]> git.proxmox.com Git - qemu.git/blob - block.c
block: add a function to clear incoming live migration flags
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83
84 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
85 bool is_write, double elapsed_time, uint64_t *wait);
86 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
87 double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
89 bool is_write, int64_t *wait);
90
91 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
92 QTAILQ_HEAD_INITIALIZER(bdrv_states);
93
94 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
95 QLIST_HEAD_INITIALIZER(bdrv_drivers);
96
97 /* The device to use for VM snapshots */
98 static BlockDriverState *bs_snapshots;
99
100 /* If non-zero, use only whitelisted block drivers */
101 static int use_bdrv_whitelist;
102
103 #ifdef _WIN32
104 static int is_windows_drive_prefix(const char *filename)
105 {
106 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
107 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
108 filename[1] == ':');
109 }
110
111 int is_windows_drive(const char *filename)
112 {
113 if (is_windows_drive_prefix(filename) &&
114 filename[2] == '\0')
115 return 1;
116 if (strstart(filename, "\\\\.\\", NULL) ||
117 strstart(filename, "//./", NULL))
118 return 1;
119 return 0;
120 }
121 #endif
122
123 /* throttling disk I/O limits */
124 void bdrv_io_limits_disable(BlockDriverState *bs)
125 {
126 bs->io_limits_enabled = false;
127
128 while (qemu_co_queue_next(&bs->throttled_reqs));
129
130 if (bs->block_timer) {
131 qemu_del_timer(bs->block_timer);
132 qemu_free_timer(bs->block_timer);
133 bs->block_timer = NULL;
134 }
135
136 bs->slice_start = 0;
137 bs->slice_end = 0;
138 bs->slice_time = 0;
139 memset(&bs->io_base, 0, sizeof(bs->io_base));
140 }
141
142 static void bdrv_block_timer(void *opaque)
143 {
144 BlockDriverState *bs = opaque;
145
146 qemu_co_queue_next(&bs->throttled_reqs);
147 }
148
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151 qemu_co_queue_init(&bs->throttled_reqs);
152 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
154 bs->slice_start = qemu_get_clock_ns(vm_clock);
155 bs->slice_end = bs->slice_start + bs->slice_time;
156 memset(&bs->io_base, 0, sizeof(bs->io_base));
157 bs->io_limits_enabled = true;
158 }
159
160 bool bdrv_io_limits_enabled(BlockDriverState *bs)
161 {
162 BlockIOLimit *io_limits = &bs->io_limits;
163 return io_limits->bps[BLOCK_IO_LIMIT_READ]
164 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
165 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
166 || io_limits->iops[BLOCK_IO_LIMIT_READ]
167 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
168 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
169 }
170
171 static void bdrv_io_limits_intercept(BlockDriverState *bs,
172 bool is_write, int nb_sectors)
173 {
174 int64_t wait_time = -1;
175
176 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
177 qemu_co_queue_wait(&bs->throttled_reqs);
178 }
179
180 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
181 * throttled requests will not be dequeued until the current request is
182 * allowed to be serviced. So if the current request still exceeds the
183 * limits, it will be inserted to the head. All requests followed it will
184 * be still in throttled_reqs queue.
185 */
186
187 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
188 qemu_mod_timer(bs->block_timer,
189 wait_time + qemu_get_clock_ns(vm_clock));
190 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
191 }
192
193 qemu_co_queue_next(&bs->throttled_reqs);
194 }
195
196 /* check if the path starts with "<protocol>:" */
197 static int path_has_protocol(const char *path)
198 {
199 #ifdef _WIN32
200 if (is_windows_drive(path) ||
201 is_windows_drive_prefix(path)) {
202 return 0;
203 }
204 #endif
205
206 return strchr(path, ':') != NULL;
207 }
208
209 int path_is_absolute(const char *path)
210 {
211 const char *p;
212 #ifdef _WIN32
213 /* specific case for names like: "\\.\d:" */
214 if (*path == '/' || *path == '\\')
215 return 1;
216 #endif
217 p = strchr(path, ':');
218 if (p)
219 p++;
220 else
221 p = path;
222 #ifdef _WIN32
223 return (*p == '/' || *p == '\\');
224 #else
225 return (*p == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_register(BlockDriver *bdrv)
274 {
275 /* Block drivers without coroutine functions need emulation */
276 if (!bdrv->bdrv_co_readv) {
277 bdrv->bdrv_co_readv = bdrv_co_readv_em;
278 bdrv->bdrv_co_writev = bdrv_co_writev_em;
279
280 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
281 * the block driver lacks aio we need to emulate that too.
282 */
283 if (!bdrv->bdrv_aio_readv) {
284 /* add AIO emulation layer */
285 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
286 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
287 }
288 }
289
290 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
291 }
292
293 /* create a new block device (by default it is empty) */
294 BlockDriverState *bdrv_new(const char *device_name)
295 {
296 BlockDriverState *bs;
297
298 bs = g_malloc0(sizeof(BlockDriverState));
299 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
300 if (device_name[0] != '\0') {
301 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
302 }
303 bdrv_iostatus_disable(bs);
304 return bs;
305 }
306
307 BlockDriver *bdrv_find_format(const char *format_name)
308 {
309 BlockDriver *drv1;
310 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
311 if (!strcmp(drv1->format_name, format_name)) {
312 return drv1;
313 }
314 }
315 return NULL;
316 }
317
318 static int bdrv_is_whitelisted(BlockDriver *drv)
319 {
320 static const char *whitelist[] = {
321 CONFIG_BDRV_WHITELIST
322 };
323 const char **p;
324
325 if (!whitelist[0])
326 return 1; /* no whitelist, anything goes */
327
328 for (p = whitelist; *p; p++) {
329 if (!strcmp(drv->format_name, *p)) {
330 return 1;
331 }
332 }
333 return 0;
334 }
335
336 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
337 {
338 BlockDriver *drv = bdrv_find_format(format_name);
339 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
340 }
341
342 int bdrv_create(BlockDriver *drv, const char* filename,
343 QEMUOptionParameter *options)
344 {
345 if (!drv->bdrv_create)
346 return -ENOTSUP;
347
348 return drv->bdrv_create(filename, options);
349 }
350
351 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
352 {
353 BlockDriver *drv;
354
355 drv = bdrv_find_protocol(filename);
356 if (drv == NULL) {
357 return -ENOENT;
358 }
359
360 return bdrv_create(drv, filename, options);
361 }
362
363 #ifdef _WIN32
364 void get_tmp_filename(char *filename, int size)
365 {
366 char temp_dir[MAX_PATH];
367
368 GetTempPath(MAX_PATH, temp_dir);
369 GetTempFileName(temp_dir, "qem", 0, filename);
370 }
371 #else
372 void get_tmp_filename(char *filename, int size)
373 {
374 int fd;
375 const char *tmpdir;
376 /* XXX: race condition possible */
377 tmpdir = getenv("TMPDIR");
378 if (!tmpdir)
379 tmpdir = "/tmp";
380 snprintf(filename, size, "%s/vl.XXXXXX", tmpdir);
381 fd = mkstemp(filename);
382 close(fd);
383 }
384 #endif
385
386 /*
387 * Detect host devices. By convention, /dev/cdrom[N] is always
388 * recognized as a host CDROM.
389 */
390 static BlockDriver *find_hdev_driver(const char *filename)
391 {
392 int score_max = 0, score;
393 BlockDriver *drv = NULL, *d;
394
395 QLIST_FOREACH(d, &bdrv_drivers, list) {
396 if (d->bdrv_probe_device) {
397 score = d->bdrv_probe_device(filename);
398 if (score > score_max) {
399 score_max = score;
400 drv = d;
401 }
402 }
403 }
404
405 return drv;
406 }
407
408 BlockDriver *bdrv_find_protocol(const char *filename)
409 {
410 BlockDriver *drv1;
411 char protocol[128];
412 int len;
413 const char *p;
414
415 /* TODO Drivers without bdrv_file_open must be specified explicitly */
416
417 /*
418 * XXX(hch): we really should not let host device detection
419 * override an explicit protocol specification, but moving this
420 * later breaks access to device names with colons in them.
421 * Thanks to the brain-dead persistent naming schemes on udev-
422 * based Linux systems those actually are quite common.
423 */
424 drv1 = find_hdev_driver(filename);
425 if (drv1) {
426 return drv1;
427 }
428
429 if (!path_has_protocol(filename)) {
430 return bdrv_find_format("file");
431 }
432 p = strchr(filename, ':');
433 assert(p != NULL);
434 len = p - filename;
435 if (len > sizeof(protocol) - 1)
436 len = sizeof(protocol) - 1;
437 memcpy(protocol, filename, len);
438 protocol[len] = '\0';
439 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
440 if (drv1->protocol_name &&
441 !strcmp(drv1->protocol_name, protocol)) {
442 return drv1;
443 }
444 }
445 return NULL;
446 }
447
448 static int find_image_format(const char *filename, BlockDriver **pdrv)
449 {
450 int ret, score, score_max;
451 BlockDriver *drv1, *drv;
452 uint8_t buf[2048];
453 BlockDriverState *bs;
454
455 ret = bdrv_file_open(&bs, filename, 0);
456 if (ret < 0) {
457 *pdrv = NULL;
458 return ret;
459 }
460
461 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
462 if (bs->sg || !bdrv_is_inserted(bs)) {
463 bdrv_delete(bs);
464 drv = bdrv_find_format("raw");
465 if (!drv) {
466 ret = -ENOENT;
467 }
468 *pdrv = drv;
469 return ret;
470 }
471
472 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
473 bdrv_delete(bs);
474 if (ret < 0) {
475 *pdrv = NULL;
476 return ret;
477 }
478
479 score_max = 0;
480 drv = NULL;
481 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
482 if (drv1->bdrv_probe) {
483 score = drv1->bdrv_probe(buf, ret, filename);
484 if (score > score_max) {
485 score_max = score;
486 drv = drv1;
487 }
488 }
489 }
490 if (!drv) {
491 ret = -ENOENT;
492 }
493 *pdrv = drv;
494 return ret;
495 }
496
497 /**
498 * Set the current 'total_sectors' value
499 */
500 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
501 {
502 BlockDriver *drv = bs->drv;
503
504 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
505 if (bs->sg)
506 return 0;
507
508 /* query actual device if possible, otherwise just trust the hint */
509 if (drv->bdrv_getlength) {
510 int64_t length = drv->bdrv_getlength(bs);
511 if (length < 0) {
512 return length;
513 }
514 hint = length >> BDRV_SECTOR_BITS;
515 }
516
517 bs->total_sectors = hint;
518 return 0;
519 }
520
521 /**
522 * Set open flags for a given cache mode
523 *
524 * Return 0 on success, -1 if the cache mode was invalid.
525 */
526 int bdrv_parse_cache_flags(const char *mode, int *flags)
527 {
528 *flags &= ~BDRV_O_CACHE_MASK;
529
530 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
531 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
532 } else if (!strcmp(mode, "directsync")) {
533 *flags |= BDRV_O_NOCACHE;
534 } else if (!strcmp(mode, "writeback")) {
535 *flags |= BDRV_O_CACHE_WB;
536 } else if (!strcmp(mode, "unsafe")) {
537 *flags |= BDRV_O_CACHE_WB;
538 *flags |= BDRV_O_NO_FLUSH;
539 } else if (!strcmp(mode, "writethrough")) {
540 /* this is the default */
541 } else {
542 return -1;
543 }
544
545 return 0;
546 }
547
548 /**
549 * The copy-on-read flag is actually a reference count so multiple users may
550 * use the feature without worrying about clobbering its previous state.
551 * Copy-on-read stays enabled until all users have called to disable it.
552 */
553 void bdrv_enable_copy_on_read(BlockDriverState *bs)
554 {
555 bs->copy_on_read++;
556 }
557
558 void bdrv_disable_copy_on_read(BlockDriverState *bs)
559 {
560 assert(bs->copy_on_read > 0);
561 bs->copy_on_read--;
562 }
563
564 /*
565 * Common part for opening disk images and files
566 */
567 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
568 int flags, BlockDriver *drv)
569 {
570 int ret, open_flags;
571
572 assert(drv != NULL);
573
574 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
575
576 bs->file = NULL;
577 bs->total_sectors = 0;
578 bs->encrypted = 0;
579 bs->valid_key = 0;
580 bs->sg = 0;
581 bs->open_flags = flags;
582 bs->growable = 0;
583 bs->buffer_alignment = 512;
584
585 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
586 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
587 bdrv_enable_copy_on_read(bs);
588 }
589
590 pstrcpy(bs->filename, sizeof(bs->filename), filename);
591 bs->backing_file[0] = '\0';
592
593 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
594 return -ENOTSUP;
595 }
596
597 bs->drv = drv;
598 bs->opaque = g_malloc0(drv->instance_size);
599
600 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
601
602 /*
603 * Clear flags that are internal to the block layer before opening the
604 * image.
605 */
606 open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
607
608 /*
609 * Snapshots should be writable.
610 */
611 if (bs->is_temporary) {
612 open_flags |= BDRV_O_RDWR;
613 }
614
615 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
616
617 /* Open the image, either directly or using a protocol */
618 if (drv->bdrv_file_open) {
619 ret = drv->bdrv_file_open(bs, filename, open_flags);
620 } else {
621 ret = bdrv_file_open(&bs->file, filename, open_flags);
622 if (ret >= 0) {
623 ret = drv->bdrv_open(bs, open_flags);
624 }
625 }
626
627 if (ret < 0) {
628 goto free_and_fail;
629 }
630
631 ret = refresh_total_sectors(bs, bs->total_sectors);
632 if (ret < 0) {
633 goto free_and_fail;
634 }
635
636 #ifndef _WIN32
637 if (bs->is_temporary) {
638 unlink(filename);
639 }
640 #endif
641 return 0;
642
643 free_and_fail:
644 if (bs->file) {
645 bdrv_delete(bs->file);
646 bs->file = NULL;
647 }
648 g_free(bs->opaque);
649 bs->opaque = NULL;
650 bs->drv = NULL;
651 return ret;
652 }
653
654 /*
655 * Opens a file using a protocol (file, host_device, nbd, ...)
656 */
657 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
658 {
659 BlockDriverState *bs;
660 BlockDriver *drv;
661 int ret;
662
663 drv = bdrv_find_protocol(filename);
664 if (!drv) {
665 return -ENOENT;
666 }
667
668 bs = bdrv_new("");
669 ret = bdrv_open_common(bs, filename, flags, drv);
670 if (ret < 0) {
671 bdrv_delete(bs);
672 return ret;
673 }
674 bs->growable = 1;
675 *pbs = bs;
676 return 0;
677 }
678
679 /*
680 * Opens a disk image (raw, qcow2, vmdk, ...)
681 */
682 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
683 BlockDriver *drv)
684 {
685 int ret;
686 char tmp_filename[PATH_MAX];
687
688 if (flags & BDRV_O_SNAPSHOT) {
689 BlockDriverState *bs1;
690 int64_t total_size;
691 int is_protocol = 0;
692 BlockDriver *bdrv_qcow2;
693 QEMUOptionParameter *options;
694 char backing_filename[PATH_MAX];
695
696 /* if snapshot, we create a temporary backing file and open it
697 instead of opening 'filename' directly */
698
699 /* if there is a backing file, use it */
700 bs1 = bdrv_new("");
701 ret = bdrv_open(bs1, filename, 0, drv);
702 if (ret < 0) {
703 bdrv_delete(bs1);
704 return ret;
705 }
706 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
707
708 if (bs1->drv && bs1->drv->protocol_name)
709 is_protocol = 1;
710
711 bdrv_delete(bs1);
712
713 get_tmp_filename(tmp_filename, sizeof(tmp_filename));
714
715 /* Real path is meaningless for protocols */
716 if (is_protocol)
717 snprintf(backing_filename, sizeof(backing_filename),
718 "%s", filename);
719 else if (!realpath(filename, backing_filename))
720 return -errno;
721
722 bdrv_qcow2 = bdrv_find_format("qcow2");
723 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
724
725 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
726 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
727 if (drv) {
728 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
729 drv->format_name);
730 }
731
732 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
733 free_option_parameters(options);
734 if (ret < 0) {
735 return ret;
736 }
737
738 filename = tmp_filename;
739 drv = bdrv_qcow2;
740 bs->is_temporary = 1;
741 }
742
743 /* Find the right image format driver */
744 if (!drv) {
745 ret = find_image_format(filename, &drv);
746 }
747
748 if (!drv) {
749 goto unlink_and_fail;
750 }
751
752 /* Open the image */
753 ret = bdrv_open_common(bs, filename, flags, drv);
754 if (ret < 0) {
755 goto unlink_and_fail;
756 }
757
758 /* If there is a backing file, use it */
759 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
760 char backing_filename[PATH_MAX];
761 int back_flags;
762 BlockDriver *back_drv = NULL;
763
764 bs->backing_hd = bdrv_new("");
765
766 if (path_has_protocol(bs->backing_file)) {
767 pstrcpy(backing_filename, sizeof(backing_filename),
768 bs->backing_file);
769 } else {
770 path_combine(backing_filename, sizeof(backing_filename),
771 filename, bs->backing_file);
772 }
773
774 if (bs->backing_format[0] != '\0') {
775 back_drv = bdrv_find_format(bs->backing_format);
776 }
777
778 /* backing files always opened read-only */
779 back_flags =
780 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
781
782 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
783 if (ret < 0) {
784 bdrv_close(bs);
785 return ret;
786 }
787 if (bs->is_temporary) {
788 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
789 } else {
790 /* base image inherits from "parent" */
791 bs->backing_hd->keep_read_only = bs->keep_read_only;
792 }
793 }
794
795 if (!bdrv_key_required(bs)) {
796 bdrv_dev_change_media_cb(bs, true);
797 }
798
799 /* throttling disk I/O limits */
800 if (bs->io_limits_enabled) {
801 bdrv_io_limits_enable(bs);
802 }
803
804 return 0;
805
806 unlink_and_fail:
807 if (bs->is_temporary) {
808 unlink(filename);
809 }
810 return ret;
811 }
812
813 void bdrv_close(BlockDriverState *bs)
814 {
815 if (bs->drv) {
816 if (bs->job) {
817 block_job_cancel_sync(bs->job);
818 }
819 if (bs == bs_snapshots) {
820 bs_snapshots = NULL;
821 }
822 if (bs->backing_hd) {
823 bdrv_delete(bs->backing_hd);
824 bs->backing_hd = NULL;
825 }
826 bs->drv->bdrv_close(bs);
827 g_free(bs->opaque);
828 #ifdef _WIN32
829 if (bs->is_temporary) {
830 unlink(bs->filename);
831 }
832 #endif
833 bs->opaque = NULL;
834 bs->drv = NULL;
835 bs->copy_on_read = 0;
836
837 if (bs->file != NULL) {
838 bdrv_close(bs->file);
839 }
840
841 bdrv_dev_change_media_cb(bs, false);
842 }
843
844 /*throttling disk I/O limits*/
845 if (bs->io_limits_enabled) {
846 bdrv_io_limits_disable(bs);
847 }
848 }
849
850 void bdrv_close_all(void)
851 {
852 BlockDriverState *bs;
853
854 QTAILQ_FOREACH(bs, &bdrv_states, list) {
855 bdrv_close(bs);
856 }
857 }
858
859 /*
860 * Wait for pending requests to complete across all BlockDriverStates
861 *
862 * This function does not flush data to disk, use bdrv_flush_all() for that
863 * after calling this function.
864 */
865 void bdrv_drain_all(void)
866 {
867 BlockDriverState *bs;
868
869 qemu_aio_flush();
870
871 /* If requests are still pending there is a bug somewhere */
872 QTAILQ_FOREACH(bs, &bdrv_states, list) {
873 assert(QLIST_EMPTY(&bs->tracked_requests));
874 assert(qemu_co_queue_empty(&bs->throttled_reqs));
875 }
876 }
877
878 /* make a BlockDriverState anonymous by removing from bdrv_state list.
879 Also, NULL terminate the device_name to prevent double remove */
880 void bdrv_make_anon(BlockDriverState *bs)
881 {
882 if (bs->device_name[0] != '\0') {
883 QTAILQ_REMOVE(&bdrv_states, bs, list);
884 }
885 bs->device_name[0] = '\0';
886 }
887
888 /*
889 * Add new bs contents at the top of an image chain while the chain is
890 * live, while keeping required fields on the top layer.
891 *
892 * This will modify the BlockDriverState fields, and swap contents
893 * between bs_new and bs_top. Both bs_new and bs_top are modified.
894 *
895 * bs_new is required to be anonymous.
896 *
897 * This function does not create any image files.
898 */
899 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
900 {
901 BlockDriverState tmp;
902
903 /* bs_new must be anonymous */
904 assert(bs_new->device_name[0] == '\0');
905
906 tmp = *bs_new;
907
908 /* there are some fields that need to stay on the top layer: */
909
910 /* dev info */
911 tmp.dev_ops = bs_top->dev_ops;
912 tmp.dev_opaque = bs_top->dev_opaque;
913 tmp.dev = bs_top->dev;
914 tmp.buffer_alignment = bs_top->buffer_alignment;
915 tmp.copy_on_read = bs_top->copy_on_read;
916
917 /* i/o timing parameters */
918 tmp.slice_time = bs_top->slice_time;
919 tmp.slice_start = bs_top->slice_start;
920 tmp.slice_end = bs_top->slice_end;
921 tmp.io_limits = bs_top->io_limits;
922 tmp.io_base = bs_top->io_base;
923 tmp.throttled_reqs = bs_top->throttled_reqs;
924 tmp.block_timer = bs_top->block_timer;
925 tmp.io_limits_enabled = bs_top->io_limits_enabled;
926
927 /* geometry */
928 tmp.cyls = bs_top->cyls;
929 tmp.heads = bs_top->heads;
930 tmp.secs = bs_top->secs;
931 tmp.translation = bs_top->translation;
932
933 /* r/w error */
934 tmp.on_read_error = bs_top->on_read_error;
935 tmp.on_write_error = bs_top->on_write_error;
936
937 /* i/o status */
938 tmp.iostatus_enabled = bs_top->iostatus_enabled;
939 tmp.iostatus = bs_top->iostatus;
940
941 /* keep the same entry in bdrv_states */
942 pstrcpy(tmp.device_name, sizeof(tmp.device_name), bs_top->device_name);
943 tmp.list = bs_top->list;
944
945 /* The contents of 'tmp' will become bs_top, as we are
946 * swapping bs_new and bs_top contents. */
947 tmp.backing_hd = bs_new;
948 pstrcpy(tmp.backing_file, sizeof(tmp.backing_file), bs_top->filename);
949 bdrv_get_format(bs_top, tmp.backing_format, sizeof(tmp.backing_format));
950
951 /* swap contents of the fixed new bs and the current top */
952 *bs_new = *bs_top;
953 *bs_top = tmp;
954
955 /* device_name[] was carried over from the old bs_top. bs_new
956 * shouldn't be in bdrv_states, so we need to make device_name[]
957 * reflect the anonymity of bs_new
958 */
959 bs_new->device_name[0] = '\0';
960
961 /* clear the copied fields in the new backing file */
962 bdrv_detach_dev(bs_new, bs_new->dev);
963
964 qemu_co_queue_init(&bs_new->throttled_reqs);
965 memset(&bs_new->io_base, 0, sizeof(bs_new->io_base));
966 memset(&bs_new->io_limits, 0, sizeof(bs_new->io_limits));
967 bdrv_iostatus_disable(bs_new);
968
969 /* we don't use bdrv_io_limits_disable() for this, because we don't want
970 * to affect or delete the block_timer, as it has been moved to bs_top */
971 bs_new->io_limits_enabled = false;
972 bs_new->block_timer = NULL;
973 bs_new->slice_time = 0;
974 bs_new->slice_start = 0;
975 bs_new->slice_end = 0;
976 }
977
978 void bdrv_delete(BlockDriverState *bs)
979 {
980 assert(!bs->dev);
981 assert(!bs->job);
982 assert(!bs->in_use);
983
984 /* remove from list, if necessary */
985 bdrv_make_anon(bs);
986
987 bdrv_close(bs);
988 if (bs->file != NULL) {
989 bdrv_delete(bs->file);
990 }
991
992 assert(bs != bs_snapshots);
993 g_free(bs);
994 }
995
996 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
997 /* TODO change to DeviceState *dev when all users are qdevified */
998 {
999 if (bs->dev) {
1000 return -EBUSY;
1001 }
1002 bs->dev = dev;
1003 bdrv_iostatus_reset(bs);
1004 return 0;
1005 }
1006
1007 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1008 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1009 {
1010 if (bdrv_attach_dev(bs, dev) < 0) {
1011 abort();
1012 }
1013 }
1014
1015 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1016 /* TODO change to DeviceState *dev when all users are qdevified */
1017 {
1018 assert(bs->dev == dev);
1019 bs->dev = NULL;
1020 bs->dev_ops = NULL;
1021 bs->dev_opaque = NULL;
1022 bs->buffer_alignment = 512;
1023 }
1024
1025 /* TODO change to return DeviceState * when all users are qdevified */
1026 void *bdrv_get_attached_dev(BlockDriverState *bs)
1027 {
1028 return bs->dev;
1029 }
1030
1031 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1032 void *opaque)
1033 {
1034 bs->dev_ops = ops;
1035 bs->dev_opaque = opaque;
1036 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1037 bs_snapshots = NULL;
1038 }
1039 }
1040
1041 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1042 BlockQMPEventAction action, int is_read)
1043 {
1044 QObject *data;
1045 const char *action_str;
1046
1047 switch (action) {
1048 case BDRV_ACTION_REPORT:
1049 action_str = "report";
1050 break;
1051 case BDRV_ACTION_IGNORE:
1052 action_str = "ignore";
1053 break;
1054 case BDRV_ACTION_STOP:
1055 action_str = "stop";
1056 break;
1057 default:
1058 abort();
1059 }
1060
1061 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1062 bdrv->device_name,
1063 action_str,
1064 is_read ? "read" : "write");
1065 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1066
1067 qobject_decref(data);
1068 }
1069
1070 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1071 {
1072 QObject *data;
1073
1074 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1075 bdrv_get_device_name(bs), ejected);
1076 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1077
1078 qobject_decref(data);
1079 }
1080
1081 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1082 {
1083 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1084 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1085 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1086 if (tray_was_closed) {
1087 /* tray open */
1088 bdrv_emit_qmp_eject_event(bs, true);
1089 }
1090 if (load) {
1091 /* tray close */
1092 bdrv_emit_qmp_eject_event(bs, false);
1093 }
1094 }
1095 }
1096
1097 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1098 {
1099 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1100 }
1101
1102 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1103 {
1104 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1105 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1106 }
1107 }
1108
1109 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1110 {
1111 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1112 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1113 }
1114 return false;
1115 }
1116
1117 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1118 {
1119 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1120 bs->dev_ops->resize_cb(bs->dev_opaque);
1121 }
1122 }
1123
1124 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1125 {
1126 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1127 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1128 }
1129 return false;
1130 }
1131
1132 /*
1133 * Run consistency checks on an image
1134 *
1135 * Returns 0 if the check could be completed (it doesn't mean that the image is
1136 * free of errors) or -errno when an internal error occurred. The results of the
1137 * check are stored in res.
1138 */
1139 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res)
1140 {
1141 if (bs->drv->bdrv_check == NULL) {
1142 return -ENOTSUP;
1143 }
1144
1145 memset(res, 0, sizeof(*res));
1146 return bs->drv->bdrv_check(bs, res);
1147 }
1148
1149 #define COMMIT_BUF_SECTORS 2048
1150
1151 /* commit COW file into the raw image */
1152 int bdrv_commit(BlockDriverState *bs)
1153 {
1154 BlockDriver *drv = bs->drv;
1155 BlockDriver *backing_drv;
1156 int64_t sector, total_sectors;
1157 int n, ro, open_flags;
1158 int ret = 0, rw_ret = 0;
1159 uint8_t *buf;
1160 char filename[1024];
1161 BlockDriverState *bs_rw, *bs_ro;
1162
1163 if (!drv)
1164 return -ENOMEDIUM;
1165
1166 if (!bs->backing_hd) {
1167 return -ENOTSUP;
1168 }
1169
1170 if (bs->backing_hd->keep_read_only) {
1171 return -EACCES;
1172 }
1173
1174 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1175 return -EBUSY;
1176 }
1177
1178 backing_drv = bs->backing_hd->drv;
1179 ro = bs->backing_hd->read_only;
1180 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1181 open_flags = bs->backing_hd->open_flags;
1182
1183 if (ro) {
1184 /* re-open as RW */
1185 bdrv_delete(bs->backing_hd);
1186 bs->backing_hd = NULL;
1187 bs_rw = bdrv_new("");
1188 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1189 backing_drv);
1190 if (rw_ret < 0) {
1191 bdrv_delete(bs_rw);
1192 /* try to re-open read-only */
1193 bs_ro = bdrv_new("");
1194 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1195 backing_drv);
1196 if (ret < 0) {
1197 bdrv_delete(bs_ro);
1198 /* drive not functional anymore */
1199 bs->drv = NULL;
1200 return ret;
1201 }
1202 bs->backing_hd = bs_ro;
1203 return rw_ret;
1204 }
1205 bs->backing_hd = bs_rw;
1206 }
1207
1208 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1209 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1210
1211 for (sector = 0; sector < total_sectors; sector += n) {
1212 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1213
1214 if (bdrv_read(bs, sector, buf, n) != 0) {
1215 ret = -EIO;
1216 goto ro_cleanup;
1217 }
1218
1219 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1220 ret = -EIO;
1221 goto ro_cleanup;
1222 }
1223 }
1224 }
1225
1226 if (drv->bdrv_make_empty) {
1227 ret = drv->bdrv_make_empty(bs);
1228 bdrv_flush(bs);
1229 }
1230
1231 /*
1232 * Make sure all data we wrote to the backing device is actually
1233 * stable on disk.
1234 */
1235 if (bs->backing_hd)
1236 bdrv_flush(bs->backing_hd);
1237
1238 ro_cleanup:
1239 g_free(buf);
1240
1241 if (ro) {
1242 /* re-open as RO */
1243 bdrv_delete(bs->backing_hd);
1244 bs->backing_hd = NULL;
1245 bs_ro = bdrv_new("");
1246 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1247 backing_drv);
1248 if (ret < 0) {
1249 bdrv_delete(bs_ro);
1250 /* drive not functional anymore */
1251 bs->drv = NULL;
1252 return ret;
1253 }
1254 bs->backing_hd = bs_ro;
1255 bs->backing_hd->keep_read_only = 0;
1256 }
1257
1258 return ret;
1259 }
1260
1261 int bdrv_commit_all(void)
1262 {
1263 BlockDriverState *bs;
1264
1265 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1266 int ret = bdrv_commit(bs);
1267 if (ret < 0) {
1268 return ret;
1269 }
1270 }
1271 return 0;
1272 }
1273
1274 struct BdrvTrackedRequest {
1275 BlockDriverState *bs;
1276 int64_t sector_num;
1277 int nb_sectors;
1278 bool is_write;
1279 QLIST_ENTRY(BdrvTrackedRequest) list;
1280 Coroutine *co; /* owner, used for deadlock detection */
1281 CoQueue wait_queue; /* coroutines blocked on this request */
1282 };
1283
1284 /**
1285 * Remove an active request from the tracked requests list
1286 *
1287 * This function should be called when a tracked request is completing.
1288 */
1289 static void tracked_request_end(BdrvTrackedRequest *req)
1290 {
1291 QLIST_REMOVE(req, list);
1292 qemu_co_queue_restart_all(&req->wait_queue);
1293 }
1294
1295 /**
1296 * Add an active request to the tracked requests list
1297 */
1298 static void tracked_request_begin(BdrvTrackedRequest *req,
1299 BlockDriverState *bs,
1300 int64_t sector_num,
1301 int nb_sectors, bool is_write)
1302 {
1303 *req = (BdrvTrackedRequest){
1304 .bs = bs,
1305 .sector_num = sector_num,
1306 .nb_sectors = nb_sectors,
1307 .is_write = is_write,
1308 .co = qemu_coroutine_self(),
1309 };
1310
1311 qemu_co_queue_init(&req->wait_queue);
1312
1313 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1314 }
1315
1316 /**
1317 * Round a region to cluster boundaries
1318 */
1319 static void round_to_clusters(BlockDriverState *bs,
1320 int64_t sector_num, int nb_sectors,
1321 int64_t *cluster_sector_num,
1322 int *cluster_nb_sectors)
1323 {
1324 BlockDriverInfo bdi;
1325
1326 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1327 *cluster_sector_num = sector_num;
1328 *cluster_nb_sectors = nb_sectors;
1329 } else {
1330 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1331 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1332 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1333 nb_sectors, c);
1334 }
1335 }
1336
1337 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1338 int64_t sector_num, int nb_sectors) {
1339 /* aaaa bbbb */
1340 if (sector_num >= req->sector_num + req->nb_sectors) {
1341 return false;
1342 }
1343 /* bbbb aaaa */
1344 if (req->sector_num >= sector_num + nb_sectors) {
1345 return false;
1346 }
1347 return true;
1348 }
1349
1350 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1351 int64_t sector_num, int nb_sectors)
1352 {
1353 BdrvTrackedRequest *req;
1354 int64_t cluster_sector_num;
1355 int cluster_nb_sectors;
1356 bool retry;
1357
1358 /* If we touch the same cluster it counts as an overlap. This guarantees
1359 * that allocating writes will be serialized and not race with each other
1360 * for the same cluster. For example, in copy-on-read it ensures that the
1361 * CoR read and write operations are atomic and guest writes cannot
1362 * interleave between them.
1363 */
1364 round_to_clusters(bs, sector_num, nb_sectors,
1365 &cluster_sector_num, &cluster_nb_sectors);
1366
1367 do {
1368 retry = false;
1369 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1370 if (tracked_request_overlaps(req, cluster_sector_num,
1371 cluster_nb_sectors)) {
1372 /* Hitting this means there was a reentrant request, for
1373 * example, a block driver issuing nested requests. This must
1374 * never happen since it means deadlock.
1375 */
1376 assert(qemu_coroutine_self() != req->co);
1377
1378 qemu_co_queue_wait(&req->wait_queue);
1379 retry = true;
1380 break;
1381 }
1382 }
1383 } while (retry);
1384 }
1385
1386 /*
1387 * Return values:
1388 * 0 - success
1389 * -EINVAL - backing format specified, but no file
1390 * -ENOSPC - can't update the backing file because no space is left in the
1391 * image file header
1392 * -ENOTSUP - format driver doesn't support changing the backing file
1393 */
1394 int bdrv_change_backing_file(BlockDriverState *bs,
1395 const char *backing_file, const char *backing_fmt)
1396 {
1397 BlockDriver *drv = bs->drv;
1398
1399 if (drv->bdrv_change_backing_file != NULL) {
1400 return drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1401 } else {
1402 return -ENOTSUP;
1403 }
1404 }
1405
1406 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1407 size_t size)
1408 {
1409 int64_t len;
1410
1411 if (!bdrv_is_inserted(bs))
1412 return -ENOMEDIUM;
1413
1414 if (bs->growable)
1415 return 0;
1416
1417 len = bdrv_getlength(bs);
1418
1419 if (offset < 0)
1420 return -EIO;
1421
1422 if ((offset > len) || (len - offset < size))
1423 return -EIO;
1424
1425 return 0;
1426 }
1427
1428 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1429 int nb_sectors)
1430 {
1431 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1432 nb_sectors * BDRV_SECTOR_SIZE);
1433 }
1434
1435 typedef struct RwCo {
1436 BlockDriverState *bs;
1437 int64_t sector_num;
1438 int nb_sectors;
1439 QEMUIOVector *qiov;
1440 bool is_write;
1441 int ret;
1442 } RwCo;
1443
1444 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1445 {
1446 RwCo *rwco = opaque;
1447
1448 if (!rwco->is_write) {
1449 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1450 rwco->nb_sectors, rwco->qiov, 0);
1451 } else {
1452 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1453 rwco->nb_sectors, rwco->qiov, 0);
1454 }
1455 }
1456
1457 /*
1458 * Process a synchronous request using coroutines
1459 */
1460 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1461 int nb_sectors, bool is_write)
1462 {
1463 QEMUIOVector qiov;
1464 struct iovec iov = {
1465 .iov_base = (void *)buf,
1466 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1467 };
1468 Coroutine *co;
1469 RwCo rwco = {
1470 .bs = bs,
1471 .sector_num = sector_num,
1472 .nb_sectors = nb_sectors,
1473 .qiov = &qiov,
1474 .is_write = is_write,
1475 .ret = NOT_DONE,
1476 };
1477
1478 qemu_iovec_init_external(&qiov, &iov, 1);
1479
1480 /**
1481 * In sync call context, when the vcpu is blocked, this throttling timer
1482 * will not fire; so the I/O throttling function has to be disabled here
1483 * if it has been enabled.
1484 */
1485 if (bs->io_limits_enabled) {
1486 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1487 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1488 bdrv_io_limits_disable(bs);
1489 }
1490
1491 if (qemu_in_coroutine()) {
1492 /* Fast-path if already in coroutine context */
1493 bdrv_rw_co_entry(&rwco);
1494 } else {
1495 co = qemu_coroutine_create(bdrv_rw_co_entry);
1496 qemu_coroutine_enter(co, &rwco);
1497 while (rwco.ret == NOT_DONE) {
1498 qemu_aio_wait();
1499 }
1500 }
1501 return rwco.ret;
1502 }
1503
1504 /* return < 0 if error. See bdrv_write() for the return codes */
1505 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1506 uint8_t *buf, int nb_sectors)
1507 {
1508 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1509 }
1510
1511 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1512 int nb_sectors, int dirty)
1513 {
1514 int64_t start, end;
1515 unsigned long val, idx, bit;
1516
1517 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1518 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1519
1520 for (; start <= end; start++) {
1521 idx = start / (sizeof(unsigned long) * 8);
1522 bit = start % (sizeof(unsigned long) * 8);
1523 val = bs->dirty_bitmap[idx];
1524 if (dirty) {
1525 if (!(val & (1UL << bit))) {
1526 bs->dirty_count++;
1527 val |= 1UL << bit;
1528 }
1529 } else {
1530 if (val & (1UL << bit)) {
1531 bs->dirty_count--;
1532 val &= ~(1UL << bit);
1533 }
1534 }
1535 bs->dirty_bitmap[idx] = val;
1536 }
1537 }
1538
1539 /* Return < 0 if error. Important errors are:
1540 -EIO generic I/O error (may happen for all errors)
1541 -ENOMEDIUM No media inserted.
1542 -EINVAL Invalid sector number or nb_sectors
1543 -EACCES Trying to write a read-only device
1544 */
1545 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1546 const uint8_t *buf, int nb_sectors)
1547 {
1548 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1549 }
1550
1551 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1552 void *buf, int count1)
1553 {
1554 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1555 int len, nb_sectors, count;
1556 int64_t sector_num;
1557 int ret;
1558
1559 count = count1;
1560 /* first read to align to sector start */
1561 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1562 if (len > count)
1563 len = count;
1564 sector_num = offset >> BDRV_SECTOR_BITS;
1565 if (len > 0) {
1566 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1567 return ret;
1568 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1569 count -= len;
1570 if (count == 0)
1571 return count1;
1572 sector_num++;
1573 buf += len;
1574 }
1575
1576 /* read the sectors "in place" */
1577 nb_sectors = count >> BDRV_SECTOR_BITS;
1578 if (nb_sectors > 0) {
1579 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1580 return ret;
1581 sector_num += nb_sectors;
1582 len = nb_sectors << BDRV_SECTOR_BITS;
1583 buf += len;
1584 count -= len;
1585 }
1586
1587 /* add data from the last sector */
1588 if (count > 0) {
1589 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1590 return ret;
1591 memcpy(buf, tmp_buf, count);
1592 }
1593 return count1;
1594 }
1595
1596 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1597 const void *buf, int count1)
1598 {
1599 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1600 int len, nb_sectors, count;
1601 int64_t sector_num;
1602 int ret;
1603
1604 count = count1;
1605 /* first write to align to sector start */
1606 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1607 if (len > count)
1608 len = count;
1609 sector_num = offset >> BDRV_SECTOR_BITS;
1610 if (len > 0) {
1611 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1612 return ret;
1613 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1614 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1615 return ret;
1616 count -= len;
1617 if (count == 0)
1618 return count1;
1619 sector_num++;
1620 buf += len;
1621 }
1622
1623 /* write the sectors "in place" */
1624 nb_sectors = count >> BDRV_SECTOR_BITS;
1625 if (nb_sectors > 0) {
1626 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1627 return ret;
1628 sector_num += nb_sectors;
1629 len = nb_sectors << BDRV_SECTOR_BITS;
1630 buf += len;
1631 count -= len;
1632 }
1633
1634 /* add data from the last sector */
1635 if (count > 0) {
1636 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1637 return ret;
1638 memcpy(tmp_buf, buf, count);
1639 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1640 return ret;
1641 }
1642 return count1;
1643 }
1644
1645 /*
1646 * Writes to the file and ensures that no writes are reordered across this
1647 * request (acts as a barrier)
1648 *
1649 * Returns 0 on success, -errno in error cases.
1650 */
1651 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1652 const void *buf, int count)
1653 {
1654 int ret;
1655
1656 ret = bdrv_pwrite(bs, offset, buf, count);
1657 if (ret < 0) {
1658 return ret;
1659 }
1660
1661 /* No flush needed for cache modes that use O_DSYNC */
1662 if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1663 bdrv_flush(bs);
1664 }
1665
1666 return 0;
1667 }
1668
1669 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1670 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1671 {
1672 /* Perform I/O through a temporary buffer so that users who scribble over
1673 * their read buffer while the operation is in progress do not end up
1674 * modifying the image file. This is critical for zero-copy guest I/O
1675 * where anything might happen inside guest memory.
1676 */
1677 void *bounce_buffer;
1678
1679 BlockDriver *drv = bs->drv;
1680 struct iovec iov;
1681 QEMUIOVector bounce_qiov;
1682 int64_t cluster_sector_num;
1683 int cluster_nb_sectors;
1684 size_t skip_bytes;
1685 int ret;
1686
1687 /* Cover entire cluster so no additional backing file I/O is required when
1688 * allocating cluster in the image file.
1689 */
1690 round_to_clusters(bs, sector_num, nb_sectors,
1691 &cluster_sector_num, &cluster_nb_sectors);
1692
1693 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1694 cluster_sector_num, cluster_nb_sectors);
1695
1696 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1697 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1698 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1699
1700 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1701 &bounce_qiov);
1702 if (ret < 0) {
1703 goto err;
1704 }
1705
1706 if (drv->bdrv_co_write_zeroes &&
1707 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1708 ret = drv->bdrv_co_write_zeroes(bs, cluster_sector_num,
1709 cluster_nb_sectors);
1710 } else {
1711 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1712 &bounce_qiov);
1713 }
1714
1715 if (ret < 0) {
1716 /* It might be okay to ignore write errors for guest requests. If this
1717 * is a deliberate copy-on-read then we don't want to ignore the error.
1718 * Simply report it in all cases.
1719 */
1720 goto err;
1721 }
1722
1723 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1724 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1725 nb_sectors * BDRV_SECTOR_SIZE);
1726
1727 err:
1728 qemu_vfree(bounce_buffer);
1729 return ret;
1730 }
1731
1732 /*
1733 * Handle a read request in coroutine context
1734 */
1735 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1736 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1737 BdrvRequestFlags flags)
1738 {
1739 BlockDriver *drv = bs->drv;
1740 BdrvTrackedRequest req;
1741 int ret;
1742
1743 if (!drv) {
1744 return -ENOMEDIUM;
1745 }
1746 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1747 return -EIO;
1748 }
1749
1750 /* throttling disk read I/O */
1751 if (bs->io_limits_enabled) {
1752 bdrv_io_limits_intercept(bs, false, nb_sectors);
1753 }
1754
1755 if (bs->copy_on_read) {
1756 flags |= BDRV_REQ_COPY_ON_READ;
1757 }
1758 if (flags & BDRV_REQ_COPY_ON_READ) {
1759 bs->copy_on_read_in_flight++;
1760 }
1761
1762 if (bs->copy_on_read_in_flight) {
1763 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1764 }
1765
1766 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1767
1768 if (flags & BDRV_REQ_COPY_ON_READ) {
1769 int pnum;
1770
1771 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1772 if (ret < 0) {
1773 goto out;
1774 }
1775
1776 if (!ret || pnum != nb_sectors) {
1777 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1778 goto out;
1779 }
1780 }
1781
1782 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1783
1784 out:
1785 tracked_request_end(&req);
1786
1787 if (flags & BDRV_REQ_COPY_ON_READ) {
1788 bs->copy_on_read_in_flight--;
1789 }
1790
1791 return ret;
1792 }
1793
1794 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1795 int nb_sectors, QEMUIOVector *qiov)
1796 {
1797 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1798
1799 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1800 }
1801
1802 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1803 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1804 {
1805 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1806
1807 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1808 BDRV_REQ_COPY_ON_READ);
1809 }
1810
1811 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1812 int64_t sector_num, int nb_sectors)
1813 {
1814 BlockDriver *drv = bs->drv;
1815 QEMUIOVector qiov;
1816 struct iovec iov;
1817 int ret;
1818
1819 /* First try the efficient write zeroes operation */
1820 if (drv->bdrv_co_write_zeroes) {
1821 return drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1822 }
1823
1824 /* Fall back to bounce buffer if write zeroes is unsupported */
1825 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1826 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1827 memset(iov.iov_base, 0, iov.iov_len);
1828 qemu_iovec_init_external(&qiov, &iov, 1);
1829
1830 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1831
1832 qemu_vfree(iov.iov_base);
1833 return ret;
1834 }
1835
1836 /*
1837 * Handle a write request in coroutine context
1838 */
1839 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1840 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1841 BdrvRequestFlags flags)
1842 {
1843 BlockDriver *drv = bs->drv;
1844 BdrvTrackedRequest req;
1845 int ret;
1846
1847 if (!bs->drv) {
1848 return -ENOMEDIUM;
1849 }
1850 if (bs->read_only) {
1851 return -EACCES;
1852 }
1853 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1854 return -EIO;
1855 }
1856
1857 /* throttling disk write I/O */
1858 if (bs->io_limits_enabled) {
1859 bdrv_io_limits_intercept(bs, true, nb_sectors);
1860 }
1861
1862 if (bs->copy_on_read_in_flight) {
1863 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1864 }
1865
1866 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1867
1868 if (flags & BDRV_REQ_ZERO_WRITE) {
1869 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1870 } else {
1871 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1872 }
1873
1874 if (bs->dirty_bitmap) {
1875 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1876 }
1877
1878 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1879 bs->wr_highest_sector = sector_num + nb_sectors - 1;
1880 }
1881
1882 tracked_request_end(&req);
1883
1884 return ret;
1885 }
1886
1887 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1888 int nb_sectors, QEMUIOVector *qiov)
1889 {
1890 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1891
1892 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1893 }
1894
1895 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1896 int64_t sector_num, int nb_sectors)
1897 {
1898 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1899
1900 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1901 BDRV_REQ_ZERO_WRITE);
1902 }
1903
1904 /**
1905 * Truncate file to 'offset' bytes (needed only for file protocols)
1906 */
1907 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
1908 {
1909 BlockDriver *drv = bs->drv;
1910 int ret;
1911 if (!drv)
1912 return -ENOMEDIUM;
1913 if (!drv->bdrv_truncate)
1914 return -ENOTSUP;
1915 if (bs->read_only)
1916 return -EACCES;
1917 if (bdrv_in_use(bs))
1918 return -EBUSY;
1919 ret = drv->bdrv_truncate(bs, offset);
1920 if (ret == 0) {
1921 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
1922 bdrv_dev_resize_cb(bs);
1923 }
1924 return ret;
1925 }
1926
1927 /**
1928 * Length of a allocated file in bytes. Sparse files are counted by actual
1929 * allocated space. Return < 0 if error or unknown.
1930 */
1931 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
1932 {
1933 BlockDriver *drv = bs->drv;
1934 if (!drv) {
1935 return -ENOMEDIUM;
1936 }
1937 if (drv->bdrv_get_allocated_file_size) {
1938 return drv->bdrv_get_allocated_file_size(bs);
1939 }
1940 if (bs->file) {
1941 return bdrv_get_allocated_file_size(bs->file);
1942 }
1943 return -ENOTSUP;
1944 }
1945
1946 /**
1947 * Length of a file in bytes. Return < 0 if error or unknown.
1948 */
1949 int64_t bdrv_getlength(BlockDriverState *bs)
1950 {
1951 BlockDriver *drv = bs->drv;
1952 if (!drv)
1953 return -ENOMEDIUM;
1954
1955 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
1956 if (drv->bdrv_getlength) {
1957 return drv->bdrv_getlength(bs);
1958 }
1959 }
1960 return bs->total_sectors * BDRV_SECTOR_SIZE;
1961 }
1962
1963 /* return 0 as number of sectors if no device present or error */
1964 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
1965 {
1966 int64_t length;
1967 length = bdrv_getlength(bs);
1968 if (length < 0)
1969 length = 0;
1970 else
1971 length = length >> BDRV_SECTOR_BITS;
1972 *nb_sectors_ptr = length;
1973 }
1974
1975 struct partition {
1976 uint8_t boot_ind; /* 0x80 - active */
1977 uint8_t head; /* starting head */
1978 uint8_t sector; /* starting sector */
1979 uint8_t cyl; /* starting cylinder */
1980 uint8_t sys_ind; /* What partition type */
1981 uint8_t end_head; /* end head */
1982 uint8_t end_sector; /* end sector */
1983 uint8_t end_cyl; /* end cylinder */
1984 uint32_t start_sect; /* starting sector counting from 0 */
1985 uint32_t nr_sects; /* nr of sectors in partition */
1986 } QEMU_PACKED;
1987
1988 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
1989 static int guess_disk_lchs(BlockDriverState *bs,
1990 int *pcylinders, int *pheads, int *psectors)
1991 {
1992 uint8_t buf[BDRV_SECTOR_SIZE];
1993 int ret, i, heads, sectors, cylinders;
1994 struct partition *p;
1995 uint32_t nr_sects;
1996 uint64_t nb_sectors;
1997 bool enabled;
1998
1999 bdrv_get_geometry(bs, &nb_sectors);
2000
2001 /**
2002 * The function will be invoked during startup not only in sync I/O mode,
2003 * but also in async I/O mode. So the I/O throttling function has to
2004 * be disabled temporarily here, not permanently.
2005 */
2006 enabled = bs->io_limits_enabled;
2007 bs->io_limits_enabled = false;
2008 ret = bdrv_read(bs, 0, buf, 1);
2009 bs->io_limits_enabled = enabled;
2010 if (ret < 0)
2011 return -1;
2012 /* test msdos magic */
2013 if (buf[510] != 0x55 || buf[511] != 0xaa)
2014 return -1;
2015 for(i = 0; i < 4; i++) {
2016 p = ((struct partition *)(buf + 0x1be)) + i;
2017 nr_sects = le32_to_cpu(p->nr_sects);
2018 if (nr_sects && p->end_head) {
2019 /* We make the assumption that the partition terminates on
2020 a cylinder boundary */
2021 heads = p->end_head + 1;
2022 sectors = p->end_sector & 63;
2023 if (sectors == 0)
2024 continue;
2025 cylinders = nb_sectors / (heads * sectors);
2026 if (cylinders < 1 || cylinders > 16383)
2027 continue;
2028 *pheads = heads;
2029 *psectors = sectors;
2030 *pcylinders = cylinders;
2031 #if 0
2032 printf("guessed geometry: LCHS=%d %d %d\n",
2033 cylinders, heads, sectors);
2034 #endif
2035 return 0;
2036 }
2037 }
2038 return -1;
2039 }
2040
2041 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
2042 {
2043 int translation, lba_detected = 0;
2044 int cylinders, heads, secs;
2045 uint64_t nb_sectors;
2046
2047 /* if a geometry hint is available, use it */
2048 bdrv_get_geometry(bs, &nb_sectors);
2049 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
2050 translation = bdrv_get_translation_hint(bs);
2051 if (cylinders != 0) {
2052 *pcyls = cylinders;
2053 *pheads = heads;
2054 *psecs = secs;
2055 } else {
2056 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
2057 if (heads > 16) {
2058 /* if heads > 16, it means that a BIOS LBA
2059 translation was active, so the default
2060 hardware geometry is OK */
2061 lba_detected = 1;
2062 goto default_geometry;
2063 } else {
2064 *pcyls = cylinders;
2065 *pheads = heads;
2066 *psecs = secs;
2067 /* disable any translation to be in sync with
2068 the logical geometry */
2069 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
2070 bdrv_set_translation_hint(bs,
2071 BIOS_ATA_TRANSLATION_NONE);
2072 }
2073 }
2074 } else {
2075 default_geometry:
2076 /* if no geometry, use a standard physical disk geometry */
2077 cylinders = nb_sectors / (16 * 63);
2078
2079 if (cylinders > 16383)
2080 cylinders = 16383;
2081 else if (cylinders < 2)
2082 cylinders = 2;
2083 *pcyls = cylinders;
2084 *pheads = 16;
2085 *psecs = 63;
2086 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
2087 if ((*pcyls * *pheads) <= 131072) {
2088 bdrv_set_translation_hint(bs,
2089 BIOS_ATA_TRANSLATION_LARGE);
2090 } else {
2091 bdrv_set_translation_hint(bs,
2092 BIOS_ATA_TRANSLATION_LBA);
2093 }
2094 }
2095 }
2096 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
2097 }
2098 }
2099
2100 void bdrv_set_geometry_hint(BlockDriverState *bs,
2101 int cyls, int heads, int secs)
2102 {
2103 bs->cyls = cyls;
2104 bs->heads = heads;
2105 bs->secs = secs;
2106 }
2107
2108 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
2109 {
2110 bs->translation = translation;
2111 }
2112
2113 void bdrv_get_geometry_hint(BlockDriverState *bs,
2114 int *pcyls, int *pheads, int *psecs)
2115 {
2116 *pcyls = bs->cyls;
2117 *pheads = bs->heads;
2118 *psecs = bs->secs;
2119 }
2120
2121 /* throttling disk io limits */
2122 void bdrv_set_io_limits(BlockDriverState *bs,
2123 BlockIOLimit *io_limits)
2124 {
2125 bs->io_limits = *io_limits;
2126 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2127 }
2128
2129 /* Recognize floppy formats */
2130 typedef struct FDFormat {
2131 FDriveType drive;
2132 uint8_t last_sect;
2133 uint8_t max_track;
2134 uint8_t max_head;
2135 FDriveRate rate;
2136 } FDFormat;
2137
2138 static const FDFormat fd_formats[] = {
2139 /* First entry is default format */
2140 /* 1.44 MB 3"1/2 floppy disks */
2141 { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2142 { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2143 { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2144 { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2145 { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2146 { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2147 { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2148 { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2149 /* 2.88 MB 3"1/2 floppy disks */
2150 { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2151 { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2152 { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2153 { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2154 { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2155 /* 720 kB 3"1/2 floppy disks */
2156 { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, },
2157 { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2158 { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2159 { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2160 { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2161 { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2162 /* 1.2 MB 5"1/4 floppy disks */
2163 { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2164 { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2165 { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2166 { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2167 { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2168 /* 720 kB 5"1/4 floppy disks */
2169 { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_250K, },
2170 { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2171 /* 360 kB 5"1/4 floppy disks */
2172 { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, },
2173 { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, },
2174 { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2175 { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2176 /* 320 kB 5"1/4 floppy disks */
2177 { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_250K, },
2178 { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_250K, },
2179 /* 360 kB must match 5"1/4 better than 3"1/2... */
2180 { FDRIVE_DRV_144, 9, 80, 0, FDRIVE_RATE_250K, },
2181 /* end */
2182 { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2183 };
2184
2185 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2186 int *max_track, int *last_sect,
2187 FDriveType drive_in, FDriveType *drive,
2188 FDriveRate *rate)
2189 {
2190 const FDFormat *parse;
2191 uint64_t nb_sectors, size;
2192 int i, first_match, match;
2193
2194 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2195 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2196 /* User defined disk */
2197 *rate = FDRIVE_RATE_500K;
2198 } else {
2199 bdrv_get_geometry(bs, &nb_sectors);
2200 match = -1;
2201 first_match = -1;
2202 for (i = 0; ; i++) {
2203 parse = &fd_formats[i];
2204 if (parse->drive == FDRIVE_DRV_NONE) {
2205 break;
2206 }
2207 if (drive_in == parse->drive ||
2208 drive_in == FDRIVE_DRV_NONE) {
2209 size = (parse->max_head + 1) * parse->max_track *
2210 parse->last_sect;
2211 if (nb_sectors == size) {
2212 match = i;
2213 break;
2214 }
2215 if (first_match == -1) {
2216 first_match = i;
2217 }
2218 }
2219 }
2220 if (match == -1) {
2221 if (first_match == -1) {
2222 match = 1;
2223 } else {
2224 match = first_match;
2225 }
2226 parse = &fd_formats[match];
2227 }
2228 *nb_heads = parse->max_head + 1;
2229 *max_track = parse->max_track;
2230 *last_sect = parse->last_sect;
2231 *drive = parse->drive;
2232 *rate = parse->rate;
2233 }
2234 }
2235
2236 int bdrv_get_translation_hint(BlockDriverState *bs)
2237 {
2238 return bs->translation;
2239 }
2240
2241 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2242 BlockErrorAction on_write_error)
2243 {
2244 bs->on_read_error = on_read_error;
2245 bs->on_write_error = on_write_error;
2246 }
2247
2248 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2249 {
2250 return is_read ? bs->on_read_error : bs->on_write_error;
2251 }
2252
2253 int bdrv_is_read_only(BlockDriverState *bs)
2254 {
2255 return bs->read_only;
2256 }
2257
2258 int bdrv_is_sg(BlockDriverState *bs)
2259 {
2260 return bs->sg;
2261 }
2262
2263 int bdrv_enable_write_cache(BlockDriverState *bs)
2264 {
2265 return bs->enable_write_cache;
2266 }
2267
2268 int bdrv_is_encrypted(BlockDriverState *bs)
2269 {
2270 if (bs->backing_hd && bs->backing_hd->encrypted)
2271 return 1;
2272 return bs->encrypted;
2273 }
2274
2275 int bdrv_key_required(BlockDriverState *bs)
2276 {
2277 BlockDriverState *backing_hd = bs->backing_hd;
2278
2279 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2280 return 1;
2281 return (bs->encrypted && !bs->valid_key);
2282 }
2283
2284 int bdrv_set_key(BlockDriverState *bs, const char *key)
2285 {
2286 int ret;
2287 if (bs->backing_hd && bs->backing_hd->encrypted) {
2288 ret = bdrv_set_key(bs->backing_hd, key);
2289 if (ret < 0)
2290 return ret;
2291 if (!bs->encrypted)
2292 return 0;
2293 }
2294 if (!bs->encrypted) {
2295 return -EINVAL;
2296 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2297 return -ENOMEDIUM;
2298 }
2299 ret = bs->drv->bdrv_set_key(bs, key);
2300 if (ret < 0) {
2301 bs->valid_key = 0;
2302 } else if (!bs->valid_key) {
2303 bs->valid_key = 1;
2304 /* call the change callback now, we skipped it on open */
2305 bdrv_dev_change_media_cb(bs, true);
2306 }
2307 return ret;
2308 }
2309
2310 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2311 {
2312 if (!bs->drv) {
2313 buf[0] = '\0';
2314 } else {
2315 pstrcpy(buf, buf_size, bs->drv->format_name);
2316 }
2317 }
2318
2319 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2320 void *opaque)
2321 {
2322 BlockDriver *drv;
2323
2324 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2325 it(opaque, drv->format_name);
2326 }
2327 }
2328
2329 BlockDriverState *bdrv_find(const char *name)
2330 {
2331 BlockDriverState *bs;
2332
2333 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2334 if (!strcmp(name, bs->device_name)) {
2335 return bs;
2336 }
2337 }
2338 return NULL;
2339 }
2340
2341 BlockDriverState *bdrv_next(BlockDriverState *bs)
2342 {
2343 if (!bs) {
2344 return QTAILQ_FIRST(&bdrv_states);
2345 }
2346 return QTAILQ_NEXT(bs, list);
2347 }
2348
2349 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2350 {
2351 BlockDriverState *bs;
2352
2353 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2354 it(opaque, bs);
2355 }
2356 }
2357
2358 const char *bdrv_get_device_name(BlockDriverState *bs)
2359 {
2360 return bs->device_name;
2361 }
2362
2363 void bdrv_flush_all(void)
2364 {
2365 BlockDriverState *bs;
2366
2367 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2368 bdrv_flush(bs);
2369 }
2370 }
2371
2372 int bdrv_has_zero_init(BlockDriverState *bs)
2373 {
2374 assert(bs->drv);
2375
2376 if (bs->drv->bdrv_has_zero_init) {
2377 return bs->drv->bdrv_has_zero_init(bs);
2378 }
2379
2380 return 1;
2381 }
2382
2383 typedef struct BdrvCoIsAllocatedData {
2384 BlockDriverState *bs;
2385 int64_t sector_num;
2386 int nb_sectors;
2387 int *pnum;
2388 int ret;
2389 bool done;
2390 } BdrvCoIsAllocatedData;
2391
2392 /*
2393 * Returns true iff the specified sector is present in the disk image. Drivers
2394 * not implementing the functionality are assumed to not support backing files,
2395 * hence all their sectors are reported as allocated.
2396 *
2397 * If 'sector_num' is beyond the end of the disk image the return value is 0
2398 * and 'pnum' is set to 0.
2399 *
2400 * 'pnum' is set to the number of sectors (including and immediately following
2401 * the specified sector) that are known to be in the same
2402 * allocated/unallocated state.
2403 *
2404 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2405 * beyond the end of the disk image it will be clamped.
2406 */
2407 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2408 int nb_sectors, int *pnum)
2409 {
2410 int64_t n;
2411
2412 if (sector_num >= bs->total_sectors) {
2413 *pnum = 0;
2414 return 0;
2415 }
2416
2417 n = bs->total_sectors - sector_num;
2418 if (n < nb_sectors) {
2419 nb_sectors = n;
2420 }
2421
2422 if (!bs->drv->bdrv_co_is_allocated) {
2423 *pnum = nb_sectors;
2424 return 1;
2425 }
2426
2427 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2428 }
2429
2430 /* Coroutine wrapper for bdrv_is_allocated() */
2431 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2432 {
2433 BdrvCoIsAllocatedData *data = opaque;
2434 BlockDriverState *bs = data->bs;
2435
2436 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2437 data->pnum);
2438 data->done = true;
2439 }
2440
2441 /*
2442 * Synchronous wrapper around bdrv_co_is_allocated().
2443 *
2444 * See bdrv_co_is_allocated() for details.
2445 */
2446 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2447 int *pnum)
2448 {
2449 Coroutine *co;
2450 BdrvCoIsAllocatedData data = {
2451 .bs = bs,
2452 .sector_num = sector_num,
2453 .nb_sectors = nb_sectors,
2454 .pnum = pnum,
2455 .done = false,
2456 };
2457
2458 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2459 qemu_coroutine_enter(co, &data);
2460 while (!data.done) {
2461 qemu_aio_wait();
2462 }
2463 return data.ret;
2464 }
2465
2466 BlockInfoList *qmp_query_block(Error **errp)
2467 {
2468 BlockInfoList *head = NULL, *cur_item = NULL;
2469 BlockDriverState *bs;
2470
2471 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2472 BlockInfoList *info = g_malloc0(sizeof(*info));
2473
2474 info->value = g_malloc0(sizeof(*info->value));
2475 info->value->device = g_strdup(bs->device_name);
2476 info->value->type = g_strdup("unknown");
2477 info->value->locked = bdrv_dev_is_medium_locked(bs);
2478 info->value->removable = bdrv_dev_has_removable_media(bs);
2479
2480 if (bdrv_dev_has_removable_media(bs)) {
2481 info->value->has_tray_open = true;
2482 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2483 }
2484
2485 if (bdrv_iostatus_is_enabled(bs)) {
2486 info->value->has_io_status = true;
2487 info->value->io_status = bs->iostatus;
2488 }
2489
2490 if (bs->drv) {
2491 info->value->has_inserted = true;
2492 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2493 info->value->inserted->file = g_strdup(bs->filename);
2494 info->value->inserted->ro = bs->read_only;
2495 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2496 info->value->inserted->encrypted = bs->encrypted;
2497 if (bs->backing_file[0]) {
2498 info->value->inserted->has_backing_file = true;
2499 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2500 }
2501
2502 if (bs->io_limits_enabled) {
2503 info->value->inserted->bps =
2504 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2505 info->value->inserted->bps_rd =
2506 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2507 info->value->inserted->bps_wr =
2508 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2509 info->value->inserted->iops =
2510 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2511 info->value->inserted->iops_rd =
2512 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2513 info->value->inserted->iops_wr =
2514 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2515 }
2516 }
2517
2518 /* XXX: waiting for the qapi to support GSList */
2519 if (!cur_item) {
2520 head = cur_item = info;
2521 } else {
2522 cur_item->next = info;
2523 cur_item = info;
2524 }
2525 }
2526
2527 return head;
2528 }
2529
2530 /* Consider exposing this as a full fledged QMP command */
2531 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2532 {
2533 BlockStats *s;
2534
2535 s = g_malloc0(sizeof(*s));
2536
2537 if (bs->device_name[0]) {
2538 s->has_device = true;
2539 s->device = g_strdup(bs->device_name);
2540 }
2541
2542 s->stats = g_malloc0(sizeof(*s->stats));
2543 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2544 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2545 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2546 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2547 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2548 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2549 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2550 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2551 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2552
2553 if (bs->file) {
2554 s->has_parent = true;
2555 s->parent = qmp_query_blockstat(bs->file, NULL);
2556 }
2557
2558 return s;
2559 }
2560
2561 BlockStatsList *qmp_query_blockstats(Error **errp)
2562 {
2563 BlockStatsList *head = NULL, *cur_item = NULL;
2564 BlockDriverState *bs;
2565
2566 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2567 BlockStatsList *info = g_malloc0(sizeof(*info));
2568 info->value = qmp_query_blockstat(bs, NULL);
2569
2570 /* XXX: waiting for the qapi to support GSList */
2571 if (!cur_item) {
2572 head = cur_item = info;
2573 } else {
2574 cur_item->next = info;
2575 cur_item = info;
2576 }
2577 }
2578
2579 return head;
2580 }
2581
2582 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2583 {
2584 if (bs->backing_hd && bs->backing_hd->encrypted)
2585 return bs->backing_file;
2586 else if (bs->encrypted)
2587 return bs->filename;
2588 else
2589 return NULL;
2590 }
2591
2592 void bdrv_get_backing_filename(BlockDriverState *bs,
2593 char *filename, int filename_size)
2594 {
2595 pstrcpy(filename, filename_size, bs->backing_file);
2596 }
2597
2598 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2599 const uint8_t *buf, int nb_sectors)
2600 {
2601 BlockDriver *drv = bs->drv;
2602 if (!drv)
2603 return -ENOMEDIUM;
2604 if (!drv->bdrv_write_compressed)
2605 return -ENOTSUP;
2606 if (bdrv_check_request(bs, sector_num, nb_sectors))
2607 return -EIO;
2608
2609 if (bs->dirty_bitmap) {
2610 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2611 }
2612
2613 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2614 }
2615
2616 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2617 {
2618 BlockDriver *drv = bs->drv;
2619 if (!drv)
2620 return -ENOMEDIUM;
2621 if (!drv->bdrv_get_info)
2622 return -ENOTSUP;
2623 memset(bdi, 0, sizeof(*bdi));
2624 return drv->bdrv_get_info(bs, bdi);
2625 }
2626
2627 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2628 int64_t pos, int size)
2629 {
2630 BlockDriver *drv = bs->drv;
2631 if (!drv)
2632 return -ENOMEDIUM;
2633 if (drv->bdrv_save_vmstate)
2634 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2635 if (bs->file)
2636 return bdrv_save_vmstate(bs->file, buf, pos, size);
2637 return -ENOTSUP;
2638 }
2639
2640 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2641 int64_t pos, int size)
2642 {
2643 BlockDriver *drv = bs->drv;
2644 if (!drv)
2645 return -ENOMEDIUM;
2646 if (drv->bdrv_load_vmstate)
2647 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2648 if (bs->file)
2649 return bdrv_load_vmstate(bs->file, buf, pos, size);
2650 return -ENOTSUP;
2651 }
2652
2653 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2654 {
2655 BlockDriver *drv = bs->drv;
2656
2657 if (!drv || !drv->bdrv_debug_event) {
2658 return;
2659 }
2660
2661 return drv->bdrv_debug_event(bs, event);
2662
2663 }
2664
2665 /**************************************************************/
2666 /* handling of snapshots */
2667
2668 int bdrv_can_snapshot(BlockDriverState *bs)
2669 {
2670 BlockDriver *drv = bs->drv;
2671 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2672 return 0;
2673 }
2674
2675 if (!drv->bdrv_snapshot_create) {
2676 if (bs->file != NULL) {
2677 return bdrv_can_snapshot(bs->file);
2678 }
2679 return 0;
2680 }
2681
2682 return 1;
2683 }
2684
2685 int bdrv_is_snapshot(BlockDriverState *bs)
2686 {
2687 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2688 }
2689
2690 BlockDriverState *bdrv_snapshots(void)
2691 {
2692 BlockDriverState *bs;
2693
2694 if (bs_snapshots) {
2695 return bs_snapshots;
2696 }
2697
2698 bs = NULL;
2699 while ((bs = bdrv_next(bs))) {
2700 if (bdrv_can_snapshot(bs)) {
2701 bs_snapshots = bs;
2702 return bs;
2703 }
2704 }
2705 return NULL;
2706 }
2707
2708 int bdrv_snapshot_create(BlockDriverState *bs,
2709 QEMUSnapshotInfo *sn_info)
2710 {
2711 BlockDriver *drv = bs->drv;
2712 if (!drv)
2713 return -ENOMEDIUM;
2714 if (drv->bdrv_snapshot_create)
2715 return drv->bdrv_snapshot_create(bs, sn_info);
2716 if (bs->file)
2717 return bdrv_snapshot_create(bs->file, sn_info);
2718 return -ENOTSUP;
2719 }
2720
2721 int bdrv_snapshot_goto(BlockDriverState *bs,
2722 const char *snapshot_id)
2723 {
2724 BlockDriver *drv = bs->drv;
2725 int ret, open_ret;
2726
2727 if (!drv)
2728 return -ENOMEDIUM;
2729 if (drv->bdrv_snapshot_goto)
2730 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2731
2732 if (bs->file) {
2733 drv->bdrv_close(bs);
2734 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2735 open_ret = drv->bdrv_open(bs, bs->open_flags);
2736 if (open_ret < 0) {
2737 bdrv_delete(bs->file);
2738 bs->drv = NULL;
2739 return open_ret;
2740 }
2741 return ret;
2742 }
2743
2744 return -ENOTSUP;
2745 }
2746
2747 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2748 {
2749 BlockDriver *drv = bs->drv;
2750 if (!drv)
2751 return -ENOMEDIUM;
2752 if (drv->bdrv_snapshot_delete)
2753 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2754 if (bs->file)
2755 return bdrv_snapshot_delete(bs->file, snapshot_id);
2756 return -ENOTSUP;
2757 }
2758
2759 int bdrv_snapshot_list(BlockDriverState *bs,
2760 QEMUSnapshotInfo **psn_info)
2761 {
2762 BlockDriver *drv = bs->drv;
2763 if (!drv)
2764 return -ENOMEDIUM;
2765 if (drv->bdrv_snapshot_list)
2766 return drv->bdrv_snapshot_list(bs, psn_info);
2767 if (bs->file)
2768 return bdrv_snapshot_list(bs->file, psn_info);
2769 return -ENOTSUP;
2770 }
2771
2772 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2773 const char *snapshot_name)
2774 {
2775 BlockDriver *drv = bs->drv;
2776 if (!drv) {
2777 return -ENOMEDIUM;
2778 }
2779 if (!bs->read_only) {
2780 return -EINVAL;
2781 }
2782 if (drv->bdrv_snapshot_load_tmp) {
2783 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2784 }
2785 return -ENOTSUP;
2786 }
2787
2788 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2789 const char *backing_file)
2790 {
2791 if (!bs->drv) {
2792 return NULL;
2793 }
2794
2795 if (bs->backing_hd) {
2796 if (strcmp(bs->backing_file, backing_file) == 0) {
2797 return bs->backing_hd;
2798 } else {
2799 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2800 }
2801 }
2802
2803 return NULL;
2804 }
2805
2806 #define NB_SUFFIXES 4
2807
2808 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2809 {
2810 static const char suffixes[NB_SUFFIXES] = "KMGT";
2811 int64_t base;
2812 int i;
2813
2814 if (size <= 999) {
2815 snprintf(buf, buf_size, "%" PRId64, size);
2816 } else {
2817 base = 1024;
2818 for(i = 0; i < NB_SUFFIXES; i++) {
2819 if (size < (10 * base)) {
2820 snprintf(buf, buf_size, "%0.1f%c",
2821 (double)size / base,
2822 suffixes[i]);
2823 break;
2824 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2825 snprintf(buf, buf_size, "%" PRId64 "%c",
2826 ((size + (base >> 1)) / base),
2827 suffixes[i]);
2828 break;
2829 }
2830 base = base * 1024;
2831 }
2832 }
2833 return buf;
2834 }
2835
2836 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2837 {
2838 char buf1[128], date_buf[128], clock_buf[128];
2839 #ifdef _WIN32
2840 struct tm *ptm;
2841 #else
2842 struct tm tm;
2843 #endif
2844 time_t ti;
2845 int64_t secs;
2846
2847 if (!sn) {
2848 snprintf(buf, buf_size,
2849 "%-10s%-20s%7s%20s%15s",
2850 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2851 } else {
2852 ti = sn->date_sec;
2853 #ifdef _WIN32
2854 ptm = localtime(&ti);
2855 strftime(date_buf, sizeof(date_buf),
2856 "%Y-%m-%d %H:%M:%S", ptm);
2857 #else
2858 localtime_r(&ti, &tm);
2859 strftime(date_buf, sizeof(date_buf),
2860 "%Y-%m-%d %H:%M:%S", &tm);
2861 #endif
2862 secs = sn->vm_clock_nsec / 1000000000;
2863 snprintf(clock_buf, sizeof(clock_buf),
2864 "%02d:%02d:%02d.%03d",
2865 (int)(secs / 3600),
2866 (int)((secs / 60) % 60),
2867 (int)(secs % 60),
2868 (int)((sn->vm_clock_nsec / 1000000) % 1000));
2869 snprintf(buf, buf_size,
2870 "%-10s%-20s%7s%20s%15s",
2871 sn->id_str, sn->name,
2872 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2873 date_buf,
2874 clock_buf);
2875 }
2876 return buf;
2877 }
2878
2879 /**************************************************************/
2880 /* async I/Os */
2881
2882 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2883 QEMUIOVector *qiov, int nb_sectors,
2884 BlockDriverCompletionFunc *cb, void *opaque)
2885 {
2886 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2887
2888 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2889 cb, opaque, false);
2890 }
2891
2892 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2893 QEMUIOVector *qiov, int nb_sectors,
2894 BlockDriverCompletionFunc *cb, void *opaque)
2895 {
2896 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2897
2898 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2899 cb, opaque, true);
2900 }
2901
2902
2903 typedef struct MultiwriteCB {
2904 int error;
2905 int num_requests;
2906 int num_callbacks;
2907 struct {
2908 BlockDriverCompletionFunc *cb;
2909 void *opaque;
2910 QEMUIOVector *free_qiov;
2911 } callbacks[];
2912 } MultiwriteCB;
2913
2914 static void multiwrite_user_cb(MultiwriteCB *mcb)
2915 {
2916 int i;
2917
2918 for (i = 0; i < mcb->num_callbacks; i++) {
2919 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
2920 if (mcb->callbacks[i].free_qiov) {
2921 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
2922 }
2923 g_free(mcb->callbacks[i].free_qiov);
2924 }
2925 }
2926
2927 static void multiwrite_cb(void *opaque, int ret)
2928 {
2929 MultiwriteCB *mcb = opaque;
2930
2931 trace_multiwrite_cb(mcb, ret);
2932
2933 if (ret < 0 && !mcb->error) {
2934 mcb->error = ret;
2935 }
2936
2937 mcb->num_requests--;
2938 if (mcb->num_requests == 0) {
2939 multiwrite_user_cb(mcb);
2940 g_free(mcb);
2941 }
2942 }
2943
2944 static int multiwrite_req_compare(const void *a, const void *b)
2945 {
2946 const BlockRequest *req1 = a, *req2 = b;
2947
2948 /*
2949 * Note that we can't simply subtract req2->sector from req1->sector
2950 * here as that could overflow the return value.
2951 */
2952 if (req1->sector > req2->sector) {
2953 return 1;
2954 } else if (req1->sector < req2->sector) {
2955 return -1;
2956 } else {
2957 return 0;
2958 }
2959 }
2960
2961 /*
2962 * Takes a bunch of requests and tries to merge them. Returns the number of
2963 * requests that remain after merging.
2964 */
2965 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
2966 int num_reqs, MultiwriteCB *mcb)
2967 {
2968 int i, outidx;
2969
2970 // Sort requests by start sector
2971 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
2972
2973 // Check if adjacent requests touch the same clusters. If so, combine them,
2974 // filling up gaps with zero sectors.
2975 outidx = 0;
2976 for (i = 1; i < num_reqs; i++) {
2977 int merge = 0;
2978 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
2979
2980 // Handle exactly sequential writes and overlapping writes.
2981 if (reqs[i].sector <= oldreq_last) {
2982 merge = 1;
2983 }
2984
2985 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
2986 merge = 0;
2987 }
2988
2989 if (merge) {
2990 size_t size;
2991 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
2992 qemu_iovec_init(qiov,
2993 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
2994
2995 // Add the first request to the merged one. If the requests are
2996 // overlapping, drop the last sectors of the first request.
2997 size = (reqs[i].sector - reqs[outidx].sector) << 9;
2998 qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
2999
3000 // We should need to add any zeros between the two requests
3001 assert (reqs[i].sector <= oldreq_last);
3002
3003 // Add the second request
3004 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
3005
3006 reqs[outidx].nb_sectors = qiov->size >> 9;
3007 reqs[outidx].qiov = qiov;
3008
3009 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3010 } else {
3011 outidx++;
3012 reqs[outidx].sector = reqs[i].sector;
3013 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3014 reqs[outidx].qiov = reqs[i].qiov;
3015 }
3016 }
3017
3018 return outidx + 1;
3019 }
3020
3021 /*
3022 * Submit multiple AIO write requests at once.
3023 *
3024 * On success, the function returns 0 and all requests in the reqs array have
3025 * been submitted. In error case this function returns -1, and any of the
3026 * requests may or may not be submitted yet. In particular, this means that the
3027 * callback will be called for some of the requests, for others it won't. The
3028 * caller must check the error field of the BlockRequest to wait for the right
3029 * callbacks (if error != 0, no callback will be called).
3030 *
3031 * The implementation may modify the contents of the reqs array, e.g. to merge
3032 * requests. However, the fields opaque and error are left unmodified as they
3033 * are used to signal failure for a single request to the caller.
3034 */
3035 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3036 {
3037 MultiwriteCB *mcb;
3038 int i;
3039
3040 /* don't submit writes if we don't have a medium */
3041 if (bs->drv == NULL) {
3042 for (i = 0; i < num_reqs; i++) {
3043 reqs[i].error = -ENOMEDIUM;
3044 }
3045 return -1;
3046 }
3047
3048 if (num_reqs == 0) {
3049 return 0;
3050 }
3051
3052 // Create MultiwriteCB structure
3053 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3054 mcb->num_requests = 0;
3055 mcb->num_callbacks = num_reqs;
3056
3057 for (i = 0; i < num_reqs; i++) {
3058 mcb->callbacks[i].cb = reqs[i].cb;
3059 mcb->callbacks[i].opaque = reqs[i].opaque;
3060 }
3061
3062 // Check for mergable requests
3063 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3064
3065 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3066
3067 /* Run the aio requests. */
3068 mcb->num_requests = num_reqs;
3069 for (i = 0; i < num_reqs; i++) {
3070 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3071 reqs[i].nb_sectors, multiwrite_cb, mcb);
3072 }
3073
3074 return 0;
3075 }
3076
3077 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3078 {
3079 acb->pool->cancel(acb);
3080 }
3081
3082 /* block I/O throttling */
3083 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3084 bool is_write, double elapsed_time, uint64_t *wait)
3085 {
3086 uint64_t bps_limit = 0;
3087 double bytes_limit, bytes_base, bytes_res;
3088 double slice_time, wait_time;
3089
3090 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3091 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3092 } else if (bs->io_limits.bps[is_write]) {
3093 bps_limit = bs->io_limits.bps[is_write];
3094 } else {
3095 if (wait) {
3096 *wait = 0;
3097 }
3098
3099 return false;
3100 }
3101
3102 slice_time = bs->slice_end - bs->slice_start;
3103 slice_time /= (NANOSECONDS_PER_SECOND);
3104 bytes_limit = bps_limit * slice_time;
3105 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3106 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3107 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3108 }
3109
3110 /* bytes_base: the bytes of data which have been read/written; and
3111 * it is obtained from the history statistic info.
3112 * bytes_res: the remaining bytes of data which need to be read/written.
3113 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3114 * the total time for completing reading/writting all data.
3115 */
3116 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3117
3118 if (bytes_base + bytes_res <= bytes_limit) {
3119 if (wait) {
3120 *wait = 0;
3121 }
3122
3123 return false;
3124 }
3125
3126 /* Calc approx time to dispatch */
3127 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3128
3129 /* When the I/O rate at runtime exceeds the limits,
3130 * bs->slice_end need to be extended in order that the current statistic
3131 * info can be kept until the timer fire, so it is increased and tuned
3132 * based on the result of experiment.
3133 */
3134 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3135 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3136 if (wait) {
3137 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3138 }
3139
3140 return true;
3141 }
3142
3143 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3144 double elapsed_time, uint64_t *wait)
3145 {
3146 uint64_t iops_limit = 0;
3147 double ios_limit, ios_base;
3148 double slice_time, wait_time;
3149
3150 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3151 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3152 } else if (bs->io_limits.iops[is_write]) {
3153 iops_limit = bs->io_limits.iops[is_write];
3154 } else {
3155 if (wait) {
3156 *wait = 0;
3157 }
3158
3159 return false;
3160 }
3161
3162 slice_time = bs->slice_end - bs->slice_start;
3163 slice_time /= (NANOSECONDS_PER_SECOND);
3164 ios_limit = iops_limit * slice_time;
3165 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3166 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3167 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3168 }
3169
3170 if (ios_base + 1 <= ios_limit) {
3171 if (wait) {
3172 *wait = 0;
3173 }
3174
3175 return false;
3176 }
3177
3178 /* Calc approx time to dispatch */
3179 wait_time = (ios_base + 1) / iops_limit;
3180 if (wait_time > elapsed_time) {
3181 wait_time = wait_time - elapsed_time;
3182 } else {
3183 wait_time = 0;
3184 }
3185
3186 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3187 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3188 if (wait) {
3189 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3190 }
3191
3192 return true;
3193 }
3194
3195 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3196 bool is_write, int64_t *wait)
3197 {
3198 int64_t now, max_wait;
3199 uint64_t bps_wait = 0, iops_wait = 0;
3200 double elapsed_time;
3201 int bps_ret, iops_ret;
3202
3203 now = qemu_get_clock_ns(vm_clock);
3204 if ((bs->slice_start < now)
3205 && (bs->slice_end > now)) {
3206 bs->slice_end = now + bs->slice_time;
3207 } else {
3208 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3209 bs->slice_start = now;
3210 bs->slice_end = now + bs->slice_time;
3211
3212 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3213 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3214
3215 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3216 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3217 }
3218
3219 elapsed_time = now - bs->slice_start;
3220 elapsed_time /= (NANOSECONDS_PER_SECOND);
3221
3222 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3223 is_write, elapsed_time, &bps_wait);
3224 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3225 elapsed_time, &iops_wait);
3226 if (bps_ret || iops_ret) {
3227 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3228 if (wait) {
3229 *wait = max_wait;
3230 }
3231
3232 now = qemu_get_clock_ns(vm_clock);
3233 if (bs->slice_end < now + max_wait) {
3234 bs->slice_end = now + max_wait;
3235 }
3236
3237 return true;
3238 }
3239
3240 if (wait) {
3241 *wait = 0;
3242 }
3243
3244 return false;
3245 }
3246
3247 /**************************************************************/
3248 /* async block device emulation */
3249
3250 typedef struct BlockDriverAIOCBSync {
3251 BlockDriverAIOCB common;
3252 QEMUBH *bh;
3253 int ret;
3254 /* vector translation state */
3255 QEMUIOVector *qiov;
3256 uint8_t *bounce;
3257 int is_write;
3258 } BlockDriverAIOCBSync;
3259
3260 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3261 {
3262 BlockDriverAIOCBSync *acb =
3263 container_of(blockacb, BlockDriverAIOCBSync, common);
3264 qemu_bh_delete(acb->bh);
3265 acb->bh = NULL;
3266 qemu_aio_release(acb);
3267 }
3268
3269 static AIOPool bdrv_em_aio_pool = {
3270 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3271 .cancel = bdrv_aio_cancel_em,
3272 };
3273
3274 static void bdrv_aio_bh_cb(void *opaque)
3275 {
3276 BlockDriverAIOCBSync *acb = opaque;
3277
3278 if (!acb->is_write)
3279 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3280 qemu_vfree(acb->bounce);
3281 acb->common.cb(acb->common.opaque, acb->ret);
3282 qemu_bh_delete(acb->bh);
3283 acb->bh = NULL;
3284 qemu_aio_release(acb);
3285 }
3286
3287 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3288 int64_t sector_num,
3289 QEMUIOVector *qiov,
3290 int nb_sectors,
3291 BlockDriverCompletionFunc *cb,
3292 void *opaque,
3293 int is_write)
3294
3295 {
3296 BlockDriverAIOCBSync *acb;
3297
3298 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3299 acb->is_write = is_write;
3300 acb->qiov = qiov;
3301 acb->bounce = qemu_blockalign(bs, qiov->size);
3302 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3303
3304 if (is_write) {
3305 qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3306 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3307 } else {
3308 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3309 }
3310
3311 qemu_bh_schedule(acb->bh);
3312
3313 return &acb->common;
3314 }
3315
3316 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3317 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3318 BlockDriverCompletionFunc *cb, void *opaque)
3319 {
3320 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3321 }
3322
3323 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3324 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3325 BlockDriverCompletionFunc *cb, void *opaque)
3326 {
3327 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3328 }
3329
3330
3331 typedef struct BlockDriverAIOCBCoroutine {
3332 BlockDriverAIOCB common;
3333 BlockRequest req;
3334 bool is_write;
3335 QEMUBH* bh;
3336 } BlockDriverAIOCBCoroutine;
3337
3338 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3339 {
3340 qemu_aio_flush();
3341 }
3342
3343 static AIOPool bdrv_em_co_aio_pool = {
3344 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3345 .cancel = bdrv_aio_co_cancel_em,
3346 };
3347
3348 static void bdrv_co_em_bh(void *opaque)
3349 {
3350 BlockDriverAIOCBCoroutine *acb = opaque;
3351
3352 acb->common.cb(acb->common.opaque, acb->req.error);
3353 qemu_bh_delete(acb->bh);
3354 qemu_aio_release(acb);
3355 }
3356
3357 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3358 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3359 {
3360 BlockDriverAIOCBCoroutine *acb = opaque;
3361 BlockDriverState *bs = acb->common.bs;
3362
3363 if (!acb->is_write) {
3364 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3365 acb->req.nb_sectors, acb->req.qiov, 0);
3366 } else {
3367 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3368 acb->req.nb_sectors, acb->req.qiov, 0);
3369 }
3370
3371 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3372 qemu_bh_schedule(acb->bh);
3373 }
3374
3375 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3376 int64_t sector_num,
3377 QEMUIOVector *qiov,
3378 int nb_sectors,
3379 BlockDriverCompletionFunc *cb,
3380 void *opaque,
3381 bool is_write)
3382 {
3383 Coroutine *co;
3384 BlockDriverAIOCBCoroutine *acb;
3385
3386 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3387 acb->req.sector = sector_num;
3388 acb->req.nb_sectors = nb_sectors;
3389 acb->req.qiov = qiov;
3390 acb->is_write = is_write;
3391
3392 co = qemu_coroutine_create(bdrv_co_do_rw);
3393 qemu_coroutine_enter(co, acb);
3394
3395 return &acb->common;
3396 }
3397
3398 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3399 {
3400 BlockDriverAIOCBCoroutine *acb = opaque;
3401 BlockDriverState *bs = acb->common.bs;
3402
3403 acb->req.error = bdrv_co_flush(bs);
3404 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3405 qemu_bh_schedule(acb->bh);
3406 }
3407
3408 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3409 BlockDriverCompletionFunc *cb, void *opaque)
3410 {
3411 trace_bdrv_aio_flush(bs, opaque);
3412
3413 Coroutine *co;
3414 BlockDriverAIOCBCoroutine *acb;
3415
3416 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3417 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3418 qemu_coroutine_enter(co, acb);
3419
3420 return &acb->common;
3421 }
3422
3423 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3424 {
3425 BlockDriverAIOCBCoroutine *acb = opaque;
3426 BlockDriverState *bs = acb->common.bs;
3427
3428 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3429 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3430 qemu_bh_schedule(acb->bh);
3431 }
3432
3433 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3434 int64_t sector_num, int nb_sectors,
3435 BlockDriverCompletionFunc *cb, void *opaque)
3436 {
3437 Coroutine *co;
3438 BlockDriverAIOCBCoroutine *acb;
3439
3440 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3441
3442 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3443 acb->req.sector = sector_num;
3444 acb->req.nb_sectors = nb_sectors;
3445 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3446 qemu_coroutine_enter(co, acb);
3447
3448 return &acb->common;
3449 }
3450
3451 void bdrv_init(void)
3452 {
3453 module_call_init(MODULE_INIT_BLOCK);
3454 }
3455
3456 void bdrv_init_with_whitelist(void)
3457 {
3458 use_bdrv_whitelist = 1;
3459 bdrv_init();
3460 }
3461
3462 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3463 BlockDriverCompletionFunc *cb, void *opaque)
3464 {
3465 BlockDriverAIOCB *acb;
3466
3467 if (pool->free_aiocb) {
3468 acb = pool->free_aiocb;
3469 pool->free_aiocb = acb->next;
3470 } else {
3471 acb = g_malloc0(pool->aiocb_size);
3472 acb->pool = pool;
3473 }
3474 acb->bs = bs;
3475 acb->cb = cb;
3476 acb->opaque = opaque;
3477 return acb;
3478 }
3479
3480 void qemu_aio_release(void *p)
3481 {
3482 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3483 AIOPool *pool = acb->pool;
3484 acb->next = pool->free_aiocb;
3485 pool->free_aiocb = acb;
3486 }
3487
3488 /**************************************************************/
3489 /* Coroutine block device emulation */
3490
3491 typedef struct CoroutineIOCompletion {
3492 Coroutine *coroutine;
3493 int ret;
3494 } CoroutineIOCompletion;
3495
3496 static void bdrv_co_io_em_complete(void *opaque, int ret)
3497 {
3498 CoroutineIOCompletion *co = opaque;
3499
3500 co->ret = ret;
3501 qemu_coroutine_enter(co->coroutine, NULL);
3502 }
3503
3504 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3505 int nb_sectors, QEMUIOVector *iov,
3506 bool is_write)
3507 {
3508 CoroutineIOCompletion co = {
3509 .coroutine = qemu_coroutine_self(),
3510 };
3511 BlockDriverAIOCB *acb;
3512
3513 if (is_write) {
3514 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3515 bdrv_co_io_em_complete, &co);
3516 } else {
3517 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3518 bdrv_co_io_em_complete, &co);
3519 }
3520
3521 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3522 if (!acb) {
3523 return -EIO;
3524 }
3525 qemu_coroutine_yield();
3526
3527 return co.ret;
3528 }
3529
3530 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3531 int64_t sector_num, int nb_sectors,
3532 QEMUIOVector *iov)
3533 {
3534 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3535 }
3536
3537 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3538 int64_t sector_num, int nb_sectors,
3539 QEMUIOVector *iov)
3540 {
3541 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3542 }
3543
3544 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3545 {
3546 RwCo *rwco = opaque;
3547
3548 rwco->ret = bdrv_co_flush(rwco->bs);
3549 }
3550
3551 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3552 {
3553 int ret;
3554
3555 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3556 return 0;
3557 }
3558
3559 /* Write back cached data to the OS even with cache=unsafe */
3560 if (bs->drv->bdrv_co_flush_to_os) {
3561 ret = bs->drv->bdrv_co_flush_to_os(bs);
3562 if (ret < 0) {
3563 return ret;
3564 }
3565 }
3566
3567 /* But don't actually force it to the disk with cache=unsafe */
3568 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3569 return 0;
3570 }
3571
3572 if (bs->drv->bdrv_co_flush_to_disk) {
3573 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3574 } else if (bs->drv->bdrv_aio_flush) {
3575 BlockDriverAIOCB *acb;
3576 CoroutineIOCompletion co = {
3577 .coroutine = qemu_coroutine_self(),
3578 };
3579
3580 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3581 if (acb == NULL) {
3582 ret = -EIO;
3583 } else {
3584 qemu_coroutine_yield();
3585 ret = co.ret;
3586 }
3587 } else {
3588 /*
3589 * Some block drivers always operate in either writethrough or unsafe
3590 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3591 * know how the server works (because the behaviour is hardcoded or
3592 * depends on server-side configuration), so we can't ensure that
3593 * everything is safe on disk. Returning an error doesn't work because
3594 * that would break guests even if the server operates in writethrough
3595 * mode.
3596 *
3597 * Let's hope the user knows what he's doing.
3598 */
3599 ret = 0;
3600 }
3601 if (ret < 0) {
3602 return ret;
3603 }
3604
3605 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3606 * in the case of cache=unsafe, so there are no useless flushes.
3607 */
3608 return bdrv_co_flush(bs->file);
3609 }
3610
3611 void bdrv_invalidate_cache(BlockDriverState *bs)
3612 {
3613 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3614 bs->drv->bdrv_invalidate_cache(bs);
3615 }
3616 }
3617
3618 void bdrv_invalidate_cache_all(void)
3619 {
3620 BlockDriverState *bs;
3621
3622 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3623 bdrv_invalidate_cache(bs);
3624 }
3625 }
3626
3627 void bdrv_clear_incoming_migration_all(void)
3628 {
3629 BlockDriverState *bs;
3630
3631 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3632 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3633 }
3634 }
3635
3636 int bdrv_flush(BlockDriverState *bs)
3637 {
3638 Coroutine *co;
3639 RwCo rwco = {
3640 .bs = bs,
3641 .ret = NOT_DONE,
3642 };
3643
3644 if (qemu_in_coroutine()) {
3645 /* Fast-path if already in coroutine context */
3646 bdrv_flush_co_entry(&rwco);
3647 } else {
3648 co = qemu_coroutine_create(bdrv_flush_co_entry);
3649 qemu_coroutine_enter(co, &rwco);
3650 while (rwco.ret == NOT_DONE) {
3651 qemu_aio_wait();
3652 }
3653 }
3654
3655 return rwco.ret;
3656 }
3657
3658 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3659 {
3660 RwCo *rwco = opaque;
3661
3662 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3663 }
3664
3665 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3666 int nb_sectors)
3667 {
3668 if (!bs->drv) {
3669 return -ENOMEDIUM;
3670 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3671 return -EIO;
3672 } else if (bs->read_only) {
3673 return -EROFS;
3674 } else if (bs->drv->bdrv_co_discard) {
3675 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3676 } else if (bs->drv->bdrv_aio_discard) {
3677 BlockDriverAIOCB *acb;
3678 CoroutineIOCompletion co = {
3679 .coroutine = qemu_coroutine_self(),
3680 };
3681
3682 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3683 bdrv_co_io_em_complete, &co);
3684 if (acb == NULL) {
3685 return -EIO;
3686 } else {
3687 qemu_coroutine_yield();
3688 return co.ret;
3689 }
3690 } else {
3691 return 0;
3692 }
3693 }
3694
3695 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3696 {
3697 Coroutine *co;
3698 RwCo rwco = {
3699 .bs = bs,
3700 .sector_num = sector_num,
3701 .nb_sectors = nb_sectors,
3702 .ret = NOT_DONE,
3703 };
3704
3705 if (qemu_in_coroutine()) {
3706 /* Fast-path if already in coroutine context */
3707 bdrv_discard_co_entry(&rwco);
3708 } else {
3709 co = qemu_coroutine_create(bdrv_discard_co_entry);
3710 qemu_coroutine_enter(co, &rwco);
3711 while (rwco.ret == NOT_DONE) {
3712 qemu_aio_wait();
3713 }
3714 }
3715
3716 return rwco.ret;
3717 }
3718
3719 /**************************************************************/
3720 /* removable device support */
3721
3722 /**
3723 * Return TRUE if the media is present
3724 */
3725 int bdrv_is_inserted(BlockDriverState *bs)
3726 {
3727 BlockDriver *drv = bs->drv;
3728
3729 if (!drv)
3730 return 0;
3731 if (!drv->bdrv_is_inserted)
3732 return 1;
3733 return drv->bdrv_is_inserted(bs);
3734 }
3735
3736 /**
3737 * Return whether the media changed since the last call to this
3738 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3739 */
3740 int bdrv_media_changed(BlockDriverState *bs)
3741 {
3742 BlockDriver *drv = bs->drv;
3743
3744 if (drv && drv->bdrv_media_changed) {
3745 return drv->bdrv_media_changed(bs);
3746 }
3747 return -ENOTSUP;
3748 }
3749
3750 /**
3751 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3752 */
3753 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3754 {
3755 BlockDriver *drv = bs->drv;
3756
3757 if (drv && drv->bdrv_eject) {
3758 drv->bdrv_eject(bs, eject_flag);
3759 }
3760
3761 if (bs->device_name[0] != '\0') {
3762 bdrv_emit_qmp_eject_event(bs, eject_flag);
3763 }
3764 }
3765
3766 /**
3767 * Lock or unlock the media (if it is locked, the user won't be able
3768 * to eject it manually).
3769 */
3770 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3771 {
3772 BlockDriver *drv = bs->drv;
3773
3774 trace_bdrv_lock_medium(bs, locked);
3775
3776 if (drv && drv->bdrv_lock_medium) {
3777 drv->bdrv_lock_medium(bs, locked);
3778 }
3779 }
3780
3781 /* needed for generic scsi interface */
3782
3783 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3784 {
3785 BlockDriver *drv = bs->drv;
3786
3787 if (drv && drv->bdrv_ioctl)
3788 return drv->bdrv_ioctl(bs, req, buf);
3789 return -ENOTSUP;
3790 }
3791
3792 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3793 unsigned long int req, void *buf,
3794 BlockDriverCompletionFunc *cb, void *opaque)
3795 {
3796 BlockDriver *drv = bs->drv;
3797
3798 if (drv && drv->bdrv_aio_ioctl)
3799 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3800 return NULL;
3801 }
3802
3803 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3804 {
3805 bs->buffer_alignment = align;
3806 }
3807
3808 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3809 {
3810 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3811 }
3812
3813 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3814 {
3815 int64_t bitmap_size;
3816
3817 bs->dirty_count = 0;
3818 if (enable) {
3819 if (!bs->dirty_bitmap) {
3820 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3821 BDRV_SECTORS_PER_DIRTY_CHUNK * 8 - 1;
3822 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * 8;
3823
3824 bs->dirty_bitmap = g_malloc0(bitmap_size);
3825 }
3826 } else {
3827 if (bs->dirty_bitmap) {
3828 g_free(bs->dirty_bitmap);
3829 bs->dirty_bitmap = NULL;
3830 }
3831 }
3832 }
3833
3834 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3835 {
3836 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3837
3838 if (bs->dirty_bitmap &&
3839 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3840 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3841 (1UL << (chunk % (sizeof(unsigned long) * 8))));
3842 } else {
3843 return 0;
3844 }
3845 }
3846
3847 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3848 int nr_sectors)
3849 {
3850 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3851 }
3852
3853 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3854 {
3855 return bs->dirty_count;
3856 }
3857
3858 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3859 {
3860 assert(bs->in_use != in_use);
3861 bs->in_use = in_use;
3862 }
3863
3864 int bdrv_in_use(BlockDriverState *bs)
3865 {
3866 return bs->in_use;
3867 }
3868
3869 void bdrv_iostatus_enable(BlockDriverState *bs)
3870 {
3871 bs->iostatus_enabled = true;
3872 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3873 }
3874
3875 /* The I/O status is only enabled if the drive explicitly
3876 * enables it _and_ the VM is configured to stop on errors */
3877 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3878 {
3879 return (bs->iostatus_enabled &&
3880 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3881 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
3882 bs->on_read_error == BLOCK_ERR_STOP_ANY));
3883 }
3884
3885 void bdrv_iostatus_disable(BlockDriverState *bs)
3886 {
3887 bs->iostatus_enabled = false;
3888 }
3889
3890 void bdrv_iostatus_reset(BlockDriverState *bs)
3891 {
3892 if (bdrv_iostatus_is_enabled(bs)) {
3893 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3894 }
3895 }
3896
3897 /* XXX: Today this is set by device models because it makes the implementation
3898 quite simple. However, the block layer knows about the error, so it's
3899 possible to implement this without device models being involved */
3900 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3901 {
3902 if (bdrv_iostatus_is_enabled(bs) &&
3903 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3904 assert(error >= 0);
3905 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
3906 BLOCK_DEVICE_IO_STATUS_FAILED;
3907 }
3908 }
3909
3910 void
3911 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
3912 enum BlockAcctType type)
3913 {
3914 assert(type < BDRV_MAX_IOTYPE);
3915
3916 cookie->bytes = bytes;
3917 cookie->start_time_ns = get_clock();
3918 cookie->type = type;
3919 }
3920
3921 void
3922 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
3923 {
3924 assert(cookie->type < BDRV_MAX_IOTYPE);
3925
3926 bs->nr_bytes[cookie->type] += cookie->bytes;
3927 bs->nr_ops[cookie->type]++;
3928 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
3929 }
3930
3931 int bdrv_img_create(const char *filename, const char *fmt,
3932 const char *base_filename, const char *base_fmt,
3933 char *options, uint64_t img_size, int flags)
3934 {
3935 QEMUOptionParameter *param = NULL, *create_options = NULL;
3936 QEMUOptionParameter *backing_fmt, *backing_file, *size;
3937 BlockDriverState *bs = NULL;
3938 BlockDriver *drv, *proto_drv;
3939 BlockDriver *backing_drv = NULL;
3940 int ret = 0;
3941
3942 /* Find driver and parse its options */
3943 drv = bdrv_find_format(fmt);
3944 if (!drv) {
3945 error_report("Unknown file format '%s'", fmt);
3946 ret = -EINVAL;
3947 goto out;
3948 }
3949
3950 proto_drv = bdrv_find_protocol(filename);
3951 if (!proto_drv) {
3952 error_report("Unknown protocol '%s'", filename);
3953 ret = -EINVAL;
3954 goto out;
3955 }
3956
3957 create_options = append_option_parameters(create_options,
3958 drv->create_options);
3959 create_options = append_option_parameters(create_options,
3960 proto_drv->create_options);
3961
3962 /* Create parameter list with default values */
3963 param = parse_option_parameters("", create_options, param);
3964
3965 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
3966
3967 /* Parse -o options */
3968 if (options) {
3969 param = parse_option_parameters(options, create_options, param);
3970 if (param == NULL) {
3971 error_report("Invalid options for file format '%s'.", fmt);
3972 ret = -EINVAL;
3973 goto out;
3974 }
3975 }
3976
3977 if (base_filename) {
3978 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
3979 base_filename)) {
3980 error_report("Backing file not supported for file format '%s'",
3981 fmt);
3982 ret = -EINVAL;
3983 goto out;
3984 }
3985 }
3986
3987 if (base_fmt) {
3988 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
3989 error_report("Backing file format not supported for file "
3990 "format '%s'", fmt);
3991 ret = -EINVAL;
3992 goto out;
3993 }
3994 }
3995
3996 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
3997 if (backing_file && backing_file->value.s) {
3998 if (!strcmp(filename, backing_file->value.s)) {
3999 error_report("Error: Trying to create an image with the "
4000 "same filename as the backing file");
4001 ret = -EINVAL;
4002 goto out;
4003 }
4004 }
4005
4006 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4007 if (backing_fmt && backing_fmt->value.s) {
4008 backing_drv = bdrv_find_format(backing_fmt->value.s);
4009 if (!backing_drv) {
4010 error_report("Unknown backing file format '%s'",
4011 backing_fmt->value.s);
4012 ret = -EINVAL;
4013 goto out;
4014 }
4015 }
4016
4017 // The size for the image must always be specified, with one exception:
4018 // If we are using a backing file, we can obtain the size from there
4019 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4020 if (size && size->value.n == -1) {
4021 if (backing_file && backing_file->value.s) {
4022 uint64_t size;
4023 char buf[32];
4024
4025 bs = bdrv_new("");
4026
4027 ret = bdrv_open(bs, backing_file->value.s, flags, backing_drv);
4028 if (ret < 0) {
4029 error_report("Could not open '%s'", backing_file->value.s);
4030 goto out;
4031 }
4032 bdrv_get_geometry(bs, &size);
4033 size *= 512;
4034
4035 snprintf(buf, sizeof(buf), "%" PRId64, size);
4036 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4037 } else {
4038 error_report("Image creation needs a size parameter");
4039 ret = -EINVAL;
4040 goto out;
4041 }
4042 }
4043
4044 printf("Formatting '%s', fmt=%s ", filename, fmt);
4045 print_option_parameters(param);
4046 puts("");
4047
4048 ret = bdrv_create(drv, filename, param);
4049
4050 if (ret < 0) {
4051 if (ret == -ENOTSUP) {
4052 error_report("Formatting or formatting option not supported for "
4053 "file format '%s'", fmt);
4054 } else if (ret == -EFBIG) {
4055 error_report("The image size is too large for file format '%s'",
4056 fmt);
4057 } else {
4058 error_report("%s: error while creating %s: %s", filename, fmt,
4059 strerror(-ret));
4060 }
4061 }
4062
4063 out:
4064 free_option_parameters(create_options);
4065 free_option_parameters(param);
4066
4067 if (bs) {
4068 bdrv_delete(bs);
4069 }
4070
4071 return ret;
4072 }
4073
4074 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4075 BlockDriverCompletionFunc *cb, void *opaque)
4076 {
4077 BlockJob *job;
4078
4079 if (bs->job || bdrv_in_use(bs)) {
4080 return NULL;
4081 }
4082 bdrv_set_in_use(bs, 1);
4083
4084 job = g_malloc0(job_type->instance_size);
4085 job->job_type = job_type;
4086 job->bs = bs;
4087 job->cb = cb;
4088 job->opaque = opaque;
4089 bs->job = job;
4090 return job;
4091 }
4092
4093 void block_job_complete(BlockJob *job, int ret)
4094 {
4095 BlockDriverState *bs = job->bs;
4096
4097 assert(bs->job == job);
4098 job->cb(job->opaque, ret);
4099 bs->job = NULL;
4100 g_free(job);
4101 bdrv_set_in_use(bs, 0);
4102 }
4103
4104 int block_job_set_speed(BlockJob *job, int64_t value)
4105 {
4106 int rc;
4107
4108 if (!job->job_type->set_speed) {
4109 return -ENOTSUP;
4110 }
4111 rc = job->job_type->set_speed(job, value);
4112 if (rc == 0) {
4113 job->speed = value;
4114 }
4115 return rc;
4116 }
4117
4118 void block_job_cancel(BlockJob *job)
4119 {
4120 job->cancelled = true;
4121 }
4122
4123 bool block_job_is_cancelled(BlockJob *job)
4124 {
4125 return job->cancelled;
4126 }
4127
4128 void block_job_cancel_sync(BlockJob *job)
4129 {
4130 BlockDriverState *bs = job->bs;
4131
4132 assert(bs->job == job);
4133 block_job_cancel(job);
4134 while (bs->job != NULL && bs->job->busy) {
4135 qemu_aio_wait();
4136 }
4137 }