]> git.proxmox.com Git - qemu.git/blob - block.c
block: Rename bdrv_mon_event() & BlockMonEventAction
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83
84 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
85 bool is_write, double elapsed_time, uint64_t *wait);
86 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
87 double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
89 bool is_write, int64_t *wait);
90
91 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
92 QTAILQ_HEAD_INITIALIZER(bdrv_states);
93
94 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
95 QLIST_HEAD_INITIALIZER(bdrv_drivers);
96
97 /* The device to use for VM snapshots */
98 static BlockDriverState *bs_snapshots;
99
100 /* If non-zero, use only whitelisted block drivers */
101 static int use_bdrv_whitelist;
102
103 #ifdef _WIN32
104 static int is_windows_drive_prefix(const char *filename)
105 {
106 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
107 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
108 filename[1] == ':');
109 }
110
111 int is_windows_drive(const char *filename)
112 {
113 if (is_windows_drive_prefix(filename) &&
114 filename[2] == '\0')
115 return 1;
116 if (strstart(filename, "\\\\.\\", NULL) ||
117 strstart(filename, "//./", NULL))
118 return 1;
119 return 0;
120 }
121 #endif
122
123 /* throttling disk I/O limits */
124 void bdrv_io_limits_disable(BlockDriverState *bs)
125 {
126 bs->io_limits_enabled = false;
127
128 while (qemu_co_queue_next(&bs->throttled_reqs));
129
130 if (bs->block_timer) {
131 qemu_del_timer(bs->block_timer);
132 qemu_free_timer(bs->block_timer);
133 bs->block_timer = NULL;
134 }
135
136 bs->slice_start = 0;
137 bs->slice_end = 0;
138 bs->slice_time = 0;
139 memset(&bs->io_base, 0, sizeof(bs->io_base));
140 }
141
142 static void bdrv_block_timer(void *opaque)
143 {
144 BlockDriverState *bs = opaque;
145
146 qemu_co_queue_next(&bs->throttled_reqs);
147 }
148
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151 qemu_co_queue_init(&bs->throttled_reqs);
152 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
154 bs->slice_start = qemu_get_clock_ns(vm_clock);
155 bs->slice_end = bs->slice_start + bs->slice_time;
156 memset(&bs->io_base, 0, sizeof(bs->io_base));
157 bs->io_limits_enabled = true;
158 }
159
160 bool bdrv_io_limits_enabled(BlockDriverState *bs)
161 {
162 BlockIOLimit *io_limits = &bs->io_limits;
163 return io_limits->bps[BLOCK_IO_LIMIT_READ]
164 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
165 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
166 || io_limits->iops[BLOCK_IO_LIMIT_READ]
167 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
168 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
169 }
170
171 static void bdrv_io_limits_intercept(BlockDriverState *bs,
172 bool is_write, int nb_sectors)
173 {
174 int64_t wait_time = -1;
175
176 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
177 qemu_co_queue_wait(&bs->throttled_reqs);
178 }
179
180 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
181 * throttled requests will not be dequeued until the current request is
182 * allowed to be serviced. So if the current request still exceeds the
183 * limits, it will be inserted to the head. All requests followed it will
184 * be still in throttled_reqs queue.
185 */
186
187 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
188 qemu_mod_timer(bs->block_timer,
189 wait_time + qemu_get_clock_ns(vm_clock));
190 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
191 }
192
193 qemu_co_queue_next(&bs->throttled_reqs);
194 }
195
196 /* check if the path starts with "<protocol>:" */
197 static int path_has_protocol(const char *path)
198 {
199 #ifdef _WIN32
200 if (is_windows_drive(path) ||
201 is_windows_drive_prefix(path)) {
202 return 0;
203 }
204 #endif
205
206 return strchr(path, ':') != NULL;
207 }
208
209 int path_is_absolute(const char *path)
210 {
211 const char *p;
212 #ifdef _WIN32
213 /* specific case for names like: "\\.\d:" */
214 if (*path == '/' || *path == '\\')
215 return 1;
216 #endif
217 p = strchr(path, ':');
218 if (p)
219 p++;
220 else
221 p = path;
222 #ifdef _WIN32
223 return (*p == '/' || *p == '\\');
224 #else
225 return (*p == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_register(BlockDriver *bdrv)
274 {
275 /* Block drivers without coroutine functions need emulation */
276 if (!bdrv->bdrv_co_readv) {
277 bdrv->bdrv_co_readv = bdrv_co_readv_em;
278 bdrv->bdrv_co_writev = bdrv_co_writev_em;
279
280 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
281 * the block driver lacks aio we need to emulate that too.
282 */
283 if (!bdrv->bdrv_aio_readv) {
284 /* add AIO emulation layer */
285 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
286 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
287 }
288 }
289
290 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
291 }
292
293 /* create a new block device (by default it is empty) */
294 BlockDriverState *bdrv_new(const char *device_name)
295 {
296 BlockDriverState *bs;
297
298 bs = g_malloc0(sizeof(BlockDriverState));
299 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
300 if (device_name[0] != '\0') {
301 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
302 }
303 bdrv_iostatus_disable(bs);
304 return bs;
305 }
306
307 BlockDriver *bdrv_find_format(const char *format_name)
308 {
309 BlockDriver *drv1;
310 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
311 if (!strcmp(drv1->format_name, format_name)) {
312 return drv1;
313 }
314 }
315 return NULL;
316 }
317
318 static int bdrv_is_whitelisted(BlockDriver *drv)
319 {
320 static const char *whitelist[] = {
321 CONFIG_BDRV_WHITELIST
322 };
323 const char **p;
324
325 if (!whitelist[0])
326 return 1; /* no whitelist, anything goes */
327
328 for (p = whitelist; *p; p++) {
329 if (!strcmp(drv->format_name, *p)) {
330 return 1;
331 }
332 }
333 return 0;
334 }
335
336 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
337 {
338 BlockDriver *drv = bdrv_find_format(format_name);
339 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
340 }
341
342 int bdrv_create(BlockDriver *drv, const char* filename,
343 QEMUOptionParameter *options)
344 {
345 if (!drv->bdrv_create)
346 return -ENOTSUP;
347
348 return drv->bdrv_create(filename, options);
349 }
350
351 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
352 {
353 BlockDriver *drv;
354
355 drv = bdrv_find_protocol(filename);
356 if (drv == NULL) {
357 return -ENOENT;
358 }
359
360 return bdrv_create(drv, filename, options);
361 }
362
363 #ifdef _WIN32
364 void get_tmp_filename(char *filename, int size)
365 {
366 char temp_dir[MAX_PATH];
367
368 GetTempPath(MAX_PATH, temp_dir);
369 GetTempFileName(temp_dir, "qem", 0, filename);
370 }
371 #else
372 void get_tmp_filename(char *filename, int size)
373 {
374 int fd;
375 const char *tmpdir;
376 /* XXX: race condition possible */
377 tmpdir = getenv("TMPDIR");
378 if (!tmpdir)
379 tmpdir = "/tmp";
380 snprintf(filename, size, "%s/vl.XXXXXX", tmpdir);
381 fd = mkstemp(filename);
382 close(fd);
383 }
384 #endif
385
386 /*
387 * Detect host devices. By convention, /dev/cdrom[N] is always
388 * recognized as a host CDROM.
389 */
390 static BlockDriver *find_hdev_driver(const char *filename)
391 {
392 int score_max = 0, score;
393 BlockDriver *drv = NULL, *d;
394
395 QLIST_FOREACH(d, &bdrv_drivers, list) {
396 if (d->bdrv_probe_device) {
397 score = d->bdrv_probe_device(filename);
398 if (score > score_max) {
399 score_max = score;
400 drv = d;
401 }
402 }
403 }
404
405 return drv;
406 }
407
408 BlockDriver *bdrv_find_protocol(const char *filename)
409 {
410 BlockDriver *drv1;
411 char protocol[128];
412 int len;
413 const char *p;
414
415 /* TODO Drivers without bdrv_file_open must be specified explicitly */
416
417 /*
418 * XXX(hch): we really should not let host device detection
419 * override an explicit protocol specification, but moving this
420 * later breaks access to device names with colons in them.
421 * Thanks to the brain-dead persistent naming schemes on udev-
422 * based Linux systems those actually are quite common.
423 */
424 drv1 = find_hdev_driver(filename);
425 if (drv1) {
426 return drv1;
427 }
428
429 if (!path_has_protocol(filename)) {
430 return bdrv_find_format("file");
431 }
432 p = strchr(filename, ':');
433 assert(p != NULL);
434 len = p - filename;
435 if (len > sizeof(protocol) - 1)
436 len = sizeof(protocol) - 1;
437 memcpy(protocol, filename, len);
438 protocol[len] = '\0';
439 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
440 if (drv1->protocol_name &&
441 !strcmp(drv1->protocol_name, protocol)) {
442 return drv1;
443 }
444 }
445 return NULL;
446 }
447
448 static int find_image_format(const char *filename, BlockDriver **pdrv)
449 {
450 int ret, score, score_max;
451 BlockDriver *drv1, *drv;
452 uint8_t buf[2048];
453 BlockDriverState *bs;
454
455 ret = bdrv_file_open(&bs, filename, 0);
456 if (ret < 0) {
457 *pdrv = NULL;
458 return ret;
459 }
460
461 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
462 if (bs->sg || !bdrv_is_inserted(bs)) {
463 bdrv_delete(bs);
464 drv = bdrv_find_format("raw");
465 if (!drv) {
466 ret = -ENOENT;
467 }
468 *pdrv = drv;
469 return ret;
470 }
471
472 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
473 bdrv_delete(bs);
474 if (ret < 0) {
475 *pdrv = NULL;
476 return ret;
477 }
478
479 score_max = 0;
480 drv = NULL;
481 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
482 if (drv1->bdrv_probe) {
483 score = drv1->bdrv_probe(buf, ret, filename);
484 if (score > score_max) {
485 score_max = score;
486 drv = drv1;
487 }
488 }
489 }
490 if (!drv) {
491 ret = -ENOENT;
492 }
493 *pdrv = drv;
494 return ret;
495 }
496
497 /**
498 * Set the current 'total_sectors' value
499 */
500 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
501 {
502 BlockDriver *drv = bs->drv;
503
504 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
505 if (bs->sg)
506 return 0;
507
508 /* query actual device if possible, otherwise just trust the hint */
509 if (drv->bdrv_getlength) {
510 int64_t length = drv->bdrv_getlength(bs);
511 if (length < 0) {
512 return length;
513 }
514 hint = length >> BDRV_SECTOR_BITS;
515 }
516
517 bs->total_sectors = hint;
518 return 0;
519 }
520
521 /**
522 * Set open flags for a given cache mode
523 *
524 * Return 0 on success, -1 if the cache mode was invalid.
525 */
526 int bdrv_parse_cache_flags(const char *mode, int *flags)
527 {
528 *flags &= ~BDRV_O_CACHE_MASK;
529
530 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
531 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
532 } else if (!strcmp(mode, "directsync")) {
533 *flags |= BDRV_O_NOCACHE;
534 } else if (!strcmp(mode, "writeback")) {
535 *flags |= BDRV_O_CACHE_WB;
536 } else if (!strcmp(mode, "unsafe")) {
537 *flags |= BDRV_O_CACHE_WB;
538 *flags |= BDRV_O_NO_FLUSH;
539 } else if (!strcmp(mode, "writethrough")) {
540 /* this is the default */
541 } else {
542 return -1;
543 }
544
545 return 0;
546 }
547
548 /**
549 * The copy-on-read flag is actually a reference count so multiple users may
550 * use the feature without worrying about clobbering its previous state.
551 * Copy-on-read stays enabled until all users have called to disable it.
552 */
553 void bdrv_enable_copy_on_read(BlockDriverState *bs)
554 {
555 bs->copy_on_read++;
556 }
557
558 void bdrv_disable_copy_on_read(BlockDriverState *bs)
559 {
560 assert(bs->copy_on_read > 0);
561 bs->copy_on_read--;
562 }
563
564 /*
565 * Common part for opening disk images and files
566 */
567 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
568 int flags, BlockDriver *drv)
569 {
570 int ret, open_flags;
571
572 assert(drv != NULL);
573
574 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
575
576 bs->file = NULL;
577 bs->total_sectors = 0;
578 bs->encrypted = 0;
579 bs->valid_key = 0;
580 bs->sg = 0;
581 bs->open_flags = flags;
582 bs->growable = 0;
583 bs->buffer_alignment = 512;
584
585 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
586 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
587 bdrv_enable_copy_on_read(bs);
588 }
589
590 pstrcpy(bs->filename, sizeof(bs->filename), filename);
591 bs->backing_file[0] = '\0';
592
593 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
594 return -ENOTSUP;
595 }
596
597 bs->drv = drv;
598 bs->opaque = g_malloc0(drv->instance_size);
599
600 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
601
602 /*
603 * Clear flags that are internal to the block layer before opening the
604 * image.
605 */
606 open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
607
608 /*
609 * Snapshots should be writable.
610 */
611 if (bs->is_temporary) {
612 open_flags |= BDRV_O_RDWR;
613 }
614
615 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
616
617 /* Open the image, either directly or using a protocol */
618 if (drv->bdrv_file_open) {
619 ret = drv->bdrv_file_open(bs, filename, open_flags);
620 } else {
621 ret = bdrv_file_open(&bs->file, filename, open_flags);
622 if (ret >= 0) {
623 ret = drv->bdrv_open(bs, open_flags);
624 }
625 }
626
627 if (ret < 0) {
628 goto free_and_fail;
629 }
630
631 ret = refresh_total_sectors(bs, bs->total_sectors);
632 if (ret < 0) {
633 goto free_and_fail;
634 }
635
636 #ifndef _WIN32
637 if (bs->is_temporary) {
638 unlink(filename);
639 }
640 #endif
641 return 0;
642
643 free_and_fail:
644 if (bs->file) {
645 bdrv_delete(bs->file);
646 bs->file = NULL;
647 }
648 g_free(bs->opaque);
649 bs->opaque = NULL;
650 bs->drv = NULL;
651 return ret;
652 }
653
654 /*
655 * Opens a file using a protocol (file, host_device, nbd, ...)
656 */
657 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
658 {
659 BlockDriverState *bs;
660 BlockDriver *drv;
661 int ret;
662
663 drv = bdrv_find_protocol(filename);
664 if (!drv) {
665 return -ENOENT;
666 }
667
668 bs = bdrv_new("");
669 ret = bdrv_open_common(bs, filename, flags, drv);
670 if (ret < 0) {
671 bdrv_delete(bs);
672 return ret;
673 }
674 bs->growable = 1;
675 *pbs = bs;
676 return 0;
677 }
678
679 /*
680 * Opens a disk image (raw, qcow2, vmdk, ...)
681 */
682 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
683 BlockDriver *drv)
684 {
685 int ret;
686 char tmp_filename[PATH_MAX];
687
688 if (flags & BDRV_O_SNAPSHOT) {
689 BlockDriverState *bs1;
690 int64_t total_size;
691 int is_protocol = 0;
692 BlockDriver *bdrv_qcow2;
693 QEMUOptionParameter *options;
694 char backing_filename[PATH_MAX];
695
696 /* if snapshot, we create a temporary backing file and open it
697 instead of opening 'filename' directly */
698
699 /* if there is a backing file, use it */
700 bs1 = bdrv_new("");
701 ret = bdrv_open(bs1, filename, 0, drv);
702 if (ret < 0) {
703 bdrv_delete(bs1);
704 return ret;
705 }
706 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
707
708 if (bs1->drv && bs1->drv->protocol_name)
709 is_protocol = 1;
710
711 bdrv_delete(bs1);
712
713 get_tmp_filename(tmp_filename, sizeof(tmp_filename));
714
715 /* Real path is meaningless for protocols */
716 if (is_protocol)
717 snprintf(backing_filename, sizeof(backing_filename),
718 "%s", filename);
719 else if (!realpath(filename, backing_filename))
720 return -errno;
721
722 bdrv_qcow2 = bdrv_find_format("qcow2");
723 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
724
725 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
726 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
727 if (drv) {
728 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
729 drv->format_name);
730 }
731
732 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
733 free_option_parameters(options);
734 if (ret < 0) {
735 return ret;
736 }
737
738 filename = tmp_filename;
739 drv = bdrv_qcow2;
740 bs->is_temporary = 1;
741 }
742
743 /* Find the right image format driver */
744 if (!drv) {
745 ret = find_image_format(filename, &drv);
746 }
747
748 if (!drv) {
749 goto unlink_and_fail;
750 }
751
752 /* Open the image */
753 ret = bdrv_open_common(bs, filename, flags, drv);
754 if (ret < 0) {
755 goto unlink_and_fail;
756 }
757
758 /* If there is a backing file, use it */
759 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
760 char backing_filename[PATH_MAX];
761 int back_flags;
762 BlockDriver *back_drv = NULL;
763
764 bs->backing_hd = bdrv_new("");
765
766 if (path_has_protocol(bs->backing_file)) {
767 pstrcpy(backing_filename, sizeof(backing_filename),
768 bs->backing_file);
769 } else {
770 path_combine(backing_filename, sizeof(backing_filename),
771 filename, bs->backing_file);
772 }
773
774 if (bs->backing_format[0] != '\0') {
775 back_drv = bdrv_find_format(bs->backing_format);
776 }
777
778 /* backing files always opened read-only */
779 back_flags =
780 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
781
782 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
783 if (ret < 0) {
784 bdrv_close(bs);
785 return ret;
786 }
787 if (bs->is_temporary) {
788 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
789 } else {
790 /* base image inherits from "parent" */
791 bs->backing_hd->keep_read_only = bs->keep_read_only;
792 }
793 }
794
795 if (!bdrv_key_required(bs)) {
796 bdrv_dev_change_media_cb(bs, true);
797 }
798
799 /* throttling disk I/O limits */
800 if (bs->io_limits_enabled) {
801 bdrv_io_limits_enable(bs);
802 }
803
804 return 0;
805
806 unlink_and_fail:
807 if (bs->is_temporary) {
808 unlink(filename);
809 }
810 return ret;
811 }
812
813 void bdrv_close(BlockDriverState *bs)
814 {
815 if (bs->drv) {
816 if (bs == bs_snapshots) {
817 bs_snapshots = NULL;
818 }
819 if (bs->backing_hd) {
820 bdrv_delete(bs->backing_hd);
821 bs->backing_hd = NULL;
822 }
823 bs->drv->bdrv_close(bs);
824 g_free(bs->opaque);
825 #ifdef _WIN32
826 if (bs->is_temporary) {
827 unlink(bs->filename);
828 }
829 #endif
830 bs->opaque = NULL;
831 bs->drv = NULL;
832 bs->copy_on_read = 0;
833
834 if (bs->file != NULL) {
835 bdrv_close(bs->file);
836 }
837
838 bdrv_dev_change_media_cb(bs, false);
839 }
840
841 /*throttling disk I/O limits*/
842 if (bs->io_limits_enabled) {
843 bdrv_io_limits_disable(bs);
844 }
845 }
846
847 void bdrv_close_all(void)
848 {
849 BlockDriverState *bs;
850
851 QTAILQ_FOREACH(bs, &bdrv_states, list) {
852 bdrv_close(bs);
853 }
854 }
855
856 /*
857 * Wait for pending requests to complete across all BlockDriverStates
858 *
859 * This function does not flush data to disk, use bdrv_flush_all() for that
860 * after calling this function.
861 */
862 void bdrv_drain_all(void)
863 {
864 BlockDriverState *bs;
865
866 qemu_aio_flush();
867
868 /* If requests are still pending there is a bug somewhere */
869 QTAILQ_FOREACH(bs, &bdrv_states, list) {
870 assert(QLIST_EMPTY(&bs->tracked_requests));
871 assert(qemu_co_queue_empty(&bs->throttled_reqs));
872 }
873 }
874
875 /* make a BlockDriverState anonymous by removing from bdrv_state list.
876 Also, NULL terminate the device_name to prevent double remove */
877 void bdrv_make_anon(BlockDriverState *bs)
878 {
879 if (bs->device_name[0] != '\0') {
880 QTAILQ_REMOVE(&bdrv_states, bs, list);
881 }
882 bs->device_name[0] = '\0';
883 }
884
885 void bdrv_delete(BlockDriverState *bs)
886 {
887 assert(!bs->dev);
888
889 /* remove from list, if necessary */
890 bdrv_make_anon(bs);
891
892 bdrv_close(bs);
893 if (bs->file != NULL) {
894 bdrv_delete(bs->file);
895 }
896
897 assert(bs != bs_snapshots);
898 g_free(bs);
899 }
900
901 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
902 /* TODO change to DeviceState *dev when all users are qdevified */
903 {
904 if (bs->dev) {
905 return -EBUSY;
906 }
907 bs->dev = dev;
908 bdrv_iostatus_reset(bs);
909 return 0;
910 }
911
912 /* TODO qdevified devices don't use this, remove when devices are qdevified */
913 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
914 {
915 if (bdrv_attach_dev(bs, dev) < 0) {
916 abort();
917 }
918 }
919
920 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
921 /* TODO change to DeviceState *dev when all users are qdevified */
922 {
923 assert(bs->dev == dev);
924 bs->dev = NULL;
925 bs->dev_ops = NULL;
926 bs->dev_opaque = NULL;
927 bs->buffer_alignment = 512;
928 }
929
930 /* TODO change to return DeviceState * when all users are qdevified */
931 void *bdrv_get_attached_dev(BlockDriverState *bs)
932 {
933 return bs->dev;
934 }
935
936 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
937 void *opaque)
938 {
939 bs->dev_ops = ops;
940 bs->dev_opaque = opaque;
941 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
942 bs_snapshots = NULL;
943 }
944 }
945
946 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
947 BlockQMPEventAction action, int is_read)
948 {
949 QObject *data;
950 const char *action_str;
951
952 switch (action) {
953 case BDRV_ACTION_REPORT:
954 action_str = "report";
955 break;
956 case BDRV_ACTION_IGNORE:
957 action_str = "ignore";
958 break;
959 case BDRV_ACTION_STOP:
960 action_str = "stop";
961 break;
962 default:
963 abort();
964 }
965
966 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
967 bdrv->device_name,
968 action_str,
969 is_read ? "read" : "write");
970 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
971
972 qobject_decref(data);
973 }
974
975 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
976 {
977 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
978 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
979 }
980 }
981
982 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
983 {
984 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
985 }
986
987 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
988 {
989 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
990 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
991 }
992 }
993
994 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
995 {
996 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
997 return bs->dev_ops->is_tray_open(bs->dev_opaque);
998 }
999 return false;
1000 }
1001
1002 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1003 {
1004 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1005 bs->dev_ops->resize_cb(bs->dev_opaque);
1006 }
1007 }
1008
1009 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1010 {
1011 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1012 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1013 }
1014 return false;
1015 }
1016
1017 /*
1018 * Run consistency checks on an image
1019 *
1020 * Returns 0 if the check could be completed (it doesn't mean that the image is
1021 * free of errors) or -errno when an internal error occurred. The results of the
1022 * check are stored in res.
1023 */
1024 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res)
1025 {
1026 if (bs->drv->bdrv_check == NULL) {
1027 return -ENOTSUP;
1028 }
1029
1030 memset(res, 0, sizeof(*res));
1031 return bs->drv->bdrv_check(bs, res);
1032 }
1033
1034 #define COMMIT_BUF_SECTORS 2048
1035
1036 /* commit COW file into the raw image */
1037 int bdrv_commit(BlockDriverState *bs)
1038 {
1039 BlockDriver *drv = bs->drv;
1040 BlockDriver *backing_drv;
1041 int64_t sector, total_sectors;
1042 int n, ro, open_flags;
1043 int ret = 0, rw_ret = 0;
1044 uint8_t *buf;
1045 char filename[1024];
1046 BlockDriverState *bs_rw, *bs_ro;
1047
1048 if (!drv)
1049 return -ENOMEDIUM;
1050
1051 if (!bs->backing_hd) {
1052 return -ENOTSUP;
1053 }
1054
1055 if (bs->backing_hd->keep_read_only) {
1056 return -EACCES;
1057 }
1058
1059 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1060 return -EBUSY;
1061 }
1062
1063 backing_drv = bs->backing_hd->drv;
1064 ro = bs->backing_hd->read_only;
1065 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1066 open_flags = bs->backing_hd->open_flags;
1067
1068 if (ro) {
1069 /* re-open as RW */
1070 bdrv_delete(bs->backing_hd);
1071 bs->backing_hd = NULL;
1072 bs_rw = bdrv_new("");
1073 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1074 backing_drv);
1075 if (rw_ret < 0) {
1076 bdrv_delete(bs_rw);
1077 /* try to re-open read-only */
1078 bs_ro = bdrv_new("");
1079 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1080 backing_drv);
1081 if (ret < 0) {
1082 bdrv_delete(bs_ro);
1083 /* drive not functional anymore */
1084 bs->drv = NULL;
1085 return ret;
1086 }
1087 bs->backing_hd = bs_ro;
1088 return rw_ret;
1089 }
1090 bs->backing_hd = bs_rw;
1091 }
1092
1093 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1094 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1095
1096 for (sector = 0; sector < total_sectors; sector += n) {
1097 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1098
1099 if (bdrv_read(bs, sector, buf, n) != 0) {
1100 ret = -EIO;
1101 goto ro_cleanup;
1102 }
1103
1104 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1105 ret = -EIO;
1106 goto ro_cleanup;
1107 }
1108 }
1109 }
1110
1111 if (drv->bdrv_make_empty) {
1112 ret = drv->bdrv_make_empty(bs);
1113 bdrv_flush(bs);
1114 }
1115
1116 /*
1117 * Make sure all data we wrote to the backing device is actually
1118 * stable on disk.
1119 */
1120 if (bs->backing_hd)
1121 bdrv_flush(bs->backing_hd);
1122
1123 ro_cleanup:
1124 g_free(buf);
1125
1126 if (ro) {
1127 /* re-open as RO */
1128 bdrv_delete(bs->backing_hd);
1129 bs->backing_hd = NULL;
1130 bs_ro = bdrv_new("");
1131 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1132 backing_drv);
1133 if (ret < 0) {
1134 bdrv_delete(bs_ro);
1135 /* drive not functional anymore */
1136 bs->drv = NULL;
1137 return ret;
1138 }
1139 bs->backing_hd = bs_ro;
1140 bs->backing_hd->keep_read_only = 0;
1141 }
1142
1143 return ret;
1144 }
1145
1146 void bdrv_commit_all(void)
1147 {
1148 BlockDriverState *bs;
1149
1150 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1151 bdrv_commit(bs);
1152 }
1153 }
1154
1155 struct BdrvTrackedRequest {
1156 BlockDriverState *bs;
1157 int64_t sector_num;
1158 int nb_sectors;
1159 bool is_write;
1160 QLIST_ENTRY(BdrvTrackedRequest) list;
1161 Coroutine *co; /* owner, used for deadlock detection */
1162 CoQueue wait_queue; /* coroutines blocked on this request */
1163 };
1164
1165 /**
1166 * Remove an active request from the tracked requests list
1167 *
1168 * This function should be called when a tracked request is completing.
1169 */
1170 static void tracked_request_end(BdrvTrackedRequest *req)
1171 {
1172 QLIST_REMOVE(req, list);
1173 qemu_co_queue_restart_all(&req->wait_queue);
1174 }
1175
1176 /**
1177 * Add an active request to the tracked requests list
1178 */
1179 static void tracked_request_begin(BdrvTrackedRequest *req,
1180 BlockDriverState *bs,
1181 int64_t sector_num,
1182 int nb_sectors, bool is_write)
1183 {
1184 *req = (BdrvTrackedRequest){
1185 .bs = bs,
1186 .sector_num = sector_num,
1187 .nb_sectors = nb_sectors,
1188 .is_write = is_write,
1189 .co = qemu_coroutine_self(),
1190 };
1191
1192 qemu_co_queue_init(&req->wait_queue);
1193
1194 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1195 }
1196
1197 /**
1198 * Round a region to cluster boundaries
1199 */
1200 static void round_to_clusters(BlockDriverState *bs,
1201 int64_t sector_num, int nb_sectors,
1202 int64_t *cluster_sector_num,
1203 int *cluster_nb_sectors)
1204 {
1205 BlockDriverInfo bdi;
1206
1207 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1208 *cluster_sector_num = sector_num;
1209 *cluster_nb_sectors = nb_sectors;
1210 } else {
1211 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1212 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1213 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1214 nb_sectors, c);
1215 }
1216 }
1217
1218 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1219 int64_t sector_num, int nb_sectors) {
1220 /* aaaa bbbb */
1221 if (sector_num >= req->sector_num + req->nb_sectors) {
1222 return false;
1223 }
1224 /* bbbb aaaa */
1225 if (req->sector_num >= sector_num + nb_sectors) {
1226 return false;
1227 }
1228 return true;
1229 }
1230
1231 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1232 int64_t sector_num, int nb_sectors)
1233 {
1234 BdrvTrackedRequest *req;
1235 int64_t cluster_sector_num;
1236 int cluster_nb_sectors;
1237 bool retry;
1238
1239 /* If we touch the same cluster it counts as an overlap. This guarantees
1240 * that allocating writes will be serialized and not race with each other
1241 * for the same cluster. For example, in copy-on-read it ensures that the
1242 * CoR read and write operations are atomic and guest writes cannot
1243 * interleave between them.
1244 */
1245 round_to_clusters(bs, sector_num, nb_sectors,
1246 &cluster_sector_num, &cluster_nb_sectors);
1247
1248 do {
1249 retry = false;
1250 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1251 if (tracked_request_overlaps(req, cluster_sector_num,
1252 cluster_nb_sectors)) {
1253 /* Hitting this means there was a reentrant request, for
1254 * example, a block driver issuing nested requests. This must
1255 * never happen since it means deadlock.
1256 */
1257 assert(qemu_coroutine_self() != req->co);
1258
1259 qemu_co_queue_wait(&req->wait_queue);
1260 retry = true;
1261 break;
1262 }
1263 }
1264 } while (retry);
1265 }
1266
1267 /*
1268 * Return values:
1269 * 0 - success
1270 * -EINVAL - backing format specified, but no file
1271 * -ENOSPC - can't update the backing file because no space is left in the
1272 * image file header
1273 * -ENOTSUP - format driver doesn't support changing the backing file
1274 */
1275 int bdrv_change_backing_file(BlockDriverState *bs,
1276 const char *backing_file, const char *backing_fmt)
1277 {
1278 BlockDriver *drv = bs->drv;
1279
1280 if (drv->bdrv_change_backing_file != NULL) {
1281 return drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1282 } else {
1283 return -ENOTSUP;
1284 }
1285 }
1286
1287 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1288 size_t size)
1289 {
1290 int64_t len;
1291
1292 if (!bdrv_is_inserted(bs))
1293 return -ENOMEDIUM;
1294
1295 if (bs->growable)
1296 return 0;
1297
1298 len = bdrv_getlength(bs);
1299
1300 if (offset < 0)
1301 return -EIO;
1302
1303 if ((offset > len) || (len - offset < size))
1304 return -EIO;
1305
1306 return 0;
1307 }
1308
1309 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1310 int nb_sectors)
1311 {
1312 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1313 nb_sectors * BDRV_SECTOR_SIZE);
1314 }
1315
1316 typedef struct RwCo {
1317 BlockDriverState *bs;
1318 int64_t sector_num;
1319 int nb_sectors;
1320 QEMUIOVector *qiov;
1321 bool is_write;
1322 int ret;
1323 } RwCo;
1324
1325 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1326 {
1327 RwCo *rwco = opaque;
1328
1329 if (!rwco->is_write) {
1330 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1331 rwco->nb_sectors, rwco->qiov, 0);
1332 } else {
1333 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1334 rwco->nb_sectors, rwco->qiov, 0);
1335 }
1336 }
1337
1338 /*
1339 * Process a synchronous request using coroutines
1340 */
1341 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1342 int nb_sectors, bool is_write)
1343 {
1344 QEMUIOVector qiov;
1345 struct iovec iov = {
1346 .iov_base = (void *)buf,
1347 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1348 };
1349 Coroutine *co;
1350 RwCo rwco = {
1351 .bs = bs,
1352 .sector_num = sector_num,
1353 .nb_sectors = nb_sectors,
1354 .qiov = &qiov,
1355 .is_write = is_write,
1356 .ret = NOT_DONE,
1357 };
1358
1359 qemu_iovec_init_external(&qiov, &iov, 1);
1360
1361 if (qemu_in_coroutine()) {
1362 /* Fast-path if already in coroutine context */
1363 bdrv_rw_co_entry(&rwco);
1364 } else {
1365 co = qemu_coroutine_create(bdrv_rw_co_entry);
1366 qemu_coroutine_enter(co, &rwco);
1367 while (rwco.ret == NOT_DONE) {
1368 qemu_aio_wait();
1369 }
1370 }
1371 return rwco.ret;
1372 }
1373
1374 /* return < 0 if error. See bdrv_write() for the return codes */
1375 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1376 uint8_t *buf, int nb_sectors)
1377 {
1378 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1379 }
1380
1381 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1382 int nb_sectors, int dirty)
1383 {
1384 int64_t start, end;
1385 unsigned long val, idx, bit;
1386
1387 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1388 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1389
1390 for (; start <= end; start++) {
1391 idx = start / (sizeof(unsigned long) * 8);
1392 bit = start % (sizeof(unsigned long) * 8);
1393 val = bs->dirty_bitmap[idx];
1394 if (dirty) {
1395 if (!(val & (1UL << bit))) {
1396 bs->dirty_count++;
1397 val |= 1UL << bit;
1398 }
1399 } else {
1400 if (val & (1UL << bit)) {
1401 bs->dirty_count--;
1402 val &= ~(1UL << bit);
1403 }
1404 }
1405 bs->dirty_bitmap[idx] = val;
1406 }
1407 }
1408
1409 /* Return < 0 if error. Important errors are:
1410 -EIO generic I/O error (may happen for all errors)
1411 -ENOMEDIUM No media inserted.
1412 -EINVAL Invalid sector number or nb_sectors
1413 -EACCES Trying to write a read-only device
1414 */
1415 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1416 const uint8_t *buf, int nb_sectors)
1417 {
1418 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1419 }
1420
1421 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1422 void *buf, int count1)
1423 {
1424 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1425 int len, nb_sectors, count;
1426 int64_t sector_num;
1427 int ret;
1428
1429 count = count1;
1430 /* first read to align to sector start */
1431 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1432 if (len > count)
1433 len = count;
1434 sector_num = offset >> BDRV_SECTOR_BITS;
1435 if (len > 0) {
1436 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1437 return ret;
1438 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1439 count -= len;
1440 if (count == 0)
1441 return count1;
1442 sector_num++;
1443 buf += len;
1444 }
1445
1446 /* read the sectors "in place" */
1447 nb_sectors = count >> BDRV_SECTOR_BITS;
1448 if (nb_sectors > 0) {
1449 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1450 return ret;
1451 sector_num += nb_sectors;
1452 len = nb_sectors << BDRV_SECTOR_BITS;
1453 buf += len;
1454 count -= len;
1455 }
1456
1457 /* add data from the last sector */
1458 if (count > 0) {
1459 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1460 return ret;
1461 memcpy(buf, tmp_buf, count);
1462 }
1463 return count1;
1464 }
1465
1466 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1467 const void *buf, int count1)
1468 {
1469 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1470 int len, nb_sectors, count;
1471 int64_t sector_num;
1472 int ret;
1473
1474 count = count1;
1475 /* first write to align to sector start */
1476 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1477 if (len > count)
1478 len = count;
1479 sector_num = offset >> BDRV_SECTOR_BITS;
1480 if (len > 0) {
1481 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1482 return ret;
1483 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1484 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1485 return ret;
1486 count -= len;
1487 if (count == 0)
1488 return count1;
1489 sector_num++;
1490 buf += len;
1491 }
1492
1493 /* write the sectors "in place" */
1494 nb_sectors = count >> BDRV_SECTOR_BITS;
1495 if (nb_sectors > 0) {
1496 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1497 return ret;
1498 sector_num += nb_sectors;
1499 len = nb_sectors << BDRV_SECTOR_BITS;
1500 buf += len;
1501 count -= len;
1502 }
1503
1504 /* add data from the last sector */
1505 if (count > 0) {
1506 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1507 return ret;
1508 memcpy(tmp_buf, buf, count);
1509 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1510 return ret;
1511 }
1512 return count1;
1513 }
1514
1515 /*
1516 * Writes to the file and ensures that no writes are reordered across this
1517 * request (acts as a barrier)
1518 *
1519 * Returns 0 on success, -errno in error cases.
1520 */
1521 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1522 const void *buf, int count)
1523 {
1524 int ret;
1525
1526 ret = bdrv_pwrite(bs, offset, buf, count);
1527 if (ret < 0) {
1528 return ret;
1529 }
1530
1531 /* No flush needed for cache modes that use O_DSYNC */
1532 if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1533 bdrv_flush(bs);
1534 }
1535
1536 return 0;
1537 }
1538
1539 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1540 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1541 {
1542 /* Perform I/O through a temporary buffer so that users who scribble over
1543 * their read buffer while the operation is in progress do not end up
1544 * modifying the image file. This is critical for zero-copy guest I/O
1545 * where anything might happen inside guest memory.
1546 */
1547 void *bounce_buffer;
1548
1549 BlockDriver *drv = bs->drv;
1550 struct iovec iov;
1551 QEMUIOVector bounce_qiov;
1552 int64_t cluster_sector_num;
1553 int cluster_nb_sectors;
1554 size_t skip_bytes;
1555 int ret;
1556
1557 /* Cover entire cluster so no additional backing file I/O is required when
1558 * allocating cluster in the image file.
1559 */
1560 round_to_clusters(bs, sector_num, nb_sectors,
1561 &cluster_sector_num, &cluster_nb_sectors);
1562
1563 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1564 cluster_sector_num, cluster_nb_sectors);
1565
1566 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1567 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1568 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1569
1570 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1571 &bounce_qiov);
1572 if (ret < 0) {
1573 goto err;
1574 }
1575
1576 if (drv->bdrv_co_write_zeroes &&
1577 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1578 ret = drv->bdrv_co_write_zeroes(bs, cluster_sector_num,
1579 cluster_nb_sectors);
1580 } else {
1581 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1582 &bounce_qiov);
1583 }
1584
1585 if (ret < 0) {
1586 /* It might be okay to ignore write errors for guest requests. If this
1587 * is a deliberate copy-on-read then we don't want to ignore the error.
1588 * Simply report it in all cases.
1589 */
1590 goto err;
1591 }
1592
1593 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1594 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1595 nb_sectors * BDRV_SECTOR_SIZE);
1596
1597 err:
1598 qemu_vfree(bounce_buffer);
1599 return ret;
1600 }
1601
1602 /*
1603 * Handle a read request in coroutine context
1604 */
1605 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1606 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1607 BdrvRequestFlags flags)
1608 {
1609 BlockDriver *drv = bs->drv;
1610 BdrvTrackedRequest req;
1611 int ret;
1612
1613 if (!drv) {
1614 return -ENOMEDIUM;
1615 }
1616 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1617 return -EIO;
1618 }
1619
1620 /* throttling disk read I/O */
1621 if (bs->io_limits_enabled) {
1622 bdrv_io_limits_intercept(bs, false, nb_sectors);
1623 }
1624
1625 if (bs->copy_on_read) {
1626 flags |= BDRV_REQ_COPY_ON_READ;
1627 }
1628 if (flags & BDRV_REQ_COPY_ON_READ) {
1629 bs->copy_on_read_in_flight++;
1630 }
1631
1632 if (bs->copy_on_read_in_flight) {
1633 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1634 }
1635
1636 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1637
1638 if (flags & BDRV_REQ_COPY_ON_READ) {
1639 int pnum;
1640
1641 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1642 if (ret < 0) {
1643 goto out;
1644 }
1645
1646 if (!ret || pnum != nb_sectors) {
1647 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1648 goto out;
1649 }
1650 }
1651
1652 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1653
1654 out:
1655 tracked_request_end(&req);
1656
1657 if (flags & BDRV_REQ_COPY_ON_READ) {
1658 bs->copy_on_read_in_flight--;
1659 }
1660
1661 return ret;
1662 }
1663
1664 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1665 int nb_sectors, QEMUIOVector *qiov)
1666 {
1667 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1668
1669 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1670 }
1671
1672 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1673 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1674 {
1675 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1676
1677 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1678 BDRV_REQ_COPY_ON_READ);
1679 }
1680
1681 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1682 int64_t sector_num, int nb_sectors)
1683 {
1684 BlockDriver *drv = bs->drv;
1685 QEMUIOVector qiov;
1686 struct iovec iov;
1687 int ret;
1688
1689 /* First try the efficient write zeroes operation */
1690 if (drv->bdrv_co_write_zeroes) {
1691 return drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1692 }
1693
1694 /* Fall back to bounce buffer if write zeroes is unsupported */
1695 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1696 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1697 memset(iov.iov_base, 0, iov.iov_len);
1698 qemu_iovec_init_external(&qiov, &iov, 1);
1699
1700 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1701
1702 qemu_vfree(iov.iov_base);
1703 return ret;
1704 }
1705
1706 /*
1707 * Handle a write request in coroutine context
1708 */
1709 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1710 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1711 BdrvRequestFlags flags)
1712 {
1713 BlockDriver *drv = bs->drv;
1714 BdrvTrackedRequest req;
1715 int ret;
1716
1717 if (!bs->drv) {
1718 return -ENOMEDIUM;
1719 }
1720 if (bs->read_only) {
1721 return -EACCES;
1722 }
1723 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1724 return -EIO;
1725 }
1726
1727 /* throttling disk write I/O */
1728 if (bs->io_limits_enabled) {
1729 bdrv_io_limits_intercept(bs, true, nb_sectors);
1730 }
1731
1732 if (bs->copy_on_read_in_flight) {
1733 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1734 }
1735
1736 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1737
1738 if (flags & BDRV_REQ_ZERO_WRITE) {
1739 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1740 } else {
1741 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1742 }
1743
1744 if (bs->dirty_bitmap) {
1745 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1746 }
1747
1748 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1749 bs->wr_highest_sector = sector_num + nb_sectors - 1;
1750 }
1751
1752 tracked_request_end(&req);
1753
1754 return ret;
1755 }
1756
1757 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1758 int nb_sectors, QEMUIOVector *qiov)
1759 {
1760 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1761
1762 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1763 }
1764
1765 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1766 int64_t sector_num, int nb_sectors)
1767 {
1768 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1769
1770 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1771 BDRV_REQ_ZERO_WRITE);
1772 }
1773
1774 /**
1775 * Truncate file to 'offset' bytes (needed only for file protocols)
1776 */
1777 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
1778 {
1779 BlockDriver *drv = bs->drv;
1780 int ret;
1781 if (!drv)
1782 return -ENOMEDIUM;
1783 if (!drv->bdrv_truncate)
1784 return -ENOTSUP;
1785 if (bs->read_only)
1786 return -EACCES;
1787 if (bdrv_in_use(bs))
1788 return -EBUSY;
1789 ret = drv->bdrv_truncate(bs, offset);
1790 if (ret == 0) {
1791 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
1792 bdrv_dev_resize_cb(bs);
1793 }
1794 return ret;
1795 }
1796
1797 /**
1798 * Length of a allocated file in bytes. Sparse files are counted by actual
1799 * allocated space. Return < 0 if error or unknown.
1800 */
1801 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
1802 {
1803 BlockDriver *drv = bs->drv;
1804 if (!drv) {
1805 return -ENOMEDIUM;
1806 }
1807 if (drv->bdrv_get_allocated_file_size) {
1808 return drv->bdrv_get_allocated_file_size(bs);
1809 }
1810 if (bs->file) {
1811 return bdrv_get_allocated_file_size(bs->file);
1812 }
1813 return -ENOTSUP;
1814 }
1815
1816 /**
1817 * Length of a file in bytes. Return < 0 if error or unknown.
1818 */
1819 int64_t bdrv_getlength(BlockDriverState *bs)
1820 {
1821 BlockDriver *drv = bs->drv;
1822 if (!drv)
1823 return -ENOMEDIUM;
1824
1825 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
1826 if (drv->bdrv_getlength) {
1827 return drv->bdrv_getlength(bs);
1828 }
1829 }
1830 return bs->total_sectors * BDRV_SECTOR_SIZE;
1831 }
1832
1833 /* return 0 as number of sectors if no device present or error */
1834 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
1835 {
1836 int64_t length;
1837 length = bdrv_getlength(bs);
1838 if (length < 0)
1839 length = 0;
1840 else
1841 length = length >> BDRV_SECTOR_BITS;
1842 *nb_sectors_ptr = length;
1843 }
1844
1845 struct partition {
1846 uint8_t boot_ind; /* 0x80 - active */
1847 uint8_t head; /* starting head */
1848 uint8_t sector; /* starting sector */
1849 uint8_t cyl; /* starting cylinder */
1850 uint8_t sys_ind; /* What partition type */
1851 uint8_t end_head; /* end head */
1852 uint8_t end_sector; /* end sector */
1853 uint8_t end_cyl; /* end cylinder */
1854 uint32_t start_sect; /* starting sector counting from 0 */
1855 uint32_t nr_sects; /* nr of sectors in partition */
1856 } QEMU_PACKED;
1857
1858 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
1859 static int guess_disk_lchs(BlockDriverState *bs,
1860 int *pcylinders, int *pheads, int *psectors)
1861 {
1862 uint8_t buf[BDRV_SECTOR_SIZE];
1863 int ret, i, heads, sectors, cylinders;
1864 struct partition *p;
1865 uint32_t nr_sects;
1866 uint64_t nb_sectors;
1867
1868 bdrv_get_geometry(bs, &nb_sectors);
1869
1870 ret = bdrv_read(bs, 0, buf, 1);
1871 if (ret < 0)
1872 return -1;
1873 /* test msdos magic */
1874 if (buf[510] != 0x55 || buf[511] != 0xaa)
1875 return -1;
1876 for(i = 0; i < 4; i++) {
1877 p = ((struct partition *)(buf + 0x1be)) + i;
1878 nr_sects = le32_to_cpu(p->nr_sects);
1879 if (nr_sects && p->end_head) {
1880 /* We make the assumption that the partition terminates on
1881 a cylinder boundary */
1882 heads = p->end_head + 1;
1883 sectors = p->end_sector & 63;
1884 if (sectors == 0)
1885 continue;
1886 cylinders = nb_sectors / (heads * sectors);
1887 if (cylinders < 1 || cylinders > 16383)
1888 continue;
1889 *pheads = heads;
1890 *psectors = sectors;
1891 *pcylinders = cylinders;
1892 #if 0
1893 printf("guessed geometry: LCHS=%d %d %d\n",
1894 cylinders, heads, sectors);
1895 #endif
1896 return 0;
1897 }
1898 }
1899 return -1;
1900 }
1901
1902 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
1903 {
1904 int translation, lba_detected = 0;
1905 int cylinders, heads, secs;
1906 uint64_t nb_sectors;
1907
1908 /* if a geometry hint is available, use it */
1909 bdrv_get_geometry(bs, &nb_sectors);
1910 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
1911 translation = bdrv_get_translation_hint(bs);
1912 if (cylinders != 0) {
1913 *pcyls = cylinders;
1914 *pheads = heads;
1915 *psecs = secs;
1916 } else {
1917 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
1918 if (heads > 16) {
1919 /* if heads > 16, it means that a BIOS LBA
1920 translation was active, so the default
1921 hardware geometry is OK */
1922 lba_detected = 1;
1923 goto default_geometry;
1924 } else {
1925 *pcyls = cylinders;
1926 *pheads = heads;
1927 *psecs = secs;
1928 /* disable any translation to be in sync with
1929 the logical geometry */
1930 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
1931 bdrv_set_translation_hint(bs,
1932 BIOS_ATA_TRANSLATION_NONE);
1933 }
1934 }
1935 } else {
1936 default_geometry:
1937 /* if no geometry, use a standard physical disk geometry */
1938 cylinders = nb_sectors / (16 * 63);
1939
1940 if (cylinders > 16383)
1941 cylinders = 16383;
1942 else if (cylinders < 2)
1943 cylinders = 2;
1944 *pcyls = cylinders;
1945 *pheads = 16;
1946 *psecs = 63;
1947 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
1948 if ((*pcyls * *pheads) <= 131072) {
1949 bdrv_set_translation_hint(bs,
1950 BIOS_ATA_TRANSLATION_LARGE);
1951 } else {
1952 bdrv_set_translation_hint(bs,
1953 BIOS_ATA_TRANSLATION_LBA);
1954 }
1955 }
1956 }
1957 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
1958 }
1959 }
1960
1961 void bdrv_set_geometry_hint(BlockDriverState *bs,
1962 int cyls, int heads, int secs)
1963 {
1964 bs->cyls = cyls;
1965 bs->heads = heads;
1966 bs->secs = secs;
1967 }
1968
1969 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
1970 {
1971 bs->translation = translation;
1972 }
1973
1974 void bdrv_get_geometry_hint(BlockDriverState *bs,
1975 int *pcyls, int *pheads, int *psecs)
1976 {
1977 *pcyls = bs->cyls;
1978 *pheads = bs->heads;
1979 *psecs = bs->secs;
1980 }
1981
1982 /* throttling disk io limits */
1983 void bdrv_set_io_limits(BlockDriverState *bs,
1984 BlockIOLimit *io_limits)
1985 {
1986 bs->io_limits = *io_limits;
1987 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
1988 }
1989
1990 /* Recognize floppy formats */
1991 typedef struct FDFormat {
1992 FDriveType drive;
1993 uint8_t last_sect;
1994 uint8_t max_track;
1995 uint8_t max_head;
1996 } FDFormat;
1997
1998 static const FDFormat fd_formats[] = {
1999 /* First entry is default format */
2000 /* 1.44 MB 3"1/2 floppy disks */
2001 { FDRIVE_DRV_144, 18, 80, 1, },
2002 { FDRIVE_DRV_144, 20, 80, 1, },
2003 { FDRIVE_DRV_144, 21, 80, 1, },
2004 { FDRIVE_DRV_144, 21, 82, 1, },
2005 { FDRIVE_DRV_144, 21, 83, 1, },
2006 { FDRIVE_DRV_144, 22, 80, 1, },
2007 { FDRIVE_DRV_144, 23, 80, 1, },
2008 { FDRIVE_DRV_144, 24, 80, 1, },
2009 /* 2.88 MB 3"1/2 floppy disks */
2010 { FDRIVE_DRV_288, 36, 80, 1, },
2011 { FDRIVE_DRV_288, 39, 80, 1, },
2012 { FDRIVE_DRV_288, 40, 80, 1, },
2013 { FDRIVE_DRV_288, 44, 80, 1, },
2014 { FDRIVE_DRV_288, 48, 80, 1, },
2015 /* 720 kB 3"1/2 floppy disks */
2016 { FDRIVE_DRV_144, 9, 80, 1, },
2017 { FDRIVE_DRV_144, 10, 80, 1, },
2018 { FDRIVE_DRV_144, 10, 82, 1, },
2019 { FDRIVE_DRV_144, 10, 83, 1, },
2020 { FDRIVE_DRV_144, 13, 80, 1, },
2021 { FDRIVE_DRV_144, 14, 80, 1, },
2022 /* 1.2 MB 5"1/4 floppy disks */
2023 { FDRIVE_DRV_120, 15, 80, 1, },
2024 { FDRIVE_DRV_120, 18, 80, 1, },
2025 { FDRIVE_DRV_120, 18, 82, 1, },
2026 { FDRIVE_DRV_120, 18, 83, 1, },
2027 { FDRIVE_DRV_120, 20, 80, 1, },
2028 /* 720 kB 5"1/4 floppy disks */
2029 { FDRIVE_DRV_120, 9, 80, 1, },
2030 { FDRIVE_DRV_120, 11, 80, 1, },
2031 /* 360 kB 5"1/4 floppy disks */
2032 { FDRIVE_DRV_120, 9, 40, 1, },
2033 { FDRIVE_DRV_120, 9, 40, 0, },
2034 { FDRIVE_DRV_120, 10, 41, 1, },
2035 { FDRIVE_DRV_120, 10, 42, 1, },
2036 /* 320 kB 5"1/4 floppy disks */
2037 { FDRIVE_DRV_120, 8, 40, 1, },
2038 { FDRIVE_DRV_120, 8, 40, 0, },
2039 /* 360 kB must match 5"1/4 better than 3"1/2... */
2040 { FDRIVE_DRV_144, 9, 80, 0, },
2041 /* end */
2042 { FDRIVE_DRV_NONE, -1, -1, 0, },
2043 };
2044
2045 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2046 int *max_track, int *last_sect,
2047 FDriveType drive_in, FDriveType *drive)
2048 {
2049 const FDFormat *parse;
2050 uint64_t nb_sectors, size;
2051 int i, first_match, match;
2052
2053 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2054 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2055 /* User defined disk */
2056 } else {
2057 bdrv_get_geometry(bs, &nb_sectors);
2058 match = -1;
2059 first_match = -1;
2060 for (i = 0; ; i++) {
2061 parse = &fd_formats[i];
2062 if (parse->drive == FDRIVE_DRV_NONE) {
2063 break;
2064 }
2065 if (drive_in == parse->drive ||
2066 drive_in == FDRIVE_DRV_NONE) {
2067 size = (parse->max_head + 1) * parse->max_track *
2068 parse->last_sect;
2069 if (nb_sectors == size) {
2070 match = i;
2071 break;
2072 }
2073 if (first_match == -1) {
2074 first_match = i;
2075 }
2076 }
2077 }
2078 if (match == -1) {
2079 if (first_match == -1) {
2080 match = 1;
2081 } else {
2082 match = first_match;
2083 }
2084 parse = &fd_formats[match];
2085 }
2086 *nb_heads = parse->max_head + 1;
2087 *max_track = parse->max_track;
2088 *last_sect = parse->last_sect;
2089 *drive = parse->drive;
2090 }
2091 }
2092
2093 int bdrv_get_translation_hint(BlockDriverState *bs)
2094 {
2095 return bs->translation;
2096 }
2097
2098 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2099 BlockErrorAction on_write_error)
2100 {
2101 bs->on_read_error = on_read_error;
2102 bs->on_write_error = on_write_error;
2103 }
2104
2105 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2106 {
2107 return is_read ? bs->on_read_error : bs->on_write_error;
2108 }
2109
2110 int bdrv_is_read_only(BlockDriverState *bs)
2111 {
2112 return bs->read_only;
2113 }
2114
2115 int bdrv_is_sg(BlockDriverState *bs)
2116 {
2117 return bs->sg;
2118 }
2119
2120 int bdrv_enable_write_cache(BlockDriverState *bs)
2121 {
2122 return bs->enable_write_cache;
2123 }
2124
2125 int bdrv_is_encrypted(BlockDriverState *bs)
2126 {
2127 if (bs->backing_hd && bs->backing_hd->encrypted)
2128 return 1;
2129 return bs->encrypted;
2130 }
2131
2132 int bdrv_key_required(BlockDriverState *bs)
2133 {
2134 BlockDriverState *backing_hd = bs->backing_hd;
2135
2136 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2137 return 1;
2138 return (bs->encrypted && !bs->valid_key);
2139 }
2140
2141 int bdrv_set_key(BlockDriverState *bs, const char *key)
2142 {
2143 int ret;
2144 if (bs->backing_hd && bs->backing_hd->encrypted) {
2145 ret = bdrv_set_key(bs->backing_hd, key);
2146 if (ret < 0)
2147 return ret;
2148 if (!bs->encrypted)
2149 return 0;
2150 }
2151 if (!bs->encrypted) {
2152 return -EINVAL;
2153 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2154 return -ENOMEDIUM;
2155 }
2156 ret = bs->drv->bdrv_set_key(bs, key);
2157 if (ret < 0) {
2158 bs->valid_key = 0;
2159 } else if (!bs->valid_key) {
2160 bs->valid_key = 1;
2161 /* call the change callback now, we skipped it on open */
2162 bdrv_dev_change_media_cb(bs, true);
2163 }
2164 return ret;
2165 }
2166
2167 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2168 {
2169 if (!bs->drv) {
2170 buf[0] = '\0';
2171 } else {
2172 pstrcpy(buf, buf_size, bs->drv->format_name);
2173 }
2174 }
2175
2176 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2177 void *opaque)
2178 {
2179 BlockDriver *drv;
2180
2181 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2182 it(opaque, drv->format_name);
2183 }
2184 }
2185
2186 BlockDriverState *bdrv_find(const char *name)
2187 {
2188 BlockDriverState *bs;
2189
2190 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2191 if (!strcmp(name, bs->device_name)) {
2192 return bs;
2193 }
2194 }
2195 return NULL;
2196 }
2197
2198 BlockDriverState *bdrv_next(BlockDriverState *bs)
2199 {
2200 if (!bs) {
2201 return QTAILQ_FIRST(&bdrv_states);
2202 }
2203 return QTAILQ_NEXT(bs, list);
2204 }
2205
2206 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2207 {
2208 BlockDriverState *bs;
2209
2210 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2211 it(opaque, bs);
2212 }
2213 }
2214
2215 const char *bdrv_get_device_name(BlockDriverState *bs)
2216 {
2217 return bs->device_name;
2218 }
2219
2220 void bdrv_flush_all(void)
2221 {
2222 BlockDriverState *bs;
2223
2224 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2225 if (!bdrv_is_read_only(bs) && bdrv_is_inserted(bs)) {
2226 bdrv_flush(bs);
2227 }
2228 }
2229 }
2230
2231 int bdrv_has_zero_init(BlockDriverState *bs)
2232 {
2233 assert(bs->drv);
2234
2235 if (bs->drv->bdrv_has_zero_init) {
2236 return bs->drv->bdrv_has_zero_init(bs);
2237 }
2238
2239 return 1;
2240 }
2241
2242 typedef struct BdrvCoIsAllocatedData {
2243 BlockDriverState *bs;
2244 int64_t sector_num;
2245 int nb_sectors;
2246 int *pnum;
2247 int ret;
2248 bool done;
2249 } BdrvCoIsAllocatedData;
2250
2251 /*
2252 * Returns true iff the specified sector is present in the disk image. Drivers
2253 * not implementing the functionality are assumed to not support backing files,
2254 * hence all their sectors are reported as allocated.
2255 *
2256 * If 'sector_num' is beyond the end of the disk image the return value is 0
2257 * and 'pnum' is set to 0.
2258 *
2259 * 'pnum' is set to the number of sectors (including and immediately following
2260 * the specified sector) that are known to be in the same
2261 * allocated/unallocated state.
2262 *
2263 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2264 * beyond the end of the disk image it will be clamped.
2265 */
2266 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2267 int nb_sectors, int *pnum)
2268 {
2269 int64_t n;
2270
2271 if (sector_num >= bs->total_sectors) {
2272 *pnum = 0;
2273 return 0;
2274 }
2275
2276 n = bs->total_sectors - sector_num;
2277 if (n < nb_sectors) {
2278 nb_sectors = n;
2279 }
2280
2281 if (!bs->drv->bdrv_co_is_allocated) {
2282 *pnum = nb_sectors;
2283 return 1;
2284 }
2285
2286 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2287 }
2288
2289 /* Coroutine wrapper for bdrv_is_allocated() */
2290 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2291 {
2292 BdrvCoIsAllocatedData *data = opaque;
2293 BlockDriverState *bs = data->bs;
2294
2295 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2296 data->pnum);
2297 data->done = true;
2298 }
2299
2300 /*
2301 * Synchronous wrapper around bdrv_co_is_allocated().
2302 *
2303 * See bdrv_co_is_allocated() for details.
2304 */
2305 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2306 int *pnum)
2307 {
2308 Coroutine *co;
2309 BdrvCoIsAllocatedData data = {
2310 .bs = bs,
2311 .sector_num = sector_num,
2312 .nb_sectors = nb_sectors,
2313 .pnum = pnum,
2314 .done = false,
2315 };
2316
2317 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2318 qemu_coroutine_enter(co, &data);
2319 while (!data.done) {
2320 qemu_aio_wait();
2321 }
2322 return data.ret;
2323 }
2324
2325 BlockInfoList *qmp_query_block(Error **errp)
2326 {
2327 BlockInfoList *head = NULL, *cur_item = NULL;
2328 BlockDriverState *bs;
2329
2330 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2331 BlockInfoList *info = g_malloc0(sizeof(*info));
2332
2333 info->value = g_malloc0(sizeof(*info->value));
2334 info->value->device = g_strdup(bs->device_name);
2335 info->value->type = g_strdup("unknown");
2336 info->value->locked = bdrv_dev_is_medium_locked(bs);
2337 info->value->removable = bdrv_dev_has_removable_media(bs);
2338
2339 if (bdrv_dev_has_removable_media(bs)) {
2340 info->value->has_tray_open = true;
2341 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2342 }
2343
2344 if (bdrv_iostatus_is_enabled(bs)) {
2345 info->value->has_io_status = true;
2346 info->value->io_status = bs->iostatus;
2347 }
2348
2349 if (bs->drv) {
2350 info->value->has_inserted = true;
2351 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2352 info->value->inserted->file = g_strdup(bs->filename);
2353 info->value->inserted->ro = bs->read_only;
2354 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2355 info->value->inserted->encrypted = bs->encrypted;
2356 if (bs->backing_file[0]) {
2357 info->value->inserted->has_backing_file = true;
2358 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2359 }
2360
2361 if (bs->io_limits_enabled) {
2362 info->value->inserted->bps =
2363 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2364 info->value->inserted->bps_rd =
2365 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2366 info->value->inserted->bps_wr =
2367 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2368 info->value->inserted->iops =
2369 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2370 info->value->inserted->iops_rd =
2371 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2372 info->value->inserted->iops_wr =
2373 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2374 }
2375 }
2376
2377 /* XXX: waiting for the qapi to support GSList */
2378 if (!cur_item) {
2379 head = cur_item = info;
2380 } else {
2381 cur_item->next = info;
2382 cur_item = info;
2383 }
2384 }
2385
2386 return head;
2387 }
2388
2389 /* Consider exposing this as a full fledged QMP command */
2390 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2391 {
2392 BlockStats *s;
2393
2394 s = g_malloc0(sizeof(*s));
2395
2396 if (bs->device_name[0]) {
2397 s->has_device = true;
2398 s->device = g_strdup(bs->device_name);
2399 }
2400
2401 s->stats = g_malloc0(sizeof(*s->stats));
2402 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2403 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2404 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2405 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2406 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2407 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2408 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2409 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2410 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2411
2412 if (bs->file) {
2413 s->has_parent = true;
2414 s->parent = qmp_query_blockstat(bs->file, NULL);
2415 }
2416
2417 return s;
2418 }
2419
2420 BlockStatsList *qmp_query_blockstats(Error **errp)
2421 {
2422 BlockStatsList *head = NULL, *cur_item = NULL;
2423 BlockDriverState *bs;
2424
2425 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2426 BlockStatsList *info = g_malloc0(sizeof(*info));
2427 info->value = qmp_query_blockstat(bs, NULL);
2428
2429 /* XXX: waiting for the qapi to support GSList */
2430 if (!cur_item) {
2431 head = cur_item = info;
2432 } else {
2433 cur_item->next = info;
2434 cur_item = info;
2435 }
2436 }
2437
2438 return head;
2439 }
2440
2441 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2442 {
2443 if (bs->backing_hd && bs->backing_hd->encrypted)
2444 return bs->backing_file;
2445 else if (bs->encrypted)
2446 return bs->filename;
2447 else
2448 return NULL;
2449 }
2450
2451 void bdrv_get_backing_filename(BlockDriverState *bs,
2452 char *filename, int filename_size)
2453 {
2454 pstrcpy(filename, filename_size, bs->backing_file);
2455 }
2456
2457 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2458 const uint8_t *buf, int nb_sectors)
2459 {
2460 BlockDriver *drv = bs->drv;
2461 if (!drv)
2462 return -ENOMEDIUM;
2463 if (!drv->bdrv_write_compressed)
2464 return -ENOTSUP;
2465 if (bdrv_check_request(bs, sector_num, nb_sectors))
2466 return -EIO;
2467
2468 if (bs->dirty_bitmap) {
2469 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2470 }
2471
2472 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2473 }
2474
2475 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2476 {
2477 BlockDriver *drv = bs->drv;
2478 if (!drv)
2479 return -ENOMEDIUM;
2480 if (!drv->bdrv_get_info)
2481 return -ENOTSUP;
2482 memset(bdi, 0, sizeof(*bdi));
2483 return drv->bdrv_get_info(bs, bdi);
2484 }
2485
2486 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2487 int64_t pos, int size)
2488 {
2489 BlockDriver *drv = bs->drv;
2490 if (!drv)
2491 return -ENOMEDIUM;
2492 if (drv->bdrv_save_vmstate)
2493 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2494 if (bs->file)
2495 return bdrv_save_vmstate(bs->file, buf, pos, size);
2496 return -ENOTSUP;
2497 }
2498
2499 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2500 int64_t pos, int size)
2501 {
2502 BlockDriver *drv = bs->drv;
2503 if (!drv)
2504 return -ENOMEDIUM;
2505 if (drv->bdrv_load_vmstate)
2506 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2507 if (bs->file)
2508 return bdrv_load_vmstate(bs->file, buf, pos, size);
2509 return -ENOTSUP;
2510 }
2511
2512 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2513 {
2514 BlockDriver *drv = bs->drv;
2515
2516 if (!drv || !drv->bdrv_debug_event) {
2517 return;
2518 }
2519
2520 return drv->bdrv_debug_event(bs, event);
2521
2522 }
2523
2524 /**************************************************************/
2525 /* handling of snapshots */
2526
2527 int bdrv_can_snapshot(BlockDriverState *bs)
2528 {
2529 BlockDriver *drv = bs->drv;
2530 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2531 return 0;
2532 }
2533
2534 if (!drv->bdrv_snapshot_create) {
2535 if (bs->file != NULL) {
2536 return bdrv_can_snapshot(bs->file);
2537 }
2538 return 0;
2539 }
2540
2541 return 1;
2542 }
2543
2544 int bdrv_is_snapshot(BlockDriverState *bs)
2545 {
2546 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2547 }
2548
2549 BlockDriverState *bdrv_snapshots(void)
2550 {
2551 BlockDriverState *bs;
2552
2553 if (bs_snapshots) {
2554 return bs_snapshots;
2555 }
2556
2557 bs = NULL;
2558 while ((bs = bdrv_next(bs))) {
2559 if (bdrv_can_snapshot(bs)) {
2560 bs_snapshots = bs;
2561 return bs;
2562 }
2563 }
2564 return NULL;
2565 }
2566
2567 int bdrv_snapshot_create(BlockDriverState *bs,
2568 QEMUSnapshotInfo *sn_info)
2569 {
2570 BlockDriver *drv = bs->drv;
2571 if (!drv)
2572 return -ENOMEDIUM;
2573 if (drv->bdrv_snapshot_create)
2574 return drv->bdrv_snapshot_create(bs, sn_info);
2575 if (bs->file)
2576 return bdrv_snapshot_create(bs->file, sn_info);
2577 return -ENOTSUP;
2578 }
2579
2580 int bdrv_snapshot_goto(BlockDriverState *bs,
2581 const char *snapshot_id)
2582 {
2583 BlockDriver *drv = bs->drv;
2584 int ret, open_ret;
2585
2586 if (!drv)
2587 return -ENOMEDIUM;
2588 if (drv->bdrv_snapshot_goto)
2589 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2590
2591 if (bs->file) {
2592 drv->bdrv_close(bs);
2593 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2594 open_ret = drv->bdrv_open(bs, bs->open_flags);
2595 if (open_ret < 0) {
2596 bdrv_delete(bs->file);
2597 bs->drv = NULL;
2598 return open_ret;
2599 }
2600 return ret;
2601 }
2602
2603 return -ENOTSUP;
2604 }
2605
2606 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2607 {
2608 BlockDriver *drv = bs->drv;
2609 if (!drv)
2610 return -ENOMEDIUM;
2611 if (drv->bdrv_snapshot_delete)
2612 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2613 if (bs->file)
2614 return bdrv_snapshot_delete(bs->file, snapshot_id);
2615 return -ENOTSUP;
2616 }
2617
2618 int bdrv_snapshot_list(BlockDriverState *bs,
2619 QEMUSnapshotInfo **psn_info)
2620 {
2621 BlockDriver *drv = bs->drv;
2622 if (!drv)
2623 return -ENOMEDIUM;
2624 if (drv->bdrv_snapshot_list)
2625 return drv->bdrv_snapshot_list(bs, psn_info);
2626 if (bs->file)
2627 return bdrv_snapshot_list(bs->file, psn_info);
2628 return -ENOTSUP;
2629 }
2630
2631 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2632 const char *snapshot_name)
2633 {
2634 BlockDriver *drv = bs->drv;
2635 if (!drv) {
2636 return -ENOMEDIUM;
2637 }
2638 if (!bs->read_only) {
2639 return -EINVAL;
2640 }
2641 if (drv->bdrv_snapshot_load_tmp) {
2642 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2643 }
2644 return -ENOTSUP;
2645 }
2646
2647 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2648 const char *backing_file)
2649 {
2650 if (!bs->drv) {
2651 return NULL;
2652 }
2653
2654 if (bs->backing_hd) {
2655 if (strcmp(bs->backing_file, backing_file) == 0) {
2656 return bs->backing_hd;
2657 } else {
2658 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2659 }
2660 }
2661
2662 return NULL;
2663 }
2664
2665 #define NB_SUFFIXES 4
2666
2667 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2668 {
2669 static const char suffixes[NB_SUFFIXES] = "KMGT";
2670 int64_t base;
2671 int i;
2672
2673 if (size <= 999) {
2674 snprintf(buf, buf_size, "%" PRId64, size);
2675 } else {
2676 base = 1024;
2677 for(i = 0; i < NB_SUFFIXES; i++) {
2678 if (size < (10 * base)) {
2679 snprintf(buf, buf_size, "%0.1f%c",
2680 (double)size / base,
2681 suffixes[i]);
2682 break;
2683 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2684 snprintf(buf, buf_size, "%" PRId64 "%c",
2685 ((size + (base >> 1)) / base),
2686 suffixes[i]);
2687 break;
2688 }
2689 base = base * 1024;
2690 }
2691 }
2692 return buf;
2693 }
2694
2695 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2696 {
2697 char buf1[128], date_buf[128], clock_buf[128];
2698 #ifdef _WIN32
2699 struct tm *ptm;
2700 #else
2701 struct tm tm;
2702 #endif
2703 time_t ti;
2704 int64_t secs;
2705
2706 if (!sn) {
2707 snprintf(buf, buf_size,
2708 "%-10s%-20s%7s%20s%15s",
2709 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2710 } else {
2711 ti = sn->date_sec;
2712 #ifdef _WIN32
2713 ptm = localtime(&ti);
2714 strftime(date_buf, sizeof(date_buf),
2715 "%Y-%m-%d %H:%M:%S", ptm);
2716 #else
2717 localtime_r(&ti, &tm);
2718 strftime(date_buf, sizeof(date_buf),
2719 "%Y-%m-%d %H:%M:%S", &tm);
2720 #endif
2721 secs = sn->vm_clock_nsec / 1000000000;
2722 snprintf(clock_buf, sizeof(clock_buf),
2723 "%02d:%02d:%02d.%03d",
2724 (int)(secs / 3600),
2725 (int)((secs / 60) % 60),
2726 (int)(secs % 60),
2727 (int)((sn->vm_clock_nsec / 1000000) % 1000));
2728 snprintf(buf, buf_size,
2729 "%-10s%-20s%7s%20s%15s",
2730 sn->id_str, sn->name,
2731 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2732 date_buf,
2733 clock_buf);
2734 }
2735 return buf;
2736 }
2737
2738 /**************************************************************/
2739 /* async I/Os */
2740
2741 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2742 QEMUIOVector *qiov, int nb_sectors,
2743 BlockDriverCompletionFunc *cb, void *opaque)
2744 {
2745 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2746
2747 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2748 cb, opaque, false);
2749 }
2750
2751 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2752 QEMUIOVector *qiov, int nb_sectors,
2753 BlockDriverCompletionFunc *cb, void *opaque)
2754 {
2755 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2756
2757 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2758 cb, opaque, true);
2759 }
2760
2761
2762 typedef struct MultiwriteCB {
2763 int error;
2764 int num_requests;
2765 int num_callbacks;
2766 struct {
2767 BlockDriverCompletionFunc *cb;
2768 void *opaque;
2769 QEMUIOVector *free_qiov;
2770 void *free_buf;
2771 } callbacks[];
2772 } MultiwriteCB;
2773
2774 static void multiwrite_user_cb(MultiwriteCB *mcb)
2775 {
2776 int i;
2777
2778 for (i = 0; i < mcb->num_callbacks; i++) {
2779 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
2780 if (mcb->callbacks[i].free_qiov) {
2781 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
2782 }
2783 g_free(mcb->callbacks[i].free_qiov);
2784 qemu_vfree(mcb->callbacks[i].free_buf);
2785 }
2786 }
2787
2788 static void multiwrite_cb(void *opaque, int ret)
2789 {
2790 MultiwriteCB *mcb = opaque;
2791
2792 trace_multiwrite_cb(mcb, ret);
2793
2794 if (ret < 0 && !mcb->error) {
2795 mcb->error = ret;
2796 }
2797
2798 mcb->num_requests--;
2799 if (mcb->num_requests == 0) {
2800 multiwrite_user_cb(mcb);
2801 g_free(mcb);
2802 }
2803 }
2804
2805 static int multiwrite_req_compare(const void *a, const void *b)
2806 {
2807 const BlockRequest *req1 = a, *req2 = b;
2808
2809 /*
2810 * Note that we can't simply subtract req2->sector from req1->sector
2811 * here as that could overflow the return value.
2812 */
2813 if (req1->sector > req2->sector) {
2814 return 1;
2815 } else if (req1->sector < req2->sector) {
2816 return -1;
2817 } else {
2818 return 0;
2819 }
2820 }
2821
2822 /*
2823 * Takes a bunch of requests and tries to merge them. Returns the number of
2824 * requests that remain after merging.
2825 */
2826 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
2827 int num_reqs, MultiwriteCB *mcb)
2828 {
2829 int i, outidx;
2830
2831 // Sort requests by start sector
2832 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
2833
2834 // Check if adjacent requests touch the same clusters. If so, combine them,
2835 // filling up gaps with zero sectors.
2836 outidx = 0;
2837 for (i = 1; i < num_reqs; i++) {
2838 int merge = 0;
2839 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
2840
2841 // This handles the cases that are valid for all block drivers, namely
2842 // exactly sequential writes and overlapping writes.
2843 if (reqs[i].sector <= oldreq_last) {
2844 merge = 1;
2845 }
2846
2847 // The block driver may decide that it makes sense to combine requests
2848 // even if there is a gap of some sectors between them. In this case,
2849 // the gap is filled with zeros (therefore only applicable for yet
2850 // unused space in format like qcow2).
2851 if (!merge && bs->drv->bdrv_merge_requests) {
2852 merge = bs->drv->bdrv_merge_requests(bs, &reqs[outidx], &reqs[i]);
2853 }
2854
2855 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
2856 merge = 0;
2857 }
2858
2859 if (merge) {
2860 size_t size;
2861 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
2862 qemu_iovec_init(qiov,
2863 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
2864
2865 // Add the first request to the merged one. If the requests are
2866 // overlapping, drop the last sectors of the first request.
2867 size = (reqs[i].sector - reqs[outidx].sector) << 9;
2868 qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
2869
2870 // We might need to add some zeros between the two requests
2871 if (reqs[i].sector > oldreq_last) {
2872 size_t zero_bytes = (reqs[i].sector - oldreq_last) << 9;
2873 uint8_t *buf = qemu_blockalign(bs, zero_bytes);
2874 memset(buf, 0, zero_bytes);
2875 qemu_iovec_add(qiov, buf, zero_bytes);
2876 mcb->callbacks[i].free_buf = buf;
2877 }
2878
2879 // Add the second request
2880 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
2881
2882 reqs[outidx].nb_sectors = qiov->size >> 9;
2883 reqs[outidx].qiov = qiov;
2884
2885 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
2886 } else {
2887 outidx++;
2888 reqs[outidx].sector = reqs[i].sector;
2889 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
2890 reqs[outidx].qiov = reqs[i].qiov;
2891 }
2892 }
2893
2894 return outidx + 1;
2895 }
2896
2897 /*
2898 * Submit multiple AIO write requests at once.
2899 *
2900 * On success, the function returns 0 and all requests in the reqs array have
2901 * been submitted. In error case this function returns -1, and any of the
2902 * requests may or may not be submitted yet. In particular, this means that the
2903 * callback will be called for some of the requests, for others it won't. The
2904 * caller must check the error field of the BlockRequest to wait for the right
2905 * callbacks (if error != 0, no callback will be called).
2906 *
2907 * The implementation may modify the contents of the reqs array, e.g. to merge
2908 * requests. However, the fields opaque and error are left unmodified as they
2909 * are used to signal failure for a single request to the caller.
2910 */
2911 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
2912 {
2913 MultiwriteCB *mcb;
2914 int i;
2915
2916 /* don't submit writes if we don't have a medium */
2917 if (bs->drv == NULL) {
2918 for (i = 0; i < num_reqs; i++) {
2919 reqs[i].error = -ENOMEDIUM;
2920 }
2921 return -1;
2922 }
2923
2924 if (num_reqs == 0) {
2925 return 0;
2926 }
2927
2928 // Create MultiwriteCB structure
2929 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
2930 mcb->num_requests = 0;
2931 mcb->num_callbacks = num_reqs;
2932
2933 for (i = 0; i < num_reqs; i++) {
2934 mcb->callbacks[i].cb = reqs[i].cb;
2935 mcb->callbacks[i].opaque = reqs[i].opaque;
2936 }
2937
2938 // Check for mergable requests
2939 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
2940
2941 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
2942
2943 /* Run the aio requests. */
2944 mcb->num_requests = num_reqs;
2945 for (i = 0; i < num_reqs; i++) {
2946 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
2947 reqs[i].nb_sectors, multiwrite_cb, mcb);
2948 }
2949
2950 return 0;
2951 }
2952
2953 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
2954 {
2955 acb->pool->cancel(acb);
2956 }
2957
2958 /* block I/O throttling */
2959 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
2960 bool is_write, double elapsed_time, uint64_t *wait)
2961 {
2962 uint64_t bps_limit = 0;
2963 double bytes_limit, bytes_base, bytes_res;
2964 double slice_time, wait_time;
2965
2966 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
2967 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2968 } else if (bs->io_limits.bps[is_write]) {
2969 bps_limit = bs->io_limits.bps[is_write];
2970 } else {
2971 if (wait) {
2972 *wait = 0;
2973 }
2974
2975 return false;
2976 }
2977
2978 slice_time = bs->slice_end - bs->slice_start;
2979 slice_time /= (NANOSECONDS_PER_SECOND);
2980 bytes_limit = bps_limit * slice_time;
2981 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
2982 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
2983 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
2984 }
2985
2986 /* bytes_base: the bytes of data which have been read/written; and
2987 * it is obtained from the history statistic info.
2988 * bytes_res: the remaining bytes of data which need to be read/written.
2989 * (bytes_base + bytes_res) / bps_limit: used to calcuate
2990 * the total time for completing reading/writting all data.
2991 */
2992 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
2993
2994 if (bytes_base + bytes_res <= bytes_limit) {
2995 if (wait) {
2996 *wait = 0;
2997 }
2998
2999 return false;
3000 }
3001
3002 /* Calc approx time to dispatch */
3003 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3004
3005 /* When the I/O rate at runtime exceeds the limits,
3006 * bs->slice_end need to be extended in order that the current statistic
3007 * info can be kept until the timer fire, so it is increased and tuned
3008 * based on the result of experiment.
3009 */
3010 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3011 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3012 if (wait) {
3013 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3014 }
3015
3016 return true;
3017 }
3018
3019 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3020 double elapsed_time, uint64_t *wait)
3021 {
3022 uint64_t iops_limit = 0;
3023 double ios_limit, ios_base;
3024 double slice_time, wait_time;
3025
3026 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3027 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3028 } else if (bs->io_limits.iops[is_write]) {
3029 iops_limit = bs->io_limits.iops[is_write];
3030 } else {
3031 if (wait) {
3032 *wait = 0;
3033 }
3034
3035 return false;
3036 }
3037
3038 slice_time = bs->slice_end - bs->slice_start;
3039 slice_time /= (NANOSECONDS_PER_SECOND);
3040 ios_limit = iops_limit * slice_time;
3041 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3042 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3043 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3044 }
3045
3046 if (ios_base + 1 <= ios_limit) {
3047 if (wait) {
3048 *wait = 0;
3049 }
3050
3051 return false;
3052 }
3053
3054 /* Calc approx time to dispatch */
3055 wait_time = (ios_base + 1) / iops_limit;
3056 if (wait_time > elapsed_time) {
3057 wait_time = wait_time - elapsed_time;
3058 } else {
3059 wait_time = 0;
3060 }
3061
3062 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3063 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3064 if (wait) {
3065 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3066 }
3067
3068 return true;
3069 }
3070
3071 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3072 bool is_write, int64_t *wait)
3073 {
3074 int64_t now, max_wait;
3075 uint64_t bps_wait = 0, iops_wait = 0;
3076 double elapsed_time;
3077 int bps_ret, iops_ret;
3078
3079 now = qemu_get_clock_ns(vm_clock);
3080 if ((bs->slice_start < now)
3081 && (bs->slice_end > now)) {
3082 bs->slice_end = now + bs->slice_time;
3083 } else {
3084 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3085 bs->slice_start = now;
3086 bs->slice_end = now + bs->slice_time;
3087
3088 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3089 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3090
3091 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3092 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3093 }
3094
3095 elapsed_time = now - bs->slice_start;
3096 elapsed_time /= (NANOSECONDS_PER_SECOND);
3097
3098 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3099 is_write, elapsed_time, &bps_wait);
3100 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3101 elapsed_time, &iops_wait);
3102 if (bps_ret || iops_ret) {
3103 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3104 if (wait) {
3105 *wait = max_wait;
3106 }
3107
3108 now = qemu_get_clock_ns(vm_clock);
3109 if (bs->slice_end < now + max_wait) {
3110 bs->slice_end = now + max_wait;
3111 }
3112
3113 return true;
3114 }
3115
3116 if (wait) {
3117 *wait = 0;
3118 }
3119
3120 return false;
3121 }
3122
3123 /**************************************************************/
3124 /* async block device emulation */
3125
3126 typedef struct BlockDriverAIOCBSync {
3127 BlockDriverAIOCB common;
3128 QEMUBH *bh;
3129 int ret;
3130 /* vector translation state */
3131 QEMUIOVector *qiov;
3132 uint8_t *bounce;
3133 int is_write;
3134 } BlockDriverAIOCBSync;
3135
3136 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3137 {
3138 BlockDriverAIOCBSync *acb =
3139 container_of(blockacb, BlockDriverAIOCBSync, common);
3140 qemu_bh_delete(acb->bh);
3141 acb->bh = NULL;
3142 qemu_aio_release(acb);
3143 }
3144
3145 static AIOPool bdrv_em_aio_pool = {
3146 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3147 .cancel = bdrv_aio_cancel_em,
3148 };
3149
3150 static void bdrv_aio_bh_cb(void *opaque)
3151 {
3152 BlockDriverAIOCBSync *acb = opaque;
3153
3154 if (!acb->is_write)
3155 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3156 qemu_vfree(acb->bounce);
3157 acb->common.cb(acb->common.opaque, acb->ret);
3158 qemu_bh_delete(acb->bh);
3159 acb->bh = NULL;
3160 qemu_aio_release(acb);
3161 }
3162
3163 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3164 int64_t sector_num,
3165 QEMUIOVector *qiov,
3166 int nb_sectors,
3167 BlockDriverCompletionFunc *cb,
3168 void *opaque,
3169 int is_write)
3170
3171 {
3172 BlockDriverAIOCBSync *acb;
3173
3174 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3175 acb->is_write = is_write;
3176 acb->qiov = qiov;
3177 acb->bounce = qemu_blockalign(bs, qiov->size);
3178 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3179
3180 if (is_write) {
3181 qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3182 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3183 } else {
3184 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3185 }
3186
3187 qemu_bh_schedule(acb->bh);
3188
3189 return &acb->common;
3190 }
3191
3192 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3193 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3194 BlockDriverCompletionFunc *cb, void *opaque)
3195 {
3196 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3197 }
3198
3199 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3200 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3201 BlockDriverCompletionFunc *cb, void *opaque)
3202 {
3203 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3204 }
3205
3206
3207 typedef struct BlockDriverAIOCBCoroutine {
3208 BlockDriverAIOCB common;
3209 BlockRequest req;
3210 bool is_write;
3211 QEMUBH* bh;
3212 } BlockDriverAIOCBCoroutine;
3213
3214 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3215 {
3216 qemu_aio_flush();
3217 }
3218
3219 static AIOPool bdrv_em_co_aio_pool = {
3220 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3221 .cancel = bdrv_aio_co_cancel_em,
3222 };
3223
3224 static void bdrv_co_em_bh(void *opaque)
3225 {
3226 BlockDriverAIOCBCoroutine *acb = opaque;
3227
3228 acb->common.cb(acb->common.opaque, acb->req.error);
3229 qemu_bh_delete(acb->bh);
3230 qemu_aio_release(acb);
3231 }
3232
3233 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3234 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3235 {
3236 BlockDriverAIOCBCoroutine *acb = opaque;
3237 BlockDriverState *bs = acb->common.bs;
3238
3239 if (!acb->is_write) {
3240 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3241 acb->req.nb_sectors, acb->req.qiov, 0);
3242 } else {
3243 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3244 acb->req.nb_sectors, acb->req.qiov, 0);
3245 }
3246
3247 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3248 qemu_bh_schedule(acb->bh);
3249 }
3250
3251 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3252 int64_t sector_num,
3253 QEMUIOVector *qiov,
3254 int nb_sectors,
3255 BlockDriverCompletionFunc *cb,
3256 void *opaque,
3257 bool is_write)
3258 {
3259 Coroutine *co;
3260 BlockDriverAIOCBCoroutine *acb;
3261
3262 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3263 acb->req.sector = sector_num;
3264 acb->req.nb_sectors = nb_sectors;
3265 acb->req.qiov = qiov;
3266 acb->is_write = is_write;
3267
3268 co = qemu_coroutine_create(bdrv_co_do_rw);
3269 qemu_coroutine_enter(co, acb);
3270
3271 return &acb->common;
3272 }
3273
3274 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3275 {
3276 BlockDriverAIOCBCoroutine *acb = opaque;
3277 BlockDriverState *bs = acb->common.bs;
3278
3279 acb->req.error = bdrv_co_flush(bs);
3280 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3281 qemu_bh_schedule(acb->bh);
3282 }
3283
3284 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3285 BlockDriverCompletionFunc *cb, void *opaque)
3286 {
3287 trace_bdrv_aio_flush(bs, opaque);
3288
3289 Coroutine *co;
3290 BlockDriverAIOCBCoroutine *acb;
3291
3292 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3293 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3294 qemu_coroutine_enter(co, acb);
3295
3296 return &acb->common;
3297 }
3298
3299 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3300 {
3301 BlockDriverAIOCBCoroutine *acb = opaque;
3302 BlockDriverState *bs = acb->common.bs;
3303
3304 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3305 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3306 qemu_bh_schedule(acb->bh);
3307 }
3308
3309 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3310 int64_t sector_num, int nb_sectors,
3311 BlockDriverCompletionFunc *cb, void *opaque)
3312 {
3313 Coroutine *co;
3314 BlockDriverAIOCBCoroutine *acb;
3315
3316 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3317
3318 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3319 acb->req.sector = sector_num;
3320 acb->req.nb_sectors = nb_sectors;
3321 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3322 qemu_coroutine_enter(co, acb);
3323
3324 return &acb->common;
3325 }
3326
3327 void bdrv_init(void)
3328 {
3329 module_call_init(MODULE_INIT_BLOCK);
3330 }
3331
3332 void bdrv_init_with_whitelist(void)
3333 {
3334 use_bdrv_whitelist = 1;
3335 bdrv_init();
3336 }
3337
3338 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3339 BlockDriverCompletionFunc *cb, void *opaque)
3340 {
3341 BlockDriverAIOCB *acb;
3342
3343 if (pool->free_aiocb) {
3344 acb = pool->free_aiocb;
3345 pool->free_aiocb = acb->next;
3346 } else {
3347 acb = g_malloc0(pool->aiocb_size);
3348 acb->pool = pool;
3349 }
3350 acb->bs = bs;
3351 acb->cb = cb;
3352 acb->opaque = opaque;
3353 return acb;
3354 }
3355
3356 void qemu_aio_release(void *p)
3357 {
3358 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3359 AIOPool *pool = acb->pool;
3360 acb->next = pool->free_aiocb;
3361 pool->free_aiocb = acb;
3362 }
3363
3364 /**************************************************************/
3365 /* Coroutine block device emulation */
3366
3367 typedef struct CoroutineIOCompletion {
3368 Coroutine *coroutine;
3369 int ret;
3370 } CoroutineIOCompletion;
3371
3372 static void bdrv_co_io_em_complete(void *opaque, int ret)
3373 {
3374 CoroutineIOCompletion *co = opaque;
3375
3376 co->ret = ret;
3377 qemu_coroutine_enter(co->coroutine, NULL);
3378 }
3379
3380 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3381 int nb_sectors, QEMUIOVector *iov,
3382 bool is_write)
3383 {
3384 CoroutineIOCompletion co = {
3385 .coroutine = qemu_coroutine_self(),
3386 };
3387 BlockDriverAIOCB *acb;
3388
3389 if (is_write) {
3390 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3391 bdrv_co_io_em_complete, &co);
3392 } else {
3393 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3394 bdrv_co_io_em_complete, &co);
3395 }
3396
3397 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3398 if (!acb) {
3399 return -EIO;
3400 }
3401 qemu_coroutine_yield();
3402
3403 return co.ret;
3404 }
3405
3406 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3407 int64_t sector_num, int nb_sectors,
3408 QEMUIOVector *iov)
3409 {
3410 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3411 }
3412
3413 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3414 int64_t sector_num, int nb_sectors,
3415 QEMUIOVector *iov)
3416 {
3417 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3418 }
3419
3420 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3421 {
3422 RwCo *rwco = opaque;
3423
3424 rwco->ret = bdrv_co_flush(rwco->bs);
3425 }
3426
3427 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3428 {
3429 int ret;
3430
3431 if (!bs->drv) {
3432 return 0;
3433 }
3434
3435 /* Write back cached data to the OS even with cache=unsafe */
3436 if (bs->drv->bdrv_co_flush_to_os) {
3437 ret = bs->drv->bdrv_co_flush_to_os(bs);
3438 if (ret < 0) {
3439 return ret;
3440 }
3441 }
3442
3443 /* But don't actually force it to the disk with cache=unsafe */
3444 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3445 return 0;
3446 }
3447
3448 if (bs->drv->bdrv_co_flush_to_disk) {
3449 return bs->drv->bdrv_co_flush_to_disk(bs);
3450 } else if (bs->drv->bdrv_aio_flush) {
3451 BlockDriverAIOCB *acb;
3452 CoroutineIOCompletion co = {
3453 .coroutine = qemu_coroutine_self(),
3454 };
3455
3456 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3457 if (acb == NULL) {
3458 return -EIO;
3459 } else {
3460 qemu_coroutine_yield();
3461 return co.ret;
3462 }
3463 } else {
3464 /*
3465 * Some block drivers always operate in either writethrough or unsafe
3466 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3467 * know how the server works (because the behaviour is hardcoded or
3468 * depends on server-side configuration), so we can't ensure that
3469 * everything is safe on disk. Returning an error doesn't work because
3470 * that would break guests even if the server operates in writethrough
3471 * mode.
3472 *
3473 * Let's hope the user knows what he's doing.
3474 */
3475 return 0;
3476 }
3477 }
3478
3479 void bdrv_invalidate_cache(BlockDriverState *bs)
3480 {
3481 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3482 bs->drv->bdrv_invalidate_cache(bs);
3483 }
3484 }
3485
3486 void bdrv_invalidate_cache_all(void)
3487 {
3488 BlockDriverState *bs;
3489
3490 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3491 bdrv_invalidate_cache(bs);
3492 }
3493 }
3494
3495 int bdrv_flush(BlockDriverState *bs)
3496 {
3497 Coroutine *co;
3498 RwCo rwco = {
3499 .bs = bs,
3500 .ret = NOT_DONE,
3501 };
3502
3503 if (qemu_in_coroutine()) {
3504 /* Fast-path if already in coroutine context */
3505 bdrv_flush_co_entry(&rwco);
3506 } else {
3507 co = qemu_coroutine_create(bdrv_flush_co_entry);
3508 qemu_coroutine_enter(co, &rwco);
3509 while (rwco.ret == NOT_DONE) {
3510 qemu_aio_wait();
3511 }
3512 }
3513
3514 return rwco.ret;
3515 }
3516
3517 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3518 {
3519 RwCo *rwco = opaque;
3520
3521 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3522 }
3523
3524 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3525 int nb_sectors)
3526 {
3527 if (!bs->drv) {
3528 return -ENOMEDIUM;
3529 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3530 return -EIO;
3531 } else if (bs->read_only) {
3532 return -EROFS;
3533 } else if (bs->drv->bdrv_co_discard) {
3534 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3535 } else if (bs->drv->bdrv_aio_discard) {
3536 BlockDriverAIOCB *acb;
3537 CoroutineIOCompletion co = {
3538 .coroutine = qemu_coroutine_self(),
3539 };
3540
3541 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3542 bdrv_co_io_em_complete, &co);
3543 if (acb == NULL) {
3544 return -EIO;
3545 } else {
3546 qemu_coroutine_yield();
3547 return co.ret;
3548 }
3549 } else {
3550 return 0;
3551 }
3552 }
3553
3554 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3555 {
3556 Coroutine *co;
3557 RwCo rwco = {
3558 .bs = bs,
3559 .sector_num = sector_num,
3560 .nb_sectors = nb_sectors,
3561 .ret = NOT_DONE,
3562 };
3563
3564 if (qemu_in_coroutine()) {
3565 /* Fast-path if already in coroutine context */
3566 bdrv_discard_co_entry(&rwco);
3567 } else {
3568 co = qemu_coroutine_create(bdrv_discard_co_entry);
3569 qemu_coroutine_enter(co, &rwco);
3570 while (rwco.ret == NOT_DONE) {
3571 qemu_aio_wait();
3572 }
3573 }
3574
3575 return rwco.ret;
3576 }
3577
3578 /**************************************************************/
3579 /* removable device support */
3580
3581 /**
3582 * Return TRUE if the media is present
3583 */
3584 int bdrv_is_inserted(BlockDriverState *bs)
3585 {
3586 BlockDriver *drv = bs->drv;
3587
3588 if (!drv)
3589 return 0;
3590 if (!drv->bdrv_is_inserted)
3591 return 1;
3592 return drv->bdrv_is_inserted(bs);
3593 }
3594
3595 /**
3596 * Return whether the media changed since the last call to this
3597 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3598 */
3599 int bdrv_media_changed(BlockDriverState *bs)
3600 {
3601 BlockDriver *drv = bs->drv;
3602
3603 if (drv && drv->bdrv_media_changed) {
3604 return drv->bdrv_media_changed(bs);
3605 }
3606 return -ENOTSUP;
3607 }
3608
3609 /**
3610 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3611 */
3612 void bdrv_eject(BlockDriverState *bs, int eject_flag)
3613 {
3614 BlockDriver *drv = bs->drv;
3615
3616 if (drv && drv->bdrv_eject) {
3617 drv->bdrv_eject(bs, eject_flag);
3618 }
3619 }
3620
3621 /**
3622 * Lock or unlock the media (if it is locked, the user won't be able
3623 * to eject it manually).
3624 */
3625 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3626 {
3627 BlockDriver *drv = bs->drv;
3628
3629 trace_bdrv_lock_medium(bs, locked);
3630
3631 if (drv && drv->bdrv_lock_medium) {
3632 drv->bdrv_lock_medium(bs, locked);
3633 }
3634 }
3635
3636 /* needed for generic scsi interface */
3637
3638 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3639 {
3640 BlockDriver *drv = bs->drv;
3641
3642 if (drv && drv->bdrv_ioctl)
3643 return drv->bdrv_ioctl(bs, req, buf);
3644 return -ENOTSUP;
3645 }
3646
3647 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3648 unsigned long int req, void *buf,
3649 BlockDriverCompletionFunc *cb, void *opaque)
3650 {
3651 BlockDriver *drv = bs->drv;
3652
3653 if (drv && drv->bdrv_aio_ioctl)
3654 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3655 return NULL;
3656 }
3657
3658 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3659 {
3660 bs->buffer_alignment = align;
3661 }
3662
3663 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3664 {
3665 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3666 }
3667
3668 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3669 {
3670 int64_t bitmap_size;
3671
3672 bs->dirty_count = 0;
3673 if (enable) {
3674 if (!bs->dirty_bitmap) {
3675 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3676 BDRV_SECTORS_PER_DIRTY_CHUNK * 8 - 1;
3677 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * 8;
3678
3679 bs->dirty_bitmap = g_malloc0(bitmap_size);
3680 }
3681 } else {
3682 if (bs->dirty_bitmap) {
3683 g_free(bs->dirty_bitmap);
3684 bs->dirty_bitmap = NULL;
3685 }
3686 }
3687 }
3688
3689 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3690 {
3691 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3692
3693 if (bs->dirty_bitmap &&
3694 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3695 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3696 (1UL << (chunk % (sizeof(unsigned long) * 8))));
3697 } else {
3698 return 0;
3699 }
3700 }
3701
3702 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3703 int nr_sectors)
3704 {
3705 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3706 }
3707
3708 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3709 {
3710 return bs->dirty_count;
3711 }
3712
3713 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3714 {
3715 assert(bs->in_use != in_use);
3716 bs->in_use = in_use;
3717 }
3718
3719 int bdrv_in_use(BlockDriverState *bs)
3720 {
3721 return bs->in_use;
3722 }
3723
3724 void bdrv_iostatus_enable(BlockDriverState *bs)
3725 {
3726 bs->iostatus_enabled = true;
3727 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3728 }
3729
3730 /* The I/O status is only enabled if the drive explicitly
3731 * enables it _and_ the VM is configured to stop on errors */
3732 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3733 {
3734 return (bs->iostatus_enabled &&
3735 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3736 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
3737 bs->on_read_error == BLOCK_ERR_STOP_ANY));
3738 }
3739
3740 void bdrv_iostatus_disable(BlockDriverState *bs)
3741 {
3742 bs->iostatus_enabled = false;
3743 }
3744
3745 void bdrv_iostatus_reset(BlockDriverState *bs)
3746 {
3747 if (bdrv_iostatus_is_enabled(bs)) {
3748 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3749 }
3750 }
3751
3752 /* XXX: Today this is set by device models because it makes the implementation
3753 quite simple. However, the block layer knows about the error, so it's
3754 possible to implement this without device models being involved */
3755 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3756 {
3757 if (bdrv_iostatus_is_enabled(bs) &&
3758 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3759 assert(error >= 0);
3760 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
3761 BLOCK_DEVICE_IO_STATUS_FAILED;
3762 }
3763 }
3764
3765 void
3766 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
3767 enum BlockAcctType type)
3768 {
3769 assert(type < BDRV_MAX_IOTYPE);
3770
3771 cookie->bytes = bytes;
3772 cookie->start_time_ns = get_clock();
3773 cookie->type = type;
3774 }
3775
3776 void
3777 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
3778 {
3779 assert(cookie->type < BDRV_MAX_IOTYPE);
3780
3781 bs->nr_bytes[cookie->type] += cookie->bytes;
3782 bs->nr_ops[cookie->type]++;
3783 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
3784 }
3785
3786 int bdrv_img_create(const char *filename, const char *fmt,
3787 const char *base_filename, const char *base_fmt,
3788 char *options, uint64_t img_size, int flags)
3789 {
3790 QEMUOptionParameter *param = NULL, *create_options = NULL;
3791 QEMUOptionParameter *backing_fmt, *backing_file, *size;
3792 BlockDriverState *bs = NULL;
3793 BlockDriver *drv, *proto_drv;
3794 BlockDriver *backing_drv = NULL;
3795 int ret = 0;
3796
3797 /* Find driver and parse its options */
3798 drv = bdrv_find_format(fmt);
3799 if (!drv) {
3800 error_report("Unknown file format '%s'", fmt);
3801 ret = -EINVAL;
3802 goto out;
3803 }
3804
3805 proto_drv = bdrv_find_protocol(filename);
3806 if (!proto_drv) {
3807 error_report("Unknown protocol '%s'", filename);
3808 ret = -EINVAL;
3809 goto out;
3810 }
3811
3812 create_options = append_option_parameters(create_options,
3813 drv->create_options);
3814 create_options = append_option_parameters(create_options,
3815 proto_drv->create_options);
3816
3817 /* Create parameter list with default values */
3818 param = parse_option_parameters("", create_options, param);
3819
3820 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
3821
3822 /* Parse -o options */
3823 if (options) {
3824 param = parse_option_parameters(options, create_options, param);
3825 if (param == NULL) {
3826 error_report("Invalid options for file format '%s'.", fmt);
3827 ret = -EINVAL;
3828 goto out;
3829 }
3830 }
3831
3832 if (base_filename) {
3833 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
3834 base_filename)) {
3835 error_report("Backing file not supported for file format '%s'",
3836 fmt);
3837 ret = -EINVAL;
3838 goto out;
3839 }
3840 }
3841
3842 if (base_fmt) {
3843 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
3844 error_report("Backing file format not supported for file "
3845 "format '%s'", fmt);
3846 ret = -EINVAL;
3847 goto out;
3848 }
3849 }
3850
3851 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
3852 if (backing_file && backing_file->value.s) {
3853 if (!strcmp(filename, backing_file->value.s)) {
3854 error_report("Error: Trying to create an image with the "
3855 "same filename as the backing file");
3856 ret = -EINVAL;
3857 goto out;
3858 }
3859 }
3860
3861 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
3862 if (backing_fmt && backing_fmt->value.s) {
3863 backing_drv = bdrv_find_format(backing_fmt->value.s);
3864 if (!backing_drv) {
3865 error_report("Unknown backing file format '%s'",
3866 backing_fmt->value.s);
3867 ret = -EINVAL;
3868 goto out;
3869 }
3870 }
3871
3872 // The size for the image must always be specified, with one exception:
3873 // If we are using a backing file, we can obtain the size from there
3874 size = get_option_parameter(param, BLOCK_OPT_SIZE);
3875 if (size && size->value.n == -1) {
3876 if (backing_file && backing_file->value.s) {
3877 uint64_t size;
3878 char buf[32];
3879
3880 bs = bdrv_new("");
3881
3882 ret = bdrv_open(bs, backing_file->value.s, flags, backing_drv);
3883 if (ret < 0) {
3884 error_report("Could not open '%s'", backing_file->value.s);
3885 goto out;
3886 }
3887 bdrv_get_geometry(bs, &size);
3888 size *= 512;
3889
3890 snprintf(buf, sizeof(buf), "%" PRId64, size);
3891 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
3892 } else {
3893 error_report("Image creation needs a size parameter");
3894 ret = -EINVAL;
3895 goto out;
3896 }
3897 }
3898
3899 printf("Formatting '%s', fmt=%s ", filename, fmt);
3900 print_option_parameters(param);
3901 puts("");
3902
3903 ret = bdrv_create(drv, filename, param);
3904
3905 if (ret < 0) {
3906 if (ret == -ENOTSUP) {
3907 error_report("Formatting or formatting option not supported for "
3908 "file format '%s'", fmt);
3909 } else if (ret == -EFBIG) {
3910 error_report("The image size is too large for file format '%s'",
3911 fmt);
3912 } else {
3913 error_report("%s: error while creating %s: %s", filename, fmt,
3914 strerror(-ret));
3915 }
3916 }
3917
3918 out:
3919 free_option_parameters(create_options);
3920 free_option_parameters(param);
3921
3922 if (bs) {
3923 bdrv_delete(bs);
3924 }
3925
3926 return ret;
3927 }
3928
3929 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
3930 BlockDriverCompletionFunc *cb, void *opaque)
3931 {
3932 BlockJob *job;
3933
3934 if (bs->job || bdrv_in_use(bs)) {
3935 return NULL;
3936 }
3937 bdrv_set_in_use(bs, 1);
3938
3939 job = g_malloc0(job_type->instance_size);
3940 job->job_type = job_type;
3941 job->bs = bs;
3942 job->cb = cb;
3943 job->opaque = opaque;
3944 bs->job = job;
3945 return job;
3946 }
3947
3948 void block_job_complete(BlockJob *job, int ret)
3949 {
3950 BlockDriverState *bs = job->bs;
3951
3952 assert(bs->job == job);
3953 job->cb(job->opaque, ret);
3954 bs->job = NULL;
3955 g_free(job);
3956 bdrv_set_in_use(bs, 0);
3957 }
3958
3959 int block_job_set_speed(BlockJob *job, int64_t value)
3960 {
3961 if (!job->job_type->set_speed) {
3962 return -ENOTSUP;
3963 }
3964 return job->job_type->set_speed(job, value);
3965 }
3966
3967 void block_job_cancel(BlockJob *job)
3968 {
3969 job->cancelled = true;
3970 }
3971
3972 bool block_job_is_cancelled(BlockJob *job)
3973 {
3974 return job->cancelled;
3975 }