other
1477 * for the same cluster. For example, in copy-on-read it ensures that the
1478 * CoR read and write operations are atomic and guest writes cannot
1479 * interleave between them.
1480 */
1481 round_to_clusters(bs, sector_num, nb_sectors,
1482 &cluster_sector_num, &cluster_nb_sectors);
1483
1484 do {
1485 retry = false;
1486 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1487 if (tracked_request_overlaps(req, cluster_sector_num,
1488 cluster_nb_sectors)) {
1489 /* Hitting this means there was a reentrant request, for
1490 * example, a block driver issuing nested requests. This must
1491 * never happen since it means deadlock.
1492 */
1493 assert(qemu_coroutine_self() != req->co);
1494
1495 qemu_co_queue_wait(&req->wait_queue);
1496 retry = true;
1497 break;
1498 }
1499 }
1500 } while (retry);
1501 }
1502
1503 /*
1504 * Return values:
1505 * 0 - success
1506 * -EINVAL - backing format specified, but no file
1507 * -ENOSPC - can't update the backing file because no space is left in the
1508 * image file header
1509 * -ENOTSUP - format driver doesn't support changing the backing file
1510 */
1511 int bdrv_change_backing_file(BlockDriverState *bs,
1512 const char *backing_file, const char *backing_fmt)
1513 {
1514 BlockDriver *drv = bs->drv;
1515 int ret;
1516
1517 /* Backing file format doesn't make sense without a backing file */
1518 if (backing_fmt && !backing_file) {
1519 return -EINVAL;
1520 }
1521
1522 if (drv->bdrv_change_backing_file != NULL) {
1523 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1524 } else {
1525 ret = -ENOTSUP;
1526 }
1527
1528 if (ret == 0) {
1529 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1530 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1531 }
1532 return ret;
1533 }
1534
1535 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1536 size_t size)
1537 {
1538 int64_t len;
1539
1540 if (!bdrv_is_inserted(bs))
1541 return -ENOMEDIUM;
1542
1543 if (bs->growable)
1544 return 0;
1545
1546 len = bdrv_getlength(bs);
1547
1548 if (offset < 0)
1549 return -EIO;
1550
1551 if ((offset > len) || (len - offset < size))
1552 return -EIO;
1553
1554 return 0;
1555 }
1556
1557 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1558 int nb_sectors)
1559 {
1560 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1561 nb_sectors * BDRV_SECTOR_SIZE);
1562 }
1563
1564 typedef struct RwCo {
1565 BlockDriverState *bs;
1566 int64_t sector_num;
1567 int nb_sectors;
1568 QEMUIOVector *qiov;
1569 bool is_write;
1570 int ret;
1571 } RwCo;
1572
1573 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1574 {
1575 RwCo *rwco = opaque;
1576
1577 if (!rwco->is_write) {
1578 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1579 rwco->nb_sectors, rwco->qiov, 0);
1580 } else {
1581 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1582 rwco->nb_sectors, rwco->qiov, 0);
1583 }
1584 }
1585
1586 /*
1587 * Process a synchronous request using coroutines
1588 */
1589 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1590 int nb_sectors, bool is_write)
1591 {
1592 QEMUIOVector qiov;
1593 struct iovec iov = {
1594 .iov_base = (void *)buf,
1595 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1596 };
1597 Coroutine *co;
1598 RwCo rwco = {
1599 .bs = bs,
1600 .sector_num = sector_num,
1601 .nb_sectors = nb_sectors,
1602 .qiov = &qiov,
1603 .is_write = is_write,
1604 .ret = NOT_DONE,
1605 };
1606
1607 qemu_iovec_init_external(&qiov, &iov, 1);
1608
1609 /**
1610 * In sync call context, when the vcpu is blocked, this throttling timer
1611 * will not fire; so the I/O throttling function has to be disabled here
1612 * if it has been enabled.
1613 */
1614 if (bs->io_limits_enabled) {
1615 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1616 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1617 bdrv_io_limits_disable(bs);
1618 }
1619
1620 if (qemu_in_coroutine()) {
1621 /* Fast-path if already in coroutine context */
1622 bdrv_rw_co_entry(&rwco);
1623 } else {
1624 co = qemu_coroutine_create(bdrv_rw_co_entry);
1625 qemu_coroutine_enter(co, &rwco);
1626 while (rwco.ret == NOT_DONE) {
1627 qemu_aio_wait();
1628 }
1629 }
1630 return rwco.ret;
1631 }
1632
1633 /* return < 0 if error. See bdrv_write() for the return codes */
1634 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1635 uint8_t *buf, int nb_sectors)
1636 {
1637 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1638 }
1639
1640 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1641 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1642 uint8_t *buf, int nb_sectors)
1643 {
1644 bool enabled;
1645 int ret;
1646
1647 enabled = bs->io_limits_enabled;
1648 bs->io_limits_enabled = false;
1649 ret = bdrv_read(bs, 0, buf, 1);
1650 bs->io_limits_enabled = enabled;
1651 return ret;
1652 }
1653
1654 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1655
1656 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1657 int nb_sectors, int dirty)
1658 {
1659 int64_t start, end;
1660 unsigned long val, idx, bit;
1661
1662 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1663 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1664
1665 for (; start <= end; start++) {
1666 idx = start / BITS_PER_LONG;
1667 bit = start % BITS_PER_LONG;
1668 val = bs->dirty_bitmap[idx];
1669 if (dirty) {
1670 if (!(val & (1UL << bit))) {
1671 bs->dirty_count++;
1672 val |= 1UL << bit;
1673 }
1674 } else {
1675 if (val & (1UL << bit)) {
1676 bs->dirty_count--;
1677 val &= ~(1UL << bit);
1678 }
1679 }
1680 bs->dirty_bitmap[idx] = val;
1681 }
1682 }
1683
1684 /* Return < 0 if error. Important errors are:
1685 -EIO generic I/O error (may happen for all errors)
1686 -ENOMEDIUM No media inserted.
1687 -EINVAL Invalid sector number or nb_sectors
1688 -EACCES Trying to write a read-only device
1689 */
1690 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1691 const uint8_t *buf, int nb_sectors)
1692 {
1693 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1694 }
1695
1696 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1697 void *buf, int count1)
1698 {
1699 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1700 int len, nb_sectors, count;
1701 int64_t sector_num;
1702 int ret;
1703
1704 count = count1;
1705 /* first read to align to sector start */
1706 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1707 if (len > count)
1708 len = count;
1709 sector_num = offset >> BDRV_SECTOR_BITS;
1710 if (len > 0) {
1711 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1712 return ret;
1713 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1714 count -= len;
1715 if (count == 0)
1716 return count1;
1717 sector_num++;
1718 buf += len;
1719 }
1720
1721 /* read the sectors "in place" */
1722 nb_sectors = count >> BDRV_SECTOR_BITS;
1723 if (nb_sectors > 0) {
1724 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1725 return ret;
1726 sector_num += nb_sectors;
1727 len = nb_sectors << BDRV_SECTOR_BITS;
1728 buf += len;
1729 count -= len;
1730 }
1731
1732 /* add data from the last sector */
1733 if (count > 0) {
1734 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1735 return ret;
1736 memcpy(buf, tmp_buf, count);
1737 }
1738 return count1;
1739 }
1740
1741 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1742 const void *buf, int count1)
1743 {
1744 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1745 int len, nb_sectors, count;
1746 int64_t sector_num;
1747 int ret;
1748
1749 count = count1;
1750 /* first write to align to sector start */
1751 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1752 if (len > count)
1753 len = count;
1754 sector_num = offset >> BDRV_SECTOR_BITS;
1755 if (len > 0) {
1756 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1757 return ret;
1758 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1759 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1760 return ret;
1761 count -= len;
1762 if (count == 0)
1763 return count1;
1764 sector_num++;
1765 buf += len;
1766 }
1767
1768 /* write the sectors "in place" */
1769 nb_sectors = count >> BDRV_SECTOR_BITS;
1770 if (nb_sectors > 0) {
1771 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1772 return ret;
1773 sector_num += nb_sectors;
1774 len = nb_sectors << BDRV_SECTOR_BITS;
1775 buf += len;
1776 count -= len;
1777 }
1778
1779 /* add data from the last sector */
1780 if (count > 0) {
1781 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1782 return ret;
1783 memcpy(tmp_buf, buf, count);
1784 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1785 return ret;
1786 }
1787 return count1;
1788 }
1789
1790 /*
1791 * Writes to the file and ensures that no writes are reordered across this
1792 * request (acts as a barrier)
1793 *
1794 * Returns 0 on success, -errno in error cases.
1795 */
1796 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1797 const void *buf, int count)
1798 {
1799 int ret;
1800
1801 ret = bdrv_pwrite(bs, offset, buf, count);
1802 if (ret < 0) {
1803 return ret;
1804 }
1805
1806 /* No flush needed for cache modes that already do it */
1807 if (bs->enable_write_cache) {
1808 bdrv_flush(bs);
1809 }
1810
1811 return 0;
1812 }
1813
1814 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1815 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1816 {
1817 /* Perform I/O through a temporary buffer so that users who scribble over
1818 * their read buffer while the operation is in progress do not end up
1819 * modifying the image file. This is critical for zero-copy guest I/O
1820 * where anything might happen inside guest memory.
1821 */
1822 void *bounce_buffer;
1823
1824 BlockDriver *drv = bs->drv;
1825 struct iovec iov;
1826 QEMUIOVector bounce_qiov;
1827 int64_t cluster_sector_num;
1828 int cluster_nb_sectors;
1829 size_t skip_bytes;
1830 int ret;
1831
1832 /* Cover entire cluster so no additional backing file I/O is required when
1833 * allocating cluster in the image file.
1834 */
1835 round_to_clusters(bs, sector_num, nb_sectors,
1836 &cluster_sector_num, &cluster_nb_sectors);
1837
1838 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1839 cluster_sector_num, cluster_nb_sectors);
1840
1841 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1842 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1843 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1844
1845 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1846 &bounce_qiov);
1847 if (ret < 0) {
1848 goto err;
1849 }
1850
1851 if (drv->bdrv_co_write_zeroes &&
1852 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1853 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
1854 cluster_nb_sectors);
1855 } else {
1856 /* This does not change the data on the disk, it is not necessary
1857 * to flush even in cache=writethrough mode.
1858 */
1859 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1860 &bounce_qiov);
1861 }
1862
1863 if (ret < 0) {
1864 /* It might be okay to ignore write errors for guest requests. If this
1865 * is a deliberate copy-on-read then we don't want to ignore the error.
1866 * Simply report it in all cases.
1867 */
1868 goto err;
1869 }
1870
1871 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1872 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
1873 nb_sectors * BDRV_SECTOR_SIZE);
1874
1875 err:
1876 qemu_vfree(bounce_buffer);
1877 return ret;
1878 }
1879
1880 /*
1881 * Handle a read request in coroutine context
1882 */
1883 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1884 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1885 BdrvRequestFlags flags)
1886 {
1887 BlockDriver *drv = bs->drv;
1888 BdrvTrackedRequest req;
1889 int ret;
1890
1891 if (!drv) {
1892 return -ENOMEDIUM;
1893 }
1894 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1895 return -EIO;
1896 }
1897
1898 /* throttling disk read I/O */
1899 if (bs->io_limits_enabled) {
1900 bdrv_io_limits_intercept(bs, false, nb_sectors);
1901 }
1902
1903 if (bs->copy_on_read) {
1904 flags |= BDRV_REQ_COPY_ON_READ;
1905 }
1906 if (flags & BDRV_REQ_COPY_ON_READ) {
1907 bs->copy_on_read_in_flight++;
1908 }
1909
1910 if (bs->copy_on_read_in_flight) {
1911 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1912 }
1913
1914 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1915
1916 if (flags & BDRV_REQ_COPY_ON_READ) {
1917 int pnum;
1918
1919 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1920 if (ret < 0) {
1921 goto out;
1922 }
1923
1924 if (!ret || pnum != nb_sectors) {
1925 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1926 goto out;
1927 }
1928 }
1929
1930 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1931
1932 out:
1933 tracked_request_end(&req);
1934
1935 if (flags & BDRV_REQ_COPY_ON_READ) {
1936 bs->copy_on_read_in_flight--;
1937 }
1938
1939 return ret;
1940 }
1941
1942 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1943 int nb_sectors, QEMUIOVector *qiov)
1944 {
1945 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1946
1947 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1948 }
1949
1950 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1951 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1952 {
1953 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1954
1955 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1956 BDRV_REQ_COPY_ON_READ);
1957 }
1958
1959 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1960 int64_t sector_num, int nb_sectors)
1961 {
1962 BlockDriver *drv = bs->drv;
1963 QEMUIOVector qiov;
1964 struct iovec iov;
1965 int ret;
1966
1967 /* TODO Emulate only part of misaligned requests instead of letting block
1968 * drivers return -ENOTSUP and emulate everything */
1969
1970 /* First try the efficient write zeroes operation */
1971 if (drv->bdrv_co_write_zeroes) {
1972 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1973 if (ret != -ENOTSUP) {
1974 return ret;
1975 }
1976 }
1977
1978 /* Fall back to bounce buffer if write zeroes is unsupported */
1979 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1980 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1981 memset(iov.iov_base, 0, iov.iov_len);
1982 qemu_iovec_init_external(&qiov, &iov, 1);
1983
1984 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1985
1986 qemu_vfree(iov.iov_base);
1987 return ret;
1988 }
1989
1990 /*
1991 * Handle a write request in coroutine context
1992 */
1993 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1994 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1995 BdrvRequestFlags flags)
1996 {
1997 BlockDriver *drv = bs->drv;
1998 BdrvTrackedRequest req;
1999 int ret;
2000
2001 if (!bs->drv) {
2002 return -ENOMEDIUM;
2003 }
2004 if (bs->read_only) {
2005 return -EACCES;
2006 }
2007 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2008 return -EIO;
2009 }
2010
2011 /* throttling disk write I/O */
2012 if (bs->io_limits_enabled) {
2013 bdrv_io_limits_intercept(bs, true, nb_sectors);
2014 }
2015
2016 if (bs->copy_on_read_in_flight) {
2017 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2018 }
2019
2020 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2021
2022 if (flags & BDRV_REQ_ZERO_WRITE) {
2023 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2024 } else {
2025 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2026 }
2027
2028 if (ret == 0 && !bs->enable_write_cache) {
2029 ret = bdrv_co_flush(bs);
2030 }
2031
2032 if (bs->dirty_bitmap) {
2033 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2034 }
2035
2036 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2037 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2038 }
2039
2040 tracked_request_end(&req);
2041
2042 return ret;
2043 }
2044
2045 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2046 int nb_sectors, QEMUIOVector *qiov)
2047 {
2048 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2049
2050 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2051 }
2052
2053 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2054 int64_t sector_num, int nb_sectors)
2055 {
2056 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2057
2058 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2059 BDRV_REQ_ZERO_WRITE);
2060 }
2061
2062 /**
2063 * Truncate file to 'offset' bytes (needed only for file protocols)
2064 */
2065 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2066 {
2067 BlockDriver *drv = bs->drv;
2068 int ret;
2069 if (!drv)
2070 return -ENOMEDIUM;
2071 if (!drv->bdrv_truncate)
2072 return -ENOTSUP;
2073 if (bs->read_only)
2074 return -EACCES;
2075 if (bdrv_in_use(bs))
2076 return -EBUSY;
2077 ret = drv->bdrv_truncate(bs, offset);
2078 if (ret == 0) {
2079 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2080 bdrv_dev_resize_cb(bs);
2081 }
2082 return ret;
2083 }
2084
2085 /**
2086 * Length of a allocated file in bytes. Sparse files are counted by actual
2087 * allocated space. Return < 0 if error or unknown.
2088 */
2089 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2090 {
2091 BlockDriver *drv = bs->drv;
2092 if (!drv) {
2093 return -ENOMEDIUM;
2094 }
2095 if (drv->bdrv_get_allocated_file_size) {
2096 return drv->bdrv_get_allocated_file_size(bs);
2097 }
2098 if (bs->file) {
2099 return bdrv_get_allocated_file_size(bs->file);
2100 }
2101 return -ENOTSUP;
2102 }
2103
2104 /**
2105 * Length of a file in bytes. Return < 0 if error or unknown.
2106 */
2107 int64_t bdrv_getlength(BlockDriverState *bs)
2108 {
2109 BlockDriver *drv = bs->drv;
2110 if (!drv)
2111 return -ENOMEDIUM;
2112
2113 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2114 if (drv->bdrv_getlength) {
2115 return drv->bdrv_getlength(bs);
2116 }
2117 }
2118 return bs->total_sectors * BDRV_SECTOR_SIZE;
2119 }
2120
2121 /* return 0 as number of sectors if no device present or error */
2122 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2123 {
2124 int64_t length;
2125 length = bdrv_getlength(bs);
2126 if (length < 0)
2127 length = 0;
2128 else
2129 length = length >> BDRV_SECTOR_BITS;
2130 *nb_sectors_ptr = length;
2131 }
2132
2133 /* throttling disk io limits */
2134 void bdrv_set_io_limits(BlockDriverState *bs,
2135 BlockIOLimit *io_limits)
2136 {
2137 bs->io_limits = *io_limits;
2138 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2139 }
2140
2141 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2142 BlockErrorAction on_write_error)
2143 {
2144 bs->on_read_error = on_read_error;
2145 bs->on_write_error = on_write_error;
2146 }
2147
2148 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2149 {
2150 return is_read ? bs->on_read_error : bs->on_write_error;
2151 }
2152
2153 int bdrv_is_read_only(BlockDriverState *bs)
2154 {
2155 return bs->read_only;
2156 }
2157
2158 int bdrv_is_sg(BlockDriverState *bs)
2159 {
2160 return bs->sg;
2161 }
2162
2163 int bdrv_enable_write_cache(BlockDriverState *bs)
2164 {
2165 return bs->enable_write_cache;
2166 }
2167
2168 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2169 {
2170 bs->enable_write_cache = wce;
2171 }
2172
2173 int bdrv_is_encrypted(BlockDriverState *bs)
2174 {
2175 if (bs->backing_hd && bs->backing_hd->encrypted)
2176 return 1;
2177 return bs->encrypted;
2178 }
2179
2180 int bdrv_key_required(BlockDriverState *bs)
2181 {
2182 BlockDriverState *backing_hd = bs->backing_hd;
2183
2184 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2185 return 1;
2186 return (bs->encrypted && !bs->valid_key);
2187 }
2188
2189 int bdrv_set_key(BlockDriverState *bs, const char *key)
2190 {
2191 int ret;
2192 if (bs->backing_hd && bs->backing_hd->encrypted) {
2193 ret = bdrv_set_key(bs->backing_hd, key);
2194 if (ret < 0)
2195 return ret;
2196 if (!bs->encrypted)
2197 return 0;
2198 }
2199 if (!bs->encrypted) {
2200 return -EINVAL;
2201 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2202 return -ENOMEDIUM;
2203 }
2204 ret = bs->drv->bdrv_set_key(bs, key);
2205 if (ret < 0) {
2206 bs->valid_key = 0;
2207 } else if (!bs->valid_key) {
2208 bs->valid_key = 1;
2209 /* call the change callback now, we skipped it on open */
2210 bdrv_dev_change_media_cb(bs, true);
2211 }
2212 return ret;
2213 }
2214
2215 const char *bdrv_get_format_name(BlockDriverState *bs)
2216 {
2217 return bs->drv ? bs->drv->format_name : NULL;
2218 }
2219
2220 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2221 void *opaque)
2222 {
2223 BlockDriver *drv;
2224
2225 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2226 it(opaque, drv->format_name);
2227 }
2228 }
2229
2230 BlockDriverState *bdrv_find(const char *name)
2231 {
2232 BlockDriverState *bs;
2233
2234 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2235 if (!strcmp(name, bs->device_name)) {
2236 return bs;
2237 }
2238 }
2239 return NULL;
2240 }
2241
2242 BlockDriverState *bdrv_next(BlockDriverState *bs)
2243 {
2244 if (!bs) {
2245 return QTAILQ_FIRST(&bdrv_states);
2246 }
2247 return QTAILQ_NEXT(bs, list);
2248 }
2249
2250 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2251 {
2252 BlockDriverState *bs;
2253
2254 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2255 it(opaque, bs);
2256 }
2257 }
2258
2259 const char *bdrv_get_device_name(BlockDriverState *bs)
2260 {
2261 return bs->device_name;
2262 }
2263
2264 int bdrv_get_flags(BlockDriverState *bs)
2265 {
2266 return bs->open_flags;
2267 }
2268
2269 void bdrv_flush_all(void)
2270 {
2271 BlockDriverState *bs;
2272
2273 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2274 bdrv_flush(bs);
2275 }
2276 }
2277
2278 int bdrv_has_zero_init(BlockDriverState *bs)
2279 {
2280 assert(bs->drv);
2281
2282 if (bs->drv->bdrv_has_zero_init) {
2283 return bs->drv->bdrv_has_zero_init(bs);
2284 }
2285
2286 return 1;
2287 }
2288
2289 typedef struct BdrvCoIsAllocatedData {
2290 BlockDriverState *bs;
2291 int64_t sector_num;
2292 int nb_sectors;
2293 int *pnum;
2294 int ret;
2295 bool done;
2296 } BdrvCoIsAllocatedData;
2297
2298 /*
2299 * Returns true iff the specified sector is present in the disk image. Drivers
2300 * not implementing the functionality are assumed to not support backing files,
2301 * hence all their sectors are reported as allocated.
2302 *
2303 * If 'sector_num' is beyond the end of the disk image the return value is 0
2304 * and 'pnum' is set to 0.
2305 *
2306 * 'pnum' is set to the number of sectors (including and immediately following
2307 * the specified sector) that are known to be in the same
2308 * allocated/unallocated state.
2309 *
2310 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2311 * beyond the end of the disk image it will be clamped.
2312 */
2313 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2314 int nb_sectors, int *pnum)
2315 {
2316 int64_t n;
2317
2318 if (sector_num >= bs->total_sectors) {
2319 *pnum = 0;
2320 return 0;
2321 }
2322
2323 n = bs->total_sectors - sector_num;
2324 if (n < nb_sectors) {
2325 nb_sectors = n;
2326 }
2327
2328 if (!bs->drv->bdrv_co_is_allocated) {
2329 *pnum = nb_sectors;
2330 return 1;
2331 }
2332
2333 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2334 }
2335
2336 /* Coroutine wrapper for bdrv_is_allocated() */
2337 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2338 {
2339 BdrvCoIsAllocatedData *data = opaque;
2340 BlockDriverState *bs = data->bs;
2341
2342 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2343 data->pnum);
2344 data->done = true;
2345 }
2346
2347 /*
2348 * Synchronous wrapper around bdrv_co_is_allocated().
2349 *
2350 * See bdrv_co_is_allocated() for details.
2351 */
2352 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2353 int *pnum)
2354 {
2355 Coroutine *co;
2356 BdrvCoIsAllocatedData data = {
2357 .bs = bs,
2358 .sector_num = sector_num,
2359 .nb_sectors = nb_sectors,
2360 .pnum = pnum,
2361 .done = false,
2362 };
2363
2364 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2365 qemu_coroutine_enter(co, &data);
2366 while (!data.done) {
2367 qemu_aio_wait();
2368 }
2369 return data.ret;
2370 }
2371
2372 /*
2373 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2374 *
2375 * Return true if the given sector is allocated in any image between
2376 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2377 * sector is allocated in any image of the chain. Return false otherwise.
2378 *
2379 * 'pnum' is set to the number of sectors (including and immediately following
2380 * the specified sector) that are known to be in the same
2381 * allocated/unallocated state.
2382 *
2383 */
2384 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2385 BlockDriverState *base,
2386 int64_t sector_num,
2387 int nb_sectors, int *pnum)
2388 {
2389 BlockDriverState *intermediate;
2390 int ret, n = nb_sectors;
2391
2392 intermediate = top;
2393 while (intermediate && intermediate != base) {
2394 int pnum_inter;
2395 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2396 &pnum_inter);
2397 if (ret < 0) {
2398 return ret;
2399 } else if (ret) {
2400 *pnum = pnum_inter;
2401 return 1;
2402 }
2403
2404 /*
2405 * [sector_num, nb_sectors] is unallocated on top but intermediate
2406 * might have
2407 *
2408 * [sector_num+x, nr_sectors] allocated.
2409 */
2410 if (n > pnum_inter) {
2411 n = pnum_inter;
2412 }
2413
2414 intermediate = intermediate->backing_hd;
2415 }
2416
2417 *pnum = n;
2418 return 0;
2419 }
2420
2421 BlockInfoList *qmp_query_block(Error **errp)
2422 {
2423 BlockInfoList *head = NULL, *cur_item = NULL;
2424 BlockDriverState *bs;
2425
2426 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2427 BlockInfoList *info = g_malloc0(sizeof(*info));
2428
2429 info->value = g_malloc0(sizeof(*info->value));
2430 info->value->device = g_strdup(bs->device_name);
2431 info->value->type = g_strdup("unknown");
2432 info->value->locked = bdrv_dev_is_medium_locked(bs);
2433 info->value->removable = bdrv_dev_has_removable_media(bs);
2434
2435 if (bdrv_dev_has_removable_media(bs)) {
2436 info->value->has_tray_open = true;
2437 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2438 }
2439
2440 if (bdrv_iostatus_is_enabled(bs)) {
2441 info->value->has_io_status = true;
2442 info->value->io_status = bs->iostatus;
2443 }
2444
2445 if (bs->drv) {
2446 info->value->has_inserted = true;
2447 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2448 info->value->inserted->file = g_strdup(bs->filename);
2449 info->value->inserted->ro = bs->read_only;
2450 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2451 info->value->inserted->encrypted = bs->encrypted;
2452 info->value->inserted->encryption_key_missing = bdrv_key_required(bs);
2453 if (bs->backing_file[0]) {
2454 info->value->inserted->has_backing_file = true;
2455 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2456 }
2457
2458 info->value->inserted->backing_file_depth =
2459 bdrv_get_backing_file_depth(bs);
2460
2461 if (bs->io_limits_enabled) {
2462 info->value->inserted->bps =
2463 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2464 info->value->inserted->bps_rd =
2465 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2466 info->value->inserted->bps_wr =
2467 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2468 info->value->inserted->iops =
2469 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2470 info->value->inserted->iops_rd =
2471 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2472 info->value->inserted->iops_wr =
2473 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2474 }
2475 }
2476
2477 /* XXX: waiting for the qapi to support GSList */
2478 if (!cur_item) {
2479 head = cur_item = info;
2480 } else {
2481 cur_item->next = info;
2482 cur_item = info;
2483 }
2484 }
2485
2486 return head;
2487 }
2488
2489 /* Consider exposing this as a full fledged QMP command */
2490 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2491 {
2492 BlockStats *s;
2493
2494 s = g_malloc0(sizeof(*s));
2495
2496 if (bs->device_name[0]) {
2497 s->has_device = true;
2498 s->device = g_strdup(bs->device_name);
2499 }
2500
2501 s->stats = g_malloc0(sizeof(*s->stats));
2502 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2503 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2504 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2505 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2506 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2507 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2508 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2509 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2510 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2511
2512 if (bs->file) {
2513 s->has_parent = true;
2514 s->parent = qmp_query_blockstat(bs->file, NULL);
2515 }
2516
2517 return s;
2518 }
2519
2520 BlockStatsList *qmp_query_blockstats(Error **errp)
2521 {
2522 BlockStatsList *head = NULL, *cur_item = NULL;
2523 BlockDriverState *bs;
2524
2525 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2526 BlockStatsList *info = g_malloc0(sizeof(*info));
2527 info->value = qmp_query_blockstat(bs, NULL);
2528
2529 /* XXX: waiting for the qapi to support GSList */
2530 if (!cur_item) {
2531 head = cur_item = info;
2532 } else {
2533 cur_item->next = info;
2534 cur_item = info;
2535 }
2536 }
2537
2538 return head;
2539 }
2540
2541 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2542 {
2543 if (bs->backing_hd && bs->backing_hd->encrypted)
2544 return bs->backing_file;
2545 else if (bs->encrypted)
2546 return bs->filename;
2547 else
2548 return NULL;
2549 }
2550
2551 void bdrv_get_backing_filename(BlockDriverState *bs,
2552 char *filename, int filename_size)
2553 {
2554 pstrcpy(filename, filename_size, bs->backing_file);
2555 }
2556
2557 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2558 const uint8_t *buf, int nb_sectors)
2559 {
2560 BlockDriver *drv = bs->drv;
2561 if (!drv)
2562 return -ENOMEDIUM;
2563 if (!drv->bdrv_write_compressed)
2564 return -ENOTSUP;
2565 if (bdrv_check_request(bs, sector_num, nb_sectors))
2566 return -EIO;
2567
2568 if (bs->dirty_bitmap) {
2569 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2570 }
2571
2572 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2573 }
2574
2575 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2576 {
2577 BlockDriver *drv = bs->drv;
2578 if (!drv)
2579 return -ENOMEDIUM;
2580 if (!drv->bdrv_get_info)
2581 return -ENOTSUP;
2582 memset(bdi, 0, sizeof(*bdi));
2583 return drv->bdrv_get_info(bs, bdi);
2584 }
2585
2586 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2587 int64_t pos, int size)
2588 {
2589 BlockDriver *drv = bs->drv;
2590 if (!drv)
2591 return -ENOMEDIUM;
2592 if (drv->bdrv_save_vmstate)
2593 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2594 if (bs->file)
2595 return bdrv_save_vmstate(bs->file, buf, pos, size);
2596 return -ENOTSUP;
2597 }
2598
2599 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2600 int64_t pos, int size)
2601 {
2602 BlockDriver *drv = bs->drv;
2603 if (!drv)
2604 return -ENOMEDIUM;
2605 if (drv->bdrv_load_vmstate)
2606 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2607 if (bs->file)
2608 return bdrv_load_vmstate(bs->file, buf, pos, size);
2609 return -ENOTSUP;
2610 }
2611
2612 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2613 {
2614 BlockDriver *drv = bs->drv;
2615
2616 if (!drv || !drv->bdrv_debug_event) {
2617 return;
2618 }
2619
2620 drv->bdrv_debug_event(bs, event);
2621
2622 }
2623
2624 /**************************************************************/
2625 /* handling of snapshots */
2626
2627 int bdrv_can_snapshot(BlockDriverState *bs)
2628 {
2629 BlockDriver *drv = bs->drv;
2630 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2631 return 0;
2632 }
2633
2634 if (!drv->bdrv_snapshot_create) {
2635 if (bs->file != NULL) {
2636 return bdrv_can_snapshot(bs->file);
2637 }
2638 return 0;
2639 }
2640
2641 return 1;
2642 }
2643
2644 int bdrv_is_snapshot(BlockDriverState *bs)
2645 {
2646 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2647 }
2648
2649 BlockDriverState *bdrv_snapshots(void)
2650 {
2651 BlockDriverState *bs;
2652
2653 if (bs_snapshots) {
2654 return bs_snapshots;
2655 }
2656
2657 bs = NULL;
2658 while ((bs = bdrv_next(bs))) {
2659 if (bdrv_can_snapshot(bs)) {
2660 bs_snapshots = bs;
2661 return bs;
2662 }
2663 }
2664 return NULL;
2665 }
2666
2667 int bdrv_snapshot_create(BlockDriverState *bs,
2668 QEMUSnapshotInfo *sn_info)
2669 {
2670 BlockDriver *drv = bs->drv;
2671 if (!drv)
2672 return -ENOMEDIUM;
2673 if (drv->bdrv_snapshot_create)
2674 return drv->bdrv_snapshot_create(bs, sn_info);
2675 if (bs->file)
2676 return bdrv_snapshot_create(bs->file, sn_info);
2677 return -ENOTSUP;
2678 }
2679
2680 int bdrv_snapshot_goto(BlockDriverState *bs,
2681 const char *snapshot_id)
2682 {
2683 BlockDriver *drv = bs->drv;
2684 int ret, open_ret;
2685
2686 if (!drv)
2687 return -ENOMEDIUM;
2688 if (drv->bdrv_snapshot_goto)
2689 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2690
2691 if (bs->file) {
2692 drv->bdrv_close(bs);
2693 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2694 open_ret = drv->bdrv_open(bs, bs->open_flags);
2695 if (open_ret < 0) {
2696 bdrv_delete(bs->file);
2697 bs->drv = NULL;
2698 return open_ret;
2699 }
2700 return ret;
2701 }
2702
2703 return -ENOTSUP;
2704 }
2705
2706 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2707 {
2708 BlockDriver *drv = bs->drv;
2709 if (!drv)
2710 return -ENOMEDIUM;
2711 if (drv->bdrv_snapshot_delete)
2712 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2713 if (bs->file)
2714 return bdrv_snapshot_delete(bs->file, snapshot_id);
2715 return -ENOTSUP;
2716 }
2717
2718 int bdrv_snapshot_list(BlockDriverState *bs,
2719 QEMUSnapshotInfo **psn_info)
2720 {
2721 BlockDriver *drv = bs->drv;
2722 if (!drv)
2723 return -ENOMEDIUM;
2724 if (drv->bdrv_snapshot_list)
2725 return drv->bdrv_snapshot_list(bs, psn_info);
2726 if (bs->file)
2727 return bdrv_snapshot_list(bs->file, psn_info);
2728 return -ENOTSUP;
2729 }
2730
2731 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2732 const char *snapshot_name)
2733 {
2734 BlockDriver *drv = bs->drv;
2735 if (!drv) {
2736 return -ENOMEDIUM;
2737 }
2738 if (!bs->read_only) {
2739 return -EINVAL;
2740 }
2741 if (drv->bdrv_snapshot_load_tmp) {
2742 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2743 }
2744 return -ENOTSUP;
2745 }
2746
2747 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2748 const char *backing_file)
2749 {
2750 if (!bs->drv) {
2751 return NULL;
2752 }
2753
2754 if (bs->backing_hd) {
2755 if (strcmp(bs->backing_file, backing_file) == 0) {
2756 return bs->backing_hd;
2757 } else {
2758 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2759 }
2760 }
2761
2762 return NULL;
2763 }
2764
2765 int bdrv_get_backing_file_depth(BlockDriverState *bs)
2766 {
2767 if (!bs->drv) {
2768 return 0;
2769 }
2770
2771 if (!bs->backing_hd) {
2772 return 0;
2773 }
2774
2775 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
2776 }
2777
2778 #define NB_SUFFIXES 4
2779
2780 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2781 {
2782 static const char suffixes[NB_SUFFIXES] = "KMGT";
2783 int64_t base;
2784 int i;
2785
2786 if (size <= 999) {
2787 snprintf(buf, buf_size, "%" PRId64, size);
2788 } else {
2789 base = 1024;
2790 for(i = 0; i < NB_SUFFIXES; i++) {
2791 if (size < (10 * base)) {
2792 snprintf(buf, buf_size, "%0.1f%c",
2793 (double)size / base,
2794 suffixes[i]);
2795 break;
2796 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2797 snprintf(buf, buf_size, "%" PRId64 "%c",
2798 ((size + (base >> 1)) / base),
2799 suffixes[i]);
2800 break;
2801 }
2802 base = base * 1024;
2803 }
2804 }
2805 return buf;
2806 }
2807
2808 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2809 {
2810 char buf1[128], date_buf[128], clock_buf[128];
2811 #ifdef _WIN32
2812 struct tm *ptm;
2813 #else
2814 struct tm tm;
2815 #endif
2816 time_t ti;
2817 int64_t secs;
2818
2819 if (!sn) {
2820 snprintf(buf, buf_size,
2821 "%-10s%-20s%7s%20s%15s",
2822 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2823 } else {
2824 ti = sn->date_sec;
2825 #ifdef _WIN32
2826 ptm = localtime(&ti);
2827 strftime(date_buf, sizeof(date_buf),
2828 "%Y-%m-%d %H:%M:%S", ptm);
2829 #else
2830 localtime_r(&ti, &tm);
2831 strftime(date_buf, sizeof(date_buf),
2832 "%Y-%m-%d %H:%M:%S", &tm);
2833 #endif
2834 secs = sn->vm_clock_nsec / 1000000000;
2835 snprintf(clock_buf, sizeof(clock_buf),
2836 "%02d:%02d:%02d.%03d",
2837 (int)(secs / 3600),
2838 (int)((secs / 60) % 60),
2839 (int)(secs % 60),
2840 (int)((sn->vm_clock_nsec / 1000000) % 1000));
2841 snprintf(buf, buf_size,
2842 "%-10s%-20s%7s%20s%15s",
2843 sn->id_str, sn->name,
2844 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2845 date_buf,
2846 clock_buf);
2847 }
2848 return buf;
2849 }
2850
2851 /**************************************************************/
2852 /* async I/Os */
2853
2854 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2855 QEMUIOVector *qiov, int nb_sectors,
2856 BlockDriverCompletionFunc *cb, void *opaque)
2857 {
2858 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2859
2860 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2861 cb, opaque, false);
2862 }
2863
2864 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2865 QEMUIOVector *qiov, int nb_sectors,
2866 BlockDriverCompletionFunc *cb, void *opaque)
2867 {
2868 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2869
2870 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2871 cb, opaque, true);
2872 }
2873
2874
2875 typedef struct MultiwriteCB {
2876 int error;
2877 int num_requests;
2878 int num_callbacks;
2879 struct {
2880 BlockDriverCompletionFunc *cb;
2881 void *opaque;
2882 QEMUIOVector *free_qiov;
2883 } callbacks[];
2884 } MultiwriteCB;
2885
2886 static void multiwrite_user_cb(MultiwriteCB *mcb)
2887 {
2888 int i;
2889
2890 for (i = 0; i < mcb->num_callbacks; i++) {
2891 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
2892 if (mcb->callbacks[i].free_qiov) {
2893 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
2894 }
2895 g_free(mcb->callbacks[i].free_qiov);
2896 }
2897 }
2898
2899 static void multiwrite_cb(void *opaque, int ret)
2900 {
2901 MultiwriteCB *mcb = opaque;
2902
2903 trace_multiwrite_cb(mcb, ret);
2904
2905 if (ret < 0 && !mcb->error) {
2906 mcb->error = ret;
2907 }
2908
2909 mcb->num_requests--;
2910 if (mcb->num_requests == 0) {
2911 multiwrite_user_cb(mcb);
2912 g_free(mcb);
2913 }
2914 }
2915
2916 static int multiwrite_req_compare(const void *a, const void *b)
2917 {
2918 const BlockRequest *req1 = a, *req2 = b;
2919
2920 /*
2921 * Note that we can't simply subtract req2->sector from req1->sector
2922 * here as that could overflow the return value.
2923 */
2924 if (req1->sector > req2->sector) {
2925 return 1;
2926 } else if (req1->sector < req2->sector) {
2927 return -1;
2928 } else {
2929 return 0;
2930 }
2931 }
2932
2933 /*
2934 * Takes a bunch of requests and tries to merge them. Returns the number of
2935 * requests that remain after merging.
2936 */
2937 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
2938 int num_reqs, MultiwriteCB *mcb)
2939 {
2940 int i, outidx;
2941
2942 // Sort requests by start sector
2943 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
2944
2945 // Check if adjacent requests touch the same clusters. If so, combine them,
2946 // filling up gaps with zero sectors.
2947 outidx = 0;
2948 for (i = 1; i < num_reqs; i++) {
2949 int merge = 0;
2950 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
2951
2952 // Handle exactly sequential writes and overlapping writes.
2953 if (reqs[i].sector <= oldreq_last) {
2954 merge = 1;
2955 }
2956
2957 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
2958 merge = 0;
2959 }
2960
2961 if (merge) {
2962 size_t size;
2963 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
2964 qemu_iovec_init(qiov,
2965 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
2966
2967 // Add the first request to the merged one. If the requests are
2968 // overlapping, drop the last sectors of the first request.
2969 size = (reqs[i].sector - reqs[outidx].sector) << 9;
2970 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
2971
2972 // We should need to add any zeros between the two requests
2973 assert (reqs[i].sector <= oldreq_last);
2974
2975 // Add the second request
2976 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
2977
2978 reqs[outidx].nb_sectors = qiov->size >> 9;
2979 reqs[outidx].qiov = qiov;
2980
2981 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
2982 } else {
2983 outidx++;
2984 reqs[outidx].sector = reqs[i].sector;
2985 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
2986 reqs[outidx].qiov = reqs[i].qiov;
2987 }
2988 }
2989
2990 return outidx + 1;
2991 }
2992
2993 /*
2994 * Submit multiple AIO write requests at once.
2995 *
2996 * On success, the function returns 0 and all requests in the reqs array have
2997 * been submitted. In error case this function returns -1, and any of the
2998 * requests may or may not be submitted yet. In particular, this means that the
2999 * callback will be called for some of the requests, for others it won't. The
3000 * caller must check the error field of the BlockRequest to wait for the right
3001 * callbacks (if error != 0, no callback will be called).
3002 *
3003 * The implementation may modify the contents of the reqs array, e.g. to merge
3004 * requests. However, the fields opaque and error are left unmodified as they
3005 * are used to signal failure for a single request to the caller.
3006 */
3007 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3008 {
3009 MultiwriteCB *mcb;
3010 int i;
3011
3012 /* don't submit writes if we don't have a medium */
3013 if (bs->drv == NULL) {
3014 for (i = 0; i < num_reqs; i++) {
3015 reqs[i].error = -ENOMEDIUM;
3016 }
3017 return -1;
3018 }
3019
3020 if (num_reqs == 0) {
3021 return 0;
3022 }
3023
3024 // Create MultiwriteCB structure
3025 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3026 mcb->num_requests = 0;
3027 mcb->num_callbacks = num_reqs;
3028
3029 for (i = 0; i < num_reqs; i++) {
3030 mcb->callbacks[i].cb = reqs[i].cb;
3031 mcb->callbacks[i].opaque = reqs[i].opaque;
3032 }
3033
3034 // Check for mergable requests
3035 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3036
3037 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3038
3039 /* Run the aio requests. */
3040 mcb->num_requests = num_reqs;
3041 for (i = 0; i < num_reqs; i++) {
3042 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3043 reqs[i].nb_sectors, multiwrite_cb, mcb);
3044 }
3045
3046 return 0;
3047 }
3048
3049 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3050 {
3051 acb->pool->cancel(acb);
3052 }
3053
3054 /* block I/O throttling */
3055 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3056 bool is_write, double elapsed_time, uint64_t *wait)
3057 {
3058 uint64_t bps_limit = 0;
3059 double bytes_limit, bytes_base, bytes_res;
3060 double slice_time, wait_time;
3061
3062 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3063 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3064 } else if (bs->io_limits.bps[is_write]) {
3065 bps_limit = bs->io_limits.bps[is_write];
3066 } else {
3067 if (wait) {
3068 *wait = 0;
3069 }
3070
3071 return false;
3072 }
3073
3074 slice_time = bs->slice_end - bs->slice_start;
3075 slice_time /= (NANOSECONDS_PER_SECOND);
3076 bytes_limit = bps_limit * slice_time;
3077 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3078 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3079 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3080 }
3081
3082 /* bytes_base: the bytes of data which have been read/written; and
3083 * it is obtained from the history statistic info.
3084 * bytes_res: the remaining bytes of data which need to be read/written.
3085 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3086 * the total time for completing reading/writting all data.
3087 */
3088 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3089
3090 if (bytes_base + bytes_res <= bytes_limit) {
3091 if (wait) {
3092 *wait = 0;
3093 }
3094
3095 return false;
3096 }
3097
3098 /* Calc approx time to dispatch */
3099 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3100
3101 /* When the I/O rate at runtime exceeds the limits,
3102 * bs->slice_end need to be extended in order that the current statistic
3103 * info can be kept until the timer fire, so it is increased and tuned
3104 * based on the result of experiment.
3105 */
3106 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3107 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3108 if (wait) {
3109 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3110 }
3111
3112 return true;
3113 }
3114
3115 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3116 double elapsed_time, uint64_t *wait)
3117 {
3118 uint64_t iops_limit = 0;
3119 double ios_limit, ios_base;
3120 double slice_time, wait_time;
3121
3122 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3123 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3124 } else if (bs->io_limits.iops[is_write]) {
3125 iops_limit = bs->io_limits.iops[is_write];
3126 } else {
3127 if (wait) {
3128 *wait = 0;
3129 }
3130
3131 return false;
3132 }
3133
3134 slice_time = bs->slice_end - bs->slice_start;
3135 slice_time /= (NANOSECONDS_PER_SECOND);
3136 ios_limit = iops_limit * slice_time;
3137 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3138 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3139 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3140 }
3141
3142 if (ios_base + 1 <= ios_limit) {
3143 if (wait) {
3144 *wait = 0;
3145 }
3146
3147 return false;
3148 }
3149
3150 /* Calc approx time to dispatch */
3151 wait_time = (ios_base + 1) / iops_limit;
3152 if (wait_time > elapsed_time) {
3153 wait_time = wait_time - elapsed_time;
3154 } else {
3155 wait_time = 0;
3156 }
3157
3158 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3159 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3160 if (wait) {
3161 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3162 }
3163
3164 return true;
3165 }
3166
3167 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3168 bool is_write, int64_t *wait)
3169 {
3170 int64_t now, max_wait;
3171 uint64_t bps_wait = 0, iops_wait = 0;
3172 double elapsed_time;
3173 int bps_ret, iops_ret;
3174
3175 now = qemu_get_clock_ns(vm_clock);
3176 if ((bs->slice_start < now)
3177 && (bs->slice_end > now)) {
3178 bs->slice_end = now + bs->slice_time;
3179 } else {
3180 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3181 bs->slice_start = now;
3182 bs->slice_end = now + bs->slice_time;
3183
3184 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3185 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3186
3187 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3188 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3189 }
3190
3191 elapsed_time = now - bs->slice_start;
3192 elapsed_time /= (NANOSECONDS_PER_SECOND);
3193
3194 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3195 is_write, elapsed_time, &bps_wait);
3196 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3197 elapsed_time, &iops_wait);
3198 if (bps_ret || iops_ret) {
3199 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3200 if (wait) {
3201 *wait = max_wait;
3202 }
3203
3204 now = qemu_get_clock_ns(vm_clock);
3205 if (bs->slice_end < now + max_wait) {
3206 bs->slice_end = now + max_wait;
3207 }
3208
3209 return true;
3210 }
3211
3212 if (wait) {
3213 *wait = 0;
3214 }
3215
3216 return false;
3217 }
3218
3219 /**************************************************************/
3220 /* async block device emulation */
3221
3222 typedef struct BlockDriverAIOCBSync {
3223 BlockDriverAIOCB common;
3224 QEMUBH *bh;
3225 int ret;
3226 /* vector translation state */
3227 QEMUIOVector *qiov;
3228 uint8_t *bounce;
3229 int is_write;
3230 } BlockDriverAIOCBSync;
3231
3232 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3233 {
3234 BlockDriverAIOCBSync *acb =
3235 container_of(blockacb, BlockDriverAIOCBSync, common);
3236 qemu_bh_delete(acb->bh);
3237 acb->bh = NULL;
3238 qemu_aio_release(acb);
3239 }
3240
3241 static AIOPool bdrv_em_aio_pool = {
3242 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3243 .cancel = bdrv_aio_cancel_em,
3244 };
3245
3246 static void bdrv_aio_bh_cb(void *opaque)
3247 {
3248 BlockDriverAIOCBSync *acb = opaque;
3249
3250 if (!acb->is_write)
3251 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3252 qemu_vfree(acb->bounce);
3253 acb->common.cb(acb->common.opaque, acb->ret);
3254 qemu_bh_delete(acb->bh);
3255 acb->bh = NULL;
3256 qemu_aio_release(acb);
3257 }
3258
3259 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3260 int64_t sector_num,
3261 QEMUIOVector *qiov,
3262 int nb_sectors,
3263 BlockDriverCompletionFunc *cb,
3264 void *opaque,
3265 int is_write)
3266
3267 {
3268 BlockDriverAIOCBSync *acb;
3269
3270 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3271 acb->is_write = is_write;
3272 acb->qiov = qiov;
3273 acb->bounce = qemu_blockalign(bs, qiov->size);
3274 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3275
3276 if (is_write) {
3277 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3278 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3279 } else {
3280 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3281 }
3282
3283 qemu_bh_schedule(acb->bh);
3284
3285 return &acb->common;
3286 }
3287
3288 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3289 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3290 BlockDriverCompletionFunc *cb, void *opaque)
3291 {
3292 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3293 }
3294
3295 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3296 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3297 BlockDriverCompletionFunc *cb, void *opaque)
3298 {
3299 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3300 }
3301
3302
3303 typedef struct BlockDriverAIOCBCoroutine {
3304 BlockDriverAIOCB common;
3305 BlockRequest req;
3306 bool is_write;
3307 QEMUBH* bh;
3308 } BlockDriverAIOCBCoroutine;
3309
3310 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3311 {
3312 qemu_aio_flush();
3313 }
3314
3315 static AIOPool bdrv_em_co_aio_pool = {
3316 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3317 .cancel = bdrv_aio_co_cancel_em,
3318 };
3319
3320 static void bdrv_co_em_bh(void *opaque)
3321 {
3322 BlockDriverAIOCBCoroutine *acb = opaque;
3323
3324 acb->common.cb(acb->common.opaque, acb->req.error);
3325 qemu_bh_delete(acb->bh);
3326 qemu_aio_release(acb);
3327 }
3328
3329 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3330 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3331 {
3332 BlockDriverAIOCBCoroutine *acb = opaque;
3333 BlockDriverState *bs = acb->common.bs;
3334
3335 if (!acb->is_write) {
3336 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3337 acb->req.nb_sectors, acb->req.qiov, 0);
3338 } else {
3339 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3340 acb->req.nb_sectors, acb->req.qiov, 0);
3341 }
3342
3343 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3344 qemu_bh_schedule(acb->bh);
3345 }
3346
3347 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3348 int64_t sector_num,
3349 QEMUIOVector *qiov,
3350 int nb_sectors,
3351 BlockDriverCompletionFunc *cb,
3352 void *opaque,
3353 bool is_write)
3354 {
3355 Coroutine *co;
3356 BlockDriverAIOCBCoroutine *acb;
3357
3358 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3359 acb->req.sector = sector_num;
3360 acb->req.nb_sectors = nb_sectors;
3361 acb->req.qiov = qiov;
3362 acb->is_write = is_write;
3363
3364 co = qemu_coroutine_create(bdrv_co_do_rw);
3365 qemu_coroutine_enter(co, acb);
3366
3367 return &acb->common;
3368 }
3369
3370 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3371 {
3372 BlockDriverAIOCBCoroutine *acb = opaque;
3373 BlockDriverState *bs = acb->common.bs;
3374
3375 acb->req.error = bdrv_co_flush(bs);
3376 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3377 qemu_bh_schedule(acb->bh);
3378 }
3379
3380 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3381 BlockDriverCompletionFunc *cb, void *opaque)
3382 {
3383 trace_bdrv_aio_flush(bs, opaque);
3384
3385 Coroutine *co;
3386 BlockDriverAIOCBCoroutine *acb;
3387
3388 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3389 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3390 qemu_coroutine_enter(co, acb);
3391
3392 return &acb->common;
3393 }
3394
3395 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3396 {
3397 BlockDriverAIOCBCoroutine *acb = opaque;
3398 BlockDriverState *bs = acb->common.bs;
3399
3400 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3401 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3402 qemu_bh_schedule(acb->bh);
3403 }
3404
3405 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3406 int64_t sector_num, int nb_sectors,
3407 BlockDriverCompletionFunc *cb, void *opaque)
3408 {
3409 Coroutine *co;
3410 BlockDriverAIOCBCoroutine *acb;
3411
3412 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3413
3414 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3415 acb->req.sector = sector_num;
3416 acb->req.nb_sectors = nb_sectors;
3417 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3418 qemu_coroutine_enter(co, acb);
3419
3420 return &acb->common;
3421 }
3422
3423 void bdrv_init(void)
3424 {
3425 module_call_init(MODULE_INIT_BLOCK);
3426 }
3427
3428 void bdrv_init_with_whitelist(void)
3429 {
3430 use_bdrv_whitelist = 1;
3431 bdrv_init();
3432 }
3433
3434 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3435 BlockDriverCompletionFunc *cb, void *opaque)
3436 {
3437 BlockDriverAIOCB *acb;
3438
3439 if (pool->free_aiocb) {
3440 acb = pool->free_aiocb;
3441 pool->free_aiocb = acb->next;
3442 } else {
3443 acb = g_malloc0(pool->aiocb_size);
3444 acb->pool = pool;
3445 }
3446 acb->bs = bs;
3447 acb->cb = cb;
3448 acb->opaque = opaque;
3449 return acb;
3450 }
3451
3452 void qemu_aio_release(void *p)
3453 {
3454 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3455 AIOPool *pool = acb->pool;
3456 acb->next = pool->free_aiocb;
3457 pool->free_aiocb = acb;
3458 }
3459
3460 /**************************************************************/
3461 /* Coroutine block device emulation */
3462
3463 typedef struct CoroutineIOCompletion {
3464 Coroutine *coroutine;
3465 int ret;
3466 } CoroutineIOCompletion;
3467
3468 static void bdrv_co_io_em_complete(void *opaque, int ret)
3469 {
3470 CoroutineIOCompletion *co = opaque;
3471
3472 co->ret = ret;
3473 qemu_coroutine_enter(co->coroutine, NULL);
3474 }
3475
3476 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3477 int nb_sectors, QEMUIOVector *iov,
3478 bool is_write)
3479 {
3480 CoroutineIOCompletion co = {
3481 .coroutine = qemu_coroutine_self(),
3482 };
3483 BlockDriverAIOCB *acb;
3484
3485 if (is_write) {
3486 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3487 bdrv_co_io_em_complete, &co);
3488 } else {
3489 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3490 bdrv_co_io_em_complete, &co);
3491 }
3492
3493 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3494 if (!acb) {
3495 return -EIO;
3496 }
3497 qemu_coroutine_yield();
3498
3499 return co.ret;
3500 }
3501
3502 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3503 int64_t sector_num, int nb_sectors,
3504 QEMUIOVector *iov)
3505 {
3506 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3507 }
3508
3509 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3510 int64_t sector_num, int nb_sectors,
3511 QEMUIOVector *iov)
3512 {
3513 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3514 }
3515
3516 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3517 {
3518 RwCo *rwco = opaque;
3519
3520 rwco->ret = bdrv_co_flush(rwco->bs);
3521 }
3522
3523 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3524 {
3525 int ret;
3526
3527 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3528 return 0;
3529 }
3530
3531 /* Write back cached data to the OS even with cache=unsafe */
3532 if (bs->drv->bdrv_co_flush_to_os) {
3533 ret = bs->drv->bdrv_co_flush_to_os(bs);
3534 if (ret < 0) {
3535 return ret;
3536 }
3537 }
3538
3539 /* But don't actually force it to the disk with cache=unsafe */
3540 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3541 goto flush_parent;
3542 }
3543
3544 if (bs->drv->bdrv_co_flush_to_disk) {
3545 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3546 } else if (bs->drv->bdrv_aio_flush) {
3547 BlockDriverAIOCB *acb;
3548 CoroutineIOCompletion co = {
3549 .coroutine = qemu_coroutine_self(),
3550 };
3551
3552 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3553 if (acb == NULL) {
3554 ret = -EIO;
3555 } else {
3556 qemu_coroutine_yield();
3557 ret = co.ret;
3558 }
3559 } else {
3560 /*
3561 * Some block drivers always operate in either writethrough or unsafe
3562 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3563 * know how the server works (because the behaviour is hardcoded or
3564 * depends on server-side configuration), so we can't ensure that
3565 * everything is safe on disk. Returning an error doesn't work because
3566 * that would break guests even if the server operates in writethrough
3567 * mode.
3568 *
3569 * Let's hope the user knows what he's doing.
3570 */
3571 ret = 0;
3572 }
3573 if (ret < 0) {
3574 return ret;
3575 }
3576
3577 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3578 * in the case of cache=unsafe, so there are no useless flushes.
3579 */
3580 flush_parent:
3581 return bdrv_co_flush(bs->file);
3582 }
3583
3584 void bdrv_invalidate_cache(BlockDriverState *bs)
3585 {
3586 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3587 bs->drv->bdrv_invalidate_cache(bs);
3588 }
3589 }
3590
3591 void bdrv_invalidate_cache_all(void)
3592 {
3593 BlockDriverState *bs;
3594
3595 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3596 bdrv_invalidate_cache(bs);
3597 }
3598 }
3599
3600 void bdrv_clear_incoming_migration_all(void)
3601 {
3602 BlockDriverState *bs;
3603
3604 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3605 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3606 }
3607 }
3608
3609 int bdrv_flush(BlockDriverState *bs)
3610 {
3611 Coroutine *co;
3612 RwCo rwco = {
3613 .bs = bs,
3614 .ret = NOT_DONE,
3615 };
3616
3617 if (qemu_in_coroutine()) {
3618 /* Fast-path if already in coroutine context */
3619 bdrv_flush_co_entry(&rwco);
3620 } else {
3621 co = qemu_coroutine_create(bdrv_flush_co_entry);
3622 qemu_coroutine_enter(co, &rwco);
3623 while (rwco.ret == NOT_DONE) {
3624 qemu_aio_wait();
3625 }
3626 }
3627
3628 return rwco.ret;
3629 }
3630
3631 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3632 {
3633 RwCo *rwco = opaque;
3634
3635 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3636 }
3637
3638 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3639 int nb_sectors)
3640 {
3641 if (!bs->drv) {
3642 return -ENOMEDIUM;
3643 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3644 return -EIO;
3645 } else if (bs->read_only) {
3646 return -EROFS;
3647 } else if (bs->drv->bdrv_co_discard) {
3648 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3649 } else if (bs->drv->bdrv_aio_discard) {
3650 BlockDriverAIOCB *acb;
3651 CoroutineIOCompletion co = {
3652 .coroutine = qemu_coroutine_self(),
3653 };
3654
3655 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3656 bdrv_co_io_em_complete, &co);
3657 if (acb == NULL) {
3658 return -EIO;
3659 } else {
3660 qemu_coroutine_yield();
3661 return co.ret;
3662 }
3663 } else {
3664 return 0;
3665 }
3666 }
3667
3668 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3669 {
3670 Coroutine *co;
3671 RwCo rwco = {
3672 .bs = bs,
3673 .sector_num = sector_num,
3674 .nb_sectors = nb_sectors,
3675 .ret = NOT_DONE,
3676 };
3677
3678 if (qemu_in_coroutine()) {
3679 /* Fast-path if already in coroutine context */
3680 bdrv_discard_co_entry(&rwco);
3681 } else {
3682 co = qemu_coroutine_create(bdrv_discard_co_entry);
3683 qemu_coroutine_enter(co, &rwco);
3684 while (rwco.ret == NOT_DONE) {
3685 qemu_aio_wait();
3686 }
3687 }
3688
3689 return rwco.ret;
3690 }
3691
3692 /**************************************************************/
3693 /* removable device support */
3694
3695 /**
3696 * Return TRUE if the media is present
3697 */
3698 int bdrv_is_inserted(BlockDriverState *bs)
3699 {
3700 BlockDriver *drv = bs->drv;
3701
3702 if (!drv)
3703 return 0;
3704 if (!drv->bdrv_is_inserted)
3705 return 1;
3706 return drv->bdrv_is_inserted(bs);
3707 }
3708
3709 /**
3710 * Return whether the media changed since the last call to this
3711 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3712 */
3713 int bdrv_media_changed(BlockDriverState *bs)
3714 {
3715 BlockDriver *drv = bs->drv;
3716
3717 if (drv && drv->bdrv_media_changed) {
3718 return drv->bdrv_media_changed(bs);
3719 }
3720 return -ENOTSUP;
3721 }
3722
3723 /**
3724 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3725 */
3726 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3727 {
3728 BlockDriver *drv = bs->drv;
3729
3730 if (drv && drv->bdrv_eject) {
3731 drv->bdrv_eject(bs, eject_flag);
3732 }
3733
3734 if (bs->device_name[0] != '\0') {
3735 bdrv_emit_qmp_eject_event(bs, eject_flag);
3736 }
3737 }
3738
3739 /**
3740 * Lock or unlock the media (if it is locked, the user won't be able
3741 * to eject it manually).
3742 */
3743 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3744 {
3745 BlockDriver *drv = bs->drv;
3746
3747 trace_bdrv_lock_medium(bs, locked);
3748
3749 if (drv && drv->bdrv_lock_medium) {
3750 drv->bdrv_lock_medium(bs, locked);
3751 }
3752 }
3753
3754 /* needed for generic scsi interface */
3755
3756 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3757 {
3758 BlockDriver *drv = bs->drv;
3759
3760 if (drv && drv->bdrv_ioctl)
3761 return drv->bdrv_ioctl(bs, req, buf);
3762 return -ENOTSUP;
3763 }
3764
3765 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3766 unsigned long int req, void *buf,
3767 BlockDriverCompletionFunc *cb, void *opaque)
3768 {
3769 BlockDriver *drv = bs->drv;
3770
3771 if (drv && drv->bdrv_aio_ioctl)
3772 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3773 return NULL;
3774 }
3775
3776 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3777 {
3778 bs->buffer_alignment = align;
3779 }
3780
3781 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3782 {
3783 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3784 }
3785
3786 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3787 {
3788 int64_t bitmap_size;
3789
3790 bs->dirty_count = 0;
3791 if (enable) {
3792 if (!bs->dirty_bitmap) {
3793 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3794 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
3795 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
3796
3797 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
3798 }
3799 } else {
3800 if (bs->dirty_bitmap) {
3801 g_free(bs->dirty_bitmap);
3802 bs->dirty_bitmap = NULL;
3803 }
3804 }
3805 }
3806
3807 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3808 {
3809 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3810
3811 if (bs->dirty_bitmap &&
3812 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3813 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3814 (1UL << (chunk % (sizeof(unsigned long) * 8))));
3815 } else {
3816 return 0;
3817 }
3818 }
3819
3820 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3821 int nr_sectors)
3822 {
3823 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3824 }
3825
3826 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3827 {
3828 return bs->dirty_count;
3829 }
3830
3831 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3832 {
3833 assert(bs->in_use != in_use);
3834 bs->in_use = in_use;
3835 }
3836
3837 int bdrv_in_use(BlockDriverState *bs)
3838 {
3839 return bs->in_use;
3840 }
3841
3842 void bdrv_iostatus_enable(BlockDriverState *bs)
3843 {
3844 bs->iostatus_enabled = true;
3845 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3846 }
3847
3848 /* The I/O status is only enabled if the drive explicitly
3849 * enables it _and_ the VM is configured to stop on errors */
3850 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3851 {
3852 return (bs->iostatus_enabled &&
3853 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3854 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
3855 bs->on_read_error == BLOCK_ERR_STOP_ANY));
3856 }
3857
3858 void bdrv_iostatus_disable(BlockDriverState *bs)
3859 {
3860 bs->iostatus_enabled = false;
3861 }
3862
3863 void bdrv_iostatus_reset(BlockDriverState *bs)
3864 {
3865 if (bdrv_iostatus_is_enabled(bs)) {
3866 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3867 }
3868 }
3869
3870 /* XXX: Today this is set by device models because it makes the implementation
3871 quite simple. However, the block layer knows about the error, so it's
3872 possible to implement this without device models being involved */
3873 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3874 {
3875 if (bdrv_iostatus_is_enabled(bs) &&
3876 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3877 assert(error >= 0);
3878 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
3879 BLOCK_DEVICE_IO_STATUS_FAILED;
3880 }
3881 }
3882
3883 void
3884 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
3885 enum BlockAcctType type)
3886 {
3887 assert(type < BDRV_MAX_IOTYPE);
3888
3889 cookie->bytes = bytes;
3890 cookie->start_time_ns = get_clock();
3891 cookie->type = type;
3892 }
3893
3894 void
3895 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
3896 {
3897 assert(cookie->type < BDRV_MAX_IOTYPE);
3898
3899 bs->nr_bytes[cookie->type] += cookie->bytes;
3900 bs->nr_ops[cookie->type]++;
3901 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
3902 }
3903
3904 int bdrv_img_create(const char *filename, const char *fmt,
3905 const char *base_filename, const char *base_fmt,
3906 char *options, uint64_t img_size, int flags)
3907 {
3908 QEMUOptionParameter *param = NULL, *create_options = NULL;
3909 QEMUOptionParameter *backing_fmt, *backing_file, *size;
3910 BlockDriverState *bs = NULL;
3911 BlockDriver *drv, *proto_drv;
3912 BlockDriver *backing_drv = NULL;
3913 int ret = 0;
3914
3915 /* Find driver and parse its options */
3916 drv = bdrv_find_format(fmt);
3917 if (!drv) {
3918 error_report("Unknown file format '%s'", fmt);
3919 ret = -EINVAL;
3920 goto out;
3921 }
3922
3923 proto_drv = bdrv_find_protocol(filename);
3924 if (!proto_drv) {
3925 error_report("Unknown protocol '%s'", filename);
3926 ret = -EINVAL;
3927 goto out;
3928 }
3929
3930 create_options = append_option_parameters(create_options,
3931 drv->create_options);
3932 create_options = append_option_parameters(create_options,
3933 proto_drv->create_options);
3934
3935 /* Create parameter list with default values */
3936 param = parse_option_parameters("", create_options, param);
3937
3938 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
3939
3940 /* Parse -o options */
3941 if (options) {
3942 param = parse_option_parameters(options, create_options, param);
3943 if (param == NULL) {
3944 error_report("Invalid options for file format '%s'.", fmt);
3945 ret = -EINVAL;
3946 goto out;
3947 }
3948 }
3949
3950 if (base_filename) {
3951 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
3952 base_filename)) {
3953 error_report("Backing file not supported for file format '%s'",
3954 fmt);
3955 ret = -EINVAL;
3956 goto out;
3957 }
3958 }
3959
3960 if (base_fmt) {
3961 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
3962 error_report("Backing file format not supported for file "
3963 "format '%s'", fmt);
3964 ret = -EINVAL;
3965 goto out;
3966 }
3967 }
3968
3969 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
3970 if (backing_file && backing_file->value.s) {
3971 if (!strcmp(filename, backing_file->value.s)) {
3972 error_report("Error: Trying to create an image with the "
3973 "same filename as the backing file");
3974 ret = -EINVAL;
3975 goto out;
3976 }
3977 }
3978
3979 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
3980 if (backing_fmt && backing_fmt->value.s) {
3981 backing_drv = bdrv_find_format(backing_fmt->value.s);
3982 if (!backing_drv) {
3983 error_report("Unknown backing file format '%s'",
3984 backing_fmt->value.s);
3985 ret = -EINVAL;
3986 goto out;
3987 }
3988 }
3989
3990 // The size for the image must always be specified, with one exception:
3991 // If we are using a backing file, we can obtain the size from there
3992 size = get_option_parameter(param, BLOCK_OPT_SIZE);
3993 if (size && size->value.n == -1) {
3994 if (backing_file && backing_file->value.s) {
3995 uint64_t size;
3996 char buf[32];
3997 int back_flags;
3998
3999 /* backing files always opened read-only */
4000 back_flags =
4001 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4002
4003 bs = bdrv_new("");
4004
4005 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4006 if (ret < 0) {
4007 error_report("Could not open '%s'", backing_file->value.s);
4008 goto out;
4009 }
4010 bdrv_get_geometry(bs, &size);
4011 size *= 512;
4012
4013 snprintf(buf, sizeof(buf), "%" PRId64, size);
4014 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4015 } else {
4016 error_report("Image creation needs a size parameter");
4017 ret = -EINVAL;
4018 goto out;
4019 }
4020 }
4021
4022 printf("Formatting '%s', fmt=%s ", filename, fmt);
4023 print_option_parameters(param);
4024 puts("");
4025
4026 ret = bdrv_create(drv, filename, param);
4027
4028 if (ret < 0) {
4029 if (ret == -ENOTSUP) {
4030 error_report("Formatting or formatting option not supported for "
4031 "file format '%s'", fmt);
4032 } else if (ret == -EFBIG) {
4033 error_report("The image size is too large for file format '%s'",
4034 fmt);
4035 } else {
4036 error_report("%s: error while creating %s: %s", filename, fmt,
4037 strerror(-ret));
4038 }
4039 }
4040
4041 out:
4042 free_option_parameters(create_options);
4043 free_option_parameters(param);
4044
4045 if (bs) {
4046 bdrv_delete(bs);
4047 }
4048
4049 return ret;
4050 }
4051
4052 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4053 int64_t speed, BlockDriverCompletionFunc *cb,
4054 void *opaque, Error **errp)
4055 {
4056 BlockJob *job;
4057
4058 if (bs->job || bdrv_in_use(bs)) {
4059 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs));
4060 return NULL;
4061 }
4062 bdrv_set_in_use(bs, 1);
4063
4064 job = g_malloc0(job_type->instance_size);
4065 job->job_type = job_type;
4066 job->bs = bs;
4067 job->cb = cb;
4068 job->opaque = opaque;
4069 job->busy = true;
4070 bs->job = job;
4071
4072 /* Only set speed when necessary to avoid NotSupported error */
4073 if (speed != 0) {
4074 Error *local_err = NULL;
4075
4076 block_job_set_speed(job, speed, &local_err);
4077 if (error_is_set(&local_err)) {
4078 bs->job = NULL;
4079 g_free(job);
4080 bdrv_set_in_use(bs, 0);
4081 error_propagate(errp, local_err);
4082 return NULL;
4083 }
4084 }
4085 return job;
4086 }
4087
4088 void block_job_complete(BlockJob *job, int ret)
4089 {
4090 BlockDriverState *bs = job->bs;
4091
4092 assert(bs->job == job);
4093 job->cb(job->opaque, ret);
4094 bs->job = NULL;
4095 g_free(job);
4096 bdrv_set_in_use(bs, 0);
4097 }
4098
4099 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp)
4100 {
4101 Error *local_err = NULL;
4102
4103 if (!job->job_type->set_speed) {
4104 error_set(errp, QERR_NOT_SUPPORTED);
4105 return;
4106 }
4107 job->job_type->set_speed(job, speed, &local_err);
4108 if (error_is_set(&local_err)) {
4109 error_propagate(errp, local_err);
4110 return;
4111 }
4112
4113 job->speed = speed;
4114 }
4115
4116 void block_job_cancel(BlockJob *job)
4117 {
4118 job->cancelled = true;
4119 if (job->co && !job->busy) {
4120 qemu_coroutine_enter(job->co, NULL);
4121 }
4122 }
4123
4124 bool block_job_is_cancelled(BlockJob *job)
4125 {
4126 return job->cancelled;
4127 }
4128
4129 struct BlockCancelData {
4130 BlockJob *job;
4131 BlockDriverCompletionFunc *cb;
4132 void *opaque;
4133 bool cancelled;
4134 int ret;
4135 };
4136
4137 static void block_job_cancel_cb(void *opaque, int ret)
4138 {
4139 struct BlockCancelData *data = opaque;
4140
4141 data->cancelled = block_job_is_cancelled(data->job);
4142 data->ret = ret;
4143 data->cb(data->opaque, ret);
4144 }
4145
4146 int block_job_cancel_sync(BlockJob *job)
4147 {
4148 struct BlockCancelData data;
4149 BlockDriverState *bs = job->bs;
4150
4151 assert(bs->job == job);
4152
4153 /* Set up our own callback to store the result and chain to
4154 * the original callback.
4155 */
4156 data.job = job;
4157 data.cb = job->cb;
4158 data.opaque = job->opaque;
4159 data.ret = -EINPROGRESS;
4160 job->cb = block_job_cancel_cb;
4161 job->opaque = &data;
4162 block_job_cancel(job);
4163 while (data.ret == -EINPROGRESS) {
4164 qemu_aio_wait();
4165 }
4166 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret;
4167 }
4168
4169 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns)
4170 {
4171 /* Check cancellation *before* setting busy = false, too! */
4172 if (!block_job_is_cancelled(job)) {
4173 job->busy = false;
4174 co_sleep_ns(clock, ns);
4175 job->busy = true;
4176 }
4177 }