]> git.proxmox.com Git - qemu.git/blob - block.c
block: fix bdrv_flush() ordering in bdrv_close()
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor/monitor.h"
28 #include "block/block_int.h"
29 #include "block/blockjob.h"
30 #include "qemu/module.h"
31 #include "qapi/qmp/qjson.h"
32 #include "sysemu/sysemu.h"
33 #include "qemu/notify.h"
34 #include "block/coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu/timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55 BDRV_REQ_COPY_ON_READ = 0x1,
56 BDRV_REQ_ZERO_WRITE = 0x2,
57 } BdrvRequestFlags;
58
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65 BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors,
71 QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77 BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79 int64_t sector_num,
80 QEMUIOVector *qiov,
81 int nb_sectors,
82 BlockDriverCompletionFunc *cb,
83 void *opaque,
84 bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87 int64_t sector_num, int nb_sectors);
88
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90 bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92 double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94 bool is_write, int64_t *wait);
95
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97 QTAILQ_HEAD_INITIALIZER(bdrv_states);
98
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100 QLIST_HEAD_INITIALIZER(bdrv_drivers);
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 }
141
142 static void bdrv_block_timer(void *opaque)
143 {
144 BlockDriverState *bs = opaque;
145
146 qemu_co_queue_next(&bs->throttled_reqs);
147 }
148
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151 qemu_co_queue_init(&bs->throttled_reqs);
152 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153 bs->io_limits_enabled = true;
154 }
155
156 bool bdrv_io_limits_enabled(BlockDriverState *bs)
157 {
158 BlockIOLimit *io_limits = &bs->io_limits;
159 return io_limits->bps[BLOCK_IO_LIMIT_READ]
160 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
161 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
162 || io_limits->iops[BLOCK_IO_LIMIT_READ]
163 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
164 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
165 }
166
167 static void bdrv_io_limits_intercept(BlockDriverState *bs,
168 bool is_write, int nb_sectors)
169 {
170 int64_t wait_time = -1;
171
172 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
173 qemu_co_queue_wait(&bs->throttled_reqs);
174 }
175
176 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
177 * throttled requests will not be dequeued until the current request is
178 * allowed to be serviced. So if the current request still exceeds the
179 * limits, it will be inserted to the head. All requests followed it will
180 * be still in throttled_reqs queue.
181 */
182
183 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
184 qemu_mod_timer(bs->block_timer,
185 wait_time + qemu_get_clock_ns(vm_clock));
186 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
187 }
188
189 qemu_co_queue_next(&bs->throttled_reqs);
190 }
191
192 /* check if the path starts with "<protocol>:" */
193 static int path_has_protocol(const char *path)
194 {
195 const char *p;
196
197 #ifdef _WIN32
198 if (is_windows_drive(path) ||
199 is_windows_drive_prefix(path)) {
200 return 0;
201 }
202 p = path + strcspn(path, ":/\\");
203 #else
204 p = path + strcspn(path, ":/");
205 #endif
206
207 return *p == ':';
208 }
209
210 int path_is_absolute(const char *path)
211 {
212 #ifdef _WIN32
213 /* specific case for names like: "\\.\d:" */
214 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
215 return 1;
216 }
217 return (*path == '/' || *path == '\\');
218 #else
219 return (*path == '/');
220 #endif
221 }
222
223 /* if filename is absolute, just copy it to dest. Otherwise, build a
224 path to it by considering it is relative to base_path. URL are
225 supported. */
226 void path_combine(char *dest, int dest_size,
227 const char *base_path,
228 const char *filename)
229 {
230 const char *p, *p1;
231 int len;
232
233 if (dest_size <= 0)
234 return;
235 if (path_is_absolute(filename)) {
236 pstrcpy(dest, dest_size, filename);
237 } else {
238 p = strchr(base_path, ':');
239 if (p)
240 p++;
241 else
242 p = base_path;
243 p1 = strrchr(base_path, '/');
244 #ifdef _WIN32
245 {
246 const char *p2;
247 p2 = strrchr(base_path, '\\');
248 if (!p1 || p2 > p1)
249 p1 = p2;
250 }
251 #endif
252 if (p1)
253 p1++;
254 else
255 p1 = base_path;
256 if (p1 > p)
257 p = p1;
258 len = p - base_path;
259 if (len > dest_size - 1)
260 len = dest_size - 1;
261 memcpy(dest, base_path, len);
262 dest[len] = '\0';
263 pstrcat(dest, dest_size, filename);
264 }
265 }
266
267 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
268 {
269 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
270 pstrcpy(dest, sz, bs->backing_file);
271 } else {
272 path_combine(dest, sz, bs->filename, bs->backing_file);
273 }
274 }
275
276 void bdrv_register(BlockDriver *bdrv)
277 {
278 /* Block drivers without coroutine functions need emulation */
279 if (!bdrv->bdrv_co_readv) {
280 bdrv->bdrv_co_readv = bdrv_co_readv_em;
281 bdrv->bdrv_co_writev = bdrv_co_writev_em;
282
283 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
284 * the block driver lacks aio we need to emulate that too.
285 */
286 if (!bdrv->bdrv_aio_readv) {
287 /* add AIO emulation layer */
288 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
289 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
290 }
291 }
292
293 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
294 }
295
296 /* create a new block device (by default it is empty) */
297 BlockDriverState *bdrv_new(const char *device_name)
298 {
299 BlockDriverState *bs;
300
301 bs = g_malloc0(sizeof(BlockDriverState));
302 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
303 if (device_name[0] != '\0') {
304 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
305 }
306 bdrv_iostatus_disable(bs);
307 notifier_list_init(&bs->close_notifiers);
308 notifier_with_return_list_init(&bs->before_write_notifiers);
309
310 return bs;
311 }
312
313 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
314 {
315 notifier_list_add(&bs->close_notifiers, notify);
316 }
317
318 BlockDriver *bdrv_find_format(const char *format_name)
319 {
320 BlockDriver *drv1;
321 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
322 if (!strcmp(drv1->format_name, format_name)) {
323 return drv1;
324 }
325 }
326 return NULL;
327 }
328
329 static int bdrv_is_whitelisted(BlockDriver *drv, bool read_only)
330 {
331 static const char *whitelist_rw[] = {
332 CONFIG_BDRV_RW_WHITELIST
333 };
334 static const char *whitelist_ro[] = {
335 CONFIG_BDRV_RO_WHITELIST
336 };
337 const char **p;
338
339 if (!whitelist_rw[0] && !whitelist_ro[0]) {
340 return 1; /* no whitelist, anything goes */
341 }
342
343 for (p = whitelist_rw; *p; p++) {
344 if (!strcmp(drv->format_name, *p)) {
345 return 1;
346 }
347 }
348 if (read_only) {
349 for (p = whitelist_ro; *p; p++) {
350 if (!strcmp(drv->format_name, *p)) {
351 return 1;
352 }
353 }
354 }
355 return 0;
356 }
357
358 BlockDriver *bdrv_find_whitelisted_format(const char *format_name,
359 bool read_only)
360 {
361 BlockDriver *drv = bdrv_find_format(format_name);
362 return drv && bdrv_is_whitelisted(drv, read_only) ? drv : NULL;
363 }
364
365 typedef struct CreateCo {
366 BlockDriver *drv;
367 char *filename;
368 QEMUOptionParameter *options;
369 int ret;
370 } CreateCo;
371
372 static void coroutine_fn bdrv_create_co_entry(void *opaque)
373 {
374 CreateCo *cco = opaque;
375 assert(cco->drv);
376
377 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
378 }
379
380 int bdrv_create(BlockDriver *drv, const char* filename,
381 QEMUOptionParameter *options)
382 {
383 int ret;
384
385 Coroutine *co;
386 CreateCo cco = {
387 .drv = drv,
388 .filename = g_strdup(filename),
389 .options = options,
390 .ret = NOT_DONE,
391 };
392
393 if (!drv->bdrv_create) {
394 ret = -ENOTSUP;
395 goto out;
396 }
397
398 if (qemu_in_coroutine()) {
399 /* Fast-path if already in coroutine context */
400 bdrv_create_co_entry(&cco);
401 } else {
402 co = qemu_coroutine_create(bdrv_create_co_entry);
403 qemu_coroutine_enter(co, &cco);
404 while (cco.ret == NOT_DONE) {
405 qemu_aio_wait();
406 }
407 }
408
409 ret = cco.ret;
410
411 out:
412 g_free(cco.filename);
413 return ret;
414 }
415
416 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
417 {
418 BlockDriver *drv;
419
420 drv = bdrv_find_protocol(filename);
421 if (drv == NULL) {
422 return -ENOENT;
423 }
424
425 return bdrv_create(drv, filename, options);
426 }
427
428 /*
429 * Create a uniquely-named empty temporary file.
430 * Return 0 upon success, otherwise a negative errno value.
431 */
432 int get_tmp_filename(char *filename, int size)
433 {
434 #ifdef _WIN32
435 char temp_dir[MAX_PATH];
436 /* GetTempFileName requires that its output buffer (4th param)
437 have length MAX_PATH or greater. */
438 assert(size >= MAX_PATH);
439 return (GetTempPath(MAX_PATH, temp_dir)
440 && GetTempFileName(temp_dir, "qem", 0, filename)
441 ? 0 : -GetLastError());
442 #else
443 int fd;
444 const char *tmpdir;
445 tmpdir = getenv("TMPDIR");
446 if (!tmpdir)
447 tmpdir = "/tmp";
448 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
449 return -EOVERFLOW;
450 }
451 fd = mkstemp(filename);
452 if (fd < 0) {
453 return -errno;
454 }
455 if (close(fd) != 0) {
456 unlink(filename);
457 return -errno;
458 }
459 return 0;
460 #endif
461 }
462
463 /*
464 * Detect host devices. By convention, /dev/cdrom[N] is always
465 * recognized as a host CDROM.
466 */
467 static BlockDriver *find_hdev_driver(const char *filename)
468 {
469 int score_max = 0, score;
470 BlockDriver *drv = NULL, *d;
471
472 QLIST_FOREACH(d, &bdrv_drivers, list) {
473 if (d->bdrv_probe_device) {
474 score = d->bdrv_probe_device(filename);
475 if (score > score_max) {
476 score_max = score;
477 drv = d;
478 }
479 }
480 }
481
482 return drv;
483 }
484
485 BlockDriver *bdrv_find_protocol(const char *filename)
486 {
487 BlockDriver *drv1;
488 char protocol[128];
489 int len;
490 const char *p;
491
492 /* TODO Drivers without bdrv_file_open must be specified explicitly */
493
494 /*
495 * XXX(hch): we really should not let host device detection
496 * override an explicit protocol specification, but moving this
497 * later breaks access to device names with colons in them.
498 * Thanks to the brain-dead persistent naming schemes on udev-
499 * based Linux systems those actually are quite common.
500 */
501 drv1 = find_hdev_driver(filename);
502 if (drv1) {
503 return drv1;
504 }
505
506 if (!path_has_protocol(filename)) {
507 return bdrv_find_format("file");
508 }
509 p = strchr(filename, ':');
510 assert(p != NULL);
511 len = p - filename;
512 if (len > sizeof(protocol) - 1)
513 len = sizeof(protocol) - 1;
514 memcpy(protocol, filename, len);
515 protocol[len] = '\0';
516 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
517 if (drv1->protocol_name &&
518 !strcmp(drv1->protocol_name, protocol)) {
519 return drv1;
520 }
521 }
522 return NULL;
523 }
524
525 static int find_image_format(BlockDriverState *bs, const char *filename,
526 BlockDriver **pdrv)
527 {
528 int score, score_max;
529 BlockDriver *drv1, *drv;
530 uint8_t buf[2048];
531 int ret = 0;
532
533 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
534 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) {
535 drv = bdrv_find_format("raw");
536 if (!drv) {
537 ret = -ENOENT;
538 }
539 *pdrv = drv;
540 return ret;
541 }
542
543 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
544 if (ret < 0) {
545 *pdrv = NULL;
546 return ret;
547 }
548
549 score_max = 0;
550 drv = NULL;
551 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
552 if (drv1->bdrv_probe) {
553 score = drv1->bdrv_probe(buf, ret, filename);
554 if (score > score_max) {
555 score_max = score;
556 drv = drv1;
557 }
558 }
559 }
560 if (!drv) {
561 ret = -ENOENT;
562 }
563 *pdrv = drv;
564 return ret;
565 }
566
567 /**
568 * Set the current 'total_sectors' value
569 */
570 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
571 {
572 BlockDriver *drv = bs->drv;
573
574 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
575 if (bs->sg)
576 return 0;
577
578 /* query actual device if possible, otherwise just trust the hint */
579 if (drv->bdrv_getlength) {
580 int64_t length = drv->bdrv_getlength(bs);
581 if (length < 0) {
582 return length;
583 }
584 hint = length >> BDRV_SECTOR_BITS;
585 }
586
587 bs->total_sectors = hint;
588 return 0;
589 }
590
591 /**
592 * Set open flags for a given discard mode
593 *
594 * Return 0 on success, -1 if the discard mode was invalid.
595 */
596 int bdrv_parse_discard_flags(const char *mode, int *flags)
597 {
598 *flags &= ~BDRV_O_UNMAP;
599
600 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) {
601 /* do nothing */
602 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) {
603 *flags |= BDRV_O_UNMAP;
604 } else {
605 return -1;
606 }
607
608 return 0;
609 }
610
611 /**
612 * Set open flags for a given cache mode
613 *
614 * Return 0 on success, -1 if the cache mode was invalid.
615 */
616 int bdrv_parse_cache_flags(const char *mode, int *flags)
617 {
618 *flags &= ~BDRV_O_CACHE_MASK;
619
620 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
621 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
622 } else if (!strcmp(mode, "directsync")) {
623 *flags |= BDRV_O_NOCACHE;
624 } else if (!strcmp(mode, "writeback")) {
625 *flags |= BDRV_O_CACHE_WB;
626 } else if (!strcmp(mode, "unsafe")) {
627 *flags |= BDRV_O_CACHE_WB;
628 *flags |= BDRV_O_NO_FLUSH;
629 } else if (!strcmp(mode, "writethrough")) {
630 /* this is the default */
631 } else {
632 return -1;
633 }
634
635 return 0;
636 }
637
638 /**
639 * The copy-on-read flag is actually a reference count so multiple users may
640 * use the feature without worrying about clobbering its previous state.
641 * Copy-on-read stays enabled until all users have called to disable it.
642 */
643 void bdrv_enable_copy_on_read(BlockDriverState *bs)
644 {
645 bs->copy_on_read++;
646 }
647
648 void bdrv_disable_copy_on_read(BlockDriverState *bs)
649 {
650 assert(bs->copy_on_read > 0);
651 bs->copy_on_read--;
652 }
653
654 static int bdrv_open_flags(BlockDriverState *bs, int flags)
655 {
656 int open_flags = flags | BDRV_O_CACHE_WB;
657
658 /*
659 * Clear flags that are internal to the block layer before opening the
660 * image.
661 */
662 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
663
664 /*
665 * Snapshots should be writable.
666 */
667 if (bs->is_temporary) {
668 open_flags |= BDRV_O_RDWR;
669 }
670
671 return open_flags;
672 }
673
674 /*
675 * Common part for opening disk images and files
676 *
677 * Removes all processed options from *options.
678 */
679 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
680 QDict *options, int flags, BlockDriver *drv)
681 {
682 int ret, open_flags;
683 const char *filename;
684
685 assert(drv != NULL);
686 assert(bs->file == NULL);
687 assert(options != NULL && bs->options != options);
688
689 if (file != NULL) {
690 filename = file->filename;
691 } else {
692 filename = qdict_get_try_str(options, "filename");
693 }
694
695 trace_bdrv_open_common(bs, filename ?: "", flags, drv->format_name);
696
697 /* bdrv_open() with directly using a protocol as drv. This layer is already
698 * opened, so assign it to bs (while file becomes a closed BlockDriverState)
699 * and return immediately. */
700 if (file != NULL && drv->bdrv_file_open) {
701 bdrv_swap(file, bs);
702 return 0;
703 }
704
705 bs->open_flags = flags;
706 bs->buffer_alignment = 512;
707 open_flags = bdrv_open_flags(bs, flags);
708 bs->read_only = !(open_flags & BDRV_O_RDWR);
709
710 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv, bs->read_only)) {
711 return -ENOTSUP;
712 }
713
714 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
715 if (!bs->read_only && (flags & BDRV_O_COPY_ON_READ)) {
716 bdrv_enable_copy_on_read(bs);
717 }
718
719 if (filename != NULL) {
720 pstrcpy(bs->filename, sizeof(bs->filename), filename);
721 } else {
722 bs->filename[0] = '\0';
723 }
724
725 bs->drv = drv;
726 bs->opaque = g_malloc0(drv->instance_size);
727
728 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
729
730 /* Open the image, either directly or using a protocol */
731 if (drv->bdrv_file_open) {
732 assert(file == NULL);
733 assert(drv->bdrv_parse_filename || filename != NULL);
734 ret = drv->bdrv_file_open(bs, options, open_flags);
735 } else {
736 if (file == NULL) {
737 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't use '%s' as a "
738 "block driver for the protocol level",
739 drv->format_name);
740 ret = -EINVAL;
741 goto free_and_fail;
742 }
743 assert(file != NULL);
744 bs->file = file;
745 ret = drv->bdrv_open(bs, options, open_flags);
746 }
747
748 if (ret < 0) {
749 goto free_and_fail;
750 }
751
752 ret = refresh_total_sectors(bs, bs->total_sectors);
753 if (ret < 0) {
754 goto free_and_fail;
755 }
756
757 #ifndef _WIN32
758 if (bs->is_temporary) {
759 assert(filename != NULL);
760 unlink(filename);
761 }
762 #endif
763 return 0;
764
765 free_and_fail:
766 bs->file = NULL;
767 g_free(bs->opaque);
768 bs->opaque = NULL;
769 bs->drv = NULL;
770 return ret;
771 }
772
773 /*
774 * Opens a file using a protocol (file, host_device, nbd, ...)
775 *
776 * options is a QDict of options to pass to the block drivers, or NULL for an
777 * empty set of options. The reference to the QDict belongs to the block layer
778 * after the call (even on failure), so if the caller intends to reuse the
779 * dictionary, it needs to use QINCREF() before calling bdrv_file_open.
780 */
781 int bdrv_file_open(BlockDriverState **pbs, const char *filename,
782 QDict *options, int flags)
783 {
784 BlockDriverState *bs;
785 BlockDriver *drv;
786 const char *drvname;
787 int ret;
788
789 /* NULL means an empty set of options */
790 if (options == NULL) {
791 options = qdict_new();
792 }
793
794 bs = bdrv_new("");
795 bs->options = options;
796 options = qdict_clone_shallow(options);
797
798 /* Fetch the file name from the options QDict if necessary */
799 if (!filename) {
800 filename = qdict_get_try_str(options, "filename");
801 } else if (filename && !qdict_haskey(options, "filename")) {
802 qdict_put(options, "filename", qstring_from_str(filename));
803 } else {
804 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't specify 'file' and "
805 "'filename' options at the same time");
806 ret = -EINVAL;
807 goto fail;
808 }
809
810 /* Find the right block driver */
811 drvname = qdict_get_try_str(options, "driver");
812 if (drvname) {
813 drv = bdrv_find_whitelisted_format(drvname, !(flags & BDRV_O_RDWR));
814 qdict_del(options, "driver");
815 } else if (filename) {
816 drv = bdrv_find_protocol(filename);
817 } else {
818 qerror_report(ERROR_CLASS_GENERIC_ERROR,
819 "Must specify either driver or file");
820 drv = NULL;
821 }
822
823 if (!drv) {
824 ret = -ENOENT;
825 goto fail;
826 }
827
828 /* Parse the filename and open it */
829 if (drv->bdrv_parse_filename && filename) {
830 Error *local_err = NULL;
831 drv->bdrv_parse_filename(filename, options, &local_err);
832 if (error_is_set(&local_err)) {
833 qerror_report_err(local_err);
834 error_free(local_err);
835 ret = -EINVAL;
836 goto fail;
837 }
838 qdict_del(options, "filename");
839 } else if (!drv->bdrv_parse_filename && !filename) {
840 qerror_report(ERROR_CLASS_GENERIC_ERROR,
841 "The '%s' block driver requires a file name",
842 drv->format_name);
843 ret = -EINVAL;
844 goto fail;
845 }
846
847 ret = bdrv_open_common(bs, NULL, options, flags, drv);
848 if (ret < 0) {
849 goto fail;
850 }
851
852 /* Check if any unknown options were used */
853 if (qdict_size(options) != 0) {
854 const QDictEntry *entry = qdict_first(options);
855 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't "
856 "support the option '%s'",
857 drv->format_name, entry->key);
858 ret = -EINVAL;
859 goto fail;
860 }
861 QDECREF(options);
862
863 bs->growable = 1;
864 *pbs = bs;
865 return 0;
866
867 fail:
868 QDECREF(options);
869 if (!bs->drv) {
870 QDECREF(bs->options);
871 }
872 bdrv_delete(bs);
873 return ret;
874 }
875
876 /*
877 * Opens the backing file for a BlockDriverState if not yet open
878 *
879 * options is a QDict of options to pass to the block drivers, or NULL for an
880 * empty set of options. The reference to the QDict is transferred to this
881 * function (even on failure), so if the caller intends to reuse the dictionary,
882 * it needs to use QINCREF() before calling bdrv_file_open.
883 */
884 int bdrv_open_backing_file(BlockDriverState *bs, QDict *options)
885 {
886 char backing_filename[PATH_MAX];
887 int back_flags, ret;
888 BlockDriver *back_drv = NULL;
889
890 if (bs->backing_hd != NULL) {
891 QDECREF(options);
892 return 0;
893 }
894
895 /* NULL means an empty set of options */
896 if (options == NULL) {
897 options = qdict_new();
898 }
899
900 bs->open_flags &= ~BDRV_O_NO_BACKING;
901 if (qdict_haskey(options, "file.filename")) {
902 backing_filename[0] = '\0';
903 } else if (bs->backing_file[0] == '\0' && qdict_size(options) == 0) {
904 QDECREF(options);
905 return 0;
906 }
907
908 bs->backing_hd = bdrv_new("");
909 bdrv_get_full_backing_filename(bs, backing_filename,
910 sizeof(backing_filename));
911
912 if (bs->backing_format[0] != '\0') {
913 back_drv = bdrv_find_format(bs->backing_format);
914 }
915
916 /* backing files always opened read-only */
917 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
918
919 ret = bdrv_open(bs->backing_hd,
920 *backing_filename ? backing_filename : NULL, options,
921 back_flags, back_drv);
922 if (ret < 0) {
923 bdrv_delete(bs->backing_hd);
924 bs->backing_hd = NULL;
925 bs->open_flags |= BDRV_O_NO_BACKING;
926 return ret;
927 }
928 return 0;
929 }
930
931 static void extract_subqdict(QDict *src, QDict **dst, const char *start)
932 {
933 const QDictEntry *entry, *next;
934 const char *p;
935
936 *dst = qdict_new();
937 entry = qdict_first(src);
938
939 while (entry != NULL) {
940 next = qdict_next(src, entry);
941 if (strstart(entry->key, start, &p)) {
942 qobject_incref(entry->value);
943 qdict_put_obj(*dst, p, entry->value);
944 qdict_del(src, entry->key);
945 }
946 entry = next;
947 }
948 }
949
950 /*
951 * Opens a disk image (raw, qcow2, vmdk, ...)
952 *
953 * options is a QDict of options to pass to the block drivers, or NULL for an
954 * empty set of options. The reference to the QDict belongs to the block layer
955 * after the call (even on failure), so if the caller intends to reuse the
956 * dictionary, it needs to use QINCREF() before calling bdrv_open.
957 */
958 int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options,
959 int flags, BlockDriver *drv)
960 {
961 int ret;
962 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
963 char tmp_filename[PATH_MAX + 1];
964 BlockDriverState *file = NULL;
965 QDict *file_options = NULL;
966
967 /* NULL means an empty set of options */
968 if (options == NULL) {
969 options = qdict_new();
970 }
971
972 bs->options = options;
973 options = qdict_clone_shallow(options);
974
975 /* For snapshot=on, create a temporary qcow2 overlay */
976 if (flags & BDRV_O_SNAPSHOT) {
977 BlockDriverState *bs1;
978 int64_t total_size;
979 BlockDriver *bdrv_qcow2;
980 QEMUOptionParameter *create_options;
981 char backing_filename[PATH_MAX];
982
983 if (qdict_size(options) != 0) {
984 error_report("Can't use snapshot=on with driver-specific options");
985 ret = -EINVAL;
986 goto fail;
987 }
988 assert(filename != NULL);
989
990 /* if snapshot, we create a temporary backing file and open it
991 instead of opening 'filename' directly */
992
993 /* if there is a backing file, use it */
994 bs1 = bdrv_new("");
995 ret = bdrv_open(bs1, filename, NULL, 0, drv);
996 if (ret < 0) {
997 bdrv_delete(bs1);
998 goto fail;
999 }
1000 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
1001
1002 bdrv_delete(bs1);
1003
1004 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
1005 if (ret < 0) {
1006 goto fail;
1007 }
1008
1009 /* Real path is meaningless for protocols */
1010 if (path_has_protocol(filename)) {
1011 snprintf(backing_filename, sizeof(backing_filename),
1012 "%s", filename);
1013 } else if (!realpath(filename, backing_filename)) {
1014 ret = -errno;
1015 goto fail;
1016 }
1017
1018 bdrv_qcow2 = bdrv_find_format("qcow2");
1019 create_options = parse_option_parameters("", bdrv_qcow2->create_options,
1020 NULL);
1021
1022 set_option_parameter_int(create_options, BLOCK_OPT_SIZE, total_size);
1023 set_option_parameter(create_options, BLOCK_OPT_BACKING_FILE,
1024 backing_filename);
1025 if (drv) {
1026 set_option_parameter(create_options, BLOCK_OPT_BACKING_FMT,
1027 drv->format_name);
1028 }
1029
1030 ret = bdrv_create(bdrv_qcow2, tmp_filename, create_options);
1031 free_option_parameters(create_options);
1032 if (ret < 0) {
1033 goto fail;
1034 }
1035
1036 filename = tmp_filename;
1037 drv = bdrv_qcow2;
1038 bs->is_temporary = 1;
1039 }
1040
1041 /* Open image file without format layer */
1042 if (flags & BDRV_O_RDWR) {
1043 flags |= BDRV_O_ALLOW_RDWR;
1044 }
1045
1046 extract_subqdict(options, &file_options, "file.");
1047
1048 ret = bdrv_file_open(&file, filename, file_options,
1049 bdrv_open_flags(bs, flags | BDRV_O_UNMAP));
1050 if (ret < 0) {
1051 goto fail;
1052 }
1053
1054 /* Find the right image format driver */
1055 if (!drv) {
1056 ret = find_image_format(file, filename, &drv);
1057 }
1058
1059 if (!drv) {
1060 goto unlink_and_fail;
1061 }
1062
1063 /* Open the image */
1064 ret = bdrv_open_common(bs, file, options, flags, drv);
1065 if (ret < 0) {
1066 goto unlink_and_fail;
1067 }
1068
1069 if (bs->file != file) {
1070 bdrv_delete(file);
1071 file = NULL;
1072 }
1073
1074 /* If there is a backing file, use it */
1075 if ((flags & BDRV_O_NO_BACKING) == 0) {
1076 QDict *backing_options;
1077
1078 extract_subqdict(options, &backing_options, "backing.");
1079 ret = bdrv_open_backing_file(bs, backing_options);
1080 if (ret < 0) {
1081 goto close_and_fail;
1082 }
1083 }
1084
1085 /* Check if any unknown options were used */
1086 if (qdict_size(options) != 0) {
1087 const QDictEntry *entry = qdict_first(options);
1088 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by "
1089 "device '%s' doesn't support the option '%s'",
1090 drv->format_name, bs->device_name, entry->key);
1091
1092 ret = -EINVAL;
1093 goto close_and_fail;
1094 }
1095 QDECREF(options);
1096
1097 if (!bdrv_key_required(bs)) {
1098 bdrv_dev_change_media_cb(bs, true);
1099 }
1100
1101 /* throttling disk I/O limits */
1102 if (bs->io_limits_enabled) {
1103 bdrv_io_limits_enable(bs);
1104 }
1105
1106 return 0;
1107
1108 unlink_and_fail:
1109 if (file != NULL) {
1110 bdrv_delete(file);
1111 }
1112 if (bs->is_temporary) {
1113 unlink(filename);
1114 }
1115 fail:
1116 QDECREF(bs->options);
1117 QDECREF(options);
1118 bs->options = NULL;
1119 return ret;
1120
1121 close_and_fail:
1122 bdrv_close(bs);
1123 QDECREF(options);
1124 return ret;
1125 }
1126
1127 typedef struct BlockReopenQueueEntry {
1128 bool prepared;
1129 BDRVReopenState state;
1130 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
1131 } BlockReopenQueueEntry;
1132
1133 /*
1134 * Adds a BlockDriverState to a simple queue for an atomic, transactional
1135 * reopen of multiple devices.
1136 *
1137 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
1138 * already performed, or alternatively may be NULL a new BlockReopenQueue will
1139 * be created and initialized. This newly created BlockReopenQueue should be
1140 * passed back in for subsequent calls that are intended to be of the same
1141 * atomic 'set'.
1142 *
1143 * bs is the BlockDriverState to add to the reopen queue.
1144 *
1145 * flags contains the open flags for the associated bs
1146 *
1147 * returns a pointer to bs_queue, which is either the newly allocated
1148 * bs_queue, or the existing bs_queue being used.
1149 *
1150 */
1151 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
1152 BlockDriverState *bs, int flags)
1153 {
1154 assert(bs != NULL);
1155
1156 BlockReopenQueueEntry *bs_entry;
1157 if (bs_queue == NULL) {
1158 bs_queue = g_new0(BlockReopenQueue, 1);
1159 QSIMPLEQ_INIT(bs_queue);
1160 }
1161
1162 if (bs->file) {
1163 bdrv_reopen_queue(bs_queue, bs->file, flags);
1164 }
1165
1166 bs_entry = g_new0(BlockReopenQueueEntry, 1);
1167 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
1168
1169 bs_entry->state.bs = bs;
1170 bs_entry->state.flags = flags;
1171
1172 return bs_queue;
1173 }
1174
1175 /*
1176 * Reopen multiple BlockDriverStates atomically & transactionally.
1177 *
1178 * The queue passed in (bs_queue) must have been built up previous
1179 * via bdrv_reopen_queue().
1180 *
1181 * Reopens all BDS specified in the queue, with the appropriate
1182 * flags. All devices are prepared for reopen, and failure of any
1183 * device will cause all device changes to be abandonded, and intermediate
1184 * data cleaned up.
1185 *
1186 * If all devices prepare successfully, then the changes are committed
1187 * to all devices.
1188 *
1189 */
1190 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
1191 {
1192 int ret = -1;
1193 BlockReopenQueueEntry *bs_entry, *next;
1194 Error *local_err = NULL;
1195
1196 assert(bs_queue != NULL);
1197
1198 bdrv_drain_all();
1199
1200 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1201 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
1202 error_propagate(errp, local_err);
1203 goto cleanup;
1204 }
1205 bs_entry->prepared = true;
1206 }
1207
1208 /* If we reach this point, we have success and just need to apply the
1209 * changes
1210 */
1211 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1212 bdrv_reopen_commit(&bs_entry->state);
1213 }
1214
1215 ret = 0;
1216
1217 cleanup:
1218 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
1219 if (ret && bs_entry->prepared) {
1220 bdrv_reopen_abort(&bs_entry->state);
1221 }
1222 g_free(bs_entry);
1223 }
1224 g_free(bs_queue);
1225 return ret;
1226 }
1227
1228
1229 /* Reopen a single BlockDriverState with the specified flags. */
1230 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1231 {
1232 int ret = -1;
1233 Error *local_err = NULL;
1234 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1235
1236 ret = bdrv_reopen_multiple(queue, &local_err);
1237 if (local_err != NULL) {
1238 error_propagate(errp, local_err);
1239 }
1240 return ret;
1241 }
1242
1243
1244 /*
1245 * Prepares a BlockDriverState for reopen. All changes are staged in the
1246 * 'opaque' field of the BDRVReopenState, which is used and allocated by
1247 * the block driver layer .bdrv_reopen_prepare()
1248 *
1249 * bs is the BlockDriverState to reopen
1250 * flags are the new open flags
1251 * queue is the reopen queue
1252 *
1253 * Returns 0 on success, non-zero on error. On error errp will be set
1254 * as well.
1255 *
1256 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1257 * It is the responsibility of the caller to then call the abort() or
1258 * commit() for any other BDS that have been left in a prepare() state
1259 *
1260 */
1261 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1262 Error **errp)
1263 {
1264 int ret = -1;
1265 Error *local_err = NULL;
1266 BlockDriver *drv;
1267
1268 assert(reopen_state != NULL);
1269 assert(reopen_state->bs->drv != NULL);
1270 drv = reopen_state->bs->drv;
1271
1272 /* if we are to stay read-only, do not allow permission change
1273 * to r/w */
1274 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1275 reopen_state->flags & BDRV_O_RDWR) {
1276 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1277 reopen_state->bs->device_name);
1278 goto error;
1279 }
1280
1281
1282 ret = bdrv_flush(reopen_state->bs);
1283 if (ret) {
1284 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1285 strerror(-ret));
1286 goto error;
1287 }
1288
1289 if (drv->bdrv_reopen_prepare) {
1290 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1291 if (ret) {
1292 if (local_err != NULL) {
1293 error_propagate(errp, local_err);
1294 } else {
1295 error_setg(errp, "failed while preparing to reopen image '%s'",
1296 reopen_state->bs->filename);
1297 }
1298 goto error;
1299 }
1300 } else {
1301 /* It is currently mandatory to have a bdrv_reopen_prepare()
1302 * handler for each supported drv. */
1303 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1304 drv->format_name, reopen_state->bs->device_name,
1305 "reopening of file");
1306 ret = -1;
1307 goto error;
1308 }
1309
1310 ret = 0;
1311
1312 error:
1313 return ret;
1314 }
1315
1316 /*
1317 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1318 * makes them final by swapping the staging BlockDriverState contents into
1319 * the active BlockDriverState contents.
1320 */
1321 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1322 {
1323 BlockDriver *drv;
1324
1325 assert(reopen_state != NULL);
1326 drv = reopen_state->bs->drv;
1327 assert(drv != NULL);
1328
1329 /* If there are any driver level actions to take */
1330 if (drv->bdrv_reopen_commit) {
1331 drv->bdrv_reopen_commit(reopen_state);
1332 }
1333
1334 /* set BDS specific flags now */
1335 reopen_state->bs->open_flags = reopen_state->flags;
1336 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1337 BDRV_O_CACHE_WB);
1338 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1339 }
1340
1341 /*
1342 * Abort the reopen, and delete and free the staged changes in
1343 * reopen_state
1344 */
1345 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1346 {
1347 BlockDriver *drv;
1348
1349 assert(reopen_state != NULL);
1350 drv = reopen_state->bs->drv;
1351 assert(drv != NULL);
1352
1353 if (drv->bdrv_reopen_abort) {
1354 drv->bdrv_reopen_abort(reopen_state);
1355 }
1356 }
1357
1358
1359 void bdrv_close(BlockDriverState *bs)
1360 {
1361 if (bs->job) {
1362 block_job_cancel_sync(bs->job);
1363 }
1364 bdrv_drain_all(); /* complete I/O */
1365 bdrv_flush(bs);
1366 bdrv_drain_all(); /* in case flush left pending I/O */
1367 notifier_list_notify(&bs->close_notifiers, bs);
1368
1369 if (bs->drv) {
1370 if (bs->backing_hd) {
1371 bdrv_delete(bs->backing_hd);
1372 bs->backing_hd = NULL;
1373 }
1374 bs->drv->bdrv_close(bs);
1375 g_free(bs->opaque);
1376 #ifdef _WIN32
1377 if (bs->is_temporary) {
1378 unlink(bs->filename);
1379 }
1380 #endif
1381 bs->opaque = NULL;
1382 bs->drv = NULL;
1383 bs->copy_on_read = 0;
1384 bs->backing_file[0] = '\0';
1385 bs->backing_format[0] = '\0';
1386 bs->total_sectors = 0;
1387 bs->encrypted = 0;
1388 bs->valid_key = 0;
1389 bs->sg = 0;
1390 bs->growable = 0;
1391 QDECREF(bs->options);
1392 bs->options = NULL;
1393
1394 if (bs->file != NULL) {
1395 bdrv_delete(bs->file);
1396 bs->file = NULL;
1397 }
1398 }
1399
1400 bdrv_dev_change_media_cb(bs, false);
1401
1402 /*throttling disk I/O limits*/
1403 if (bs->io_limits_enabled) {
1404 bdrv_io_limits_disable(bs);
1405 }
1406 }
1407
1408 void bdrv_close_all(void)
1409 {
1410 BlockDriverState *bs;
1411
1412 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1413 bdrv_close(bs);
1414 }
1415 }
1416
1417 /*
1418 * Wait for pending requests to complete across all BlockDriverStates
1419 *
1420 * This function does not flush data to disk, use bdrv_flush_all() for that
1421 * after calling this function.
1422 *
1423 * Note that completion of an asynchronous I/O operation can trigger any
1424 * number of other I/O operations on other devices---for example a coroutine
1425 * can be arbitrarily complex and a constant flow of I/O can come until the
1426 * coroutine is complete. Because of this, it is not possible to have a
1427 * function to drain a single device's I/O queue.
1428 */
1429 void bdrv_drain_all(void)
1430 {
1431 BlockDriverState *bs;
1432 bool busy;
1433
1434 do {
1435 busy = qemu_aio_wait();
1436
1437 /* FIXME: We do not have timer support here, so this is effectively
1438 * a busy wait.
1439 */
1440 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1441 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1442 qemu_co_queue_restart_all(&bs->throttled_reqs);
1443 busy = true;
1444 }
1445 }
1446 } while (busy);
1447
1448 /* If requests are still pending there is a bug somewhere */
1449 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1450 assert(QLIST_EMPTY(&bs->tracked_requests));
1451 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1452 }
1453 }
1454
1455 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1456 Also, NULL terminate the device_name to prevent double remove */
1457 void bdrv_make_anon(BlockDriverState *bs)
1458 {
1459 if (bs->device_name[0] != '\0') {
1460 QTAILQ_REMOVE(&bdrv_states, bs, list);
1461 }
1462 bs->device_name[0] = '\0';
1463 }
1464
1465 static void bdrv_rebind(BlockDriverState *bs)
1466 {
1467 if (bs->drv && bs->drv->bdrv_rebind) {
1468 bs->drv->bdrv_rebind(bs);
1469 }
1470 }
1471
1472 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1473 BlockDriverState *bs_src)
1474 {
1475 /* move some fields that need to stay attached to the device */
1476 bs_dest->open_flags = bs_src->open_flags;
1477
1478 /* dev info */
1479 bs_dest->dev_ops = bs_src->dev_ops;
1480 bs_dest->dev_opaque = bs_src->dev_opaque;
1481 bs_dest->dev = bs_src->dev;
1482 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1483 bs_dest->copy_on_read = bs_src->copy_on_read;
1484
1485 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1486
1487 /* i/o timing parameters */
1488 bs_dest->slice_start = bs_src->slice_start;
1489 bs_dest->slice_end = bs_src->slice_end;
1490 bs_dest->slice_submitted = bs_src->slice_submitted;
1491 bs_dest->io_limits = bs_src->io_limits;
1492 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1493 bs_dest->block_timer = bs_src->block_timer;
1494 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1495
1496 /* r/w error */
1497 bs_dest->on_read_error = bs_src->on_read_error;
1498 bs_dest->on_write_error = bs_src->on_write_error;
1499
1500 /* i/o status */
1501 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1502 bs_dest->iostatus = bs_src->iostatus;
1503
1504 /* dirty bitmap */
1505 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1506
1507 /* job */
1508 bs_dest->in_use = bs_src->in_use;
1509 bs_dest->job = bs_src->job;
1510
1511 /* keep the same entry in bdrv_states */
1512 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1513 bs_src->device_name);
1514 bs_dest->list = bs_src->list;
1515 }
1516
1517 /*
1518 * Swap bs contents for two image chains while they are live,
1519 * while keeping required fields on the BlockDriverState that is
1520 * actually attached to a device.
1521 *
1522 * This will modify the BlockDriverState fields, and swap contents
1523 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1524 *
1525 * bs_new is required to be anonymous.
1526 *
1527 * This function does not create any image files.
1528 */
1529 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1530 {
1531 BlockDriverState tmp;
1532
1533 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1534 assert(bs_new->device_name[0] == '\0');
1535 assert(bs_new->dirty_bitmap == NULL);
1536 assert(bs_new->job == NULL);
1537 assert(bs_new->dev == NULL);
1538 assert(bs_new->in_use == 0);
1539 assert(bs_new->io_limits_enabled == false);
1540 assert(bs_new->block_timer == NULL);
1541
1542 tmp = *bs_new;
1543 *bs_new = *bs_old;
1544 *bs_old = tmp;
1545
1546 /* there are some fields that should not be swapped, move them back */
1547 bdrv_move_feature_fields(&tmp, bs_old);
1548 bdrv_move_feature_fields(bs_old, bs_new);
1549 bdrv_move_feature_fields(bs_new, &tmp);
1550
1551 /* bs_new shouldn't be in bdrv_states even after the swap! */
1552 assert(bs_new->device_name[0] == '\0');
1553
1554 /* Check a few fields that should remain attached to the device */
1555 assert(bs_new->dev == NULL);
1556 assert(bs_new->job == NULL);
1557 assert(bs_new->in_use == 0);
1558 assert(bs_new->io_limits_enabled == false);
1559 assert(bs_new->block_timer == NULL);
1560
1561 bdrv_rebind(bs_new);
1562 bdrv_rebind(bs_old);
1563 }
1564
1565 /*
1566 * Add new bs contents at the top of an image chain while the chain is
1567 * live, while keeping required fields on the top layer.
1568 *
1569 * This will modify the BlockDriverState fields, and swap contents
1570 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1571 *
1572 * bs_new is required to be anonymous.
1573 *
1574 * This function does not create any image files.
1575 */
1576 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1577 {
1578 bdrv_swap(bs_new, bs_top);
1579
1580 /* The contents of 'tmp' will become bs_top, as we are
1581 * swapping bs_new and bs_top contents. */
1582 bs_top->backing_hd = bs_new;
1583 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1584 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1585 bs_new->filename);
1586 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1587 bs_new->drv ? bs_new->drv->format_name : "");
1588 }
1589
1590 void bdrv_delete(BlockDriverState *bs)
1591 {
1592 assert(!bs->dev);
1593 assert(!bs->job);
1594 assert(!bs->in_use);
1595
1596 /* remove from list, if necessary */
1597 bdrv_make_anon(bs);
1598
1599 bdrv_close(bs);
1600
1601 g_free(bs);
1602 }
1603
1604 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1605 /* TODO change to DeviceState *dev when all users are qdevified */
1606 {
1607 if (bs->dev) {
1608 return -EBUSY;
1609 }
1610 bs->dev = dev;
1611 bdrv_iostatus_reset(bs);
1612 return 0;
1613 }
1614
1615 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1616 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1617 {
1618 if (bdrv_attach_dev(bs, dev) < 0) {
1619 abort();
1620 }
1621 }
1622
1623 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1624 /* TODO change to DeviceState *dev when all users are qdevified */
1625 {
1626 assert(bs->dev == dev);
1627 bs->dev = NULL;
1628 bs->dev_ops = NULL;
1629 bs->dev_opaque = NULL;
1630 bs->buffer_alignment = 512;
1631 }
1632
1633 /* TODO change to return DeviceState * when all users are qdevified */
1634 void *bdrv_get_attached_dev(BlockDriverState *bs)
1635 {
1636 return bs->dev;
1637 }
1638
1639 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1640 void *opaque)
1641 {
1642 bs->dev_ops = ops;
1643 bs->dev_opaque = opaque;
1644 }
1645
1646 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1647 enum MonitorEvent ev,
1648 BlockErrorAction action, bool is_read)
1649 {
1650 QObject *data;
1651 const char *action_str;
1652
1653 switch (action) {
1654 case BDRV_ACTION_REPORT:
1655 action_str = "report";
1656 break;
1657 case BDRV_ACTION_IGNORE:
1658 action_str = "ignore";
1659 break;
1660 case BDRV_ACTION_STOP:
1661 action_str = "stop";
1662 break;
1663 default:
1664 abort();
1665 }
1666
1667 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1668 bdrv->device_name,
1669 action_str,
1670 is_read ? "read" : "write");
1671 monitor_protocol_event(ev, data);
1672
1673 qobject_decref(data);
1674 }
1675
1676 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1677 {
1678 QObject *data;
1679
1680 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1681 bdrv_get_device_name(bs), ejected);
1682 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1683
1684 qobject_decref(data);
1685 }
1686
1687 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1688 {
1689 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1690 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1691 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1692 if (tray_was_closed) {
1693 /* tray open */
1694 bdrv_emit_qmp_eject_event(bs, true);
1695 }
1696 if (load) {
1697 /* tray close */
1698 bdrv_emit_qmp_eject_event(bs, false);
1699 }
1700 }
1701 }
1702
1703 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1704 {
1705 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1706 }
1707
1708 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1709 {
1710 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1711 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1712 }
1713 }
1714
1715 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1716 {
1717 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1718 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1719 }
1720 return false;
1721 }
1722
1723 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1724 {
1725 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1726 bs->dev_ops->resize_cb(bs->dev_opaque);
1727 }
1728 }
1729
1730 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1731 {
1732 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1733 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1734 }
1735 return false;
1736 }
1737
1738 /*
1739 * Run consistency checks on an image
1740 *
1741 * Returns 0 if the check could be completed (it doesn't mean that the image is
1742 * free of errors) or -errno when an internal error occurred. The results of the
1743 * check are stored in res.
1744 */
1745 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1746 {
1747 if (bs->drv->bdrv_check == NULL) {
1748 return -ENOTSUP;
1749 }
1750
1751 memset(res, 0, sizeof(*res));
1752 return bs->drv->bdrv_check(bs, res, fix);
1753 }
1754
1755 #define COMMIT_BUF_SECTORS 2048
1756
1757 /* commit COW file into the raw image */
1758 int bdrv_commit(BlockDriverState *bs)
1759 {
1760 BlockDriver *drv = bs->drv;
1761 int64_t sector, total_sectors;
1762 int n, ro, open_flags;
1763 int ret = 0;
1764 uint8_t *buf;
1765 char filename[PATH_MAX];
1766
1767 if (!drv)
1768 return -ENOMEDIUM;
1769
1770 if (!bs->backing_hd) {
1771 return -ENOTSUP;
1772 }
1773
1774 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1775 return -EBUSY;
1776 }
1777
1778 ro = bs->backing_hd->read_only;
1779 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1780 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1781 open_flags = bs->backing_hd->open_flags;
1782
1783 if (ro) {
1784 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1785 return -EACCES;
1786 }
1787 }
1788
1789 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1790 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1791
1792 for (sector = 0; sector < total_sectors; sector += n) {
1793 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1794
1795 if (bdrv_read(bs, sector, buf, n) != 0) {
1796 ret = -EIO;
1797 goto ro_cleanup;
1798 }
1799
1800 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1801 ret = -EIO;
1802 goto ro_cleanup;
1803 }
1804 }
1805 }
1806
1807 if (drv->bdrv_make_empty) {
1808 ret = drv->bdrv_make_empty(bs);
1809 bdrv_flush(bs);
1810 }
1811
1812 /*
1813 * Make sure all data we wrote to the backing device is actually
1814 * stable on disk.
1815 */
1816 if (bs->backing_hd)
1817 bdrv_flush(bs->backing_hd);
1818
1819 ro_cleanup:
1820 g_free(buf);
1821
1822 if (ro) {
1823 /* ignoring error return here */
1824 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1825 }
1826
1827 return ret;
1828 }
1829
1830 int bdrv_commit_all(void)
1831 {
1832 BlockDriverState *bs;
1833
1834 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1835 if (bs->drv && bs->backing_hd) {
1836 int ret = bdrv_commit(bs);
1837 if (ret < 0) {
1838 return ret;
1839 }
1840 }
1841 }
1842 return 0;
1843 }
1844
1845 /**
1846 * Remove an active request from the tracked requests list
1847 *
1848 * This function should be called when a tracked request is completing.
1849 */
1850 static void tracked_request_end(BdrvTrackedRequest *req)
1851 {
1852 QLIST_REMOVE(req, list);
1853 qemu_co_queue_restart_all(&req->wait_queue);
1854 }
1855
1856 /**
1857 * Add an active request to the tracked requests list
1858 */
1859 static void tracked_request_begin(BdrvTrackedRequest *req,
1860 BlockDriverState *bs,
1861 int64_t sector_num,
1862 int nb_sectors, bool is_write)
1863 {
1864 *req = (BdrvTrackedRequest){
1865 .bs = bs,
1866 .sector_num = sector_num,
1867 .nb_sectors = nb_sectors,
1868 .is_write = is_write,
1869 .co = qemu_coroutine_self(),
1870 };
1871
1872 qemu_co_queue_init(&req->wait_queue);
1873
1874 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1875 }
1876
1877 /**
1878 * Round a region to cluster boundaries
1879 */
1880 void bdrv_round_to_clusters(BlockDriverState *bs,
1881 int64_t sector_num, int nb_sectors,
1882 int64_t *cluster_sector_num,
1883 int *cluster_nb_sectors)
1884 {
1885 BlockDriverInfo bdi;
1886
1887 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1888 *cluster_sector_num = sector_num;
1889 *cluster_nb_sectors = nb_sectors;
1890 } else {
1891 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1892 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1893 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1894 nb_sectors, c);
1895 }
1896 }
1897
1898 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1899 int64_t sector_num, int nb_sectors) {
1900 /* aaaa bbbb */
1901 if (sector_num >= req->sector_num + req->nb_sectors) {
1902 return false;
1903 }
1904 /* bbbb aaaa */
1905 if (req->sector_num >= sector_num + nb_sectors) {
1906 return false;
1907 }
1908 return true;
1909 }
1910
1911 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1912 int64_t sector_num, int nb_sectors)
1913 {
1914 BdrvTrackedRequest *req;
1915 int64_t cluster_sector_num;
1916 int cluster_nb_sectors;
1917 bool retry;
1918
1919 /* If we touch the same cluster it counts as an overlap. This guarantees
1920 * that allocating writes will be serialized and not race with each other
1921 * for the same cluster. For example, in copy-on-read it ensures that the
1922 * CoR read and write operations are atomic and guest writes cannot
1923 * interleave between them.
1924 */
1925 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
1926 &cluster_sector_num, &cluster_nb_sectors);
1927
1928 do {
1929 retry = false;
1930 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1931 if (tracked_request_overlaps(req, cluster_sector_num,
1932 cluster_nb_sectors)) {
1933 /* Hitting this means there was a reentrant request, for
1934 * example, a block driver issuing nested requests. This must
1935 * never happen since it means deadlock.
1936 */
1937 assert(qemu_coroutine_self() != req->co);
1938
1939 qemu_co_queue_wait(&req->wait_queue);
1940 retry = true;
1941 break;
1942 }
1943 }
1944 } while (retry);
1945 }
1946
1947 /*
1948 * Return values:
1949 * 0 - success
1950 * -EINVAL - backing format specified, but no file
1951 * -ENOSPC - can't update the backing file because no space is left in the
1952 * image file header
1953 * -ENOTSUP - format driver doesn't support changing the backing file
1954 */
1955 int bdrv_change_backing_file(BlockDriverState *bs,
1956 const char *backing_file, const char *backing_fmt)
1957 {
1958 BlockDriver *drv = bs->drv;
1959 int ret;
1960
1961 /* Backing file format doesn't make sense without a backing file */
1962 if (backing_fmt && !backing_file) {
1963 return -EINVAL;
1964 }
1965
1966 if (drv->bdrv_change_backing_file != NULL) {
1967 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1968 } else {
1969 ret = -ENOTSUP;
1970 }
1971
1972 if (ret == 0) {
1973 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1974 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1975 }
1976 return ret;
1977 }
1978
1979 /*
1980 * Finds the image layer in the chain that has 'bs' as its backing file.
1981 *
1982 * active is the current topmost image.
1983 *
1984 * Returns NULL if bs is not found in active's image chain,
1985 * or if active == bs.
1986 */
1987 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1988 BlockDriverState *bs)
1989 {
1990 BlockDriverState *overlay = NULL;
1991 BlockDriverState *intermediate;
1992
1993 assert(active != NULL);
1994 assert(bs != NULL);
1995
1996 /* if bs is the same as active, then by definition it has no overlay
1997 */
1998 if (active == bs) {
1999 return NULL;
2000 }
2001
2002 intermediate = active;
2003 while (intermediate->backing_hd) {
2004 if (intermediate->backing_hd == bs) {
2005 overlay = intermediate;
2006 break;
2007 }
2008 intermediate = intermediate->backing_hd;
2009 }
2010
2011 return overlay;
2012 }
2013
2014 typedef struct BlkIntermediateStates {
2015 BlockDriverState *bs;
2016 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
2017 } BlkIntermediateStates;
2018
2019
2020 /*
2021 * Drops images above 'base' up to and including 'top', and sets the image
2022 * above 'top' to have base as its backing file.
2023 *
2024 * Requires that the overlay to 'top' is opened r/w, so that the backing file
2025 * information in 'bs' can be properly updated.
2026 *
2027 * E.g., this will convert the following chain:
2028 * bottom <- base <- intermediate <- top <- active
2029 *
2030 * to
2031 *
2032 * bottom <- base <- active
2033 *
2034 * It is allowed for bottom==base, in which case it converts:
2035 *
2036 * base <- intermediate <- top <- active
2037 *
2038 * to
2039 *
2040 * base <- active
2041 *
2042 * Error conditions:
2043 * if active == top, that is considered an error
2044 *
2045 */
2046 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
2047 BlockDriverState *base)
2048 {
2049 BlockDriverState *intermediate;
2050 BlockDriverState *base_bs = NULL;
2051 BlockDriverState *new_top_bs = NULL;
2052 BlkIntermediateStates *intermediate_state, *next;
2053 int ret = -EIO;
2054
2055 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
2056 QSIMPLEQ_INIT(&states_to_delete);
2057
2058 if (!top->drv || !base->drv) {
2059 goto exit;
2060 }
2061
2062 new_top_bs = bdrv_find_overlay(active, top);
2063
2064 if (new_top_bs == NULL) {
2065 /* we could not find the image above 'top', this is an error */
2066 goto exit;
2067 }
2068
2069 /* special case of new_top_bs->backing_hd already pointing to base - nothing
2070 * to do, no intermediate images */
2071 if (new_top_bs->backing_hd == base) {
2072 ret = 0;
2073 goto exit;
2074 }
2075
2076 intermediate = top;
2077
2078 /* now we will go down through the list, and add each BDS we find
2079 * into our deletion queue, until we hit the 'base'
2080 */
2081 while (intermediate) {
2082 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
2083 intermediate_state->bs = intermediate;
2084 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
2085
2086 if (intermediate->backing_hd == base) {
2087 base_bs = intermediate->backing_hd;
2088 break;
2089 }
2090 intermediate = intermediate->backing_hd;
2091 }
2092 if (base_bs == NULL) {
2093 /* something went wrong, we did not end at the base. safely
2094 * unravel everything, and exit with error */
2095 goto exit;
2096 }
2097
2098 /* success - we can delete the intermediate states, and link top->base */
2099 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
2100 base_bs->drv ? base_bs->drv->format_name : "");
2101 if (ret) {
2102 goto exit;
2103 }
2104 new_top_bs->backing_hd = base_bs;
2105
2106
2107 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
2108 /* so that bdrv_close() does not recursively close the chain */
2109 intermediate_state->bs->backing_hd = NULL;
2110 bdrv_delete(intermediate_state->bs);
2111 }
2112 ret = 0;
2113
2114 exit:
2115 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
2116 g_free(intermediate_state);
2117 }
2118 return ret;
2119 }
2120
2121
2122 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
2123 size_t size)
2124 {
2125 int64_t len;
2126
2127 if (!bdrv_is_inserted(bs))
2128 return -ENOMEDIUM;
2129
2130 if (bs->growable)
2131 return 0;
2132
2133 len = bdrv_getlength(bs);
2134
2135 if (offset < 0)
2136 return -EIO;
2137
2138 if ((offset > len) || (len - offset < size))
2139 return -EIO;
2140
2141 return 0;
2142 }
2143
2144 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
2145 int nb_sectors)
2146 {
2147 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
2148 nb_sectors * BDRV_SECTOR_SIZE);
2149 }
2150
2151 typedef struct RwCo {
2152 BlockDriverState *bs;
2153 int64_t sector_num;
2154 int nb_sectors;
2155 QEMUIOVector *qiov;
2156 bool is_write;
2157 int ret;
2158 } RwCo;
2159
2160 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
2161 {
2162 RwCo *rwco = opaque;
2163
2164 if (!rwco->is_write) {
2165 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
2166 rwco->nb_sectors, rwco->qiov, 0);
2167 } else {
2168 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
2169 rwco->nb_sectors, rwco->qiov, 0);
2170 }
2171 }
2172
2173 /*
2174 * Process a vectored synchronous request using coroutines
2175 */
2176 static int bdrv_rwv_co(BlockDriverState *bs, int64_t sector_num,
2177 QEMUIOVector *qiov, bool is_write)
2178 {
2179 Coroutine *co;
2180 RwCo rwco = {
2181 .bs = bs,
2182 .sector_num = sector_num,
2183 .nb_sectors = qiov->size >> BDRV_SECTOR_BITS,
2184 .qiov = qiov,
2185 .is_write = is_write,
2186 .ret = NOT_DONE,
2187 };
2188 assert((qiov->size & (BDRV_SECTOR_SIZE - 1)) == 0);
2189
2190 /**
2191 * In sync call context, when the vcpu is blocked, this throttling timer
2192 * will not fire; so the I/O throttling function has to be disabled here
2193 * if it has been enabled.
2194 */
2195 if (bs->io_limits_enabled) {
2196 fprintf(stderr, "Disabling I/O throttling on '%s' due "
2197 "to synchronous I/O.\n", bdrv_get_device_name(bs));
2198 bdrv_io_limits_disable(bs);
2199 }
2200
2201 if (qemu_in_coroutine()) {
2202 /* Fast-path if already in coroutine context */
2203 bdrv_rw_co_entry(&rwco);
2204 } else {
2205 co = qemu_coroutine_create(bdrv_rw_co_entry);
2206 qemu_coroutine_enter(co, &rwco);
2207 while (rwco.ret == NOT_DONE) {
2208 qemu_aio_wait();
2209 }
2210 }
2211 return rwco.ret;
2212 }
2213
2214 /*
2215 * Process a synchronous request using coroutines
2216 */
2217 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
2218 int nb_sectors, bool is_write)
2219 {
2220 QEMUIOVector qiov;
2221 struct iovec iov = {
2222 .iov_base = (void *)buf,
2223 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
2224 };
2225
2226 qemu_iovec_init_external(&qiov, &iov, 1);
2227 return bdrv_rwv_co(bs, sector_num, &qiov, is_write);
2228 }
2229
2230 /* return < 0 if error. See bdrv_write() for the return codes */
2231 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2232 uint8_t *buf, int nb_sectors)
2233 {
2234 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2235 }
2236
2237 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2238 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2239 uint8_t *buf, int nb_sectors)
2240 {
2241 bool enabled;
2242 int ret;
2243
2244 enabled = bs->io_limits_enabled;
2245 bs->io_limits_enabled = false;
2246 ret = bdrv_read(bs, 0, buf, 1);
2247 bs->io_limits_enabled = enabled;
2248 return ret;
2249 }
2250
2251 /* Return < 0 if error. Important errors are:
2252 -EIO generic I/O error (may happen for all errors)
2253 -ENOMEDIUM No media inserted.
2254 -EINVAL Invalid sector number or nb_sectors
2255 -EACCES Trying to write a read-only device
2256 */
2257 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2258 const uint8_t *buf, int nb_sectors)
2259 {
2260 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2261 }
2262
2263 int bdrv_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov)
2264 {
2265 return bdrv_rwv_co(bs, sector_num, qiov, true);
2266 }
2267
2268 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2269 void *buf, int count1)
2270 {
2271 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2272 int len, nb_sectors, count;
2273 int64_t sector_num;
2274 int ret;
2275
2276 count = count1;
2277 /* first read to align to sector start */
2278 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2279 if (len > count)
2280 len = count;
2281 sector_num = offset >> BDRV_SECTOR_BITS;
2282 if (len > 0) {
2283 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2284 return ret;
2285 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2286 count -= len;
2287 if (count == 0)
2288 return count1;
2289 sector_num++;
2290 buf += len;
2291 }
2292
2293 /* read the sectors "in place" */
2294 nb_sectors = count >> BDRV_SECTOR_BITS;
2295 if (nb_sectors > 0) {
2296 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2297 return ret;
2298 sector_num += nb_sectors;
2299 len = nb_sectors << BDRV_SECTOR_BITS;
2300 buf += len;
2301 count -= len;
2302 }
2303
2304 /* add data from the last sector */
2305 if (count > 0) {
2306 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2307 return ret;
2308 memcpy(buf, tmp_buf, count);
2309 }
2310 return count1;
2311 }
2312
2313 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
2314 {
2315 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2316 int len, nb_sectors, count;
2317 int64_t sector_num;
2318 int ret;
2319
2320 count = qiov->size;
2321
2322 /* first write to align to sector start */
2323 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2324 if (len > count)
2325 len = count;
2326 sector_num = offset >> BDRV_SECTOR_BITS;
2327 if (len > 0) {
2328 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2329 return ret;
2330 qemu_iovec_to_buf(qiov, 0, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)),
2331 len);
2332 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2333 return ret;
2334 count -= len;
2335 if (count == 0)
2336 return qiov->size;
2337 sector_num++;
2338 }
2339
2340 /* write the sectors "in place" */
2341 nb_sectors = count >> BDRV_SECTOR_BITS;
2342 if (nb_sectors > 0) {
2343 QEMUIOVector qiov_inplace;
2344
2345 qemu_iovec_init(&qiov_inplace, qiov->niov);
2346 qemu_iovec_concat(&qiov_inplace, qiov, len,
2347 nb_sectors << BDRV_SECTOR_BITS);
2348 ret = bdrv_writev(bs, sector_num, &qiov_inplace);
2349 qemu_iovec_destroy(&qiov_inplace);
2350 if (ret < 0) {
2351 return ret;
2352 }
2353
2354 sector_num += nb_sectors;
2355 len = nb_sectors << BDRV_SECTOR_BITS;
2356 count -= len;
2357 }
2358
2359 /* add data from the last sector */
2360 if (count > 0) {
2361 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2362 return ret;
2363 qemu_iovec_to_buf(qiov, qiov->size - count, tmp_buf, count);
2364 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2365 return ret;
2366 }
2367 return qiov->size;
2368 }
2369
2370 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2371 const void *buf, int count1)
2372 {
2373 QEMUIOVector qiov;
2374 struct iovec iov = {
2375 .iov_base = (void *) buf,
2376 .iov_len = count1,
2377 };
2378
2379 qemu_iovec_init_external(&qiov, &iov, 1);
2380 return bdrv_pwritev(bs, offset, &qiov);
2381 }
2382
2383 /*
2384 * Writes to the file and ensures that no writes are reordered across this
2385 * request (acts as a barrier)
2386 *
2387 * Returns 0 on success, -errno in error cases.
2388 */
2389 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2390 const void *buf, int count)
2391 {
2392 int ret;
2393
2394 ret = bdrv_pwrite(bs, offset, buf, count);
2395 if (ret < 0) {
2396 return ret;
2397 }
2398
2399 /* No flush needed for cache modes that already do it */
2400 if (bs->enable_write_cache) {
2401 bdrv_flush(bs);
2402 }
2403
2404 return 0;
2405 }
2406
2407 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2408 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2409 {
2410 /* Perform I/O through a temporary buffer so that users who scribble over
2411 * their read buffer while the operation is in progress do not end up
2412 * modifying the image file. This is critical for zero-copy guest I/O
2413 * where anything might happen inside guest memory.
2414 */
2415 void *bounce_buffer;
2416
2417 BlockDriver *drv = bs->drv;
2418 struct iovec iov;
2419 QEMUIOVector bounce_qiov;
2420 int64_t cluster_sector_num;
2421 int cluster_nb_sectors;
2422 size_t skip_bytes;
2423 int ret;
2424
2425 /* Cover entire cluster so no additional backing file I/O is required when
2426 * allocating cluster in the image file.
2427 */
2428 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
2429 &cluster_sector_num, &cluster_nb_sectors);
2430
2431 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2432 cluster_sector_num, cluster_nb_sectors);
2433
2434 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2435 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2436 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2437
2438 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2439 &bounce_qiov);
2440 if (ret < 0) {
2441 goto err;
2442 }
2443
2444 if (drv->bdrv_co_write_zeroes &&
2445 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2446 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2447 cluster_nb_sectors);
2448 } else {
2449 /* This does not change the data on the disk, it is not necessary
2450 * to flush even in cache=writethrough mode.
2451 */
2452 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2453 &bounce_qiov);
2454 }
2455
2456 if (ret < 0) {
2457 /* It might be okay to ignore write errors for guest requests. If this
2458 * is a deliberate copy-on-read then we don't want to ignore the error.
2459 * Simply report it in all cases.
2460 */
2461 goto err;
2462 }
2463
2464 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2465 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2466 nb_sectors * BDRV_SECTOR_SIZE);
2467
2468 err:
2469 qemu_vfree(bounce_buffer);
2470 return ret;
2471 }
2472
2473 /*
2474 * Handle a read request in coroutine context
2475 */
2476 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2477 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2478 BdrvRequestFlags flags)
2479 {
2480 BlockDriver *drv = bs->drv;
2481 BdrvTrackedRequest req;
2482 int ret;
2483
2484 if (!drv) {
2485 return -ENOMEDIUM;
2486 }
2487 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2488 return -EIO;
2489 }
2490
2491 /* throttling disk read I/O */
2492 if (bs->io_limits_enabled) {
2493 bdrv_io_limits_intercept(bs, false, nb_sectors);
2494 }
2495
2496 if (bs->copy_on_read) {
2497 flags |= BDRV_REQ_COPY_ON_READ;
2498 }
2499 if (flags & BDRV_REQ_COPY_ON_READ) {
2500 bs->copy_on_read_in_flight++;
2501 }
2502
2503 if (bs->copy_on_read_in_flight) {
2504 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2505 }
2506
2507 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2508
2509 if (flags & BDRV_REQ_COPY_ON_READ) {
2510 int pnum;
2511
2512 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2513 if (ret < 0) {
2514 goto out;
2515 }
2516
2517 if (!ret || pnum != nb_sectors) {
2518 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2519 goto out;
2520 }
2521 }
2522
2523 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2524
2525 out:
2526 tracked_request_end(&req);
2527
2528 if (flags & BDRV_REQ_COPY_ON_READ) {
2529 bs->copy_on_read_in_flight--;
2530 }
2531
2532 return ret;
2533 }
2534
2535 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2536 int nb_sectors, QEMUIOVector *qiov)
2537 {
2538 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2539
2540 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2541 }
2542
2543 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2544 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2545 {
2546 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2547
2548 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2549 BDRV_REQ_COPY_ON_READ);
2550 }
2551
2552 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2553 int64_t sector_num, int nb_sectors)
2554 {
2555 BlockDriver *drv = bs->drv;
2556 QEMUIOVector qiov;
2557 struct iovec iov;
2558 int ret;
2559
2560 /* TODO Emulate only part of misaligned requests instead of letting block
2561 * drivers return -ENOTSUP and emulate everything */
2562
2563 /* First try the efficient write zeroes operation */
2564 if (drv->bdrv_co_write_zeroes) {
2565 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2566 if (ret != -ENOTSUP) {
2567 return ret;
2568 }
2569 }
2570
2571 /* Fall back to bounce buffer if write zeroes is unsupported */
2572 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2573 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2574 memset(iov.iov_base, 0, iov.iov_len);
2575 qemu_iovec_init_external(&qiov, &iov, 1);
2576
2577 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2578
2579 qemu_vfree(iov.iov_base);
2580 return ret;
2581 }
2582
2583 /*
2584 * Handle a write request in coroutine context
2585 */
2586 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2587 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2588 BdrvRequestFlags flags)
2589 {
2590 BlockDriver *drv = bs->drv;
2591 BdrvTrackedRequest req;
2592 int ret;
2593
2594 if (!bs->drv) {
2595 return -ENOMEDIUM;
2596 }
2597 if (bs->read_only) {
2598 return -EACCES;
2599 }
2600 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2601 return -EIO;
2602 }
2603
2604 /* throttling disk write I/O */
2605 if (bs->io_limits_enabled) {
2606 bdrv_io_limits_intercept(bs, true, nb_sectors);
2607 }
2608
2609 if (bs->copy_on_read_in_flight) {
2610 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2611 }
2612
2613 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2614
2615 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2616
2617 if (ret < 0) {
2618 /* Do nothing, write notifier decided to fail this request */
2619 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2620 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2621 } else {
2622 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2623 }
2624
2625 if (ret == 0 && !bs->enable_write_cache) {
2626 ret = bdrv_co_flush(bs);
2627 }
2628
2629 if (bs->dirty_bitmap) {
2630 bdrv_set_dirty(bs, sector_num, nb_sectors);
2631 }
2632
2633 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2634 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2635 }
2636
2637 tracked_request_end(&req);
2638
2639 return ret;
2640 }
2641
2642 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2643 int nb_sectors, QEMUIOVector *qiov)
2644 {
2645 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2646
2647 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2648 }
2649
2650 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2651 int64_t sector_num, int nb_sectors)
2652 {
2653 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2654
2655 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2656 BDRV_REQ_ZERO_WRITE);
2657 }
2658
2659 /**
2660 * Truncate file to 'offset' bytes (needed only for file protocols)
2661 */
2662 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2663 {
2664 BlockDriver *drv = bs->drv;
2665 int ret;
2666 if (!drv)
2667 return -ENOMEDIUM;
2668 if (!drv->bdrv_truncate)
2669 return -ENOTSUP;
2670 if (bs->read_only)
2671 return -EACCES;
2672 if (bdrv_in_use(bs))
2673 return -EBUSY;
2674 ret = drv->bdrv_truncate(bs, offset);
2675 if (ret == 0) {
2676 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2677 bdrv_dev_resize_cb(bs);
2678 }
2679 return ret;
2680 }
2681
2682 /**
2683 * Length of a allocated file in bytes. Sparse files are counted by actual
2684 * allocated space. Return < 0 if error or unknown.
2685 */
2686 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2687 {
2688 BlockDriver *drv = bs->drv;
2689 if (!drv) {
2690 return -ENOMEDIUM;
2691 }
2692 if (drv->bdrv_get_allocated_file_size) {
2693 return drv->bdrv_get_allocated_file_size(bs);
2694 }
2695 if (bs->file) {
2696 return bdrv_get_allocated_file_size(bs->file);
2697 }
2698 return -ENOTSUP;
2699 }
2700
2701 /**
2702 * Length of a file in bytes. Return < 0 if error or unknown.
2703 */
2704 int64_t bdrv_getlength(BlockDriverState *bs)
2705 {
2706 BlockDriver *drv = bs->drv;
2707 if (!drv)
2708 return -ENOMEDIUM;
2709
2710 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2711 if (drv->bdrv_getlength) {
2712 return drv->bdrv_getlength(bs);
2713 }
2714 }
2715 return bs->total_sectors * BDRV_SECTOR_SIZE;
2716 }
2717
2718 /* return 0 as number of sectors if no device present or error */
2719 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2720 {
2721 int64_t length;
2722 length = bdrv_getlength(bs);
2723 if (length < 0)
2724 length = 0;
2725 else
2726 length = length >> BDRV_SECTOR_BITS;
2727 *nb_sectors_ptr = length;
2728 }
2729
2730 /* throttling disk io limits */
2731 void bdrv_set_io_limits(BlockDriverState *bs,
2732 BlockIOLimit *io_limits)
2733 {
2734 bs->io_limits = *io_limits;
2735 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2736 }
2737
2738 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2739 BlockdevOnError on_write_error)
2740 {
2741 bs->on_read_error = on_read_error;
2742 bs->on_write_error = on_write_error;
2743 }
2744
2745 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2746 {
2747 return is_read ? bs->on_read_error : bs->on_write_error;
2748 }
2749
2750 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2751 {
2752 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2753
2754 switch (on_err) {
2755 case BLOCKDEV_ON_ERROR_ENOSPC:
2756 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2757 case BLOCKDEV_ON_ERROR_STOP:
2758 return BDRV_ACTION_STOP;
2759 case BLOCKDEV_ON_ERROR_REPORT:
2760 return BDRV_ACTION_REPORT;
2761 case BLOCKDEV_ON_ERROR_IGNORE:
2762 return BDRV_ACTION_IGNORE;
2763 default:
2764 abort();
2765 }
2766 }
2767
2768 /* This is done by device models because, while the block layer knows
2769 * about the error, it does not know whether an operation comes from
2770 * the device or the block layer (from a job, for example).
2771 */
2772 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2773 bool is_read, int error)
2774 {
2775 assert(error >= 0);
2776 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2777 if (action == BDRV_ACTION_STOP) {
2778 vm_stop(RUN_STATE_IO_ERROR);
2779 bdrv_iostatus_set_err(bs, error);
2780 }
2781 }
2782
2783 int bdrv_is_read_only(BlockDriverState *bs)
2784 {
2785 return bs->read_only;
2786 }
2787
2788 int bdrv_is_sg(BlockDriverState *bs)
2789 {
2790 return bs->sg;
2791 }
2792
2793 int bdrv_enable_write_cache(BlockDriverState *bs)
2794 {
2795 return bs->enable_write_cache;
2796 }
2797
2798 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2799 {
2800 bs->enable_write_cache = wce;
2801
2802 /* so a reopen() will preserve wce */
2803 if (wce) {
2804 bs->open_flags |= BDRV_O_CACHE_WB;
2805 } else {
2806 bs->open_flags &= ~BDRV_O_CACHE_WB;
2807 }
2808 }
2809
2810 int bdrv_is_encrypted(BlockDriverState *bs)
2811 {
2812 if (bs->backing_hd && bs->backing_hd->encrypted)
2813 return 1;
2814 return bs->encrypted;
2815 }
2816
2817 int bdrv_key_required(BlockDriverState *bs)
2818 {
2819 BlockDriverState *backing_hd = bs->backing_hd;
2820
2821 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2822 return 1;
2823 return (bs->encrypted && !bs->valid_key);
2824 }
2825
2826 int bdrv_set_key(BlockDriverState *bs, const char *key)
2827 {
2828 int ret;
2829 if (bs->backing_hd && bs->backing_hd->encrypted) {
2830 ret = bdrv_set_key(bs->backing_hd, key);
2831 if (ret < 0)
2832 return ret;
2833 if (!bs->encrypted)
2834 return 0;
2835 }
2836 if (!bs->encrypted) {
2837 return -EINVAL;
2838 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2839 return -ENOMEDIUM;
2840 }
2841 ret = bs->drv->bdrv_set_key(bs, key);
2842 if (ret < 0) {
2843 bs->valid_key = 0;
2844 } else if (!bs->valid_key) {
2845 bs->valid_key = 1;
2846 /* call the change callback now, we skipped it on open */
2847 bdrv_dev_change_media_cb(bs, true);
2848 }
2849 return ret;
2850 }
2851
2852 const char *bdrv_get_format_name(BlockDriverState *bs)
2853 {
2854 return bs->drv ? bs->drv->format_name : NULL;
2855 }
2856
2857 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2858 void *opaque)
2859 {
2860 BlockDriver *drv;
2861
2862 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2863 it(opaque, drv->format_name);
2864 }
2865 }
2866
2867 BlockDriverState *bdrv_find(const char *name)
2868 {
2869 BlockDriverState *bs;
2870
2871 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2872 if (!strcmp(name, bs->device_name)) {
2873 return bs;
2874 }
2875 }
2876 return NULL;
2877 }
2878
2879 BlockDriverState *bdrv_next(BlockDriverState *bs)
2880 {
2881 if (!bs) {
2882 return QTAILQ_FIRST(&bdrv_states);
2883 }
2884 return QTAILQ_NEXT(bs, list);
2885 }
2886
2887 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2888 {
2889 BlockDriverState *bs;
2890
2891 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2892 it(opaque, bs);
2893 }
2894 }
2895
2896 const char *bdrv_get_device_name(BlockDriverState *bs)
2897 {
2898 return bs->device_name;
2899 }
2900
2901 int bdrv_get_flags(BlockDriverState *bs)
2902 {
2903 return bs->open_flags;
2904 }
2905
2906 void bdrv_flush_all(void)
2907 {
2908 BlockDriverState *bs;
2909
2910 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2911 bdrv_flush(bs);
2912 }
2913 }
2914
2915 int bdrv_has_zero_init_1(BlockDriverState *bs)
2916 {
2917 return 1;
2918 }
2919
2920 int bdrv_has_zero_init(BlockDriverState *bs)
2921 {
2922 assert(bs->drv);
2923
2924 if (bs->drv->bdrv_has_zero_init) {
2925 return bs->drv->bdrv_has_zero_init(bs);
2926 }
2927
2928 /* safe default */
2929 return 0;
2930 }
2931
2932 typedef struct BdrvCoIsAllocatedData {
2933 BlockDriverState *bs;
2934 BlockDriverState *base;
2935 int64_t sector_num;
2936 int nb_sectors;
2937 int *pnum;
2938 int ret;
2939 bool done;
2940 } BdrvCoIsAllocatedData;
2941
2942 /*
2943 * Returns true iff the specified sector is present in the disk image. Drivers
2944 * not implementing the functionality are assumed to not support backing files,
2945 * hence all their sectors are reported as allocated.
2946 *
2947 * If 'sector_num' is beyond the end of the disk image the return value is 0
2948 * and 'pnum' is set to 0.
2949 *
2950 * 'pnum' is set to the number of sectors (including and immediately following
2951 * the specified sector) that are known to be in the same
2952 * allocated/unallocated state.
2953 *
2954 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2955 * beyond the end of the disk image it will be clamped.
2956 */
2957 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2958 int nb_sectors, int *pnum)
2959 {
2960 int64_t n;
2961
2962 if (sector_num >= bs->total_sectors) {
2963 *pnum = 0;
2964 return 0;
2965 }
2966
2967 n = bs->total_sectors - sector_num;
2968 if (n < nb_sectors) {
2969 nb_sectors = n;
2970 }
2971
2972 if (!bs->drv->bdrv_co_is_allocated) {
2973 *pnum = nb_sectors;
2974 return 1;
2975 }
2976
2977 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2978 }
2979
2980 /* Coroutine wrapper for bdrv_is_allocated() */
2981 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2982 {
2983 BdrvCoIsAllocatedData *data = opaque;
2984 BlockDriverState *bs = data->bs;
2985
2986 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2987 data->pnum);
2988 data->done = true;
2989 }
2990
2991 /*
2992 * Synchronous wrapper around bdrv_co_is_allocated().
2993 *
2994 * See bdrv_co_is_allocated() for details.
2995 */
2996 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2997 int *pnum)
2998 {
2999 Coroutine *co;
3000 BdrvCoIsAllocatedData data = {
3001 .bs = bs,
3002 .sector_num = sector_num,
3003 .nb_sectors = nb_sectors,
3004 .pnum = pnum,
3005 .done = false,
3006 };
3007
3008 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
3009 qemu_coroutine_enter(co, &data);
3010 while (!data.done) {
3011 qemu_aio_wait();
3012 }
3013 return data.ret;
3014 }
3015
3016 /*
3017 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
3018 *
3019 * Return true if the given sector is allocated in any image between
3020 * BASE and TOP (inclusive). BASE can be NULL to check if the given
3021 * sector is allocated in any image of the chain. Return false otherwise.
3022 *
3023 * 'pnum' is set to the number of sectors (including and immediately following
3024 * the specified sector) that are known to be in the same
3025 * allocated/unallocated state.
3026 *
3027 */
3028 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
3029 BlockDriverState *base,
3030 int64_t sector_num,
3031 int nb_sectors, int *pnum)
3032 {
3033 BlockDriverState *intermediate;
3034 int ret, n = nb_sectors;
3035
3036 intermediate = top;
3037 while (intermediate && intermediate != base) {
3038 int pnum_inter;
3039 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
3040 &pnum_inter);
3041 if (ret < 0) {
3042 return ret;
3043 } else if (ret) {
3044 *pnum = pnum_inter;
3045 return 1;
3046 }
3047
3048 /*
3049 * [sector_num, nb_sectors] is unallocated on top but intermediate
3050 * might have
3051 *
3052 * [sector_num+x, nr_sectors] allocated.
3053 */
3054 if (n > pnum_inter &&
3055 (intermediate == top ||
3056 sector_num + pnum_inter < intermediate->total_sectors)) {
3057 n = pnum_inter;
3058 }
3059
3060 intermediate = intermediate->backing_hd;
3061 }
3062
3063 *pnum = n;
3064 return 0;
3065 }
3066
3067 /* Coroutine wrapper for bdrv_is_allocated_above() */
3068 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque)
3069 {
3070 BdrvCoIsAllocatedData *data = opaque;
3071 BlockDriverState *top = data->bs;
3072 BlockDriverState *base = data->base;
3073
3074 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num,
3075 data->nb_sectors, data->pnum);
3076 data->done = true;
3077 }
3078
3079 /*
3080 * Synchronous wrapper around bdrv_co_is_allocated_above().
3081 *
3082 * See bdrv_co_is_allocated_above() for details.
3083 */
3084 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
3085 int64_t sector_num, int nb_sectors, int *pnum)
3086 {
3087 Coroutine *co;
3088 BdrvCoIsAllocatedData data = {
3089 .bs = top,
3090 .base = base,
3091 .sector_num = sector_num,
3092 .nb_sectors = nb_sectors,
3093 .pnum = pnum,
3094 .done = false,
3095 };
3096
3097 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry);
3098 qemu_coroutine_enter(co, &data);
3099 while (!data.done) {
3100 qemu_aio_wait();
3101 }
3102 return data.ret;
3103 }
3104
3105 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
3106 {
3107 if (bs->backing_hd && bs->backing_hd->encrypted)
3108 return bs->backing_file;
3109 else if (bs->encrypted)
3110 return bs->filename;
3111 else
3112 return NULL;
3113 }
3114
3115 void bdrv_get_backing_filename(BlockDriverState *bs,
3116 char *filename, int filename_size)
3117 {
3118 pstrcpy(filename, filename_size, bs->backing_file);
3119 }
3120
3121 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
3122 const uint8_t *buf, int nb_sectors)
3123 {
3124 BlockDriver *drv = bs->drv;
3125 if (!drv)
3126 return -ENOMEDIUM;
3127 if (!drv->bdrv_write_compressed)
3128 return -ENOTSUP;
3129 if (bdrv_check_request(bs, sector_num, nb_sectors))
3130 return -EIO;
3131
3132 assert(!bs->dirty_bitmap);
3133
3134 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
3135 }
3136
3137 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
3138 {
3139 BlockDriver *drv = bs->drv;
3140 if (!drv)
3141 return -ENOMEDIUM;
3142 if (!drv->bdrv_get_info)
3143 return -ENOTSUP;
3144 memset(bdi, 0, sizeof(*bdi));
3145 return drv->bdrv_get_info(bs, bdi);
3146 }
3147
3148 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
3149 int64_t pos, int size)
3150 {
3151 QEMUIOVector qiov;
3152 struct iovec iov = {
3153 .iov_base = (void *) buf,
3154 .iov_len = size,
3155 };
3156
3157 qemu_iovec_init_external(&qiov, &iov, 1);
3158 return bdrv_writev_vmstate(bs, &qiov, pos);
3159 }
3160
3161 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
3162 {
3163 BlockDriver *drv = bs->drv;
3164
3165 if (!drv) {
3166 return -ENOMEDIUM;
3167 } else if (drv->bdrv_save_vmstate) {
3168 return drv->bdrv_save_vmstate(bs, qiov, pos);
3169 } else if (bs->file) {
3170 return bdrv_writev_vmstate(bs->file, qiov, pos);
3171 }
3172
3173 return -ENOTSUP;
3174 }
3175
3176 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3177 int64_t pos, int size)
3178 {
3179 BlockDriver *drv = bs->drv;
3180 if (!drv)
3181 return -ENOMEDIUM;
3182 if (drv->bdrv_load_vmstate)
3183 return drv->bdrv_load_vmstate(bs, buf, pos, size);
3184 if (bs->file)
3185 return bdrv_load_vmstate(bs->file, buf, pos, size);
3186 return -ENOTSUP;
3187 }
3188
3189 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3190 {
3191 if (!bs || !bs->drv || !bs->drv->bdrv_debug_event) {
3192 return;
3193 }
3194
3195 bs->drv->bdrv_debug_event(bs, event);
3196 }
3197
3198 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
3199 const char *tag)
3200 {
3201 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
3202 bs = bs->file;
3203 }
3204
3205 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
3206 return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
3207 }
3208
3209 return -ENOTSUP;
3210 }
3211
3212 int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
3213 {
3214 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) {
3215 bs = bs->file;
3216 }
3217
3218 if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
3219 return bs->drv->bdrv_debug_resume(bs, tag);
3220 }
3221
3222 return -ENOTSUP;
3223 }
3224
3225 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
3226 {
3227 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
3228 bs = bs->file;
3229 }
3230
3231 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
3232 return bs->drv->bdrv_debug_is_suspended(bs, tag);
3233 }
3234
3235 return false;
3236 }
3237
3238 int bdrv_is_snapshot(BlockDriverState *bs)
3239 {
3240 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3241 }
3242
3243 /* backing_file can either be relative, or absolute, or a protocol. If it is
3244 * relative, it must be relative to the chain. So, passing in bs->filename
3245 * from a BDS as backing_file should not be done, as that may be relative to
3246 * the CWD rather than the chain. */
3247 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3248 const char *backing_file)
3249 {
3250 char *filename_full = NULL;
3251 char *backing_file_full = NULL;
3252 char *filename_tmp = NULL;
3253 int is_protocol = 0;
3254 BlockDriverState *curr_bs = NULL;
3255 BlockDriverState *retval = NULL;
3256
3257 if (!bs || !bs->drv || !backing_file) {
3258 return NULL;
3259 }
3260
3261 filename_full = g_malloc(PATH_MAX);
3262 backing_file_full = g_malloc(PATH_MAX);
3263 filename_tmp = g_malloc(PATH_MAX);
3264
3265 is_protocol = path_has_protocol(backing_file);
3266
3267 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3268
3269 /* If either of the filename paths is actually a protocol, then
3270 * compare unmodified paths; otherwise make paths relative */
3271 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3272 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3273 retval = curr_bs->backing_hd;
3274 break;
3275 }
3276 } else {
3277 /* If not an absolute filename path, make it relative to the current
3278 * image's filename path */
3279 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3280 backing_file);
3281
3282 /* We are going to compare absolute pathnames */
3283 if (!realpath(filename_tmp, filename_full)) {
3284 continue;
3285 }
3286
3287 /* We need to make sure the backing filename we are comparing against
3288 * is relative to the current image filename (or absolute) */
3289 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3290 curr_bs->backing_file);
3291
3292 if (!realpath(filename_tmp, backing_file_full)) {
3293 continue;
3294 }
3295
3296 if (strcmp(backing_file_full, filename_full) == 0) {
3297 retval = curr_bs->backing_hd;
3298 break;
3299 }
3300 }
3301 }
3302
3303 g_free(filename_full);
3304 g_free(backing_file_full);
3305 g_free(filename_tmp);
3306 return retval;
3307 }
3308
3309 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3310 {
3311 if (!bs->drv) {
3312 return 0;
3313 }
3314
3315 if (!bs->backing_hd) {
3316 return 0;
3317 }
3318
3319 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3320 }
3321
3322 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3323 {
3324 BlockDriverState *curr_bs = NULL;
3325
3326 if (!bs) {
3327 return NULL;
3328 }
3329
3330 curr_bs = bs;
3331
3332 while (curr_bs->backing_hd) {
3333 curr_bs = curr_bs->backing_hd;
3334 }
3335 return curr_bs;
3336 }
3337
3338 /**************************************************************/
3339 /* async I/Os */
3340
3341 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3342 QEMUIOVector *qiov, int nb_sectors,
3343 BlockDriverCompletionFunc *cb, void *opaque)
3344 {
3345 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3346
3347 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3348 cb, opaque, false);
3349 }
3350
3351 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3352 QEMUIOVector *qiov, int nb_sectors,
3353 BlockDriverCompletionFunc *cb, void *opaque)
3354 {
3355 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3356
3357 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3358 cb, opaque, true);
3359 }
3360
3361
3362 typedef struct MultiwriteCB {
3363 int error;
3364 int num_requests;
3365 int num_callbacks;
3366 struct {
3367 BlockDriverCompletionFunc *cb;
3368 void *opaque;
3369 QEMUIOVector *free_qiov;
3370 } callbacks[];
3371 } MultiwriteCB;
3372
3373 static void multiwrite_user_cb(MultiwriteCB *mcb)
3374 {
3375 int i;
3376
3377 for (i = 0; i < mcb->num_callbacks; i++) {
3378 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3379 if (mcb->callbacks[i].free_qiov) {
3380 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3381 }
3382 g_free(mcb->callbacks[i].free_qiov);
3383 }
3384 }
3385
3386 static void multiwrite_cb(void *opaque, int ret)
3387 {
3388 MultiwriteCB *mcb = opaque;
3389
3390 trace_multiwrite_cb(mcb, ret);
3391
3392 if (ret < 0 && !mcb->error) {
3393 mcb->error = ret;
3394 }
3395
3396 mcb->num_requests--;
3397 if (mcb->num_requests == 0) {
3398 multiwrite_user_cb(mcb);
3399 g_free(mcb);
3400 }
3401 }
3402
3403 static int multiwrite_req_compare(const void *a, const void *b)
3404 {
3405 const BlockRequest *req1 = a, *req2 = b;
3406
3407 /*
3408 * Note that we can't simply subtract req2->sector from req1->sector
3409 * here as that could overflow the return value.
3410 */
3411 if (req1->sector > req2->sector) {
3412 return 1;
3413 } else if (req1->sector < req2->sector) {
3414 return -1;
3415 } else {
3416 return 0;
3417 }
3418 }
3419
3420 /*
3421 * Takes a bunch of requests and tries to merge them. Returns the number of
3422 * requests that remain after merging.
3423 */
3424 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3425 int num_reqs, MultiwriteCB *mcb)
3426 {
3427 int i, outidx;
3428
3429 // Sort requests by start sector
3430 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3431
3432 // Check if adjacent requests touch the same clusters. If so, combine them,
3433 // filling up gaps with zero sectors.
3434 outidx = 0;
3435 for (i = 1; i < num_reqs; i++) {
3436 int merge = 0;
3437 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3438
3439 // Handle exactly sequential writes and overlapping writes.
3440 if (reqs[i].sector <= oldreq_last) {
3441 merge = 1;
3442 }
3443
3444 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3445 merge = 0;
3446 }
3447
3448 if (merge) {
3449 size_t size;
3450 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3451 qemu_iovec_init(qiov,
3452 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3453
3454 // Add the first request to the merged one. If the requests are
3455 // overlapping, drop the last sectors of the first request.
3456 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3457 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3458
3459 // We should need to add any zeros between the two requests
3460 assert (reqs[i].sector <= oldreq_last);
3461
3462 // Add the second request
3463 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3464
3465 reqs[outidx].nb_sectors = qiov->size >> 9;
3466 reqs[outidx].qiov = qiov;
3467
3468 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3469 } else {
3470 outidx++;
3471 reqs[outidx].sector = reqs[i].sector;
3472 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3473 reqs[outidx].qiov = reqs[i].qiov;
3474 }
3475 }
3476
3477 return outidx + 1;
3478 }
3479
3480 /*
3481 * Submit multiple AIO write requests at once.
3482 *
3483 * On success, the function returns 0 and all requests in the reqs array have
3484 * been submitted. In error case this function returns -1, and any of the
3485 * requests may or may not be submitted yet. In particular, this means that the
3486 * callback will be called for some of the requests, for others it won't. The
3487 * caller must check the error field of the BlockRequest to wait for the right
3488 * callbacks (if error != 0, no callback will be called).
3489 *
3490 * The implementation may modify the contents of the reqs array, e.g. to merge
3491 * requests. However, the fields opaque and error are left unmodified as they
3492 * are used to signal failure for a single request to the caller.
3493 */
3494 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3495 {
3496 MultiwriteCB *mcb;
3497 int i;
3498
3499 /* don't submit writes if we don't have a medium */
3500 if (bs->drv == NULL) {
3501 for (i = 0; i < num_reqs; i++) {
3502 reqs[i].error = -ENOMEDIUM;
3503 }
3504 return -1;
3505 }
3506
3507 if (num_reqs == 0) {
3508 return 0;
3509 }
3510
3511 // Create MultiwriteCB structure
3512 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3513 mcb->num_requests = 0;
3514 mcb->num_callbacks = num_reqs;
3515
3516 for (i = 0; i < num_reqs; i++) {
3517 mcb->callbacks[i].cb = reqs[i].cb;
3518 mcb->callbacks[i].opaque = reqs[i].opaque;
3519 }
3520
3521 // Check for mergable requests
3522 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3523
3524 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3525
3526 /* Run the aio requests. */
3527 mcb->num_requests = num_reqs;
3528 for (i = 0; i < num_reqs; i++) {
3529 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3530 reqs[i].nb_sectors, multiwrite_cb, mcb);
3531 }
3532
3533 return 0;
3534 }
3535
3536 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3537 {
3538 acb->aiocb_info->cancel(acb);
3539 }
3540
3541 /* block I/O throttling */
3542 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3543 bool is_write, double elapsed_time, uint64_t *wait)
3544 {
3545 uint64_t bps_limit = 0;
3546 uint64_t extension;
3547 double bytes_limit, bytes_base, bytes_res;
3548 double slice_time, wait_time;
3549
3550 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3551 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3552 } else if (bs->io_limits.bps[is_write]) {
3553 bps_limit = bs->io_limits.bps[is_write];
3554 } else {
3555 if (wait) {
3556 *wait = 0;
3557 }
3558
3559 return false;
3560 }
3561
3562 slice_time = bs->slice_end - bs->slice_start;
3563 slice_time /= (NANOSECONDS_PER_SECOND);
3564 bytes_limit = bps_limit * slice_time;
3565 bytes_base = bs->slice_submitted.bytes[is_write];
3566 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3567 bytes_base += bs->slice_submitted.bytes[!is_write];
3568 }
3569
3570 /* bytes_base: the bytes of data which have been read/written; and
3571 * it is obtained from the history statistic info.
3572 * bytes_res: the remaining bytes of data which need to be read/written.
3573 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3574 * the total time for completing reading/writting all data.
3575 */
3576 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3577
3578 if (bytes_base + bytes_res <= bytes_limit) {
3579 if (wait) {
3580 *wait = 0;
3581 }
3582
3583 return false;
3584 }
3585
3586 /* Calc approx time to dispatch */
3587 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3588
3589 /* When the I/O rate at runtime exceeds the limits,
3590 * bs->slice_end need to be extended in order that the current statistic
3591 * info can be kept until the timer fire, so it is increased and tuned
3592 * based on the result of experiment.
3593 */
3594 extension = wait_time * NANOSECONDS_PER_SECOND;
3595 extension = DIV_ROUND_UP(extension, BLOCK_IO_SLICE_TIME) *
3596 BLOCK_IO_SLICE_TIME;
3597 bs->slice_end += extension;
3598 if (wait) {
3599 *wait = wait_time * NANOSECONDS_PER_SECOND;
3600 }
3601
3602 return true;
3603 }
3604
3605 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3606 double elapsed_time, uint64_t *wait)
3607 {
3608 uint64_t iops_limit = 0;
3609 double ios_limit, ios_base;
3610 double slice_time, wait_time;
3611
3612 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3613 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3614 } else if (bs->io_limits.iops[is_write]) {
3615 iops_limit = bs->io_limits.iops[is_write];
3616 } else {
3617 if (wait) {
3618 *wait = 0;
3619 }
3620
3621 return false;
3622 }
3623
3624 slice_time = bs->slice_end - bs->slice_start;
3625 slice_time /= (NANOSECONDS_PER_SECOND);
3626 ios_limit = iops_limit * slice_time;
3627 ios_base = bs->slice_submitted.ios[is_write];
3628 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3629 ios_base += bs->slice_submitted.ios[!is_write];
3630 }
3631
3632 if (ios_base + 1 <= ios_limit) {
3633 if (wait) {
3634 *wait = 0;
3635 }
3636
3637 return false;
3638 }
3639
3640 /* Calc approx time to dispatch, in seconds */
3641 wait_time = (ios_base + 1) / iops_limit;
3642 if (wait_time > elapsed_time) {
3643 wait_time = wait_time - elapsed_time;
3644 } else {
3645 wait_time = 0;
3646 }
3647
3648 /* Exceeded current slice, extend it by another slice time */
3649 bs->slice_end += BLOCK_IO_SLICE_TIME;
3650 if (wait) {
3651 *wait = wait_time * NANOSECONDS_PER_SECOND;
3652 }
3653
3654 return true;
3655 }
3656
3657 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3658 bool is_write, int64_t *wait)
3659 {
3660 int64_t now, max_wait;
3661 uint64_t bps_wait = 0, iops_wait = 0;
3662 double elapsed_time;
3663 int bps_ret, iops_ret;
3664
3665 now = qemu_get_clock_ns(vm_clock);
3666 if (now > bs->slice_end) {
3667 bs->slice_start = now;
3668 bs->slice_end = now + BLOCK_IO_SLICE_TIME;
3669 memset(&bs->slice_submitted, 0, sizeof(bs->slice_submitted));
3670 }
3671
3672 elapsed_time = now - bs->slice_start;
3673 elapsed_time /= (NANOSECONDS_PER_SECOND);
3674
3675 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3676 is_write, elapsed_time, &bps_wait);
3677 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3678 elapsed_time, &iops_wait);
3679 if (bps_ret || iops_ret) {
3680 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3681 if (wait) {
3682 *wait = max_wait;
3683 }
3684
3685 now = qemu_get_clock_ns(vm_clock);
3686 if (bs->slice_end < now + max_wait) {
3687 bs->slice_end = now + max_wait;
3688 }
3689
3690 return true;
3691 }
3692
3693 if (wait) {
3694 *wait = 0;
3695 }
3696
3697 bs->slice_submitted.bytes[is_write] += (int64_t)nb_sectors *
3698 BDRV_SECTOR_SIZE;
3699 bs->slice_submitted.ios[is_write]++;
3700
3701 return false;
3702 }
3703
3704 /**************************************************************/
3705 /* async block device emulation */
3706
3707 typedef struct BlockDriverAIOCBSync {
3708 BlockDriverAIOCB common;
3709 QEMUBH *bh;
3710 int ret;
3711 /* vector translation state */
3712 QEMUIOVector *qiov;
3713 uint8_t *bounce;
3714 int is_write;
3715 } BlockDriverAIOCBSync;
3716
3717 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3718 {
3719 BlockDriverAIOCBSync *acb =
3720 container_of(blockacb, BlockDriverAIOCBSync, common);
3721 qemu_bh_delete(acb->bh);
3722 acb->bh = NULL;
3723 qemu_aio_release(acb);
3724 }
3725
3726 static const AIOCBInfo bdrv_em_aiocb_info = {
3727 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3728 .cancel = bdrv_aio_cancel_em,
3729 };
3730
3731 static void bdrv_aio_bh_cb(void *opaque)
3732 {
3733 BlockDriverAIOCBSync *acb = opaque;
3734
3735 if (!acb->is_write)
3736 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3737 qemu_vfree(acb->bounce);
3738 acb->common.cb(acb->common.opaque, acb->ret);
3739 qemu_bh_delete(acb->bh);
3740 acb->bh = NULL;
3741 qemu_aio_release(acb);
3742 }
3743
3744 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3745 int64_t sector_num,
3746 QEMUIOVector *qiov,
3747 int nb_sectors,
3748 BlockDriverCompletionFunc *cb,
3749 void *opaque,
3750 int is_write)
3751
3752 {
3753 BlockDriverAIOCBSync *acb;
3754
3755 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3756 acb->is_write = is_write;
3757 acb->qiov = qiov;
3758 acb->bounce = qemu_blockalign(bs, qiov->size);
3759 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3760
3761 if (is_write) {
3762 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3763 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3764 } else {
3765 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3766 }
3767
3768 qemu_bh_schedule(acb->bh);
3769
3770 return &acb->common;
3771 }
3772
3773 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3774 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3775 BlockDriverCompletionFunc *cb, void *opaque)
3776 {
3777 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3778 }
3779
3780 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3781 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3782 BlockDriverCompletionFunc *cb, void *opaque)
3783 {
3784 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3785 }
3786
3787
3788 typedef struct BlockDriverAIOCBCoroutine {
3789 BlockDriverAIOCB common;
3790 BlockRequest req;
3791 bool is_write;
3792 bool *done;
3793 QEMUBH* bh;
3794 } BlockDriverAIOCBCoroutine;
3795
3796 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3797 {
3798 BlockDriverAIOCBCoroutine *acb =
3799 container_of(blockacb, BlockDriverAIOCBCoroutine, common);
3800 bool done = false;
3801
3802 acb->done = &done;
3803 while (!done) {
3804 qemu_aio_wait();
3805 }
3806 }
3807
3808 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3809 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3810 .cancel = bdrv_aio_co_cancel_em,
3811 };
3812
3813 static void bdrv_co_em_bh(void *opaque)
3814 {
3815 BlockDriverAIOCBCoroutine *acb = opaque;
3816
3817 acb->common.cb(acb->common.opaque, acb->req.error);
3818
3819 if (acb->done) {
3820 *acb->done = true;
3821 }
3822
3823 qemu_bh_delete(acb->bh);
3824 qemu_aio_release(acb);
3825 }
3826
3827 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3828 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3829 {
3830 BlockDriverAIOCBCoroutine *acb = opaque;
3831 BlockDriverState *bs = acb->common.bs;
3832
3833 if (!acb->is_write) {
3834 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3835 acb->req.nb_sectors, acb->req.qiov, 0);
3836 } else {
3837 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3838 acb->req.nb_sectors, acb->req.qiov, 0);
3839 }
3840
3841 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3842 qemu_bh_schedule(acb->bh);
3843 }
3844
3845 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3846 int64_t sector_num,
3847 QEMUIOVector *qiov,
3848 int nb_sectors,
3849 BlockDriverCompletionFunc *cb,
3850 void *opaque,
3851 bool is_write)
3852 {
3853 Coroutine *co;
3854 BlockDriverAIOCBCoroutine *acb;
3855
3856 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3857 acb->req.sector = sector_num;
3858 acb->req.nb_sectors = nb_sectors;
3859 acb->req.qiov = qiov;
3860 acb->is_write = is_write;
3861 acb->done = NULL;
3862
3863 co = qemu_coroutine_create(bdrv_co_do_rw);
3864 qemu_coroutine_enter(co, acb);
3865
3866 return &acb->common;
3867 }
3868
3869 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3870 {
3871 BlockDriverAIOCBCoroutine *acb = opaque;
3872 BlockDriverState *bs = acb->common.bs;
3873
3874 acb->req.error = bdrv_co_flush(bs);
3875 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3876 qemu_bh_schedule(acb->bh);
3877 }
3878
3879 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3880 BlockDriverCompletionFunc *cb, void *opaque)
3881 {
3882 trace_bdrv_aio_flush(bs, opaque);
3883
3884 Coroutine *co;
3885 BlockDriverAIOCBCoroutine *acb;
3886
3887 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3888 acb->done = NULL;
3889
3890 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3891 qemu_coroutine_enter(co, acb);
3892
3893 return &acb->common;
3894 }
3895
3896 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3897 {
3898 BlockDriverAIOCBCoroutine *acb = opaque;
3899 BlockDriverState *bs = acb->common.bs;
3900
3901 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3902 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3903 qemu_bh_schedule(acb->bh);
3904 }
3905
3906 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3907 int64_t sector_num, int nb_sectors,
3908 BlockDriverCompletionFunc *cb, void *opaque)
3909 {
3910 Coroutine *co;
3911 BlockDriverAIOCBCoroutine *acb;
3912
3913 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3914
3915 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3916 acb->req.sector = sector_num;
3917 acb->req.nb_sectors = nb_sectors;
3918 acb->done = NULL;
3919 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3920 qemu_coroutine_enter(co, acb);
3921
3922 return &acb->common;
3923 }
3924
3925 void bdrv_init(void)
3926 {
3927 module_call_init(MODULE_INIT_BLOCK);
3928 }
3929
3930 void bdrv_init_with_whitelist(void)
3931 {
3932 use_bdrv_whitelist = 1;
3933 bdrv_init();
3934 }
3935
3936 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
3937 BlockDriverCompletionFunc *cb, void *opaque)
3938 {
3939 BlockDriverAIOCB *acb;
3940
3941 acb = g_slice_alloc(aiocb_info->aiocb_size);
3942 acb->aiocb_info = aiocb_info;
3943 acb->bs = bs;
3944 acb->cb = cb;
3945 acb->opaque = opaque;
3946 return acb;
3947 }
3948
3949 void qemu_aio_release(void *p)
3950 {
3951 BlockDriverAIOCB *acb = p;
3952 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
3953 }
3954
3955 /**************************************************************/
3956 /* Coroutine block device emulation */
3957
3958 typedef struct CoroutineIOCompletion {
3959 Coroutine *coroutine;
3960 int ret;
3961 } CoroutineIOCompletion;
3962
3963 static void bdrv_co_io_em_complete(void *opaque, int ret)
3964 {
3965 CoroutineIOCompletion *co = opaque;
3966
3967 co->ret = ret;
3968 qemu_coroutine_enter(co->coroutine, NULL);
3969 }
3970
3971 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3972 int nb_sectors, QEMUIOVector *iov,
3973 bool is_write)
3974 {
3975 CoroutineIOCompletion co = {
3976 .coroutine = qemu_coroutine_self(),
3977 };
3978 BlockDriverAIOCB *acb;
3979
3980 if (is_write) {
3981 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3982 bdrv_co_io_em_complete, &co);
3983 } else {
3984 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3985 bdrv_co_io_em_complete, &co);
3986 }
3987
3988 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3989 if (!acb) {
3990 return -EIO;
3991 }
3992 qemu_coroutine_yield();
3993
3994 return co.ret;
3995 }
3996
3997 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3998 int64_t sector_num, int nb_sectors,
3999 QEMUIOVector *iov)
4000 {
4001 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
4002 }
4003
4004 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
4005 int64_t sector_num, int nb_sectors,
4006 QEMUIOVector *iov)
4007 {
4008 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
4009 }
4010
4011 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
4012 {
4013 RwCo *rwco = opaque;
4014
4015 rwco->ret = bdrv_co_flush(rwco->bs);
4016 }
4017
4018 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
4019 {
4020 int ret;
4021
4022 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
4023 return 0;
4024 }
4025
4026 /* Write back cached data to the OS even with cache=unsafe */
4027 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
4028 if (bs->drv->bdrv_co_flush_to_os) {
4029 ret = bs->drv->bdrv_co_flush_to_os(bs);
4030 if (ret < 0) {
4031 return ret;
4032 }
4033 }
4034
4035 /* But don't actually force it to the disk with cache=unsafe */
4036 if (bs->open_flags & BDRV_O_NO_FLUSH) {
4037 goto flush_parent;
4038 }
4039
4040 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
4041 if (bs->drv->bdrv_co_flush_to_disk) {
4042 ret = bs->drv->bdrv_co_flush_to_disk(bs);
4043 } else if (bs->drv->bdrv_aio_flush) {
4044 BlockDriverAIOCB *acb;
4045 CoroutineIOCompletion co = {
4046 .coroutine = qemu_coroutine_self(),
4047 };
4048
4049 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4050 if (acb == NULL) {
4051 ret = -EIO;
4052 } else {
4053 qemu_coroutine_yield();
4054 ret = co.ret;
4055 }
4056 } else {
4057 /*
4058 * Some block drivers always operate in either writethrough or unsafe
4059 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4060 * know how the server works (because the behaviour is hardcoded or
4061 * depends on server-side configuration), so we can't ensure that
4062 * everything is safe on disk. Returning an error doesn't work because
4063 * that would break guests even if the server operates in writethrough
4064 * mode.
4065 *
4066 * Let's hope the user knows what he's doing.
4067 */
4068 ret = 0;
4069 }
4070 if (ret < 0) {
4071 return ret;
4072 }
4073
4074 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4075 * in the case of cache=unsafe, so there are no useless flushes.
4076 */
4077 flush_parent:
4078 return bdrv_co_flush(bs->file);
4079 }
4080
4081 void bdrv_invalidate_cache(BlockDriverState *bs)
4082 {
4083 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4084 bs->drv->bdrv_invalidate_cache(bs);
4085 }
4086 }
4087
4088 void bdrv_invalidate_cache_all(void)
4089 {
4090 BlockDriverState *bs;
4091
4092 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4093 bdrv_invalidate_cache(bs);
4094 }
4095 }
4096
4097 void bdrv_clear_incoming_migration_all(void)
4098 {
4099 BlockDriverState *bs;
4100
4101 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4102 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4103 }
4104 }
4105
4106 int bdrv_flush(BlockDriverState *bs)
4107 {
4108 Coroutine *co;
4109 RwCo rwco = {
4110 .bs = bs,
4111 .ret = NOT_DONE,
4112 };
4113
4114 if (qemu_in_coroutine()) {
4115 /* Fast-path if already in coroutine context */
4116 bdrv_flush_co_entry(&rwco);
4117 } else {
4118 co = qemu_coroutine_create(bdrv_flush_co_entry);
4119 qemu_coroutine_enter(co, &rwco);
4120 while (rwco.ret == NOT_DONE) {
4121 qemu_aio_wait();
4122 }
4123 }
4124
4125 return rwco.ret;
4126 }
4127
4128 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4129 {
4130 RwCo *rwco = opaque;
4131
4132 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4133 }
4134
4135 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4136 int nb_sectors)
4137 {
4138 if (!bs->drv) {
4139 return -ENOMEDIUM;
4140 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4141 return -EIO;
4142 } else if (bs->read_only) {
4143 return -EROFS;
4144 }
4145
4146 if (bs->dirty_bitmap) {
4147 bdrv_reset_dirty(bs, sector_num, nb_sectors);
4148 }
4149
4150 /* Do nothing if disabled. */
4151 if (!(bs->open_flags & BDRV_O_UNMAP)) {
4152 return 0;
4153 }
4154
4155 if (bs->drv->bdrv_co_discard) {
4156 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4157 } else if (bs->drv->bdrv_aio_discard) {
4158 BlockDriverAIOCB *acb;
4159 CoroutineIOCompletion co = {
4160 .coroutine = qemu_coroutine_self(),
4161 };
4162
4163 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4164 bdrv_co_io_em_complete, &co);
4165 if (acb == NULL) {
4166 return -EIO;
4167 } else {
4168 qemu_coroutine_yield();
4169 return co.ret;
4170 }
4171 } else {
4172 return 0;
4173 }
4174 }
4175
4176 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4177 {
4178 Coroutine *co;
4179 RwCo rwco = {
4180 .bs = bs,
4181 .sector_num = sector_num,
4182 .nb_sectors = nb_sectors,
4183 .ret = NOT_DONE,
4184 };
4185
4186 if (qemu_in_coroutine()) {
4187 /* Fast-path if already in coroutine context */
4188 bdrv_discard_co_entry(&rwco);
4189 } else {
4190 co = qemu_coroutine_create(bdrv_discard_co_entry);
4191 qemu_coroutine_enter(co, &rwco);
4192 while (rwco.ret == NOT_DONE) {
4193 qemu_aio_wait();
4194 }
4195 }
4196
4197 return rwco.ret;
4198 }
4199
4200 /**************************************************************/
4201 /* removable device support */
4202
4203 /**
4204 * Return TRUE if the media is present
4205 */
4206 int bdrv_is_inserted(BlockDriverState *bs)
4207 {
4208 BlockDriver *drv = bs->drv;
4209
4210 if (!drv)
4211 return 0;
4212 if (!drv->bdrv_is_inserted)
4213 return 1;
4214 return drv->bdrv_is_inserted(bs);
4215 }
4216
4217 /**
4218 * Return whether the media changed since the last call to this
4219 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4220 */
4221 int bdrv_media_changed(BlockDriverState *bs)
4222 {
4223 BlockDriver *drv = bs->drv;
4224
4225 if (drv && drv->bdrv_media_changed) {
4226 return drv->bdrv_media_changed(bs);
4227 }
4228 return -ENOTSUP;
4229 }
4230
4231 /**
4232 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4233 */
4234 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4235 {
4236 BlockDriver *drv = bs->drv;
4237
4238 if (drv && drv->bdrv_eject) {
4239 drv->bdrv_eject(bs, eject_flag);
4240 }
4241
4242 if (bs->device_name[0] != '\0') {
4243 bdrv_emit_qmp_eject_event(bs, eject_flag);
4244 }
4245 }
4246
4247 /**
4248 * Lock or unlock the media (if it is locked, the user won't be able
4249 * to eject it manually).
4250 */
4251 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4252 {
4253 BlockDriver *drv = bs->drv;
4254
4255 trace_bdrv_lock_medium(bs, locked);
4256
4257 if (drv && drv->bdrv_lock_medium) {
4258 drv->bdrv_lock_medium(bs, locked);
4259 }
4260 }
4261
4262 /* needed for generic scsi interface */
4263
4264 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4265 {
4266 BlockDriver *drv = bs->drv;
4267
4268 if (drv && drv->bdrv_ioctl)
4269 return drv->bdrv_ioctl(bs, req, buf);
4270 return -ENOTSUP;
4271 }
4272
4273 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4274 unsigned long int req, void *buf,
4275 BlockDriverCompletionFunc *cb, void *opaque)
4276 {
4277 BlockDriver *drv = bs->drv;
4278
4279 if (drv && drv->bdrv_aio_ioctl)
4280 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4281 return NULL;
4282 }
4283
4284 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4285 {
4286 bs->buffer_alignment = align;
4287 }
4288
4289 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4290 {
4291 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4292 }
4293
4294 /*
4295 * Check if all memory in this vector is sector aligned.
4296 */
4297 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
4298 {
4299 int i;
4300
4301 for (i = 0; i < qiov->niov; i++) {
4302 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) {
4303 return false;
4304 }
4305 }
4306
4307 return true;
4308 }
4309
4310 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity)
4311 {
4312 int64_t bitmap_size;
4313
4314 assert((granularity & (granularity - 1)) == 0);
4315
4316 if (granularity) {
4317 granularity >>= BDRV_SECTOR_BITS;
4318 assert(!bs->dirty_bitmap);
4319 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS);
4320 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1);
4321 } else {
4322 if (bs->dirty_bitmap) {
4323 hbitmap_free(bs->dirty_bitmap);
4324 bs->dirty_bitmap = NULL;
4325 }
4326 }
4327 }
4328
4329 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4330 {
4331 if (bs->dirty_bitmap) {
4332 return hbitmap_get(bs->dirty_bitmap, sector);
4333 } else {
4334 return 0;
4335 }
4336 }
4337
4338 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi)
4339 {
4340 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0);
4341 }
4342
4343 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4344 int nr_sectors)
4345 {
4346 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors);
4347 }
4348
4349 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4350 int nr_sectors)
4351 {
4352 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors);
4353 }
4354
4355 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4356 {
4357 if (bs->dirty_bitmap) {
4358 return hbitmap_count(bs->dirty_bitmap);
4359 } else {
4360 return 0;
4361 }
4362 }
4363
4364 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4365 {
4366 assert(bs->in_use != in_use);
4367 bs->in_use = in_use;
4368 }
4369
4370 int bdrv_in_use(BlockDriverState *bs)
4371 {
4372 return bs->in_use;
4373 }
4374
4375 void bdrv_iostatus_enable(BlockDriverState *bs)
4376 {
4377 bs->iostatus_enabled = true;
4378 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4379 }
4380
4381 /* The I/O status is only enabled if the drive explicitly
4382 * enables it _and_ the VM is configured to stop on errors */
4383 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4384 {
4385 return (bs->iostatus_enabled &&
4386 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4387 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4388 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4389 }
4390
4391 void bdrv_iostatus_disable(BlockDriverState *bs)
4392 {
4393 bs->iostatus_enabled = false;
4394 }
4395
4396 void bdrv_iostatus_reset(BlockDriverState *bs)
4397 {
4398 if (bdrv_iostatus_is_enabled(bs)) {
4399 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4400 if (bs->job) {
4401 block_job_iostatus_reset(bs->job);
4402 }
4403 }
4404 }
4405
4406 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4407 {
4408 assert(bdrv_iostatus_is_enabled(bs));
4409 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4410 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4411 BLOCK_DEVICE_IO_STATUS_FAILED;
4412 }
4413 }
4414
4415 void
4416 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4417 enum BlockAcctType type)
4418 {
4419 assert(type < BDRV_MAX_IOTYPE);
4420
4421 cookie->bytes = bytes;
4422 cookie->start_time_ns = get_clock();
4423 cookie->type = type;
4424 }
4425
4426 void
4427 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4428 {
4429 assert(cookie->type < BDRV_MAX_IOTYPE);
4430
4431 bs->nr_bytes[cookie->type] += cookie->bytes;
4432 bs->nr_ops[cookie->type]++;
4433 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4434 }
4435
4436 void bdrv_img_create(const char *filename, const char *fmt,
4437 const char *base_filename, const char *base_fmt,
4438 char *options, uint64_t img_size, int flags,
4439 Error **errp, bool quiet)
4440 {
4441 QEMUOptionParameter *param = NULL, *create_options = NULL;
4442 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4443 BlockDriverState *bs = NULL;
4444 BlockDriver *drv, *proto_drv;
4445 BlockDriver *backing_drv = NULL;
4446 int ret = 0;
4447
4448 /* Find driver and parse its options */
4449 drv = bdrv_find_format(fmt);
4450 if (!drv) {
4451 error_setg(errp, "Unknown file format '%s'", fmt);
4452 return;
4453 }
4454
4455 proto_drv = bdrv_find_protocol(filename);
4456 if (!proto_drv) {
4457 error_setg(errp, "Unknown protocol '%s'", filename);
4458 return;
4459 }
4460
4461 create_options = append_option_parameters(create_options,
4462 drv->create_options);
4463 create_options = append_option_parameters(create_options,
4464 proto_drv->create_options);
4465
4466 /* Create parameter list with default values */
4467 param = parse_option_parameters("", create_options, param);
4468
4469 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4470
4471 /* Parse -o options */
4472 if (options) {
4473 param = parse_option_parameters(options, create_options, param);
4474 if (param == NULL) {
4475 error_setg(errp, "Invalid options for file format '%s'.", fmt);
4476 goto out;
4477 }
4478 }
4479
4480 if (base_filename) {
4481 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4482 base_filename)) {
4483 error_setg(errp, "Backing file not supported for file format '%s'",
4484 fmt);
4485 goto out;
4486 }
4487 }
4488
4489 if (base_fmt) {
4490 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4491 error_setg(errp, "Backing file format not supported for file "
4492 "format '%s'", fmt);
4493 goto out;
4494 }
4495 }
4496
4497 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4498 if (backing_file && backing_file->value.s) {
4499 if (!strcmp(filename, backing_file->value.s)) {
4500 error_setg(errp, "Error: Trying to create an image with the "
4501 "same filename as the backing file");
4502 goto out;
4503 }
4504 }
4505
4506 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4507 if (backing_fmt && backing_fmt->value.s) {
4508 backing_drv = bdrv_find_format(backing_fmt->value.s);
4509 if (!backing_drv) {
4510 error_setg(errp, "Unknown backing file format '%s'",
4511 backing_fmt->value.s);
4512 goto out;
4513 }
4514 }
4515
4516 // The size for the image must always be specified, with one exception:
4517 // If we are using a backing file, we can obtain the size from there
4518 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4519 if (size && size->value.n == -1) {
4520 if (backing_file && backing_file->value.s) {
4521 uint64_t size;
4522 char buf[32];
4523 int back_flags;
4524
4525 /* backing files always opened read-only */
4526 back_flags =
4527 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4528
4529 bs = bdrv_new("");
4530
4531 ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags,
4532 backing_drv);
4533 if (ret < 0) {
4534 error_setg_errno(errp, -ret, "Could not open '%s'",
4535 backing_file->value.s);
4536 goto out;
4537 }
4538 bdrv_get_geometry(bs, &size);
4539 size *= 512;
4540
4541 snprintf(buf, sizeof(buf), "%" PRId64, size);
4542 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4543 } else {
4544 error_setg(errp, "Image creation needs a size parameter");
4545 goto out;
4546 }
4547 }
4548
4549 if (!quiet) {
4550 printf("Formatting '%s', fmt=%s ", filename, fmt);
4551 print_option_parameters(param);
4552 puts("");
4553 }
4554 ret = bdrv_create(drv, filename, param);
4555 if (ret < 0) {
4556 if (ret == -ENOTSUP) {
4557 error_setg(errp,"Formatting or formatting option not supported for "
4558 "file format '%s'", fmt);
4559 } else if (ret == -EFBIG) {
4560 const char *cluster_size_hint = "";
4561 if (get_option_parameter(create_options, BLOCK_OPT_CLUSTER_SIZE)) {
4562 cluster_size_hint = " (try using a larger cluster size)";
4563 }
4564 error_setg(errp, "The image size is too large for file format '%s'%s",
4565 fmt, cluster_size_hint);
4566 } else {
4567 error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
4568 strerror(-ret));
4569 }
4570 }
4571
4572 out:
4573 free_option_parameters(create_options);
4574 free_option_parameters(param);
4575
4576 if (bs) {
4577 bdrv_delete(bs);
4578 }
4579 }
4580
4581 AioContext *bdrv_get_aio_context(BlockDriverState *bs)
4582 {
4583 /* Currently BlockDriverState always uses the main loop AioContext */
4584 return qemu_get_aio_context();
4585 }
4586
4587 void bdrv_add_before_write_notifier(BlockDriverState *bs,
4588 NotifierWithReturn *notifier)
4589 {
4590 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
4591 }