]> git.proxmox.com Git - qemu.git/blob - block.c
qemu-img check -r for repairing images
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
84 int64_t sector_num, int nb_sectors);
85
86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
87 bool is_write, double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
89 double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
91 bool is_write, int64_t *wait);
92
93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
94 QTAILQ_HEAD_INITIALIZER(bdrv_states);
95
96 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
97 QLIST_HEAD_INITIALIZER(bdrv_drivers);
98
99 /* The device to use for VM snapshots */
100 static BlockDriverState *bs_snapshots;
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 bs->slice_time = 0;
141 memset(&bs->io_base, 0, sizeof(bs->io_base));
142 }
143
144 static void bdrv_block_timer(void *opaque)
145 {
146 BlockDriverState *bs = opaque;
147
148 qemu_co_queue_next(&bs->throttled_reqs);
149 }
150
151 void bdrv_io_limits_enable(BlockDriverState *bs)
152 {
153 qemu_co_queue_init(&bs->throttled_reqs);
154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
156 bs->slice_start = qemu_get_clock_ns(vm_clock);
157 bs->slice_end = bs->slice_start + bs->slice_time;
158 memset(&bs->io_base, 0, sizeof(bs->io_base));
159 bs->io_limits_enabled = true;
160 }
161
162 bool bdrv_io_limits_enabled(BlockDriverState *bs)
163 {
164 BlockIOLimit *io_limits = &bs->io_limits;
165 return io_limits->bps[BLOCK_IO_LIMIT_READ]
166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
168 || io_limits->iops[BLOCK_IO_LIMIT_READ]
169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
171 }
172
173 static void bdrv_io_limits_intercept(BlockDriverState *bs,
174 bool is_write, int nb_sectors)
175 {
176 int64_t wait_time = -1;
177
178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
179 qemu_co_queue_wait(&bs->throttled_reqs);
180 }
181
182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
183 * throttled requests will not be dequeued until the current request is
184 * allowed to be serviced. So if the current request still exceeds the
185 * limits, it will be inserted to the head. All requests followed it will
186 * be still in throttled_reqs queue.
187 */
188
189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
190 qemu_mod_timer(bs->block_timer,
191 wait_time + qemu_get_clock_ns(vm_clock));
192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
193 }
194
195 qemu_co_queue_next(&bs->throttled_reqs);
196 }
197
198 /* check if the path starts with "<protocol>:" */
199 static int path_has_protocol(const char *path)
200 {
201 const char *p;
202
203 #ifdef _WIN32
204 if (is_windows_drive(path) ||
205 is_windows_drive_prefix(path)) {
206 return 0;
207 }
208 p = path + strcspn(path, ":/\\");
209 #else
210 p = path + strcspn(path, ":/");
211 #endif
212
213 return *p == ':';
214 }
215
216 int path_is_absolute(const char *path)
217 {
218 #ifdef _WIN32
219 /* specific case for names like: "\\.\d:" */
220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
221 return 1;
222 }
223 return (*path == '/' || *path == '\\');
224 #else
225 return (*path == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
274 {
275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
276 pstrcpy(dest, sz, bs->backing_file);
277 } else {
278 path_combine(dest, sz, bs->filename, bs->backing_file);
279 }
280 }
281
282 void bdrv_register(BlockDriver *bdrv)
283 {
284 /* Block drivers without coroutine functions need emulation */
285 if (!bdrv->bdrv_co_readv) {
286 bdrv->bdrv_co_readv = bdrv_co_readv_em;
287 bdrv->bdrv_co_writev = bdrv_co_writev_em;
288
289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
290 * the block driver lacks aio we need to emulate that too.
291 */
292 if (!bdrv->bdrv_aio_readv) {
293 /* add AIO emulation layer */
294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
296 }
297 }
298
299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
300 }
301
302 /* create a new block device (by default it is empty) */
303 BlockDriverState *bdrv_new(const char *device_name)
304 {
305 BlockDriverState *bs;
306
307 bs = g_malloc0(sizeof(BlockDriverState));
308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
309 if (device_name[0] != '\0') {
310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
311 }
312 bdrv_iostatus_disable(bs);
313 return bs;
314 }
315
316 BlockDriver *bdrv_find_format(const char *format_name)
317 {
318 BlockDriver *drv1;
319 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
320 if (!strcmp(drv1->format_name, format_name)) {
321 return drv1;
322 }
323 }
324 return NULL;
325 }
326
327 static int bdrv_is_whitelisted(BlockDriver *drv)
328 {
329 static const char *whitelist[] = {
330 CONFIG_BDRV_WHITELIST
331 };
332 const char **p;
333
334 if (!whitelist[0])
335 return 1; /* no whitelist, anything goes */
336
337 for (p = whitelist; *p; p++) {
338 if (!strcmp(drv->format_name, *p)) {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
346 {
347 BlockDriver *drv = bdrv_find_format(format_name);
348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
349 }
350
351 typedef struct CreateCo {
352 BlockDriver *drv;
353 char *filename;
354 QEMUOptionParameter *options;
355 int ret;
356 } CreateCo;
357
358 static void coroutine_fn bdrv_create_co_entry(void *opaque)
359 {
360 CreateCo *cco = opaque;
361 assert(cco->drv);
362
363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
364 }
365
366 int bdrv_create(BlockDriver *drv, const char* filename,
367 QEMUOptionParameter *options)
368 {
369 int ret;
370
371 Coroutine *co;
372 CreateCo cco = {
373 .drv = drv,
374 .filename = g_strdup(filename),
375 .options = options,
376 .ret = NOT_DONE,
377 };
378
379 if (!drv->bdrv_create) {
380 return -ENOTSUP;
381 }
382
383 if (qemu_in_coroutine()) {
384 /* Fast-path if already in coroutine context */
385 bdrv_create_co_entry(&cco);
386 } else {
387 co = qemu_coroutine_create(bdrv_create_co_entry);
388 qemu_coroutine_enter(co, &cco);
389 while (cco.ret == NOT_DONE) {
390 qemu_aio_wait();
391 }
392 }
393
394 ret = cco.ret;
395 g_free(cco.filename);
396
397 return ret;
398 }
399
400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
401 {
402 BlockDriver *drv;
403
404 drv = bdrv_find_protocol(filename);
405 if (drv == NULL) {
406 return -ENOENT;
407 }
408
409 return bdrv_create(drv, filename, options);
410 }
411
412 /*
413 * Create a uniquely-named empty temporary file.
414 * Return 0 upon success, otherwise a negative errno value.
415 */
416 int get_tmp_filename(char *filename, int size)
417 {
418 #ifdef _WIN32
419 char temp_dir[MAX_PATH];
420 /* GetTempFileName requires that its output buffer (4th param)
421 have length MAX_PATH or greater. */
422 assert(size >= MAX_PATH);
423 return (GetTempPath(MAX_PATH, temp_dir)
424 && GetTempFileName(temp_dir, "qem", 0, filename)
425 ? 0 : -GetLastError());
426 #else
427 int fd;
428 const char *tmpdir;
429 tmpdir = getenv("TMPDIR");
430 if (!tmpdir)
431 tmpdir = "/tmp";
432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
433 return -EOVERFLOW;
434 }
435 fd = mkstemp(filename);
436 if (fd < 0 || close(fd)) {
437 return -errno;
438 }
439 return 0;
440 #endif
441 }
442
443 /*
444 * Detect host devices. By convention, /dev/cdrom[N] is always
445 * recognized as a host CDROM.
446 */
447 static BlockDriver *find_hdev_driver(const char *filename)
448 {
449 int score_max = 0, score;
450 BlockDriver *drv = NULL, *d;
451
452 QLIST_FOREACH(d, &bdrv_drivers, list) {
453 if (d->bdrv_probe_device) {
454 score = d->bdrv_probe_device(filename);
455 if (score > score_max) {
456 score_max = score;
457 drv = d;
458 }
459 }
460 }
461
462 return drv;
463 }
464
465 BlockDriver *bdrv_find_protocol(const char *filename)
466 {
467 BlockDriver *drv1;
468 char protocol[128];
469 int len;
470 const char *p;
471
472 /* TODO Drivers without bdrv_file_open must be specified explicitly */
473
474 /*
475 * XXX(hch): we really should not let host device detection
476 * override an explicit protocol specification, but moving this
477 * later breaks access to device names with colons in them.
478 * Thanks to the brain-dead persistent naming schemes on udev-
479 * based Linux systems those actually are quite common.
480 */
481 drv1 = find_hdev_driver(filename);
482 if (drv1) {
483 return drv1;
484 }
485
486 if (!path_has_protocol(filename)) {
487 return bdrv_find_format("file");
488 }
489 p = strchr(filename, ':');
490 assert(p != NULL);
491 len = p - filename;
492 if (len > sizeof(protocol) - 1)
493 len = sizeof(protocol) - 1;
494 memcpy(protocol, filename, len);
495 protocol[len] = '\0';
496 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
497 if (drv1->protocol_name &&
498 !strcmp(drv1->protocol_name, protocol)) {
499 return drv1;
500 }
501 }
502 return NULL;
503 }
504
505 static int find_image_format(const char *filename, BlockDriver **pdrv)
506 {
507 int ret, score, score_max;
508 BlockDriver *drv1, *drv;
509 uint8_t buf[2048];
510 BlockDriverState *bs;
511
512 ret = bdrv_file_open(&bs, filename, 0);
513 if (ret < 0) {
514 *pdrv = NULL;
515 return ret;
516 }
517
518 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
519 if (bs->sg || !bdrv_is_inserted(bs)) {
520 bdrv_delete(bs);
521 drv = bdrv_find_format("raw");
522 if (!drv) {
523 ret = -ENOENT;
524 }
525 *pdrv = drv;
526 return ret;
527 }
528
529 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
530 bdrv_delete(bs);
531 if (ret < 0) {
532 *pdrv = NULL;
533 return ret;
534 }
535
536 score_max = 0;
537 drv = NULL;
538 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
539 if (drv1->bdrv_probe) {
540 score = drv1->bdrv_probe(buf, ret, filename);
541 if (score > score_max) {
542 score_max = score;
543 drv = drv1;
544 }
545 }
546 }
547 if (!drv) {
548 ret = -ENOENT;
549 }
550 *pdrv = drv;
551 return ret;
552 }
553
554 /**
555 * Set the current 'total_sectors' value
556 */
557 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
558 {
559 BlockDriver *drv = bs->drv;
560
561 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
562 if (bs->sg)
563 return 0;
564
565 /* query actual device if possible, otherwise just trust the hint */
566 if (drv->bdrv_getlength) {
567 int64_t length = drv->bdrv_getlength(bs);
568 if (length < 0) {
569 return length;
570 }
571 hint = length >> BDRV_SECTOR_BITS;
572 }
573
574 bs->total_sectors = hint;
575 return 0;
576 }
577
578 /**
579 * Set open flags for a given cache mode
580 *
581 * Return 0 on success, -1 if the cache mode was invalid.
582 */
583 int bdrv_parse_cache_flags(const char *mode, int *flags)
584 {
585 *flags &= ~BDRV_O_CACHE_MASK;
586
587 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
588 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
589 } else if (!strcmp(mode, "directsync")) {
590 *flags |= BDRV_O_NOCACHE;
591 } else if (!strcmp(mode, "writeback")) {
592 *flags |= BDRV_O_CACHE_WB;
593 } else if (!strcmp(mode, "unsafe")) {
594 *flags |= BDRV_O_CACHE_WB;
595 *flags |= BDRV_O_NO_FLUSH;
596 } else if (!strcmp(mode, "writethrough")) {
597 /* this is the default */
598 } else {
599 return -1;
600 }
601
602 return 0;
603 }
604
605 /**
606 * The copy-on-read flag is actually a reference count so multiple users may
607 * use the feature without worrying about clobbering its previous state.
608 * Copy-on-read stays enabled until all users have called to disable it.
609 */
610 void bdrv_enable_copy_on_read(BlockDriverState *bs)
611 {
612 bs->copy_on_read++;
613 }
614
615 void bdrv_disable_copy_on_read(BlockDriverState *bs)
616 {
617 assert(bs->copy_on_read > 0);
618 bs->copy_on_read--;
619 }
620
621 /*
622 * Common part for opening disk images and files
623 */
624 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
625 int flags, BlockDriver *drv)
626 {
627 int ret, open_flags;
628
629 assert(drv != NULL);
630 assert(bs->file == NULL);
631
632 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
633
634 bs->open_flags = flags;
635 bs->buffer_alignment = 512;
636
637 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
638 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
639 bdrv_enable_copy_on_read(bs);
640 }
641
642 pstrcpy(bs->filename, sizeof(bs->filename), filename);
643
644 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
645 return -ENOTSUP;
646 }
647
648 bs->drv = drv;
649 bs->opaque = g_malloc0(drv->instance_size);
650
651 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
652
653 /*
654 * Clear flags that are internal to the block layer before opening the
655 * image.
656 */
657 open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
658
659 /*
660 * Snapshots should be writable.
661 */
662 if (bs->is_temporary) {
663 open_flags |= BDRV_O_RDWR;
664 }
665
666 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
667
668 /* Open the image, either directly or using a protocol */
669 if (drv->bdrv_file_open) {
670 ret = drv->bdrv_file_open(bs, filename, open_flags);
671 } else {
672 ret = bdrv_file_open(&bs->file, filename, open_flags);
673 if (ret >= 0) {
674 ret = drv->bdrv_open(bs, open_flags);
675 }
676 }
677
678 if (ret < 0) {
679 goto free_and_fail;
680 }
681
682 ret = refresh_total_sectors(bs, bs->total_sectors);
683 if (ret < 0) {
684 goto free_and_fail;
685 }
686
687 #ifndef _WIN32
688 if (bs->is_temporary) {
689 unlink(filename);
690 }
691 #endif
692 return 0;
693
694 free_and_fail:
695 if (bs->file) {
696 bdrv_delete(bs->file);
697 bs->file = NULL;
698 }
699 g_free(bs->opaque);
700 bs->opaque = NULL;
701 bs->drv = NULL;
702 return ret;
703 }
704
705 /*
706 * Opens a file using a protocol (file, host_device, nbd, ...)
707 */
708 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
709 {
710 BlockDriverState *bs;
711 BlockDriver *drv;
712 int ret;
713
714 drv = bdrv_find_protocol(filename);
715 if (!drv) {
716 return -ENOENT;
717 }
718
719 bs = bdrv_new("");
720 ret = bdrv_open_common(bs, filename, flags, drv);
721 if (ret < 0) {
722 bdrv_delete(bs);
723 return ret;
724 }
725 bs->growable = 1;
726 *pbs = bs;
727 return 0;
728 }
729
730 /*
731 * Opens a disk image (raw, qcow2, vmdk, ...)
732 */
733 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
734 BlockDriver *drv)
735 {
736 int ret;
737 char tmp_filename[PATH_MAX];
738
739 if (flags & BDRV_O_SNAPSHOT) {
740 BlockDriverState *bs1;
741 int64_t total_size;
742 int is_protocol = 0;
743 BlockDriver *bdrv_qcow2;
744 QEMUOptionParameter *options;
745 char backing_filename[PATH_MAX];
746
747 /* if snapshot, we create a temporary backing file and open it
748 instead of opening 'filename' directly */
749
750 /* if there is a backing file, use it */
751 bs1 = bdrv_new("");
752 ret = bdrv_open(bs1, filename, 0, drv);
753 if (ret < 0) {
754 bdrv_delete(bs1);
755 return ret;
756 }
757 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
758
759 if (bs1->drv && bs1->drv->protocol_name)
760 is_protocol = 1;
761
762 bdrv_delete(bs1);
763
764 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
765 if (ret < 0) {
766 return ret;
767 }
768
769 /* Real path is meaningless for protocols */
770 if (is_protocol)
771 snprintf(backing_filename, sizeof(backing_filename),
772 "%s", filename);
773 else if (!realpath(filename, backing_filename))
774 return -errno;
775
776 bdrv_qcow2 = bdrv_find_format("qcow2");
777 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
778
779 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
780 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
781 if (drv) {
782 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
783 drv->format_name);
784 }
785
786 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
787 free_option_parameters(options);
788 if (ret < 0) {
789 return ret;
790 }
791
792 filename = tmp_filename;
793 drv = bdrv_qcow2;
794 bs->is_temporary = 1;
795 }
796
797 /* Find the right image format driver */
798 if (!drv) {
799 ret = find_image_format(filename, &drv);
800 }
801
802 if (!drv) {
803 goto unlink_and_fail;
804 }
805
806 /* Open the image */
807 ret = bdrv_open_common(bs, filename, flags, drv);
808 if (ret < 0) {
809 goto unlink_and_fail;
810 }
811
812 /* If there is a backing file, use it */
813 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
814 char backing_filename[PATH_MAX];
815 int back_flags;
816 BlockDriver *back_drv = NULL;
817
818 bs->backing_hd = bdrv_new("");
819 bdrv_get_full_backing_filename(bs, backing_filename,
820 sizeof(backing_filename));
821
822 if (bs->backing_format[0] != '\0') {
823 back_drv = bdrv_find_format(bs->backing_format);
824 }
825
826 /* backing files always opened read-only */
827 back_flags =
828 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
829
830 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
831 if (ret < 0) {
832 bdrv_close(bs);
833 return ret;
834 }
835 if (bs->is_temporary) {
836 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
837 } else {
838 /* base image inherits from "parent" */
839 bs->backing_hd->keep_read_only = bs->keep_read_only;
840 }
841 }
842
843 if (!bdrv_key_required(bs)) {
844 bdrv_dev_change_media_cb(bs, true);
845 }
846
847 /* throttling disk I/O limits */
848 if (bs->io_limits_enabled) {
849 bdrv_io_limits_enable(bs);
850 }
851
852 return 0;
853
854 unlink_and_fail:
855 if (bs->is_temporary) {
856 unlink(filename);
857 }
858 return ret;
859 }
860
861 void bdrv_close(BlockDriverState *bs)
862 {
863 bdrv_flush(bs);
864 if (bs->drv) {
865 if (bs->job) {
866 block_job_cancel_sync(bs->job);
867 }
868 bdrv_drain_all();
869
870 if (bs == bs_snapshots) {
871 bs_snapshots = NULL;
872 }
873 if (bs->backing_hd) {
874 bdrv_delete(bs->backing_hd);
875 bs->backing_hd = NULL;
876 }
877 bs->drv->bdrv_close(bs);
878 g_free(bs->opaque);
879 #ifdef _WIN32
880 if (bs->is_temporary) {
881 unlink(bs->filename);
882 }
883 #endif
884 bs->opaque = NULL;
885 bs->drv = NULL;
886 bs->copy_on_read = 0;
887 bs->backing_file[0] = '\0';
888 bs->backing_format[0] = '\0';
889 bs->total_sectors = 0;
890 bs->encrypted = 0;
891 bs->valid_key = 0;
892 bs->sg = 0;
893 bs->growable = 0;
894
895 if (bs->file != NULL) {
896 bdrv_delete(bs->file);
897 bs->file = NULL;
898 }
899
900 bdrv_dev_change_media_cb(bs, false);
901 }
902
903 /*throttling disk I/O limits*/
904 if (bs->io_limits_enabled) {
905 bdrv_io_limits_disable(bs);
906 }
907 }
908
909 void bdrv_close_all(void)
910 {
911 BlockDriverState *bs;
912
913 QTAILQ_FOREACH(bs, &bdrv_states, list) {
914 bdrv_close(bs);
915 }
916 }
917
918 /*
919 * Wait for pending requests to complete across all BlockDriverStates
920 *
921 * This function does not flush data to disk, use bdrv_flush_all() for that
922 * after calling this function.
923 *
924 * Note that completion of an asynchronous I/O operation can trigger any
925 * number of other I/O operations on other devices---for example a coroutine
926 * can be arbitrarily complex and a constant flow of I/O can come until the
927 * coroutine is complete. Because of this, it is not possible to have a
928 * function to drain a single device's I/O queue.
929 */
930 void bdrv_drain_all(void)
931 {
932 BlockDriverState *bs;
933 bool busy;
934
935 do {
936 busy = qemu_aio_wait();
937
938 /* FIXME: We do not have timer support here, so this is effectively
939 * a busy wait.
940 */
941 QTAILQ_FOREACH(bs, &bdrv_states, list) {
942 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
943 qemu_co_queue_restart_all(&bs->throttled_reqs);
944 busy = true;
945 }
946 }
947 } while (busy);
948
949 /* If requests are still pending there is a bug somewhere */
950 QTAILQ_FOREACH(bs, &bdrv_states, list) {
951 assert(QLIST_EMPTY(&bs->tracked_requests));
952 assert(qemu_co_queue_empty(&bs->throttled_reqs));
953 }
954 }
955
956 /* make a BlockDriverState anonymous by removing from bdrv_state list.
957 Also, NULL terminate the device_name to prevent double remove */
958 void bdrv_make_anon(BlockDriverState *bs)
959 {
960 if (bs->device_name[0] != '\0') {
961 QTAILQ_REMOVE(&bdrv_states, bs, list);
962 }
963 bs->device_name[0] = '\0';
964 }
965
966 static void bdrv_rebind(BlockDriverState *bs)
967 {
968 if (bs->drv && bs->drv->bdrv_rebind) {
969 bs->drv->bdrv_rebind(bs);
970 }
971 }
972
973 /*
974 * Add new bs contents at the top of an image chain while the chain is
975 * live, while keeping required fields on the top layer.
976 *
977 * This will modify the BlockDriverState fields, and swap contents
978 * between bs_new and bs_top. Both bs_new and bs_top are modified.
979 *
980 * bs_new is required to be anonymous.
981 *
982 * This function does not create any image files.
983 */
984 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
985 {
986 BlockDriverState tmp;
987
988 /* bs_new must be anonymous */
989 assert(bs_new->device_name[0] == '\0');
990
991 tmp = *bs_new;
992
993 /* there are some fields that need to stay on the top layer: */
994 tmp.open_flags = bs_top->open_flags;
995
996 /* dev info */
997 tmp.dev_ops = bs_top->dev_ops;
998 tmp.dev_opaque = bs_top->dev_opaque;
999 tmp.dev = bs_top->dev;
1000 tmp.buffer_alignment = bs_top->buffer_alignment;
1001 tmp.copy_on_read = bs_top->copy_on_read;
1002
1003 /* i/o timing parameters */
1004 tmp.slice_time = bs_top->slice_time;
1005 tmp.slice_start = bs_top->slice_start;
1006 tmp.slice_end = bs_top->slice_end;
1007 tmp.io_limits = bs_top->io_limits;
1008 tmp.io_base = bs_top->io_base;
1009 tmp.throttled_reqs = bs_top->throttled_reqs;
1010 tmp.block_timer = bs_top->block_timer;
1011 tmp.io_limits_enabled = bs_top->io_limits_enabled;
1012
1013 /* geometry */
1014 tmp.cyls = bs_top->cyls;
1015 tmp.heads = bs_top->heads;
1016 tmp.secs = bs_top->secs;
1017 tmp.translation = bs_top->translation;
1018
1019 /* r/w error */
1020 tmp.on_read_error = bs_top->on_read_error;
1021 tmp.on_write_error = bs_top->on_write_error;
1022
1023 /* i/o status */
1024 tmp.iostatus_enabled = bs_top->iostatus_enabled;
1025 tmp.iostatus = bs_top->iostatus;
1026
1027 /* keep the same entry in bdrv_states */
1028 pstrcpy(tmp.device_name, sizeof(tmp.device_name), bs_top->device_name);
1029 tmp.list = bs_top->list;
1030
1031 /* The contents of 'tmp' will become bs_top, as we are
1032 * swapping bs_new and bs_top contents. */
1033 tmp.backing_hd = bs_new;
1034 pstrcpy(tmp.backing_file, sizeof(tmp.backing_file), bs_top->filename);
1035 bdrv_get_format(bs_top, tmp.backing_format, sizeof(tmp.backing_format));
1036
1037 /* swap contents of the fixed new bs and the current top */
1038 *bs_new = *bs_top;
1039 *bs_top = tmp;
1040
1041 /* device_name[] was carried over from the old bs_top. bs_new
1042 * shouldn't be in bdrv_states, so we need to make device_name[]
1043 * reflect the anonymity of bs_new
1044 */
1045 bs_new->device_name[0] = '\0';
1046
1047 /* clear the copied fields in the new backing file */
1048 bdrv_detach_dev(bs_new, bs_new->dev);
1049
1050 qemu_co_queue_init(&bs_new->throttled_reqs);
1051 memset(&bs_new->io_base, 0, sizeof(bs_new->io_base));
1052 memset(&bs_new->io_limits, 0, sizeof(bs_new->io_limits));
1053 bdrv_iostatus_disable(bs_new);
1054
1055 /* we don't use bdrv_io_limits_disable() for this, because we don't want
1056 * to affect or delete the block_timer, as it has been moved to bs_top */
1057 bs_new->io_limits_enabled = false;
1058 bs_new->block_timer = NULL;
1059 bs_new->slice_time = 0;
1060 bs_new->slice_start = 0;
1061 bs_new->slice_end = 0;
1062
1063 bdrv_rebind(bs_new);
1064 bdrv_rebind(bs_top);
1065 }
1066
1067 void bdrv_delete(BlockDriverState *bs)
1068 {
1069 assert(!bs->dev);
1070 assert(!bs->job);
1071 assert(!bs->in_use);
1072
1073 /* remove from list, if necessary */
1074 bdrv_make_anon(bs);
1075
1076 bdrv_close(bs);
1077
1078 assert(bs != bs_snapshots);
1079 g_free(bs);
1080 }
1081
1082 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1083 /* TODO change to DeviceState *dev when all users are qdevified */
1084 {
1085 if (bs->dev) {
1086 return -EBUSY;
1087 }
1088 bs->dev = dev;
1089 bdrv_iostatus_reset(bs);
1090 return 0;
1091 }
1092
1093 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1094 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1095 {
1096 if (bdrv_attach_dev(bs, dev) < 0) {
1097 abort();
1098 }
1099 }
1100
1101 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1102 /* TODO change to DeviceState *dev when all users are qdevified */
1103 {
1104 assert(bs->dev == dev);
1105 bs->dev = NULL;
1106 bs->dev_ops = NULL;
1107 bs->dev_opaque = NULL;
1108 bs->buffer_alignment = 512;
1109 }
1110
1111 /* TODO change to return DeviceState * when all users are qdevified */
1112 void *bdrv_get_attached_dev(BlockDriverState *bs)
1113 {
1114 return bs->dev;
1115 }
1116
1117 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1118 void *opaque)
1119 {
1120 bs->dev_ops = ops;
1121 bs->dev_opaque = opaque;
1122 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1123 bs_snapshots = NULL;
1124 }
1125 }
1126
1127 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1128 BlockQMPEventAction action, int is_read)
1129 {
1130 QObject *data;
1131 const char *action_str;
1132
1133 switch (action) {
1134 case BDRV_ACTION_REPORT:
1135 action_str = "report";
1136 break;
1137 case BDRV_ACTION_IGNORE:
1138 action_str = "ignore";
1139 break;
1140 case BDRV_ACTION_STOP:
1141 action_str = "stop";
1142 break;
1143 default:
1144 abort();
1145 }
1146
1147 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1148 bdrv->device_name,
1149 action_str,
1150 is_read ? "read" : "write");
1151 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1152
1153 qobject_decref(data);
1154 }
1155
1156 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1157 {
1158 QObject *data;
1159
1160 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1161 bdrv_get_device_name(bs), ejected);
1162 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1163
1164 qobject_decref(data);
1165 }
1166
1167 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1168 {
1169 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1170 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1171 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1172 if (tray_was_closed) {
1173 /* tray open */
1174 bdrv_emit_qmp_eject_event(bs, true);
1175 }
1176 if (load) {
1177 /* tray close */
1178 bdrv_emit_qmp_eject_event(bs, false);
1179 }
1180 }
1181 }
1182
1183 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1184 {
1185 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1186 }
1187
1188 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1189 {
1190 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1191 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1192 }
1193 }
1194
1195 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1196 {
1197 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1198 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1199 }
1200 return false;
1201 }
1202
1203 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1204 {
1205 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1206 bs->dev_ops->resize_cb(bs->dev_opaque);
1207 }
1208 }
1209
1210 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1211 {
1212 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1213 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1214 }
1215 return false;
1216 }
1217
1218 /*
1219 * Run consistency checks on an image
1220 *
1221 * Returns 0 if the check could be completed (it doesn't mean that the image is
1222 * free of errors) or -errno when an internal error occurred. The results of the
1223 * check are stored in res.
1224 */
1225 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1226 {
1227 if (bs->drv->bdrv_check == NULL) {
1228 return -ENOTSUP;
1229 }
1230
1231 memset(res, 0, sizeof(*res));
1232 return bs->drv->bdrv_check(bs, res, fix);
1233 }
1234
1235 #define COMMIT_BUF_SECTORS 2048
1236
1237 /* commit COW file into the raw image */
1238 int bdrv_commit(BlockDriverState *bs)
1239 {
1240 BlockDriver *drv = bs->drv;
1241 BlockDriver *backing_drv;
1242 int64_t sector, total_sectors;
1243 int n, ro, open_flags;
1244 int ret = 0, rw_ret = 0;
1245 uint8_t *buf;
1246 char filename[1024];
1247 BlockDriverState *bs_rw, *bs_ro;
1248
1249 if (!drv)
1250 return -ENOMEDIUM;
1251
1252 if (!bs->backing_hd) {
1253 return -ENOTSUP;
1254 }
1255
1256 if (bs->backing_hd->keep_read_only) {
1257 return -EACCES;
1258 }
1259
1260 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1261 return -EBUSY;
1262 }
1263
1264 backing_drv = bs->backing_hd->drv;
1265 ro = bs->backing_hd->read_only;
1266 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1267 open_flags = bs->backing_hd->open_flags;
1268
1269 if (ro) {
1270 /* re-open as RW */
1271 bdrv_delete(bs->backing_hd);
1272 bs->backing_hd = NULL;
1273 bs_rw = bdrv_new("");
1274 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1275 backing_drv);
1276 if (rw_ret < 0) {
1277 bdrv_delete(bs_rw);
1278 /* try to re-open read-only */
1279 bs_ro = bdrv_new("");
1280 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1281 backing_drv);
1282 if (ret < 0) {
1283 bdrv_delete(bs_ro);
1284 /* drive not functional anymore */
1285 bs->drv = NULL;
1286 return ret;
1287 }
1288 bs->backing_hd = bs_ro;
1289 return rw_ret;
1290 }
1291 bs->backing_hd = bs_rw;
1292 }
1293
1294 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1295 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1296
1297 for (sector = 0; sector < total_sectors; sector += n) {
1298 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1299
1300 if (bdrv_read(bs, sector, buf, n) != 0) {
1301 ret = -EIO;
1302 goto ro_cleanup;
1303 }
1304
1305 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1306 ret = -EIO;
1307 goto ro_cleanup;
1308 }
1309 }
1310 }
1311
1312 if (drv->bdrv_make_empty) {
1313 ret = drv->bdrv_make_empty(bs);
1314 bdrv_flush(bs);
1315 }
1316
1317 /*
1318 * Make sure all data we wrote to the backing device is actually
1319 * stable on disk.
1320 */
1321 if (bs->backing_hd)
1322 bdrv_flush(bs->backing_hd);
1323
1324 ro_cleanup:
1325 g_free(buf);
1326
1327 if (ro) {
1328 /* re-open as RO */
1329 bdrv_delete(bs->backing_hd);
1330 bs->backing_hd = NULL;
1331 bs_ro = bdrv_new("");
1332 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1333 backing_drv);
1334 if (ret < 0) {
1335 bdrv_delete(bs_ro);
1336 /* drive not functional anymore */
1337 bs->drv = NULL;
1338 return ret;
1339 }
1340 bs->backing_hd = bs_ro;
1341 bs->backing_hd->keep_read_only = 0;
1342 }
1343
1344 return ret;
1345 }
1346
1347 int bdrv_commit_all(void)
1348 {
1349 BlockDriverState *bs;
1350
1351 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1352 int ret = bdrv_commit(bs);
1353 if (ret < 0) {
1354 return ret;
1355 }
1356 }
1357 return 0;
1358 }
1359
1360 struct BdrvTrackedRequest {
1361 BlockDriverState *bs;
1362 int64_t sector_num;
1363 int nb_sectors;
1364 bool is_write;
1365 QLIST_ENTRY(BdrvTrackedRequest) list;
1366 Coroutine *co; /* owner, used for deadlock detection */
1367 CoQueue wait_queue; /* coroutines blocked on this request */
1368 };
1369
1370 /**
1371 * Remove an active request from the tracked requests list
1372 *
1373 * This function should be called when a tracked request is completing.
1374 */
1375 static void tracked_request_end(BdrvTrackedRequest *req)
1376 {
1377 QLIST_REMOVE(req, list);
1378 qemu_co_queue_restart_all(&req->wait_queue);
1379 }
1380
1381 /**
1382 * Add an active request to the tracked requests list
1383 */
1384 static void tracked_request_begin(BdrvTrackedRequest *req,
1385 BlockDriverState *bs,
1386 int64_t sector_num,
1387 int nb_sectors, bool is_write)
1388 {
1389 *req = (BdrvTrackedRequest){
1390 .bs = bs,
1391 .sector_num = sector_num,
1392 .nb_sectors = nb_sectors,
1393 .is_write = is_write,
1394 .co = qemu_coroutine_self(),
1395 };
1396
1397 qemu_co_queue_init(&req->wait_queue);
1398
1399 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1400 }
1401
1402 /**
1403 * Round a region to cluster boundaries
1404 */
1405 static void round_to_clusters(BlockDriverState *bs,
1406 int64_t sector_num, int nb_sectors,
1407 int64_t *cluster_sector_num,
1408 int *cluster_nb_sectors)
1409 {
1410 BlockDriverInfo bdi;
1411
1412 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1413 *cluster_sector_num = sector_num;
1414 *cluster_nb_sectors = nb_sectors;
1415 } else {
1416 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1417 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1418 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1419 nb_sectors, c);
1420 }
1421 }
1422
1423 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1424 int64_t sector_num, int nb_sectors) {
1425 /* aaaa bbbb */
1426 if (sector_num >= req->sector_num + req->nb_sectors) {
1427 return false;
1428 }
1429 /* bbbb aaaa */
1430 if (req->sector_num >= sector_num + nb_sectors) {
1431 return false;
1432 }
1433 return true;
1434 }
1435
1436 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1437 int64_t sector_num, int nb_sectors)
1438 {
1439 BdrvTrackedRequest *req;
1440 int64_t cluster_sector_num;
1441 int cluster_nb_sectors;
1442 bool retry;
1443
1444 /* If we touch the same cluster it counts as an overlap. This guarantees
1445 * that allocating writes will be serialized and not race with each other
1446 * for the same cluster. For example, in copy-on-read it ensures that the
1447 * CoR read and write operations are atomic and guest writes cannot
1448 * interleave between them.
1449 */
1450 round_to_clusters(bs, sector_num, nb_sectors,
1451 &cluster_sector_num, &cluster_nb_sectors);
1452
1453 do {
1454 retry = false;
1455 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1456 if (tracked_request_overlaps(req, cluster_sector_num,
1457 cluster_nb_sectors)) {
1458 /* Hitting this means there was a reentrant request, for
1459 * example, a block driver issuing nested requests. This must
1460 * never happen since it means deadlock.
1461 */
1462 assert(qemu_coroutine_self() != req->co);
1463
1464 qemu_co_queue_wait(&req->wait_queue);
1465 retry = true;
1466 break;
1467 }
1468 }
1469 } while (retry);
1470 }
1471
1472 /*
1473 * Return values:
1474 * 0 - success
1475 * -EINVAL - backing format specified, but no file
1476 * -ENOSPC - can't update the backing file because no space is left in the
1477 * image file header
1478 * -ENOTSUP - format driver doesn't support changing the backing file
1479 */
1480 int bdrv_change_backing_file(BlockDriverState *bs,
1481 const char *backing_file, const char *backing_fmt)
1482 {
1483 BlockDriver *drv = bs->drv;
1484 int ret;
1485
1486 /* Backing file format doesn't make sense without a backing file */
1487 if (backing_fmt && !backing_file) {
1488 return -EINVAL;
1489 }
1490
1491 if (drv->bdrv_change_backing_file != NULL) {
1492 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1493 } else {
1494 ret = -ENOTSUP;
1495 }
1496
1497 if (ret == 0) {
1498 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1499 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1500 }
1501 return ret;
1502 }
1503
1504 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1505 size_t size)
1506 {
1507 int64_t len;
1508
1509 if (!bdrv_is_inserted(bs))
1510 return -ENOMEDIUM;
1511
1512 if (bs->growable)
1513 return 0;
1514
1515 len = bdrv_getlength(bs);
1516
1517 if (offset < 0)
1518 return -EIO;
1519
1520 if ((offset > len) || (len - offset < size))
1521 return -EIO;
1522
1523 return 0;
1524 }
1525
1526 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1527 int nb_sectors)
1528 {
1529 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1530 nb_sectors * BDRV_SECTOR_SIZE);
1531 }
1532
1533 typedef struct RwCo {
1534 BlockDriverState *bs;
1535 int64_t sector_num;
1536 int nb_sectors;
1537 QEMUIOVector *qiov;
1538 bool is_write;
1539 int ret;
1540 } RwCo;
1541
1542 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1543 {
1544 RwCo *rwco = opaque;
1545
1546 if (!rwco->is_write) {
1547 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1548 rwco->nb_sectors, rwco->qiov, 0);
1549 } else {
1550 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1551 rwco->nb_sectors, rwco->qiov, 0);
1552 }
1553 }
1554
1555 /*
1556 * Process a synchronous request using coroutines
1557 */
1558 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1559 int nb_sectors, bool is_write)
1560 {
1561 QEMUIOVector qiov;
1562 struct iovec iov = {
1563 .iov_base = (void *)buf,
1564 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1565 };
1566 Coroutine *co;
1567 RwCo rwco = {
1568 .bs = bs,
1569 .sector_num = sector_num,
1570 .nb_sectors = nb_sectors,
1571 .qiov = &qiov,
1572 .is_write = is_write,
1573 .ret = NOT_DONE,
1574 };
1575
1576 qemu_iovec_init_external(&qiov, &iov, 1);
1577
1578 /**
1579 * In sync call context, when the vcpu is blocked, this throttling timer
1580 * will not fire; so the I/O throttling function has to be disabled here
1581 * if it has been enabled.
1582 */
1583 if (bs->io_limits_enabled) {
1584 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1585 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1586 bdrv_io_limits_disable(bs);
1587 }
1588
1589 if (qemu_in_coroutine()) {
1590 /* Fast-path if already in coroutine context */
1591 bdrv_rw_co_entry(&rwco);
1592 } else {
1593 co = qemu_coroutine_create(bdrv_rw_co_entry);
1594 qemu_coroutine_enter(co, &rwco);
1595 while (rwco.ret == NOT_DONE) {
1596 qemu_aio_wait();
1597 }
1598 }
1599 return rwco.ret;
1600 }
1601
1602 /* return < 0 if error. See bdrv_write() for the return codes */
1603 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1604 uint8_t *buf, int nb_sectors)
1605 {
1606 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1607 }
1608
1609 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1610
1611 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1612 int nb_sectors, int dirty)
1613 {
1614 int64_t start, end;
1615 unsigned long val, idx, bit;
1616
1617 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1618 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1619
1620 for (; start <= end; start++) {
1621 idx = start / BITS_PER_LONG;
1622 bit = start % BITS_PER_LONG;
1623 val = bs->dirty_bitmap[idx];
1624 if (dirty) {
1625 if (!(val & (1UL << bit))) {
1626 bs->dirty_count++;
1627 val |= 1UL << bit;
1628 }
1629 } else {
1630 if (val & (1UL << bit)) {
1631 bs->dirty_count--;
1632 val &= ~(1UL << bit);
1633 }
1634 }
1635 bs->dirty_bitmap[idx] = val;
1636 }
1637 }
1638
1639 /* Return < 0 if error. Important errors are:
1640 -EIO generic I/O error (may happen for all errors)
1641 -ENOMEDIUM No media inserted.
1642 -EINVAL Invalid sector number or nb_sectors
1643 -EACCES Trying to write a read-only device
1644 */
1645 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1646 const uint8_t *buf, int nb_sectors)
1647 {
1648 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1649 }
1650
1651 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1652 void *buf, int count1)
1653 {
1654 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1655 int len, nb_sectors, count;
1656 int64_t sector_num;
1657 int ret;
1658
1659 count = count1;
1660 /* first read to align to sector start */
1661 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1662 if (len > count)
1663 len = count;
1664 sector_num = offset >> BDRV_SECTOR_BITS;
1665 if (len > 0) {
1666 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1667 return ret;
1668 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1669 count -= len;
1670 if (count == 0)
1671 return count1;
1672 sector_num++;
1673 buf += len;
1674 }
1675
1676 /* read the sectors "in place" */
1677 nb_sectors = count >> BDRV_SECTOR_BITS;
1678 if (nb_sectors > 0) {
1679 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1680 return ret;
1681 sector_num += nb_sectors;
1682 len = nb_sectors << BDRV_SECTOR_BITS;
1683 buf += len;
1684 count -= len;
1685 }
1686
1687 /* add data from the last sector */
1688 if (count > 0) {
1689 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1690 return ret;
1691 memcpy(buf, tmp_buf, count);
1692 }
1693 return count1;
1694 }
1695
1696 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1697 const void *buf, int count1)
1698 {
1699 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1700 int len, nb_sectors, count;
1701 int64_t sector_num;
1702 int ret;
1703
1704 count = count1;
1705 /* first write to align to sector start */
1706 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1707 if (len > count)
1708 len = count;
1709 sector_num = offset >> BDRV_SECTOR_BITS;
1710 if (len > 0) {
1711 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1712 return ret;
1713 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1714 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1715 return ret;
1716 count -= len;
1717 if (count == 0)
1718 return count1;
1719 sector_num++;
1720 buf += len;
1721 }
1722
1723 /* write the sectors "in place" */
1724 nb_sectors = count >> BDRV_SECTOR_BITS;
1725 if (nb_sectors > 0) {
1726 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1727 return ret;
1728 sector_num += nb_sectors;
1729 len = nb_sectors << BDRV_SECTOR_BITS;
1730 buf += len;
1731 count -= len;
1732 }
1733
1734 /* add data from the last sector */
1735 if (count > 0) {
1736 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1737 return ret;
1738 memcpy(tmp_buf, buf, count);
1739 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1740 return ret;
1741 }
1742 return count1;
1743 }
1744
1745 /*
1746 * Writes to the file and ensures that no writes are reordered across this
1747 * request (acts as a barrier)
1748 *
1749 * Returns 0 on success, -errno in error cases.
1750 */
1751 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1752 const void *buf, int count)
1753 {
1754 int ret;
1755
1756 ret = bdrv_pwrite(bs, offset, buf, count);
1757 if (ret < 0) {
1758 return ret;
1759 }
1760
1761 /* No flush needed for cache modes that use O_DSYNC */
1762 if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1763 bdrv_flush(bs);
1764 }
1765
1766 return 0;
1767 }
1768
1769 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1770 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1771 {
1772 /* Perform I/O through a temporary buffer so that users who scribble over
1773 * their read buffer while the operation is in progress do not end up
1774 * modifying the image file. This is critical for zero-copy guest I/O
1775 * where anything might happen inside guest memory.
1776 */
1777 void *bounce_buffer;
1778
1779 BlockDriver *drv = bs->drv;
1780 struct iovec iov;
1781 QEMUIOVector bounce_qiov;
1782 int64_t cluster_sector_num;
1783 int cluster_nb_sectors;
1784 size_t skip_bytes;
1785 int ret;
1786
1787 /* Cover entire cluster so no additional backing file I/O is required when
1788 * allocating cluster in the image file.
1789 */
1790 round_to_clusters(bs, sector_num, nb_sectors,
1791 &cluster_sector_num, &cluster_nb_sectors);
1792
1793 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1794 cluster_sector_num, cluster_nb_sectors);
1795
1796 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1797 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1798 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1799
1800 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1801 &bounce_qiov);
1802 if (ret < 0) {
1803 goto err;
1804 }
1805
1806 if (drv->bdrv_co_write_zeroes &&
1807 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1808 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
1809 cluster_nb_sectors);
1810 } else {
1811 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1812 &bounce_qiov);
1813 }
1814
1815 if (ret < 0) {
1816 /* It might be okay to ignore write errors for guest requests. If this
1817 * is a deliberate copy-on-read then we don't want to ignore the error.
1818 * Simply report it in all cases.
1819 */
1820 goto err;
1821 }
1822
1823 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1824 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1825 nb_sectors * BDRV_SECTOR_SIZE);
1826
1827 err:
1828 qemu_vfree(bounce_buffer);
1829 return ret;
1830 }
1831
1832 /*
1833 * Handle a read request in coroutine context
1834 */
1835 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1836 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1837 BdrvRequestFlags flags)
1838 {
1839 BlockDriver *drv = bs->drv;
1840 BdrvTrackedRequest req;
1841 int ret;
1842
1843 if (!drv) {
1844 return -ENOMEDIUM;
1845 }
1846 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1847 return -EIO;
1848 }
1849
1850 /* throttling disk read I/O */
1851 if (bs->io_limits_enabled) {
1852 bdrv_io_limits_intercept(bs, false, nb_sectors);
1853 }
1854
1855 if (bs->copy_on_read) {
1856 flags |= BDRV_REQ_COPY_ON_READ;
1857 }
1858 if (flags & BDRV_REQ_COPY_ON_READ) {
1859 bs->copy_on_read_in_flight++;
1860 }
1861
1862 if (bs->copy_on_read_in_flight) {
1863 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1864 }
1865
1866 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1867
1868 if (flags & BDRV_REQ_COPY_ON_READ) {
1869 int pnum;
1870
1871 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1872 if (ret < 0) {
1873 goto out;
1874 }
1875
1876 if (!ret || pnum != nb_sectors) {
1877 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1878 goto out;
1879 }
1880 }
1881
1882 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1883
1884 out:
1885 tracked_request_end(&req);
1886
1887 if (flags & BDRV_REQ_COPY_ON_READ) {
1888 bs->copy_on_read_in_flight--;
1889 }
1890
1891 return ret;
1892 }
1893
1894 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1895 int nb_sectors, QEMUIOVector *qiov)
1896 {
1897 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1898
1899 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1900 }
1901
1902 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1903 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1904 {
1905 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1906
1907 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1908 BDRV_REQ_COPY_ON_READ);
1909 }
1910
1911 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1912 int64_t sector_num, int nb_sectors)
1913 {
1914 BlockDriver *drv = bs->drv;
1915 QEMUIOVector qiov;
1916 struct iovec iov;
1917 int ret;
1918
1919 /* TODO Emulate only part of misaligned requests instead of letting block
1920 * drivers return -ENOTSUP and emulate everything */
1921
1922 /* First try the efficient write zeroes operation */
1923 if (drv->bdrv_co_write_zeroes) {
1924 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1925 if (ret != -ENOTSUP) {
1926 return ret;
1927 }
1928 }
1929
1930 /* Fall back to bounce buffer if write zeroes is unsupported */
1931 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1932 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1933 memset(iov.iov_base, 0, iov.iov_len);
1934 qemu_iovec_init_external(&qiov, &iov, 1);
1935
1936 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1937
1938 qemu_vfree(iov.iov_base);
1939 return ret;
1940 }
1941
1942 /*
1943 * Handle a write request in coroutine context
1944 */
1945 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1946 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1947 BdrvRequestFlags flags)
1948 {
1949 BlockDriver *drv = bs->drv;
1950 BdrvTrackedRequest req;
1951 int ret;
1952
1953 if (!bs->drv) {
1954 return -ENOMEDIUM;
1955 }
1956 if (bs->read_only) {
1957 return -EACCES;
1958 }
1959 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1960 return -EIO;
1961 }
1962
1963 /* throttling disk write I/O */
1964 if (bs->io_limits_enabled) {
1965 bdrv_io_limits_intercept(bs, true, nb_sectors);
1966 }
1967
1968 if (bs->copy_on_read_in_flight) {
1969 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1970 }
1971
1972 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1973
1974 if (flags & BDRV_REQ_ZERO_WRITE) {
1975 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1976 } else {
1977 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1978 }
1979
1980 if (bs->dirty_bitmap) {
1981 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1982 }
1983
1984 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1985 bs->wr_highest_sector = sector_num + nb_sectors - 1;
1986 }
1987
1988 tracked_request_end(&req);
1989
1990 return ret;
1991 }
1992
1993 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1994 int nb_sectors, QEMUIOVector *qiov)
1995 {
1996 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1997
1998 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1999 }
2000
2001 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2002 int64_t sector_num, int nb_sectors)
2003 {
2004 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2005
2006 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2007 BDRV_REQ_ZERO_WRITE);
2008 }
2009
2010 /**
2011 * Truncate file to 'offset' bytes (needed only for file protocols)
2012 */
2013 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2014 {
2015 BlockDriver *drv = bs->drv;
2016 int ret;
2017 if (!drv)
2018 return -ENOMEDIUM;
2019 if (!drv->bdrv_truncate)
2020 return -ENOTSUP;
2021 if (bs->read_only)
2022 return -EACCES;
2023 if (bdrv_in_use(bs))
2024 return -EBUSY;
2025 ret = drv->bdrv_truncate(bs, offset);
2026 if (ret == 0) {
2027 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2028 bdrv_dev_resize_cb(bs);
2029 }
2030 return ret;
2031 }
2032
2033 /**
2034 * Length of a allocated file in bytes. Sparse files are counted by actual
2035 * allocated space. Return < 0 if error or unknown.
2036 */
2037 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2038 {
2039 BlockDriver *drv = bs->drv;
2040 if (!drv) {
2041 return -ENOMEDIUM;
2042 }
2043 if (drv->bdrv_get_allocated_file_size) {
2044 return drv->bdrv_get_allocated_file_size(bs);
2045 }
2046 if (bs->file) {
2047 return bdrv_get_allocated_file_size(bs->file);
2048 }
2049 return -ENOTSUP;
2050 }
2051
2052 /**
2053 * Length of a file in bytes. Return < 0 if error or unknown.
2054 */
2055 int64_t bdrv_getlength(BlockDriverState *bs)
2056 {
2057 BlockDriver *drv = bs->drv;
2058 if (!drv)
2059 return -ENOMEDIUM;
2060
2061 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2062 if (drv->bdrv_getlength) {
2063 return drv->bdrv_getlength(bs);
2064 }
2065 }
2066 return bs->total_sectors * BDRV_SECTOR_SIZE;
2067 }
2068
2069 /* return 0 as number of sectors if no device present or error */
2070 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2071 {
2072 int64_t length;
2073 length = bdrv_getlength(bs);
2074 if (length < 0)
2075 length = 0;
2076 else
2077 length = length >> BDRV_SECTOR_BITS;
2078 *nb_sectors_ptr = length;
2079 }
2080
2081 struct partition {
2082 uint8_t boot_ind; /* 0x80 - active */
2083 uint8_t head; /* starting head */
2084 uint8_t sector; /* starting sector */
2085 uint8_t cyl; /* starting cylinder */
2086 uint8_t sys_ind; /* What partition type */
2087 uint8_t end_head; /* end head */
2088 uint8_t end_sector; /* end sector */
2089 uint8_t end_cyl; /* end cylinder */
2090 uint32_t start_sect; /* starting sector counting from 0 */
2091 uint32_t nr_sects; /* nr of sectors in partition */
2092 } QEMU_PACKED;
2093
2094 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
2095 static int guess_disk_lchs(BlockDriverState *bs,
2096 int *pcylinders, int *pheads, int *psectors)
2097 {
2098 uint8_t buf[BDRV_SECTOR_SIZE];
2099 int ret, i, heads, sectors, cylinders;
2100 struct partition *p;
2101 uint32_t nr_sects;
2102 uint64_t nb_sectors;
2103 bool enabled;
2104
2105 bdrv_get_geometry(bs, &nb_sectors);
2106
2107 /**
2108 * The function will be invoked during startup not only in sync I/O mode,
2109 * but also in async I/O mode. So the I/O throttling function has to
2110 * be disabled temporarily here, not permanently.
2111 */
2112 enabled = bs->io_limits_enabled;
2113 bs->io_limits_enabled = false;
2114 ret = bdrv_read(bs, 0, buf, 1);
2115 bs->io_limits_enabled = enabled;
2116 if (ret < 0)
2117 return -1;
2118 /* test msdos magic */
2119 if (buf[510] != 0x55 || buf[511] != 0xaa)
2120 return -1;
2121 for(i = 0; i < 4; i++) {
2122 p = ((struct partition *)(buf + 0x1be)) + i;
2123 nr_sects = le32_to_cpu(p->nr_sects);
2124 if (nr_sects && p->end_head) {
2125 /* We make the assumption that the partition terminates on
2126 a cylinder boundary */
2127 heads = p->end_head + 1;
2128 sectors = p->end_sector & 63;
2129 if (sectors == 0)
2130 continue;
2131 cylinders = nb_sectors / (heads * sectors);
2132 if (cylinders < 1 || cylinders > 16383)
2133 continue;
2134 *pheads = heads;
2135 *psectors = sectors;
2136 *pcylinders = cylinders;
2137 #if 0
2138 printf("guessed geometry: LCHS=%d %d %d\n",
2139 cylinders, heads, sectors);
2140 #endif
2141 return 0;
2142 }
2143 }
2144 return -1;
2145 }
2146
2147 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
2148 {
2149 int translation, lba_detected = 0;
2150 int cylinders, heads, secs;
2151 uint64_t nb_sectors;
2152
2153 /* if a geometry hint is available, use it */
2154 bdrv_get_geometry(bs, &nb_sectors);
2155 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
2156 translation = bdrv_get_translation_hint(bs);
2157 if (cylinders != 0) {
2158 *pcyls = cylinders;
2159 *pheads = heads;
2160 *psecs = secs;
2161 } else {
2162 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
2163 if (heads > 16) {
2164 /* if heads > 16, it means that a BIOS LBA
2165 translation was active, so the default
2166 hardware geometry is OK */
2167 lba_detected = 1;
2168 goto default_geometry;
2169 } else {
2170 *pcyls = cylinders;
2171 *pheads = heads;
2172 *psecs = secs;
2173 /* disable any translation to be in sync with
2174 the logical geometry */
2175 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
2176 bdrv_set_translation_hint(bs,
2177 BIOS_ATA_TRANSLATION_NONE);
2178 }
2179 }
2180 } else {
2181 default_geometry:
2182 /* if no geometry, use a standard physical disk geometry */
2183 cylinders = nb_sectors / (16 * 63);
2184
2185 if (cylinders > 16383)
2186 cylinders = 16383;
2187 else if (cylinders < 2)
2188 cylinders = 2;
2189 *pcyls = cylinders;
2190 *pheads = 16;
2191 *psecs = 63;
2192 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
2193 if ((*pcyls * *pheads) <= 131072) {
2194 bdrv_set_translation_hint(bs,
2195 BIOS_ATA_TRANSLATION_LARGE);
2196 } else {
2197 bdrv_set_translation_hint(bs,
2198 BIOS_ATA_TRANSLATION_LBA);
2199 }
2200 }
2201 }
2202 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
2203 }
2204 }
2205
2206 void bdrv_set_geometry_hint(BlockDriverState *bs,
2207 int cyls, int heads, int secs)
2208 {
2209 bs->cyls = cyls;
2210 bs->heads = heads;
2211 bs->secs = secs;
2212 }
2213
2214 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
2215 {
2216 bs->translation = translation;
2217 }
2218
2219 void bdrv_get_geometry_hint(BlockDriverState *bs,
2220 int *pcyls, int *pheads, int *psecs)
2221 {
2222 *pcyls = bs->cyls;
2223 *pheads = bs->heads;
2224 *psecs = bs->secs;
2225 }
2226
2227 /* throttling disk io limits */
2228 void bdrv_set_io_limits(BlockDriverState *bs,
2229 BlockIOLimit *io_limits)
2230 {
2231 bs->io_limits = *io_limits;
2232 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2233 }
2234
2235 /* Recognize floppy formats */
2236 typedef struct FDFormat {
2237 FDriveType drive;
2238 uint8_t last_sect;
2239 uint8_t max_track;
2240 uint8_t max_head;
2241 FDriveRate rate;
2242 } FDFormat;
2243
2244 static const FDFormat fd_formats[] = {
2245 /* First entry is default format */
2246 /* 1.44 MB 3"1/2 floppy disks */
2247 { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2248 { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2249 { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2250 { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2251 { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2252 { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2253 { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2254 { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2255 /* 2.88 MB 3"1/2 floppy disks */
2256 { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2257 { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2258 { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2259 { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2260 { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2261 /* 720 kB 3"1/2 floppy disks */
2262 { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, },
2263 { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2264 { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2265 { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2266 { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2267 { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2268 /* 1.2 MB 5"1/4 floppy disks */
2269 { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2270 { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2271 { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2272 { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2273 { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2274 /* 720 kB 5"1/4 floppy disks */
2275 { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_250K, },
2276 { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2277 /* 360 kB 5"1/4 floppy disks */
2278 { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, },
2279 { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, },
2280 { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2281 { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2282 /* 320 kB 5"1/4 floppy disks */
2283 { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_250K, },
2284 { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_250K, },
2285 /* 360 kB must match 5"1/4 better than 3"1/2... */
2286 { FDRIVE_DRV_144, 9, 80, 0, FDRIVE_RATE_250K, },
2287 /* end */
2288 { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2289 };
2290
2291 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2292 int *max_track, int *last_sect,
2293 FDriveType drive_in, FDriveType *drive,
2294 FDriveRate *rate)
2295 {
2296 const FDFormat *parse;
2297 uint64_t nb_sectors, size;
2298 int i, first_match, match;
2299
2300 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2301 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2302 /* User defined disk */
2303 *rate = FDRIVE_RATE_500K;
2304 } else {
2305 bdrv_get_geometry(bs, &nb_sectors);
2306 match = -1;
2307 first_match = -1;
2308 for (i = 0; ; i++) {
2309 parse = &fd_formats[i];
2310 if (parse->drive == FDRIVE_DRV_NONE) {
2311 break;
2312 }
2313 if (drive_in == parse->drive ||
2314 drive_in == FDRIVE_DRV_NONE) {
2315 size = (parse->max_head + 1) * parse->max_track *
2316 parse->last_sect;
2317 if (nb_sectors == size) {
2318 match = i;
2319 break;
2320 }
2321 if (first_match == -1) {
2322 first_match = i;
2323 }
2324 }
2325 }
2326 if (match == -1) {
2327 if (first_match == -1) {
2328 match = 1;
2329 } else {
2330 match = first_match;
2331 }
2332 parse = &fd_formats[match];
2333 }
2334 *nb_heads = parse->max_head + 1;
2335 *max_track = parse->max_track;
2336 *last_sect = parse->last_sect;
2337 *drive = parse->drive;
2338 *rate = parse->rate;
2339 }
2340 }
2341
2342 int bdrv_get_translation_hint(BlockDriverState *bs)
2343 {
2344 return bs->translation;
2345 }
2346
2347 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2348 BlockErrorAction on_write_error)
2349 {
2350 bs->on_read_error = on_read_error;
2351 bs->on_write_error = on_write_error;
2352 }
2353
2354 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2355 {
2356 return is_read ? bs->on_read_error : bs->on_write_error;
2357 }
2358
2359 int bdrv_is_read_only(BlockDriverState *bs)
2360 {
2361 return bs->read_only;
2362 }
2363
2364 int bdrv_is_sg(BlockDriverState *bs)
2365 {
2366 return bs->sg;
2367 }
2368
2369 int bdrv_enable_write_cache(BlockDriverState *bs)
2370 {
2371 return bs->enable_write_cache;
2372 }
2373
2374 int bdrv_is_encrypted(BlockDriverState *bs)
2375 {
2376 if (bs->backing_hd && bs->backing_hd->encrypted)
2377 return 1;
2378 return bs->encrypted;
2379 }
2380
2381 int bdrv_key_required(BlockDriverState *bs)
2382 {
2383 BlockDriverState *backing_hd = bs->backing_hd;
2384
2385 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2386 return 1;
2387 return (bs->encrypted && !bs->valid_key);
2388 }
2389
2390 int bdrv_set_key(BlockDriverState *bs, const char *key)
2391 {
2392 int ret;
2393 if (bs->backing_hd && bs->backing_hd->encrypted) {
2394 ret = bdrv_set_key(bs->backing_hd, key);
2395 if (ret < 0)
2396 return ret;
2397 if (!bs->encrypted)
2398 return 0;
2399 }
2400 if (!bs->encrypted) {
2401 return -EINVAL;
2402 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2403 return -ENOMEDIUM;
2404 }
2405 ret = bs->drv->bdrv_set_key(bs, key);
2406 if (ret < 0) {
2407 bs->valid_key = 0;
2408 } else if (!bs->valid_key) {
2409 bs->valid_key = 1;
2410 /* call the change callback now, we skipped it on open */
2411 bdrv_dev_change_media_cb(bs, true);
2412 }
2413 return ret;
2414 }
2415
2416 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2417 {
2418 if (!bs->drv) {
2419 buf[0] = '\0';
2420 } else {
2421 pstrcpy(buf, buf_size, bs->drv->format_name);
2422 }
2423 }
2424
2425 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2426 void *opaque)
2427 {
2428 BlockDriver *drv;
2429
2430 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2431 it(opaque, drv->format_name);
2432 }
2433 }
2434
2435 BlockDriverState *bdrv_find(const char *name)
2436 {
2437 BlockDriverState *bs;
2438
2439 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2440 if (!strcmp(name, bs->device_name)) {
2441 return bs;
2442 }
2443 }
2444 return NULL;
2445 }
2446
2447 BlockDriverState *bdrv_next(BlockDriverState *bs)
2448 {
2449 if (!bs) {
2450 return QTAILQ_FIRST(&bdrv_states);
2451 }
2452 return QTAILQ_NEXT(bs, list);
2453 }
2454
2455 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2456 {
2457 BlockDriverState *bs;
2458
2459 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2460 it(opaque, bs);
2461 }
2462 }
2463
2464 const char *bdrv_get_device_name(BlockDriverState *bs)
2465 {
2466 return bs->device_name;
2467 }
2468
2469 void bdrv_flush_all(void)
2470 {
2471 BlockDriverState *bs;
2472
2473 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2474 bdrv_flush(bs);
2475 }
2476 }
2477
2478 int bdrv_has_zero_init(BlockDriverState *bs)
2479 {
2480 assert(bs->drv);
2481
2482 if (bs->drv->bdrv_has_zero_init) {
2483 return bs->drv->bdrv_has_zero_init(bs);
2484 }
2485
2486 return 1;
2487 }
2488
2489 typedef struct BdrvCoIsAllocatedData {
2490 BlockDriverState *bs;
2491 int64_t sector_num;
2492 int nb_sectors;
2493 int *pnum;
2494 int ret;
2495 bool done;
2496 } BdrvCoIsAllocatedData;
2497
2498 /*
2499 * Returns true iff the specified sector is present in the disk image. Drivers
2500 * not implementing the functionality are assumed to not support backing files,
2501 * hence all their sectors are reported as allocated.
2502 *
2503 * If 'sector_num' is beyond the end of the disk image the return value is 0
2504 * and 'pnum' is set to 0.
2505 *
2506 * 'pnum' is set to the number of sectors (including and immediately following
2507 * the specified sector) that are known to be in the same
2508 * allocated/unallocated state.
2509 *
2510 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2511 * beyond the end of the disk image it will be clamped.
2512 */
2513 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2514 int nb_sectors, int *pnum)
2515 {
2516 int64_t n;
2517
2518 if (sector_num >= bs->total_sectors) {
2519 *pnum = 0;
2520 return 0;
2521 }
2522
2523 n = bs->total_sectors - sector_num;
2524 if (n < nb_sectors) {
2525 nb_sectors = n;
2526 }
2527
2528 if (!bs->drv->bdrv_co_is_allocated) {
2529 *pnum = nb_sectors;
2530 return 1;
2531 }
2532
2533 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2534 }
2535
2536 /* Coroutine wrapper for bdrv_is_allocated() */
2537 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2538 {
2539 BdrvCoIsAllocatedData *data = opaque;
2540 BlockDriverState *bs = data->bs;
2541
2542 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2543 data->pnum);
2544 data->done = true;
2545 }
2546
2547 /*
2548 * Synchronous wrapper around bdrv_co_is_allocated().
2549 *
2550 * See bdrv_co_is_allocated() for details.
2551 */
2552 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2553 int *pnum)
2554 {
2555 Coroutine *co;
2556 BdrvCoIsAllocatedData data = {
2557 .bs = bs,
2558 .sector_num = sector_num,
2559 .nb_sectors = nb_sectors,
2560 .pnum = pnum,
2561 .done = false,
2562 };
2563
2564 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2565 qemu_coroutine_enter(co, &data);
2566 while (!data.done) {
2567 qemu_aio_wait();
2568 }
2569 return data.ret;
2570 }
2571
2572 /*
2573 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2574 *
2575 * Return true if the given sector is allocated in any image between
2576 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2577 * sector is allocated in any image of the chain. Return false otherwise.
2578 *
2579 * 'pnum' is set to the number of sectors (including and immediately following
2580 * the specified sector) that are known to be in the same
2581 * allocated/unallocated state.
2582 *
2583 */
2584 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2585 BlockDriverState *base,
2586 int64_t sector_num,
2587 int nb_sectors, int *pnum)
2588 {
2589 BlockDriverState *intermediate;
2590 int ret, n = nb_sectors;
2591
2592 intermediate = top;
2593 while (intermediate && intermediate != base) {
2594 int pnum_inter;
2595 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2596 &pnum_inter);
2597 if (ret < 0) {
2598 return ret;
2599 } else if (ret) {
2600 *pnum = pnum_inter;
2601 return 1;
2602 }
2603
2604 /*
2605 * [sector_num, nb_sectors] is unallocated on top but intermediate
2606 * might have
2607 *
2608 * [sector_num+x, nr_sectors] allocated.
2609 */
2610 if (n > pnum_inter) {
2611 n = pnum_inter;
2612 }
2613
2614 intermediate = intermediate->backing_hd;
2615 }
2616
2617 *pnum = n;
2618 return 0;
2619 }
2620
2621 BlockInfoList *qmp_query_block(Error **errp)
2622 {
2623 BlockInfoList *head = NULL, *cur_item = NULL;
2624 BlockDriverState *bs;
2625
2626 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2627 BlockInfoList *info = g_malloc0(sizeof(*info));
2628
2629 info->value = g_malloc0(sizeof(*info->value));
2630 info->value->device = g_strdup(bs->device_name);
2631 info->value->type = g_strdup("unknown");
2632 info->value->locked = bdrv_dev_is_medium_locked(bs);
2633 info->value->removable = bdrv_dev_has_removable_media(bs);
2634
2635 if (bdrv_dev_has_removable_media(bs)) {
2636 info->value->has_tray_open = true;
2637 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2638 }
2639
2640 if (bdrv_iostatus_is_enabled(bs)) {
2641 info->value->has_io_status = true;
2642 info->value->io_status = bs->iostatus;
2643 }
2644
2645 if (bs->drv) {
2646 info->value->has_inserted = true;
2647 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2648 info->value->inserted->file = g_strdup(bs->filename);
2649 info->value->inserted->ro = bs->read_only;
2650 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2651 info->value->inserted->encrypted = bs->encrypted;
2652 if (bs->backing_file[0]) {
2653 info->value->inserted->has_backing_file = true;
2654 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2655 }
2656
2657 if (bs->io_limits_enabled) {
2658 info->value->inserted->bps =
2659 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2660 info->value->inserted->bps_rd =
2661 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2662 info->value->inserted->bps_wr =
2663 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2664 info->value->inserted->iops =
2665 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2666 info->value->inserted->iops_rd =
2667 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2668 info->value->inserted->iops_wr =
2669 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2670 }
2671 }
2672
2673 /* XXX: waiting for the qapi to support GSList */
2674 if (!cur_item) {
2675 head = cur_item = info;
2676 } else {
2677 cur_item->next = info;
2678 cur_item = info;
2679 }
2680 }
2681
2682 return head;
2683 }
2684
2685 /* Consider exposing this as a full fledged QMP command */
2686 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2687 {
2688 BlockStats *s;
2689
2690 s = g_malloc0(sizeof(*s));
2691
2692 if (bs->device_name[0]) {
2693 s->has_device = true;
2694 s->device = g_strdup(bs->device_name);
2695 }
2696
2697 s->stats = g_malloc0(sizeof(*s->stats));
2698 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2699 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2700 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2701 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2702 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2703 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2704 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2705 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2706 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2707
2708 if (bs->file) {
2709 s->has_parent = true;
2710 s->parent = qmp_query_blockstat(bs->file, NULL);
2711 }
2712
2713 return s;
2714 }
2715
2716 BlockStatsList *qmp_query_blockstats(Error **errp)
2717 {
2718 BlockStatsList *head = NULL, *cur_item = NULL;
2719 BlockDriverState *bs;
2720
2721 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2722 BlockStatsList *info = g_malloc0(sizeof(*info));
2723 info->value = qmp_query_blockstat(bs, NULL);
2724
2725 /* XXX: waiting for the qapi to support GSList */
2726 if (!cur_item) {
2727 head = cur_item = info;
2728 } else {
2729 cur_item->next = info;
2730 cur_item = info;
2731 }
2732 }
2733
2734 return head;
2735 }
2736
2737 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2738 {
2739 if (bs->backing_hd && bs->backing_hd->encrypted)
2740 return bs->backing_file;
2741 else if (bs->encrypted)
2742 return bs->filename;
2743 else
2744 return NULL;
2745 }
2746
2747 void bdrv_get_backing_filename(BlockDriverState *bs,
2748 char *filename, int filename_size)
2749 {
2750 pstrcpy(filename, filename_size, bs->backing_file);
2751 }
2752
2753 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2754 const uint8_t *buf, int nb_sectors)
2755 {
2756 BlockDriver *drv = bs->drv;
2757 if (!drv)
2758 return -ENOMEDIUM;
2759 if (!drv->bdrv_write_compressed)
2760 return -ENOTSUP;
2761 if (bdrv_check_request(bs, sector_num, nb_sectors))
2762 return -EIO;
2763
2764 if (bs->dirty_bitmap) {
2765 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2766 }
2767
2768 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2769 }
2770
2771 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2772 {
2773 BlockDriver *drv = bs->drv;
2774 if (!drv)
2775 return -ENOMEDIUM;
2776 if (!drv->bdrv_get_info)
2777 return -ENOTSUP;
2778 memset(bdi, 0, sizeof(*bdi));
2779 return drv->bdrv_get_info(bs, bdi);
2780 }
2781
2782 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2783 int64_t pos, int size)
2784 {
2785 BlockDriver *drv = bs->drv;
2786 if (!drv)
2787 return -ENOMEDIUM;
2788 if (drv->bdrv_save_vmstate)
2789 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2790 if (bs->file)
2791 return bdrv_save_vmstate(bs->file, buf, pos, size);
2792 return -ENOTSUP;
2793 }
2794
2795 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2796 int64_t pos, int size)
2797 {
2798 BlockDriver *drv = bs->drv;
2799 if (!drv)
2800 return -ENOMEDIUM;
2801 if (drv->bdrv_load_vmstate)
2802 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2803 if (bs->file)
2804 return bdrv_load_vmstate(bs->file, buf, pos, size);
2805 return -ENOTSUP;
2806 }
2807
2808 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2809 {
2810 BlockDriver *drv = bs->drv;
2811
2812 if (!drv || !drv->bdrv_debug_event) {
2813 return;
2814 }
2815
2816 return drv->bdrv_debug_event(bs, event);
2817
2818 }
2819
2820 /**************************************************************/
2821 /* handling of snapshots */
2822
2823 int bdrv_can_snapshot(BlockDriverState *bs)
2824 {
2825 BlockDriver *drv = bs->drv;
2826 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2827 return 0;
2828 }
2829
2830 if (!drv->bdrv_snapshot_create) {
2831 if (bs->file != NULL) {
2832 return bdrv_can_snapshot(bs->file);
2833 }
2834 return 0;
2835 }
2836
2837 return 1;
2838 }
2839
2840 int bdrv_is_snapshot(BlockDriverState *bs)
2841 {
2842 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2843 }
2844
2845 BlockDriverState *bdrv_snapshots(void)
2846 {
2847 BlockDriverState *bs;
2848
2849 if (bs_snapshots) {
2850 return bs_snapshots;
2851 }
2852
2853 bs = NULL;
2854 while ((bs = bdrv_next(bs))) {
2855 if (bdrv_can_snapshot(bs)) {
2856 bs_snapshots = bs;
2857 return bs;
2858 }
2859 }
2860 return NULL;
2861 }
2862
2863 int bdrv_snapshot_create(BlockDriverState *bs,
2864 QEMUSnapshotInfo *sn_info)
2865 {
2866 BlockDriver *drv = bs->drv;
2867 if (!drv)
2868 return -ENOMEDIUM;
2869 if (drv->bdrv_snapshot_create)
2870 return drv->bdrv_snapshot_create(bs, sn_info);
2871 if (bs->file)
2872 return bdrv_snapshot_create(bs->file, sn_info);
2873 return -ENOTSUP;
2874 }
2875
2876 int bdrv_snapshot_goto(BlockDriverState *bs,
2877 const char *snapshot_id)
2878 {
2879 BlockDriver *drv = bs->drv;
2880 int ret, open_ret;
2881
2882 if (!drv)
2883 return -ENOMEDIUM;
2884 if (drv->bdrv_snapshot_goto)
2885 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2886
2887 if (bs->file) {
2888 drv->bdrv_close(bs);
2889 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2890 open_ret = drv->bdrv_open(bs, bs->open_flags);
2891 if (open_ret < 0) {
2892 bdrv_delete(bs->file);
2893 bs->drv = NULL;
2894 return open_ret;
2895 }
2896 return ret;
2897 }
2898
2899 return -ENOTSUP;
2900 }
2901
2902 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2903 {
2904 BlockDriver *drv = bs->drv;
2905 if (!drv)
2906 return -ENOMEDIUM;
2907 if (drv->bdrv_snapshot_delete)
2908 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2909 if (bs->file)
2910 return bdrv_snapshot_delete(bs->file, snapshot_id);
2911 return -ENOTSUP;
2912 }
2913
2914 int bdrv_snapshot_list(BlockDriverState *bs,
2915 QEMUSnapshotInfo **psn_info)
2916 {
2917 BlockDriver *drv = bs->drv;
2918 if (!drv)
2919 return -ENOMEDIUM;
2920 if (drv->bdrv_snapshot_list)
2921 return drv->bdrv_snapshot_list(bs, psn_info);
2922 if (bs->file)
2923 return bdrv_snapshot_list(bs->file, psn_info);
2924 return -ENOTSUP;
2925 }
2926
2927 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2928 const char *snapshot_name)
2929 {
2930 BlockDriver *drv = bs->drv;
2931 if (!drv) {
2932 return -ENOMEDIUM;
2933 }
2934 if (!bs->read_only) {
2935 return -EINVAL;
2936 }
2937 if (drv->bdrv_snapshot_load_tmp) {
2938 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2939 }
2940 return -ENOTSUP;
2941 }
2942
2943 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2944 const char *backing_file)
2945 {
2946 if (!bs->drv) {
2947 return NULL;
2948 }
2949
2950 if (bs->backing_hd) {
2951 if (strcmp(bs->backing_file, backing_file) == 0) {
2952 return bs->backing_hd;
2953 } else {
2954 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2955 }
2956 }
2957
2958 return NULL;
2959 }
2960
2961 #define NB_SUFFIXES 4
2962
2963 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2964 {
2965 static const char suffixes[NB_SUFFIXES] = "KMGT";
2966 int64_t base;
2967 int i;
2968
2969 if (size <= 999) {
2970 snprintf(buf, buf_size, "%" PRId64, size);
2971 } else {
2972 base = 1024;
2973 for(i = 0; i < NB_SUFFIXES; i++) {
2974 if (size < (10 * base)) {
2975 snprintf(buf, buf_size, "%0.1f%c",
2976 (double)size / base,
2977 suffixes[i]);
2978 break;
2979 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2980 snprintf(buf, buf_size, "%" PRId64 "%c",
2981 ((size + (base >> 1)) / base),
2982 suffixes[i]);
2983 break;
2984 }
2985 base = base * 1024;
2986 }
2987 }
2988 return buf;
2989 }
2990
2991 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2992 {
2993 char buf1[128], date_buf[128], clock_buf[128];
2994 #ifdef _WIN32
2995 struct tm *ptm;
2996 #else
2997 struct tm tm;
2998 #endif
2999 time_t ti;
3000 int64_t secs;
3001
3002 if (!sn) {
3003 snprintf(buf, buf_size,
3004 "%-10s%-20s%7s%20s%15s",
3005 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3006 } else {
3007 ti = sn->date_sec;
3008 #ifdef _WIN32
3009 ptm = localtime(&ti);
3010 strftime(date_buf, sizeof(date_buf),
3011 "%Y-%m-%d %H:%M:%S", ptm);
3012 #else
3013 localtime_r(&ti, &tm);
3014 strftime(date_buf, sizeof(date_buf),
3015 "%Y-%m-%d %H:%M:%S", &tm);
3016 #endif
3017 secs = sn->vm_clock_nsec / 1000000000;
3018 snprintf(clock_buf, sizeof(clock_buf),
3019 "%02d:%02d:%02d.%03d",
3020 (int)(secs / 3600),
3021 (int)((secs / 60) % 60),
3022 (int)(secs % 60),
3023 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3024 snprintf(buf, buf_size,
3025 "%-10s%-20s%7s%20s%15s",
3026 sn->id_str, sn->name,
3027 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3028 date_buf,
3029 clock_buf);
3030 }
3031 return buf;
3032 }
3033
3034 /**************************************************************/
3035 /* async I/Os */
3036
3037 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3038 QEMUIOVector *qiov, int nb_sectors,
3039 BlockDriverCompletionFunc *cb, void *opaque)
3040 {
3041 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3042
3043 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3044 cb, opaque, false);
3045 }
3046
3047 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3048 QEMUIOVector *qiov, int nb_sectors,
3049 BlockDriverCompletionFunc *cb, void *opaque)
3050 {
3051 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3052
3053 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3054 cb, opaque, true);
3055 }
3056
3057
3058 typedef struct MultiwriteCB {
3059 int error;
3060 int num_requests;
3061 int num_callbacks;
3062 struct {
3063 BlockDriverCompletionFunc *cb;
3064 void *opaque;
3065 QEMUIOVector *free_qiov;
3066 } callbacks[];
3067 } MultiwriteCB;
3068
3069 static void multiwrite_user_cb(MultiwriteCB *mcb)
3070 {
3071 int i;
3072
3073 for (i = 0; i < mcb->num_callbacks; i++) {
3074 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3075 if (mcb->callbacks[i].free_qiov) {
3076 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3077 }
3078 g_free(mcb->callbacks[i].free_qiov);
3079 }
3080 }
3081
3082 static void multiwrite_cb(void *opaque, int ret)
3083 {
3084 MultiwriteCB *mcb = opaque;
3085
3086 trace_multiwrite_cb(mcb, ret);
3087
3088 if (ret < 0 && !mcb->error) {
3089 mcb->error = ret;
3090 }
3091
3092 mcb->num_requests--;
3093 if (mcb->num_requests == 0) {
3094 multiwrite_user_cb(mcb);
3095 g_free(mcb);
3096 }
3097 }
3098
3099 static int multiwrite_req_compare(const void *a, const void *b)
3100 {
3101 const BlockRequest *req1 = a, *req2 = b;
3102
3103 /*
3104 * Note that we can't simply subtract req2->sector from req1->sector
3105 * here as that could overflow the return value.
3106 */
3107 if (req1->sector > req2->sector) {
3108 return 1;
3109 } else if (req1->sector < req2->sector) {
3110 return -1;
3111 } else {
3112 return 0;
3113 }
3114 }
3115
3116 /*
3117 * Takes a bunch of requests and tries to merge them. Returns the number of
3118 * requests that remain after merging.
3119 */
3120 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3121 int num_reqs, MultiwriteCB *mcb)
3122 {
3123 int i, outidx;
3124
3125 // Sort requests by start sector
3126 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3127
3128 // Check if adjacent requests touch the same clusters. If so, combine them,
3129 // filling up gaps with zero sectors.
3130 outidx = 0;
3131 for (i = 1; i < num_reqs; i++) {
3132 int merge = 0;
3133 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3134
3135 // Handle exactly sequential writes and overlapping writes.
3136 if (reqs[i].sector <= oldreq_last) {
3137 merge = 1;
3138 }
3139
3140 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3141 merge = 0;
3142 }
3143
3144 if (merge) {
3145 size_t size;
3146 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3147 qemu_iovec_init(qiov,
3148 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3149
3150 // Add the first request to the merged one. If the requests are
3151 // overlapping, drop the last sectors of the first request.
3152 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3153 qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
3154
3155 // We should need to add any zeros between the two requests
3156 assert (reqs[i].sector <= oldreq_last);
3157
3158 // Add the second request
3159 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
3160
3161 reqs[outidx].nb_sectors = qiov->size >> 9;
3162 reqs[outidx].qiov = qiov;
3163
3164 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3165 } else {
3166 outidx++;
3167 reqs[outidx].sector = reqs[i].sector;
3168 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3169 reqs[outidx].qiov = reqs[i].qiov;
3170 }
3171 }
3172
3173 return outidx + 1;
3174 }
3175
3176 /*
3177 * Submit multiple AIO write requests at once.
3178 *
3179 * On success, the function returns 0 and all requests in the reqs array have
3180 * been submitted. In error case this function returns -1, and any of the
3181 * requests may or may not be submitted yet. In particular, this means that the
3182 * callback will be called for some of the requests, for others it won't. The
3183 * caller must check the error field of the BlockRequest to wait for the right
3184 * callbacks (if error != 0, no callback will be called).
3185 *
3186 * The implementation may modify the contents of the reqs array, e.g. to merge
3187 * requests. However, the fields opaque and error are left unmodified as they
3188 * are used to signal failure for a single request to the caller.
3189 */
3190 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3191 {
3192 MultiwriteCB *mcb;
3193 int i;
3194
3195 /* don't submit writes if we don't have a medium */
3196 if (bs->drv == NULL) {
3197 for (i = 0; i < num_reqs; i++) {
3198 reqs[i].error = -ENOMEDIUM;
3199 }
3200 return -1;
3201 }
3202
3203 if (num_reqs == 0) {
3204 return 0;
3205 }
3206
3207 // Create MultiwriteCB structure
3208 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3209 mcb->num_requests = 0;
3210 mcb->num_callbacks = num_reqs;
3211
3212 for (i = 0; i < num_reqs; i++) {
3213 mcb->callbacks[i].cb = reqs[i].cb;
3214 mcb->callbacks[i].opaque = reqs[i].opaque;
3215 }
3216
3217 // Check for mergable requests
3218 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3219
3220 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3221
3222 /* Run the aio requests. */
3223 mcb->num_requests = num_reqs;
3224 for (i = 0; i < num_reqs; i++) {
3225 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3226 reqs[i].nb_sectors, multiwrite_cb, mcb);
3227 }
3228
3229 return 0;
3230 }
3231
3232 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3233 {
3234 acb->pool->cancel(acb);
3235 }
3236
3237 /* block I/O throttling */
3238 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3239 bool is_write, double elapsed_time, uint64_t *wait)
3240 {
3241 uint64_t bps_limit = 0;
3242 double bytes_limit, bytes_base, bytes_res;
3243 double slice_time, wait_time;
3244
3245 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3246 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3247 } else if (bs->io_limits.bps[is_write]) {
3248 bps_limit = bs->io_limits.bps[is_write];
3249 } else {
3250 if (wait) {
3251 *wait = 0;
3252 }
3253
3254 return false;
3255 }
3256
3257 slice_time = bs->slice_end - bs->slice_start;
3258 slice_time /= (NANOSECONDS_PER_SECOND);
3259 bytes_limit = bps_limit * slice_time;
3260 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3261 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3262 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3263 }
3264
3265 /* bytes_base: the bytes of data which have been read/written; and
3266 * it is obtained from the history statistic info.
3267 * bytes_res: the remaining bytes of data which need to be read/written.
3268 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3269 * the total time for completing reading/writting all data.
3270 */
3271 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3272
3273 if (bytes_base + bytes_res <= bytes_limit) {
3274 if (wait) {
3275 *wait = 0;
3276 }
3277
3278 return false;
3279 }
3280
3281 /* Calc approx time to dispatch */
3282 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3283
3284 /* When the I/O rate at runtime exceeds the limits,
3285 * bs->slice_end need to be extended in order that the current statistic
3286 * info can be kept until the timer fire, so it is increased and tuned
3287 * based on the result of experiment.
3288 */
3289 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3290 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3291 if (wait) {
3292 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3293 }
3294
3295 return true;
3296 }
3297
3298 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3299 double elapsed_time, uint64_t *wait)
3300 {
3301 uint64_t iops_limit = 0;
3302 double ios_limit, ios_base;
3303 double slice_time, wait_time;
3304
3305 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3306 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3307 } else if (bs->io_limits.iops[is_write]) {
3308 iops_limit = bs->io_limits.iops[is_write];
3309 } else {
3310 if (wait) {
3311 *wait = 0;
3312 }
3313
3314 return false;
3315 }
3316
3317 slice_time = bs->slice_end - bs->slice_start;
3318 slice_time /= (NANOSECONDS_PER_SECOND);
3319 ios_limit = iops_limit * slice_time;
3320 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3321 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3322 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3323 }
3324
3325 if (ios_base + 1 <= ios_limit) {
3326 if (wait) {
3327 *wait = 0;
3328 }
3329
3330 return false;
3331 }
3332
3333 /* Calc approx time to dispatch */
3334 wait_time = (ios_base + 1) / iops_limit;
3335 if (wait_time > elapsed_time) {
3336 wait_time = wait_time - elapsed_time;
3337 } else {
3338 wait_time = 0;
3339 }
3340
3341 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3342 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3343 if (wait) {
3344 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3345 }
3346
3347 return true;
3348 }
3349
3350 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3351 bool is_write, int64_t *wait)
3352 {
3353 int64_t now, max_wait;
3354 uint64_t bps_wait = 0, iops_wait = 0;
3355 double elapsed_time;
3356 int bps_ret, iops_ret;
3357
3358 now = qemu_get_clock_ns(vm_clock);
3359 if ((bs->slice_start < now)
3360 && (bs->slice_end > now)) {
3361 bs->slice_end = now + bs->slice_time;
3362 } else {
3363 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3364 bs->slice_start = now;
3365 bs->slice_end = now + bs->slice_time;
3366
3367 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3368 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3369
3370 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3371 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3372 }
3373
3374 elapsed_time = now - bs->slice_start;
3375 elapsed_time /= (NANOSECONDS_PER_SECOND);
3376
3377 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3378 is_write, elapsed_time, &bps_wait);
3379 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3380 elapsed_time, &iops_wait);
3381 if (bps_ret || iops_ret) {
3382 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3383 if (wait) {
3384 *wait = max_wait;
3385 }
3386
3387 now = qemu_get_clock_ns(vm_clock);
3388 if (bs->slice_end < now + max_wait) {
3389 bs->slice_end = now + max_wait;
3390 }
3391
3392 return true;
3393 }
3394
3395 if (wait) {
3396 *wait = 0;
3397 }
3398
3399 return false;
3400 }
3401
3402 /**************************************************************/
3403 /* async block device emulation */
3404
3405 typedef struct BlockDriverAIOCBSync {
3406 BlockDriverAIOCB common;
3407 QEMUBH *bh;
3408 int ret;
3409 /* vector translation state */
3410 QEMUIOVector *qiov;
3411 uint8_t *bounce;
3412 int is_write;
3413 } BlockDriverAIOCBSync;
3414
3415 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3416 {
3417 BlockDriverAIOCBSync *acb =
3418 container_of(blockacb, BlockDriverAIOCBSync, common);
3419 qemu_bh_delete(acb->bh);
3420 acb->bh = NULL;
3421 qemu_aio_release(acb);
3422 }
3423
3424 static AIOPool bdrv_em_aio_pool = {
3425 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3426 .cancel = bdrv_aio_cancel_em,
3427 };
3428
3429 static void bdrv_aio_bh_cb(void *opaque)
3430 {
3431 BlockDriverAIOCBSync *acb = opaque;
3432
3433 if (!acb->is_write)
3434 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3435 qemu_vfree(acb->bounce);
3436 acb->common.cb(acb->common.opaque, acb->ret);
3437 qemu_bh_delete(acb->bh);
3438 acb->bh = NULL;
3439 qemu_aio_release(acb);
3440 }
3441
3442 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3443 int64_t sector_num,
3444 QEMUIOVector *qiov,
3445 int nb_sectors,
3446 BlockDriverCompletionFunc *cb,
3447 void *opaque,
3448 int is_write)
3449
3450 {
3451 BlockDriverAIOCBSync *acb;
3452
3453 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3454 acb->is_write = is_write;
3455 acb->qiov = qiov;
3456 acb->bounce = qemu_blockalign(bs, qiov->size);
3457 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3458
3459 if (is_write) {
3460 qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3461 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3462 } else {
3463 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3464 }
3465
3466 qemu_bh_schedule(acb->bh);
3467
3468 return &acb->common;
3469 }
3470
3471 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3472 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3473 BlockDriverCompletionFunc *cb, void *opaque)
3474 {
3475 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3476 }
3477
3478 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3479 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3480 BlockDriverCompletionFunc *cb, void *opaque)
3481 {
3482 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3483 }
3484
3485
3486 typedef struct BlockDriverAIOCBCoroutine {
3487 BlockDriverAIOCB common;
3488 BlockRequest req;
3489 bool is_write;
3490 QEMUBH* bh;
3491 } BlockDriverAIOCBCoroutine;
3492
3493 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3494 {
3495 qemu_aio_flush();
3496 }
3497
3498 static AIOPool bdrv_em_co_aio_pool = {
3499 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3500 .cancel = bdrv_aio_co_cancel_em,
3501 };
3502
3503 static void bdrv_co_em_bh(void *opaque)
3504 {
3505 BlockDriverAIOCBCoroutine *acb = opaque;
3506
3507 acb->common.cb(acb->common.opaque, acb->req.error);
3508 qemu_bh_delete(acb->bh);
3509 qemu_aio_release(acb);
3510 }
3511
3512 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3513 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3514 {
3515 BlockDriverAIOCBCoroutine *acb = opaque;
3516 BlockDriverState *bs = acb->common.bs;
3517
3518 if (!acb->is_write) {
3519 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3520 acb->req.nb_sectors, acb->req.qiov, 0);
3521 } else {
3522 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3523 acb->req.nb_sectors, acb->req.qiov, 0);
3524 }
3525
3526 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3527 qemu_bh_schedule(acb->bh);
3528 }
3529
3530 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3531 int64_t sector_num,
3532 QEMUIOVector *qiov,
3533 int nb_sectors,
3534 BlockDriverCompletionFunc *cb,
3535 void *opaque,
3536 bool is_write)
3537 {
3538 Coroutine *co;
3539 BlockDriverAIOCBCoroutine *acb;
3540
3541 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3542 acb->req.sector = sector_num;
3543 acb->req.nb_sectors = nb_sectors;
3544 acb->req.qiov = qiov;
3545 acb->is_write = is_write;
3546
3547 co = qemu_coroutine_create(bdrv_co_do_rw);
3548 qemu_coroutine_enter(co, acb);
3549
3550 return &acb->common;
3551 }
3552
3553 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3554 {
3555 BlockDriverAIOCBCoroutine *acb = opaque;
3556 BlockDriverState *bs = acb->common.bs;
3557
3558 acb->req.error = bdrv_co_flush(bs);
3559 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3560 qemu_bh_schedule(acb->bh);
3561 }
3562
3563 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3564 BlockDriverCompletionFunc *cb, void *opaque)
3565 {
3566 trace_bdrv_aio_flush(bs, opaque);
3567
3568 Coroutine *co;
3569 BlockDriverAIOCBCoroutine *acb;
3570
3571 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3572 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3573 qemu_coroutine_enter(co, acb);
3574
3575 return &acb->common;
3576 }
3577
3578 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3579 {
3580 BlockDriverAIOCBCoroutine *acb = opaque;
3581 BlockDriverState *bs = acb->common.bs;
3582
3583 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3584 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3585 qemu_bh_schedule(acb->bh);
3586 }
3587
3588 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3589 int64_t sector_num, int nb_sectors,
3590 BlockDriverCompletionFunc *cb, void *opaque)
3591 {
3592 Coroutine *co;
3593 BlockDriverAIOCBCoroutine *acb;
3594
3595 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3596
3597 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3598 acb->req.sector = sector_num;
3599 acb->req.nb_sectors = nb_sectors;
3600 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3601 qemu_coroutine_enter(co, acb);
3602
3603 return &acb->common;
3604 }
3605
3606 void bdrv_init(void)
3607 {
3608 module_call_init(MODULE_INIT_BLOCK);
3609 }
3610
3611 void bdrv_init_with_whitelist(void)
3612 {
3613 use_bdrv_whitelist = 1;
3614 bdrv_init();
3615 }
3616
3617 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3618 BlockDriverCompletionFunc *cb, void *opaque)
3619 {
3620 BlockDriverAIOCB *acb;
3621
3622 if (pool->free_aiocb) {
3623 acb = pool->free_aiocb;
3624 pool->free_aiocb = acb->next;
3625 } else {
3626 acb = g_malloc0(pool->aiocb_size);
3627 acb->pool = pool;
3628 }
3629 acb->bs = bs;
3630 acb->cb = cb;
3631 acb->opaque = opaque;
3632 return acb;
3633 }
3634
3635 void qemu_aio_release(void *p)
3636 {
3637 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3638 AIOPool *pool = acb->pool;
3639 acb->next = pool->free_aiocb;
3640 pool->free_aiocb = acb;
3641 }
3642
3643 /**************************************************************/
3644 /* Coroutine block device emulation */
3645
3646 typedef struct CoroutineIOCompletion {
3647 Coroutine *coroutine;
3648 int ret;
3649 } CoroutineIOCompletion;
3650
3651 static void bdrv_co_io_em_complete(void *opaque, int ret)
3652 {
3653 CoroutineIOCompletion *co = opaque;
3654
3655 co->ret = ret;
3656 qemu_coroutine_enter(co->coroutine, NULL);
3657 }
3658
3659 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3660 int nb_sectors, QEMUIOVector *iov,
3661 bool is_write)
3662 {
3663 CoroutineIOCompletion co = {
3664 .coroutine = qemu_coroutine_self(),
3665 };
3666 BlockDriverAIOCB *acb;
3667
3668 if (is_write) {
3669 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3670 bdrv_co_io_em_complete, &co);
3671 } else {
3672 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3673 bdrv_co_io_em_complete, &co);
3674 }
3675
3676 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3677 if (!acb) {
3678 return -EIO;
3679 }
3680 qemu_coroutine_yield();
3681
3682 return co.ret;
3683 }
3684
3685 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3686 int64_t sector_num, int nb_sectors,
3687 QEMUIOVector *iov)
3688 {
3689 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3690 }
3691
3692 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3693 int64_t sector_num, int nb_sectors,
3694 QEMUIOVector *iov)
3695 {
3696 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3697 }
3698
3699 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3700 {
3701 RwCo *rwco = opaque;
3702
3703 rwco->ret = bdrv_co_flush(rwco->bs);
3704 }
3705
3706 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3707 {
3708 int ret;
3709
3710 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3711 return 0;
3712 }
3713
3714 /* Write back cached data to the OS even with cache=unsafe */
3715 if (bs->drv->bdrv_co_flush_to_os) {
3716 ret = bs->drv->bdrv_co_flush_to_os(bs);
3717 if (ret < 0) {
3718 return ret;
3719 }
3720 }
3721
3722 /* But don't actually force it to the disk with cache=unsafe */
3723 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3724 return 0;
3725 }
3726
3727 if (bs->drv->bdrv_co_flush_to_disk) {
3728 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3729 } else if (bs->drv->bdrv_aio_flush) {
3730 BlockDriverAIOCB *acb;
3731 CoroutineIOCompletion co = {
3732 .coroutine = qemu_coroutine_self(),
3733 };
3734
3735 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3736 if (acb == NULL) {
3737 ret = -EIO;
3738 } else {
3739 qemu_coroutine_yield();
3740 ret = co.ret;
3741 }
3742 } else {
3743 /*
3744 * Some block drivers always operate in either writethrough or unsafe
3745 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3746 * know how the server works (because the behaviour is hardcoded or
3747 * depends on server-side configuration), so we can't ensure that
3748 * everything is safe on disk. Returning an error doesn't work because
3749 * that would break guests even if the server operates in writethrough
3750 * mode.
3751 *
3752 * Let's hope the user knows what he's doing.
3753 */
3754 ret = 0;
3755 }
3756 if (ret < 0) {
3757 return ret;
3758 }
3759
3760 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3761 * in the case of cache=unsafe, so there are no useless flushes.
3762 */
3763 return bdrv_co_flush(bs->file);
3764 }
3765
3766 void bdrv_invalidate_cache(BlockDriverState *bs)
3767 {
3768 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3769 bs->drv->bdrv_invalidate_cache(bs);
3770 }
3771 }
3772
3773 void bdrv_invalidate_cache_all(void)
3774 {
3775 BlockDriverState *bs;
3776
3777 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3778 bdrv_invalidate_cache(bs);
3779 }
3780 }
3781
3782 void bdrv_clear_incoming_migration_all(void)
3783 {
3784 BlockDriverState *bs;
3785
3786 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3787 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3788 }
3789 }
3790
3791 int bdrv_flush(BlockDriverState *bs)
3792 {
3793 Coroutine *co;
3794 RwCo rwco = {
3795 .bs = bs,
3796 .ret = NOT_DONE,
3797 };
3798
3799 if (qemu_in_coroutine()) {
3800 /* Fast-path if already in coroutine context */
3801 bdrv_flush_co_entry(&rwco);
3802 } else {
3803 co = qemu_coroutine_create(bdrv_flush_co_entry);
3804 qemu_coroutine_enter(co, &rwco);
3805 while (rwco.ret == NOT_DONE) {
3806 qemu_aio_wait();
3807 }
3808 }
3809
3810 return rwco.ret;
3811 }
3812
3813 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3814 {
3815 RwCo *rwco = opaque;
3816
3817 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3818 }
3819
3820 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3821 int nb_sectors)
3822 {
3823 if (!bs->drv) {
3824 return -ENOMEDIUM;
3825 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3826 return -EIO;
3827 } else if (bs->read_only) {
3828 return -EROFS;
3829 } else if (bs->drv->bdrv_co_discard) {
3830 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3831 } else if (bs->drv->bdrv_aio_discard) {
3832 BlockDriverAIOCB *acb;
3833 CoroutineIOCompletion co = {
3834 .coroutine = qemu_coroutine_self(),
3835 };
3836
3837 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3838 bdrv_co_io_em_complete, &co);
3839 if (acb == NULL) {
3840 return -EIO;
3841 } else {
3842 qemu_coroutine_yield();
3843 return co.ret;
3844 }
3845 } else {
3846 return 0;
3847 }
3848 }
3849
3850 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3851 {
3852 Coroutine *co;
3853 RwCo rwco = {
3854 .bs = bs,
3855 .sector_num = sector_num,
3856 .nb_sectors = nb_sectors,
3857 .ret = NOT_DONE,
3858 };
3859
3860 if (qemu_in_coroutine()) {
3861 /* Fast-path if already in coroutine context */
3862 bdrv_discard_co_entry(&rwco);
3863 } else {
3864 co = qemu_coroutine_create(bdrv_discard_co_entry);
3865 qemu_coroutine_enter(co, &rwco);
3866 while (rwco.ret == NOT_DONE) {
3867 qemu_aio_wait();
3868 }
3869 }
3870
3871 return rwco.ret;
3872 }
3873
3874 /**************************************************************/
3875 /* removable device support */
3876
3877 /**
3878 * Return TRUE if the media is present
3879 */
3880 int bdrv_is_inserted(BlockDriverState *bs)
3881 {
3882 BlockDriver *drv = bs->drv;
3883
3884 if (!drv)
3885 return 0;
3886 if (!drv->bdrv_is_inserted)
3887 return 1;
3888 return drv->bdrv_is_inserted(bs);
3889 }
3890
3891 /**
3892 * Return whether the media changed since the last call to this
3893 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3894 */
3895 int bdrv_media_changed(BlockDriverState *bs)
3896 {
3897 BlockDriver *drv = bs->drv;
3898
3899 if (drv && drv->bdrv_media_changed) {
3900 return drv->bdrv_media_changed(bs);
3901 }
3902 return -ENOTSUP;
3903 }
3904
3905 /**
3906 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3907 */
3908 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3909 {
3910 BlockDriver *drv = bs->drv;
3911
3912 if (drv && drv->bdrv_eject) {
3913 drv->bdrv_eject(bs, eject_flag);
3914 }
3915
3916 if (bs->device_name[0] != '\0') {
3917 bdrv_emit_qmp_eject_event(bs, eject_flag);
3918 }
3919 }
3920
3921 /**
3922 * Lock or unlock the media (if it is locked, the user won't be able
3923 * to eject it manually).
3924 */
3925 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3926 {
3927 BlockDriver *drv = bs->drv;
3928
3929 trace_bdrv_lock_medium(bs, locked);
3930
3931 if (drv && drv->bdrv_lock_medium) {
3932 drv->bdrv_lock_medium(bs, locked);
3933 }
3934 }
3935
3936 /* needed for generic scsi interface */
3937
3938 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3939 {
3940 BlockDriver *drv = bs->drv;
3941
3942 if (drv && drv->bdrv_ioctl)
3943 return drv->bdrv_ioctl(bs, req, buf);
3944 return -ENOTSUP;
3945 }
3946
3947 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3948 unsigned long int req, void *buf,
3949 BlockDriverCompletionFunc *cb, void *opaque)
3950 {
3951 BlockDriver *drv = bs->drv;
3952
3953 if (drv && drv->bdrv_aio_ioctl)
3954 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3955 return NULL;
3956 }
3957
3958 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3959 {
3960 bs->buffer_alignment = align;
3961 }
3962
3963 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3964 {
3965 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3966 }
3967
3968 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3969 {
3970 int64_t bitmap_size;
3971
3972 bs->dirty_count = 0;
3973 if (enable) {
3974 if (!bs->dirty_bitmap) {
3975 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3976 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
3977 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
3978
3979 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
3980 }
3981 } else {
3982 if (bs->dirty_bitmap) {
3983 g_free(bs->dirty_bitmap);
3984 bs->dirty_bitmap = NULL;
3985 }
3986 }
3987 }
3988
3989 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3990 {
3991 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3992
3993 if (bs->dirty_bitmap &&
3994 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3995 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3996 (1UL << (chunk % (sizeof(unsigned long) * 8))));
3997 } else {
3998 return 0;
3999 }
4000 }
4001
4002 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4003 int nr_sectors)
4004 {
4005 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4006 }
4007
4008 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4009 {
4010 return bs->dirty_count;
4011 }
4012
4013 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4014 {
4015 assert(bs->in_use != in_use);
4016 bs->in_use = in_use;
4017 }
4018
4019 int bdrv_in_use(BlockDriverState *bs)
4020 {
4021 return bs->in_use;
4022 }
4023
4024 void bdrv_iostatus_enable(BlockDriverState *bs)
4025 {
4026 bs->iostatus_enabled = true;
4027 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4028 }
4029
4030 /* The I/O status is only enabled if the drive explicitly
4031 * enables it _and_ the VM is configured to stop on errors */
4032 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4033 {
4034 return (bs->iostatus_enabled &&
4035 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
4036 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
4037 bs->on_read_error == BLOCK_ERR_STOP_ANY));
4038 }
4039
4040 void bdrv_iostatus_disable(BlockDriverState *bs)
4041 {
4042 bs->iostatus_enabled = false;
4043 }
4044
4045 void bdrv_iostatus_reset(BlockDriverState *bs)
4046 {
4047 if (bdrv_iostatus_is_enabled(bs)) {
4048 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4049 }
4050 }
4051
4052 /* XXX: Today this is set by device models because it makes the implementation
4053 quite simple. However, the block layer knows about the error, so it's
4054 possible to implement this without device models being involved */
4055 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4056 {
4057 if (bdrv_iostatus_is_enabled(bs) &&
4058 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4059 assert(error >= 0);
4060 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4061 BLOCK_DEVICE_IO_STATUS_FAILED;
4062 }
4063 }
4064
4065 void
4066 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4067 enum BlockAcctType type)
4068 {
4069 assert(type < BDRV_MAX_IOTYPE);
4070
4071 cookie->bytes = bytes;
4072 cookie->start_time_ns = get_clock();
4073 cookie->type = type;
4074 }
4075
4076 void
4077 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4078 {
4079 assert(cookie->type < BDRV_MAX_IOTYPE);
4080
4081 bs->nr_bytes[cookie->type] += cookie->bytes;
4082 bs->nr_ops[cookie->type]++;
4083 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4084 }
4085
4086 int bdrv_img_create(const char *filename, const char *fmt,
4087 const char *base_filename, const char *base_fmt,
4088 char *options, uint64_t img_size, int flags)
4089 {
4090 QEMUOptionParameter *param = NULL, *create_options = NULL;
4091 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4092 BlockDriverState *bs = NULL;
4093 BlockDriver *drv, *proto_drv;
4094 BlockDriver *backing_drv = NULL;
4095 int ret = 0;
4096
4097 /* Find driver and parse its options */
4098 drv = bdrv_find_format(fmt);
4099 if (!drv) {
4100 error_report("Unknown file format '%s'", fmt);
4101 ret = -EINVAL;
4102 goto out;
4103 }
4104
4105 proto_drv = bdrv_find_protocol(filename);
4106 if (!proto_drv) {
4107 error_report("Unknown protocol '%s'", filename);
4108 ret = -EINVAL;
4109 goto out;
4110 }
4111
4112 create_options = append_option_parameters(create_options,
4113 drv->create_options);
4114 create_options = append_option_parameters(create_options,
4115 proto_drv->create_options);
4116
4117 /* Create parameter list with default values */
4118 param = parse_option_parameters("", create_options, param);
4119
4120 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4121
4122 /* Parse -o options */
4123 if (options) {
4124 param = parse_option_parameters(options, create_options, param);
4125 if (param == NULL) {
4126 error_report("Invalid options for file format '%s'.", fmt);
4127 ret = -EINVAL;
4128 goto out;
4129 }
4130 }
4131
4132 if (base_filename) {
4133 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4134 base_filename)) {
4135 error_report("Backing file not supported for file format '%s'",
4136 fmt);
4137 ret = -EINVAL;
4138 goto out;
4139 }
4140 }
4141
4142 if (base_fmt) {
4143 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4144 error_report("Backing file format not supported for file "
4145 "format '%s'", fmt);
4146 ret = -EINVAL;
4147 goto out;
4148 }
4149 }
4150
4151 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4152 if (backing_file && backing_file->value.s) {
4153 if (!strcmp(filename, backing_file->value.s)) {
4154 error_report("Error: Trying to create an image with the "
4155 "same filename as the backing file");
4156 ret = -EINVAL;
4157 goto out;
4158 }
4159 }
4160
4161 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4162 if (backing_fmt && backing_fmt->value.s) {
4163 backing_drv = bdrv_find_format(backing_fmt->value.s);
4164 if (!backing_drv) {
4165 error_report("Unknown backing file format '%s'",
4166 backing_fmt->value.s);
4167 ret = -EINVAL;
4168 goto out;
4169 }
4170 }
4171
4172 // The size for the image must always be specified, with one exception:
4173 // If we are using a backing file, we can obtain the size from there
4174 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4175 if (size && size->value.n == -1) {
4176 if (backing_file && backing_file->value.s) {
4177 uint64_t size;
4178 char buf[32];
4179 int back_flags;
4180
4181 /* backing files always opened read-only */
4182 back_flags =
4183 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4184
4185 bs = bdrv_new("");
4186
4187 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4188 if (ret < 0) {
4189 error_report("Could not open '%s'", backing_file->value.s);
4190 goto out;
4191 }
4192 bdrv_get_geometry(bs, &size);
4193 size *= 512;
4194
4195 snprintf(buf, sizeof(buf), "%" PRId64, size);
4196 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4197 } else {
4198 error_report("Image creation needs a size parameter");
4199 ret = -EINVAL;
4200 goto out;
4201 }
4202 }
4203
4204 printf("Formatting '%s', fmt=%s ", filename, fmt);
4205 print_option_parameters(param);
4206 puts("");
4207
4208 ret = bdrv_create(drv, filename, param);
4209
4210 if (ret < 0) {
4211 if (ret == -ENOTSUP) {
4212 error_report("Formatting or formatting option not supported for "
4213 "file format '%s'", fmt);
4214 } else if (ret == -EFBIG) {
4215 error_report("The image size is too large for file format '%s'",
4216 fmt);
4217 } else {
4218 error_report("%s: error while creating %s: %s", filename, fmt,
4219 strerror(-ret));
4220 }
4221 }
4222
4223 out:
4224 free_option_parameters(create_options);
4225 free_option_parameters(param);
4226
4227 if (bs) {
4228 bdrv_delete(bs);
4229 }
4230
4231 return ret;
4232 }
4233
4234 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4235 int64_t speed, BlockDriverCompletionFunc *cb,
4236 void *opaque, Error **errp)
4237 {
4238 BlockJob *job;
4239
4240 if (bs->job || bdrv_in_use(bs)) {
4241 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs));
4242 return NULL;
4243 }
4244 bdrv_set_in_use(bs, 1);
4245
4246 job = g_malloc0(job_type->instance_size);
4247 job->job_type = job_type;
4248 job->bs = bs;
4249 job->cb = cb;
4250 job->opaque = opaque;
4251 job->busy = true;
4252 bs->job = job;
4253
4254 /* Only set speed when necessary to avoid NotSupported error */
4255 if (speed != 0) {
4256 Error *local_err = NULL;
4257
4258 block_job_set_speed(job, speed, &local_err);
4259 if (error_is_set(&local_err)) {
4260 bs->job = NULL;
4261 g_free(job);
4262 bdrv_set_in_use(bs, 0);
4263 error_propagate(errp, local_err);
4264 return NULL;
4265 }
4266 }
4267 return job;
4268 }
4269
4270 void block_job_complete(BlockJob *job, int ret)
4271 {
4272 BlockDriverState *bs = job->bs;
4273
4274 assert(bs->job == job);
4275 job->cb(job->opaque, ret);
4276 bs->job = NULL;
4277 g_free(job);
4278 bdrv_set_in_use(bs, 0);
4279 }
4280
4281 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp)
4282 {
4283 Error *local_err = NULL;
4284
4285 if (!job->job_type->set_speed) {
4286 error_set(errp, QERR_NOT_SUPPORTED);
4287 return;
4288 }
4289 job->job_type->set_speed(job, speed, &local_err);
4290 if (error_is_set(&local_err)) {
4291 error_propagate(errp, local_err);
4292 return;
4293 }
4294
4295 job->speed = speed;
4296 }
4297
4298 void block_job_cancel(BlockJob *job)
4299 {
4300 job->cancelled = true;
4301 if (job->co && !job->busy) {
4302 qemu_coroutine_enter(job->co, NULL);
4303 }
4304 }
4305
4306 bool block_job_is_cancelled(BlockJob *job)
4307 {
4308 return job->cancelled;
4309 }
4310
4311 struct BlockCancelData {
4312 BlockJob *job;
4313 BlockDriverCompletionFunc *cb;
4314 void *opaque;
4315 bool cancelled;
4316 int ret;
4317 };
4318
4319 static void block_job_cancel_cb(void *opaque, int ret)
4320 {
4321 struct BlockCancelData *data = opaque;
4322
4323 data->cancelled = block_job_is_cancelled(data->job);
4324 data->ret = ret;
4325 data->cb(data->opaque, ret);
4326 }
4327
4328 int block_job_cancel_sync(BlockJob *job)
4329 {
4330 struct BlockCancelData data;
4331 BlockDriverState *bs = job->bs;
4332
4333 assert(bs->job == job);
4334
4335 /* Set up our own callback to store the result and chain to
4336 * the original callback.
4337 */
4338 data.job = job;
4339 data.cb = job->cb;
4340 data.opaque = job->opaque;
4341 data.ret = -EINPROGRESS;
4342 job->cb = block_job_cancel_cb;
4343 job->opaque = &data;
4344 block_job_cancel(job);
4345 while (data.ret == -EINPROGRESS) {
4346 qemu_aio_wait();
4347 }
4348 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret;
4349 }
4350
4351 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns)
4352 {
4353 /* Check cancellation *before* setting busy = false, too! */
4354 if (!block_job_is_cancelled(job)) {
4355 job->busy = false;
4356 co_sleep_ns(clock, ns);
4357 job->busy = true;
4358 }
4359 }