]> git.proxmox.com Git - qemu.git/blob - block.c
block: bdrv_create(): don't leak cco.filename on error
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "qemu-coroutine.h"
34 #include "qmp-commands.h"
35 #include "qemu-timer.h"
36
37 #ifdef CONFIG_BSD
38 #include <sys/types.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <sys/queue.h>
42 #ifndef __DragonFly__
43 #include <sys/disk.h>
44 #endif
45 #endif
46
47 #ifdef _WIN32
48 #include <windows.h>
49 #endif
50
51 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
52
53 typedef enum {
54 BDRV_REQ_COPY_ON_READ = 0x1,
55 BDRV_REQ_ZERO_WRITE = 0x2,
56 } BdrvRequestFlags;
57
58 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
59 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
60 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
61 BlockDriverCompletionFunc *cb, void *opaque);
62 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
63 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
64 BlockDriverCompletionFunc *cb, void *opaque);
65 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
66 int64_t sector_num, int nb_sectors,
67 QEMUIOVector *iov);
68 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
69 int64_t sector_num, int nb_sectors,
70 QEMUIOVector *iov);
71 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
72 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
73 BdrvRequestFlags flags);
74 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
75 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
76 BdrvRequestFlags flags);
77 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
78 int64_t sector_num,
79 QEMUIOVector *qiov,
80 int nb_sectors,
81 BlockDriverCompletionFunc *cb,
82 void *opaque,
83 bool is_write);
84 static void coroutine_fn bdrv_co_do_rw(void *opaque);
85 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
86 int64_t sector_num, int nb_sectors);
87
88 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
89 bool is_write, double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
91 double elapsed_time, uint64_t *wait);
92 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
93 bool is_write, int64_t *wait);
94
95 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
96 QTAILQ_HEAD_INITIALIZER(bdrv_states);
97
98 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
99 QLIST_HEAD_INITIALIZER(bdrv_drivers);
100
101 /* The device to use for VM snapshots */
102 static BlockDriverState *bs_snapshots;
103
104 /* If non-zero, use only whitelisted block drivers */
105 static int use_bdrv_whitelist;
106
107 #ifdef _WIN32
108 static int is_windows_drive_prefix(const char *filename)
109 {
110 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
111 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
112 filename[1] == ':');
113 }
114
115 int is_windows_drive(const char *filename)
116 {
117 if (is_windows_drive_prefix(filename) &&
118 filename[2] == '\0')
119 return 1;
120 if (strstart(filename, "\\\\.\\", NULL) ||
121 strstart(filename, "//./", NULL))
122 return 1;
123 return 0;
124 }
125 #endif
126
127 /* throttling disk I/O limits */
128 void bdrv_io_limits_disable(BlockDriverState *bs)
129 {
130 bs->io_limits_enabled = false;
131
132 while (qemu_co_queue_next(&bs->throttled_reqs));
133
134 if (bs->block_timer) {
135 qemu_del_timer(bs->block_timer);
136 qemu_free_timer(bs->block_timer);
137 bs->block_timer = NULL;
138 }
139
140 bs->slice_start = 0;
141 bs->slice_end = 0;
142 bs->slice_time = 0;
143 memset(&bs->io_base, 0, sizeof(bs->io_base));
144 }
145
146 static void bdrv_block_timer(void *opaque)
147 {
148 BlockDriverState *bs = opaque;
149
150 qemu_co_queue_next(&bs->throttled_reqs);
151 }
152
153 void bdrv_io_limits_enable(BlockDriverState *bs)
154 {
155 qemu_co_queue_init(&bs->throttled_reqs);
156 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
157 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
158 bs->slice_start = qemu_get_clock_ns(vm_clock);
159 bs->slice_end = bs->slice_start + bs->slice_time;
160 memset(&bs->io_base, 0, sizeof(bs->io_base));
161 bs->io_limits_enabled = true;
162 }
163
164 bool bdrv_io_limits_enabled(BlockDriverState *bs)
165 {
166 BlockIOLimit *io_limits = &bs->io_limits;
167 return io_limits->bps[BLOCK_IO_LIMIT_READ]
168 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
169 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
170 || io_limits->iops[BLOCK_IO_LIMIT_READ]
171 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
172 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
173 }
174
175 static void bdrv_io_limits_intercept(BlockDriverState *bs,
176 bool is_write, int nb_sectors)
177 {
178 int64_t wait_time = -1;
179
180 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
181 qemu_co_queue_wait(&bs->throttled_reqs);
182 }
183
184 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
185 * throttled requests will not be dequeued until the current request is
186 * allowed to be serviced. So if the current request still exceeds the
187 * limits, it will be inserted to the head. All requests followed it will
188 * be still in throttled_reqs queue.
189 */
190
191 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
192 qemu_mod_timer(bs->block_timer,
193 wait_time + qemu_get_clock_ns(vm_clock));
194 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
195 }
196
197 qemu_co_queue_next(&bs->throttled_reqs);
198 }
199
200 /* check if the path starts with "<protocol>:" */
201 static int path_has_protocol(const char *path)
202 {
203 const char *p;
204
205 #ifdef _WIN32
206 if (is_windows_drive(path) ||
207 is_windows_drive_prefix(path)) {
208 return 0;
209 }
210 p = path + strcspn(path, ":/\\");
211 #else
212 p = path + strcspn(path, ":/");
213 #endif
214
215 return *p == ':';
216 }
217
218 int path_is_absolute(const char *path)
219 {
220 #ifdef _WIN32
221 /* specific case for names like: "\\.\d:" */
222 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
223 return 1;
224 }
225 return (*path == '/' || *path == '\\');
226 #else
227 return (*path == '/');
228 #endif
229 }
230
231 /* if filename is absolute, just copy it to dest. Otherwise, build a
232 path to it by considering it is relative to base_path. URL are
233 supported. */
234 void path_combine(char *dest, int dest_size,
235 const char *base_path,
236 const char *filename)
237 {
238 const char *p, *p1;
239 int len;
240
241 if (dest_size <= 0)
242 return;
243 if (path_is_absolute(filename)) {
244 pstrcpy(dest, dest_size, filename);
245 } else {
246 p = strchr(base_path, ':');
247 if (p)
248 p++;
249 else
250 p = base_path;
251 p1 = strrchr(base_path, '/');
252 #ifdef _WIN32
253 {
254 const char *p2;
255 p2 = strrchr(base_path, '\\');
256 if (!p1 || p2 > p1)
257 p1 = p2;
258 }
259 #endif
260 if (p1)
261 p1++;
262 else
263 p1 = base_path;
264 if (p1 > p)
265 p = p1;
266 len = p - base_path;
267 if (len > dest_size - 1)
268 len = dest_size - 1;
269 memcpy(dest, base_path, len);
270 dest[len] = '\0';
271 pstrcat(dest, dest_size, filename);
272 }
273 }
274
275 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
276 {
277 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
278 pstrcpy(dest, sz, bs->backing_file);
279 } else {
280 path_combine(dest, sz, bs->filename, bs->backing_file);
281 }
282 }
283
284 void bdrv_register(BlockDriver *bdrv)
285 {
286 /* Block drivers without coroutine functions need emulation */
287 if (!bdrv->bdrv_co_readv) {
288 bdrv->bdrv_co_readv = bdrv_co_readv_em;
289 bdrv->bdrv_co_writev = bdrv_co_writev_em;
290
291 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
292 * the block driver lacks aio we need to emulate that too.
293 */
294 if (!bdrv->bdrv_aio_readv) {
295 /* add AIO emulation layer */
296 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
297 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
298 }
299 }
300
301 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
302 }
303
304 /* create a new block device (by default it is empty) */
305 BlockDriverState *bdrv_new(const char *device_name)
306 {
307 BlockDriverState *bs;
308
309 bs = g_malloc0(sizeof(BlockDriverState));
310 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
311 if (device_name[0] != '\0') {
312 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
313 }
314 bdrv_iostatus_disable(bs);
315 return bs;
316 }
317
318 BlockDriver *bdrv_find_format(const char *format_name)
319 {
320 BlockDriver *drv1;
321 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
322 if (!strcmp(drv1->format_name, format_name)) {
323 return drv1;
324 }
325 }
326 return NULL;
327 }
328
329 static int bdrv_is_whitelisted(BlockDriver *drv)
330 {
331 static const char *whitelist[] = {
332 CONFIG_BDRV_WHITELIST
333 };
334 const char **p;
335
336 if (!whitelist[0])
337 return 1; /* no whitelist, anything goes */
338
339 for (p = whitelist; *p; p++) {
340 if (!strcmp(drv->format_name, *p)) {
341 return 1;
342 }
343 }
344 return 0;
345 }
346
347 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
348 {
349 BlockDriver *drv = bdrv_find_format(format_name);
350 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
351 }
352
353 typedef struct CreateCo {
354 BlockDriver *drv;
355 char *filename;
356 QEMUOptionParameter *options;
357 int ret;
358 } CreateCo;
359
360 static void coroutine_fn bdrv_create_co_entry(void *opaque)
361 {
362 CreateCo *cco = opaque;
363 assert(cco->drv);
364
365 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
366 }
367
368 int bdrv_create(BlockDriver *drv, const char* filename,
369 QEMUOptionParameter *options)
370 {
371 int ret;
372
373 Coroutine *co;
374 CreateCo cco = {
375 .drv = drv,
376 .filename = g_strdup(filename),
377 .options = options,
378 .ret = NOT_DONE,
379 };
380
381 if (!drv->bdrv_create) {
382 ret = -ENOTSUP;
383 goto out;
384 }
385
386 if (qemu_in_coroutine()) {
387 /* Fast-path if already in coroutine context */
388 bdrv_create_co_entry(&cco);
389 } else {
390 co = qemu_coroutine_create(bdrv_create_co_entry);
391 qemu_coroutine_enter(co, &cco);
392 while (cco.ret == NOT_DONE) {
393 qemu_aio_wait();
394 }
395 }
396
397 ret = cco.ret;
398
399 out:
400 g_free(cco.filename);
401 return ret;
402 }
403
404 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
405 {
406 BlockDriver *drv;
407
408 drv = bdrv_find_protocol(filename);
409 if (drv == NULL) {
410 return -ENOENT;
411 }
412
413 return bdrv_create(drv, filename, options);
414 }
415
416 /*
417 * Create a uniquely-named empty temporary file.
418 * Return 0 upon success, otherwise a negative errno value.
419 */
420 int get_tmp_filename(char *filename, int size)
421 {
422 #ifdef _WIN32
423 char temp_dir[MAX_PATH];
424 /* GetTempFileName requires that its output buffer (4th param)
425 have length MAX_PATH or greater. */
426 assert(size >= MAX_PATH);
427 return (GetTempPath(MAX_PATH, temp_dir)
428 && GetTempFileName(temp_dir, "qem", 0, filename)
429 ? 0 : -GetLastError());
430 #else
431 int fd;
432 const char *tmpdir;
433 tmpdir = getenv("TMPDIR");
434 if (!tmpdir)
435 tmpdir = "/tmp";
436 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
437 return -EOVERFLOW;
438 }
439 fd = mkstemp(filename);
440 if (fd < 0) {
441 return -errno;
442 }
443 if (close(fd) != 0) {
444 unlink(filename);
445 return -errno;
446 }
447 return 0;
448 #endif
449 }
450
451 /*
452 * Detect host devices. By convention, /dev/cdrom[N] is always
453 * recognized as a host CDROM.
454 */
455 static BlockDriver *find_hdev_driver(const char *filename)
456 {
457 int score_max = 0, score;
458 BlockDriver *drv = NULL, *d;
459
460 QLIST_FOREACH(d, &bdrv_drivers, list) {
461 if (d->bdrv_probe_device) {
462 score = d->bdrv_probe_device(filename);
463 if (score > score_max) {
464 score_max = score;
465 drv = d;
466 }
467 }
468 }
469
470 return drv;
471 }
472
473 BlockDriver *bdrv_find_protocol(const char *filename)
474 {
475 BlockDriver *drv1;
476 char protocol[128];
477 int len;
478 const char *p;
479
480 /* TODO Drivers without bdrv_file_open must be specified explicitly */
481
482 /*
483 * XXX(hch): we really should not let host device detection
484 * override an explicit protocol specification, but moving this
485 * later breaks access to device names with colons in them.
486 * Thanks to the brain-dead persistent naming schemes on udev-
487 * based Linux systems those actually are quite common.
488 */
489 drv1 = find_hdev_driver(filename);
490 if (drv1) {
491 return drv1;
492 }
493
494 if (!path_has_protocol(filename)) {
495 return bdrv_find_format("file");
496 }
497 p = strchr(filename, ':');
498 assert(p != NULL);
499 len = p - filename;
500 if (len > sizeof(protocol) - 1)
501 len = sizeof(protocol) - 1;
502 memcpy(protocol, filename, len);
503 protocol[len] = '\0';
504 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
505 if (drv1->protocol_name &&
506 !strcmp(drv1->protocol_name, protocol)) {
507 return drv1;
508 }
509 }
510 return NULL;
511 }
512
513 static int find_image_format(const char *filename, BlockDriver **pdrv)
514 {
515 int ret, score, score_max;
516 BlockDriver *drv1, *drv;
517 uint8_t buf[2048];
518 BlockDriverState *bs;
519
520 ret = bdrv_file_open(&bs, filename, 0);
521 if (ret < 0) {
522 *pdrv = NULL;
523 return ret;
524 }
525
526 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
527 if (bs->sg || !bdrv_is_inserted(bs)) {
528 bdrv_delete(bs);
529 drv = bdrv_find_format("raw");
530 if (!drv) {
531 ret = -ENOENT;
532 }
533 *pdrv = drv;
534 return ret;
535 }
536
537 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
538 bdrv_delete(bs);
539 if (ret < 0) {
540 *pdrv = NULL;
541 return ret;
542 }
543
544 score_max = 0;
545 drv = NULL;
546 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
547 if (drv1->bdrv_probe) {
548 score = drv1->bdrv_probe(buf, ret, filename);
549 if (score > score_max) {
550 score_max = score;
551 drv = drv1;
552 }
553 }
554 }
555 if (!drv) {
556 ret = -ENOENT;
557 }
558 *pdrv = drv;
559 return ret;
560 }
561
562 /**
563 * Set the current 'total_sectors' value
564 */
565 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
566 {
567 BlockDriver *drv = bs->drv;
568
569 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
570 if (bs->sg)
571 return 0;
572
573 /* query actual device if possible, otherwise just trust the hint */
574 if (drv->bdrv_getlength) {
575 int64_t length = drv->bdrv_getlength(bs);
576 if (length < 0) {
577 return length;
578 }
579 hint = length >> BDRV_SECTOR_BITS;
580 }
581
582 bs->total_sectors = hint;
583 return 0;
584 }
585
586 /**
587 * Set open flags for a given cache mode
588 *
589 * Return 0 on success, -1 if the cache mode was invalid.
590 */
591 int bdrv_parse_cache_flags(const char *mode, int *flags)
592 {
593 *flags &= ~BDRV_O_CACHE_MASK;
594
595 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
596 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
597 } else if (!strcmp(mode, "directsync")) {
598 *flags |= BDRV_O_NOCACHE;
599 } else if (!strcmp(mode, "writeback")) {
600 *flags |= BDRV_O_CACHE_WB;
601 } else if (!strcmp(mode, "unsafe")) {
602 *flags |= BDRV_O_CACHE_WB;
603 *flags |= BDRV_O_NO_FLUSH;
604 } else if (!strcmp(mode, "writethrough")) {
605 /* this is the default */
606 } else {
607 return -1;
608 }
609
610 return 0;
611 }
612
613 /**
614 * The copy-on-read flag is actually a reference count so multiple users may
615 * use the feature without worrying about clobbering its previous state.
616 * Copy-on-read stays enabled until all users have called to disable it.
617 */
618 void bdrv_enable_copy_on_read(BlockDriverState *bs)
619 {
620 bs->copy_on_read++;
621 }
622
623 void bdrv_disable_copy_on_read(BlockDriverState *bs)
624 {
625 assert(bs->copy_on_read > 0);
626 bs->copy_on_read--;
627 }
628
629 /*
630 * Common part for opening disk images and files
631 */
632 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
633 int flags, BlockDriver *drv)
634 {
635 int ret, open_flags;
636
637 assert(drv != NULL);
638 assert(bs->file == NULL);
639
640 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
641
642 bs->open_flags = flags;
643 bs->buffer_alignment = 512;
644
645 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
646 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
647 bdrv_enable_copy_on_read(bs);
648 }
649
650 pstrcpy(bs->filename, sizeof(bs->filename), filename);
651
652 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
653 return -ENOTSUP;
654 }
655
656 bs->drv = drv;
657 bs->opaque = g_malloc0(drv->instance_size);
658
659 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
660 open_flags = flags | BDRV_O_CACHE_WB;
661
662 /*
663 * Clear flags that are internal to the block layer before opening the
664 * image.
665 */
666 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
667
668 /*
669 * Snapshots should be writable.
670 */
671 if (bs->is_temporary) {
672 open_flags |= BDRV_O_RDWR;
673 }
674
675 bs->read_only = !(open_flags & BDRV_O_RDWR);
676
677 /* Open the image, either directly or using a protocol */
678 if (drv->bdrv_file_open) {
679 ret = drv->bdrv_file_open(bs, filename, open_flags);
680 } else {
681 ret = bdrv_file_open(&bs->file, filename, open_flags);
682 if (ret >= 0) {
683 ret = drv->bdrv_open(bs, open_flags);
684 }
685 }
686
687 if (ret < 0) {
688 goto free_and_fail;
689 }
690
691 ret = refresh_total_sectors(bs, bs->total_sectors);
692 if (ret < 0) {
693 goto free_and_fail;
694 }
695
696 #ifndef _WIN32
697 if (bs->is_temporary) {
698 unlink(filename);
699 }
700 #endif
701 return 0;
702
703 free_and_fail:
704 if (bs->file) {
705 bdrv_delete(bs->file);
706 bs->file = NULL;
707 }
708 g_free(bs->opaque);
709 bs->opaque = NULL;
710 bs->drv = NULL;
711 return ret;
712 }
713
714 /*
715 * Opens a file using a protocol (file, host_device, nbd, ...)
716 */
717 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
718 {
719 BlockDriverState *bs;
720 BlockDriver *drv;
721 int ret;
722
723 drv = bdrv_find_protocol(filename);
724 if (!drv) {
725 return -ENOENT;
726 }
727
728 bs = bdrv_new("");
729 ret = bdrv_open_common(bs, filename, flags, drv);
730 if (ret < 0) {
731 bdrv_delete(bs);
732 return ret;
733 }
734 bs->growable = 1;
735 *pbs = bs;
736 return 0;
737 }
738
739 /*
740 * Opens a disk image (raw, qcow2, vmdk, ...)
741 */
742 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
743 BlockDriver *drv)
744 {
745 int ret;
746 char tmp_filename[PATH_MAX];
747
748 if (flags & BDRV_O_SNAPSHOT) {
749 BlockDriverState *bs1;
750 int64_t total_size;
751 int is_protocol = 0;
752 BlockDriver *bdrv_qcow2;
753 QEMUOptionParameter *options;
754 char backing_filename[PATH_MAX];
755
756 /* if snapshot, we create a temporary backing file and open it
757 instead of opening 'filename' directly */
758
759 /* if there is a backing file, use it */
760 bs1 = bdrv_new("");
761 ret = bdrv_open(bs1, filename, 0, drv);
762 if (ret < 0) {
763 bdrv_delete(bs1);
764 return ret;
765 }
766 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
767
768 if (bs1->drv && bs1->drv->protocol_name)
769 is_protocol = 1;
770
771 bdrv_delete(bs1);
772
773 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
774 if (ret < 0) {
775 return ret;
776 }
777
778 /* Real path is meaningless for protocols */
779 if (is_protocol)
780 snprintf(backing_filename, sizeof(backing_filename),
781 "%s", filename);
782 else if (!realpath(filename, backing_filename))
783 return -errno;
784
785 bdrv_qcow2 = bdrv_find_format("qcow2");
786 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
787
788 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
789 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
790 if (drv) {
791 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
792 drv->format_name);
793 }
794
795 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
796 free_option_parameters(options);
797 if (ret < 0) {
798 return ret;
799 }
800
801 filename = tmp_filename;
802 drv = bdrv_qcow2;
803 bs->is_temporary = 1;
804 }
805
806 /* Find the right image format driver */
807 if (!drv) {
808 ret = find_image_format(filename, &drv);
809 }
810
811 if (!drv) {
812 goto unlink_and_fail;
813 }
814
815 if (flags & BDRV_O_RDWR) {
816 flags |= BDRV_O_ALLOW_RDWR;
817 }
818
819 /* Open the image */
820 ret = bdrv_open_common(bs, filename, flags, drv);
821 if (ret < 0) {
822 goto unlink_and_fail;
823 }
824
825 /* If there is a backing file, use it */
826 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
827 char backing_filename[PATH_MAX];
828 int back_flags;
829 BlockDriver *back_drv = NULL;
830
831 bs->backing_hd = bdrv_new("");
832 bdrv_get_full_backing_filename(bs, backing_filename,
833 sizeof(backing_filename));
834
835 if (bs->backing_format[0] != '\0') {
836 back_drv = bdrv_find_format(bs->backing_format);
837 }
838
839 /* backing files always opened read-only */
840 back_flags =
841 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
842
843 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
844 if (ret < 0) {
845 bdrv_close(bs);
846 return ret;
847 }
848 }
849
850 if (!bdrv_key_required(bs)) {
851 bdrv_dev_change_media_cb(bs, true);
852 }
853
854 /* throttling disk I/O limits */
855 if (bs->io_limits_enabled) {
856 bdrv_io_limits_enable(bs);
857 }
858
859 return 0;
860
861 unlink_and_fail:
862 if (bs->is_temporary) {
863 unlink(filename);
864 }
865 return ret;
866 }
867
868 typedef struct BlockReopenQueueEntry {
869 bool prepared;
870 BDRVReopenState state;
871 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
872 } BlockReopenQueueEntry;
873
874 /*
875 * Adds a BlockDriverState to a simple queue for an atomic, transactional
876 * reopen of multiple devices.
877 *
878 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
879 * already performed, or alternatively may be NULL a new BlockReopenQueue will
880 * be created and initialized. This newly created BlockReopenQueue should be
881 * passed back in for subsequent calls that are intended to be of the same
882 * atomic 'set'.
883 *
884 * bs is the BlockDriverState to add to the reopen queue.
885 *
886 * flags contains the open flags for the associated bs
887 *
888 * returns a pointer to bs_queue, which is either the newly allocated
889 * bs_queue, or the existing bs_queue being used.
890 *
891 */
892 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
893 BlockDriverState *bs, int flags)
894 {
895 assert(bs != NULL);
896
897 BlockReopenQueueEntry *bs_entry;
898 if (bs_queue == NULL) {
899 bs_queue = g_new0(BlockReopenQueue, 1);
900 QSIMPLEQ_INIT(bs_queue);
901 }
902
903 if (bs->file) {
904 bdrv_reopen_queue(bs_queue, bs->file, flags);
905 }
906
907 bs_entry = g_new0(BlockReopenQueueEntry, 1);
908 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
909
910 bs_entry->state.bs = bs;
911 bs_entry->state.flags = flags;
912
913 return bs_queue;
914 }
915
916 /*
917 * Reopen multiple BlockDriverStates atomically & transactionally.
918 *
919 * The queue passed in (bs_queue) must have been built up previous
920 * via bdrv_reopen_queue().
921 *
922 * Reopens all BDS specified in the queue, with the appropriate
923 * flags. All devices are prepared for reopen, and failure of any
924 * device will cause all device changes to be abandonded, and intermediate
925 * data cleaned up.
926 *
927 * If all devices prepare successfully, then the changes are committed
928 * to all devices.
929 *
930 */
931 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
932 {
933 int ret = -1;
934 BlockReopenQueueEntry *bs_entry, *next;
935 Error *local_err = NULL;
936
937 assert(bs_queue != NULL);
938
939 bdrv_drain_all();
940
941 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
942 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
943 error_propagate(errp, local_err);
944 goto cleanup;
945 }
946 bs_entry->prepared = true;
947 }
948
949 /* If we reach this point, we have success and just need to apply the
950 * changes
951 */
952 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
953 bdrv_reopen_commit(&bs_entry->state);
954 }
955
956 ret = 0;
957
958 cleanup:
959 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
960 if (ret && bs_entry->prepared) {
961 bdrv_reopen_abort(&bs_entry->state);
962 }
963 g_free(bs_entry);
964 }
965 g_free(bs_queue);
966 return ret;
967 }
968
969
970 /* Reopen a single BlockDriverState with the specified flags. */
971 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
972 {
973 int ret = -1;
974 Error *local_err = NULL;
975 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
976
977 ret = bdrv_reopen_multiple(queue, &local_err);
978 if (local_err != NULL) {
979 error_propagate(errp, local_err);
980 }
981 return ret;
982 }
983
984
985 /*
986 * Prepares a BlockDriverState for reopen. All changes are staged in the
987 * 'opaque' field of the BDRVReopenState, which is used and allocated by
988 * the block driver layer .bdrv_reopen_prepare()
989 *
990 * bs is the BlockDriverState to reopen
991 * flags are the new open flags
992 * queue is the reopen queue
993 *
994 * Returns 0 on success, non-zero on error. On error errp will be set
995 * as well.
996 *
997 * On failure, bdrv_reopen_abort() will be called to clean up any data.
998 * It is the responsibility of the caller to then call the abort() or
999 * commit() for any other BDS that have been left in a prepare() state
1000 *
1001 */
1002 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1003 Error **errp)
1004 {
1005 int ret = -1;
1006 Error *local_err = NULL;
1007 BlockDriver *drv;
1008
1009 assert(reopen_state != NULL);
1010 assert(reopen_state->bs->drv != NULL);
1011 drv = reopen_state->bs->drv;
1012
1013 /* if we are to stay read-only, do not allow permission change
1014 * to r/w */
1015 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1016 reopen_state->flags & BDRV_O_RDWR) {
1017 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1018 reopen_state->bs->device_name);
1019 goto error;
1020 }
1021
1022
1023 ret = bdrv_flush(reopen_state->bs);
1024 if (ret) {
1025 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1026 strerror(-ret));
1027 goto error;
1028 }
1029
1030 if (drv->bdrv_reopen_prepare) {
1031 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1032 if (ret) {
1033 if (local_err != NULL) {
1034 error_propagate(errp, local_err);
1035 } else {
1036 error_set(errp, QERR_OPEN_FILE_FAILED,
1037 reopen_state->bs->filename);
1038 }
1039 goto error;
1040 }
1041 } else {
1042 /* It is currently mandatory to have a bdrv_reopen_prepare()
1043 * handler for each supported drv. */
1044 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1045 drv->format_name, reopen_state->bs->device_name,
1046 "reopening of file");
1047 ret = -1;
1048 goto error;
1049 }
1050
1051 ret = 0;
1052
1053 error:
1054 return ret;
1055 }
1056
1057 /*
1058 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1059 * makes them final by swapping the staging BlockDriverState contents into
1060 * the active BlockDriverState contents.
1061 */
1062 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1063 {
1064 BlockDriver *drv;
1065
1066 assert(reopen_state != NULL);
1067 drv = reopen_state->bs->drv;
1068 assert(drv != NULL);
1069
1070 /* If there are any driver level actions to take */
1071 if (drv->bdrv_reopen_commit) {
1072 drv->bdrv_reopen_commit(reopen_state);
1073 }
1074
1075 /* set BDS specific flags now */
1076 reopen_state->bs->open_flags = reopen_state->flags;
1077 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1078 BDRV_O_CACHE_WB);
1079 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1080 }
1081
1082 /*
1083 * Abort the reopen, and delete and free the staged changes in
1084 * reopen_state
1085 */
1086 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1087 {
1088 BlockDriver *drv;
1089
1090 assert(reopen_state != NULL);
1091 drv = reopen_state->bs->drv;
1092 assert(drv != NULL);
1093
1094 if (drv->bdrv_reopen_abort) {
1095 drv->bdrv_reopen_abort(reopen_state);
1096 }
1097 }
1098
1099
1100 void bdrv_close(BlockDriverState *bs)
1101 {
1102 bdrv_flush(bs);
1103 if (bs->drv) {
1104 if (bs->job) {
1105 block_job_cancel_sync(bs->job);
1106 }
1107 bdrv_drain_all();
1108
1109 if (bs == bs_snapshots) {
1110 bs_snapshots = NULL;
1111 }
1112 if (bs->backing_hd) {
1113 bdrv_delete(bs->backing_hd);
1114 bs->backing_hd = NULL;
1115 }
1116 bs->drv->bdrv_close(bs);
1117 g_free(bs->opaque);
1118 #ifdef _WIN32
1119 if (bs->is_temporary) {
1120 unlink(bs->filename);
1121 }
1122 #endif
1123 bs->opaque = NULL;
1124 bs->drv = NULL;
1125 bs->copy_on_read = 0;
1126 bs->backing_file[0] = '\0';
1127 bs->backing_format[0] = '\0';
1128 bs->total_sectors = 0;
1129 bs->encrypted = 0;
1130 bs->valid_key = 0;
1131 bs->sg = 0;
1132 bs->growable = 0;
1133
1134 if (bs->file != NULL) {
1135 bdrv_delete(bs->file);
1136 bs->file = NULL;
1137 }
1138 }
1139
1140 bdrv_dev_change_media_cb(bs, false);
1141
1142 /*throttling disk I/O limits*/
1143 if (bs->io_limits_enabled) {
1144 bdrv_io_limits_disable(bs);
1145 }
1146 }
1147
1148 void bdrv_close_all(void)
1149 {
1150 BlockDriverState *bs;
1151
1152 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1153 bdrv_close(bs);
1154 }
1155 }
1156
1157 /*
1158 * Wait for pending requests to complete across all BlockDriverStates
1159 *
1160 * This function does not flush data to disk, use bdrv_flush_all() for that
1161 * after calling this function.
1162 *
1163 * Note that completion of an asynchronous I/O operation can trigger any
1164 * number of other I/O operations on other devices---for example a coroutine
1165 * can be arbitrarily complex and a constant flow of I/O can come until the
1166 * coroutine is complete. Because of this, it is not possible to have a
1167 * function to drain a single device's I/O queue.
1168 */
1169 void bdrv_drain_all(void)
1170 {
1171 BlockDriverState *bs;
1172 bool busy;
1173
1174 do {
1175 busy = qemu_aio_wait();
1176
1177 /* FIXME: We do not have timer support here, so this is effectively
1178 * a busy wait.
1179 */
1180 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1181 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1182 qemu_co_queue_restart_all(&bs->throttled_reqs);
1183 busy = true;
1184 }
1185 }
1186 } while (busy);
1187
1188 /* If requests are still pending there is a bug somewhere */
1189 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1190 assert(QLIST_EMPTY(&bs->tracked_requests));
1191 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1192 }
1193 }
1194
1195 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1196 Also, NULL terminate the device_name to prevent double remove */
1197 void bdrv_make_anon(BlockDriverState *bs)
1198 {
1199 if (bs->device_name[0] != '\0') {
1200 QTAILQ_REMOVE(&bdrv_states, bs, list);
1201 }
1202 bs->device_name[0] = '\0';
1203 }
1204
1205 static void bdrv_rebind(BlockDriverState *bs)
1206 {
1207 if (bs->drv && bs->drv->bdrv_rebind) {
1208 bs->drv->bdrv_rebind(bs);
1209 }
1210 }
1211
1212 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1213 BlockDriverState *bs_src)
1214 {
1215 /* move some fields that need to stay attached to the device */
1216 bs_dest->open_flags = bs_src->open_flags;
1217
1218 /* dev info */
1219 bs_dest->dev_ops = bs_src->dev_ops;
1220 bs_dest->dev_opaque = bs_src->dev_opaque;
1221 bs_dest->dev = bs_src->dev;
1222 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1223 bs_dest->copy_on_read = bs_src->copy_on_read;
1224
1225 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1226
1227 /* i/o timing parameters */
1228 bs_dest->slice_time = bs_src->slice_time;
1229 bs_dest->slice_start = bs_src->slice_start;
1230 bs_dest->slice_end = bs_src->slice_end;
1231 bs_dest->io_limits = bs_src->io_limits;
1232 bs_dest->io_base = bs_src->io_base;
1233 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1234 bs_dest->block_timer = bs_src->block_timer;
1235 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1236
1237 /* r/w error */
1238 bs_dest->on_read_error = bs_src->on_read_error;
1239 bs_dest->on_write_error = bs_src->on_write_error;
1240
1241 /* i/o status */
1242 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1243 bs_dest->iostatus = bs_src->iostatus;
1244
1245 /* dirty bitmap */
1246 bs_dest->dirty_count = bs_src->dirty_count;
1247 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1248
1249 /* job */
1250 bs_dest->in_use = bs_src->in_use;
1251 bs_dest->job = bs_src->job;
1252
1253 /* keep the same entry in bdrv_states */
1254 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1255 bs_src->device_name);
1256 bs_dest->list = bs_src->list;
1257 }
1258
1259 /*
1260 * Swap bs contents for two image chains while they are live,
1261 * while keeping required fields on the BlockDriverState that is
1262 * actually attached to a device.
1263 *
1264 * This will modify the BlockDriverState fields, and swap contents
1265 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1266 *
1267 * bs_new is required to be anonymous.
1268 *
1269 * This function does not create any image files.
1270 */
1271 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1272 {
1273 BlockDriverState tmp;
1274
1275 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1276 assert(bs_new->device_name[0] == '\0');
1277 assert(bs_new->dirty_bitmap == NULL);
1278 assert(bs_new->job == NULL);
1279 assert(bs_new->dev == NULL);
1280 assert(bs_new->in_use == 0);
1281 assert(bs_new->io_limits_enabled == false);
1282 assert(bs_new->block_timer == NULL);
1283
1284 tmp = *bs_new;
1285 *bs_new = *bs_old;
1286 *bs_old = tmp;
1287
1288 /* there are some fields that should not be swapped, move them back */
1289 bdrv_move_feature_fields(&tmp, bs_old);
1290 bdrv_move_feature_fields(bs_old, bs_new);
1291 bdrv_move_feature_fields(bs_new, &tmp);
1292
1293 /* bs_new shouldn't be in bdrv_states even after the swap! */
1294 assert(bs_new->device_name[0] == '\0');
1295
1296 /* Check a few fields that should remain attached to the device */
1297 assert(bs_new->dev == NULL);
1298 assert(bs_new->job == NULL);
1299 assert(bs_new->in_use == 0);
1300 assert(bs_new->io_limits_enabled == false);
1301 assert(bs_new->block_timer == NULL);
1302
1303 bdrv_rebind(bs_new);
1304 bdrv_rebind(bs_old);
1305 }
1306
1307 /*
1308 * Add new bs contents at the top of an image chain while the chain is
1309 * live, while keeping required fields on the top layer.
1310 *
1311 * This will modify the BlockDriverState fields, and swap contents
1312 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1313 *
1314 * bs_new is required to be anonymous.
1315 *
1316 * This function does not create any image files.
1317 */
1318 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1319 {
1320 bdrv_swap(bs_new, bs_top);
1321
1322 /* The contents of 'tmp' will become bs_top, as we are
1323 * swapping bs_new and bs_top contents. */
1324 bs_top->backing_hd = bs_new;
1325 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1326 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1327 bs_new->filename);
1328 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1329 bs_new->drv ? bs_new->drv->format_name : "");
1330 }
1331
1332 void bdrv_delete(BlockDriverState *bs)
1333 {
1334 assert(!bs->dev);
1335 assert(!bs->job);
1336 assert(!bs->in_use);
1337
1338 /* remove from list, if necessary */
1339 bdrv_make_anon(bs);
1340
1341 bdrv_close(bs);
1342
1343 assert(bs != bs_snapshots);
1344 g_free(bs);
1345 }
1346
1347 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1348 /* TODO change to DeviceState *dev when all users are qdevified */
1349 {
1350 if (bs->dev) {
1351 return -EBUSY;
1352 }
1353 bs->dev = dev;
1354 bdrv_iostatus_reset(bs);
1355 return 0;
1356 }
1357
1358 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1359 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1360 {
1361 if (bdrv_attach_dev(bs, dev) < 0) {
1362 abort();
1363 }
1364 }
1365
1366 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1367 /* TODO change to DeviceState *dev when all users are qdevified */
1368 {
1369 assert(bs->dev == dev);
1370 bs->dev = NULL;
1371 bs->dev_ops = NULL;
1372 bs->dev_opaque = NULL;
1373 bs->buffer_alignment = 512;
1374 }
1375
1376 /* TODO change to return DeviceState * when all users are qdevified */
1377 void *bdrv_get_attached_dev(BlockDriverState *bs)
1378 {
1379 return bs->dev;
1380 }
1381
1382 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1383 void *opaque)
1384 {
1385 bs->dev_ops = ops;
1386 bs->dev_opaque = opaque;
1387 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1388 bs_snapshots = NULL;
1389 }
1390 }
1391
1392 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1393 enum MonitorEvent ev,
1394 BlockErrorAction action, bool is_read)
1395 {
1396 QObject *data;
1397 const char *action_str;
1398
1399 switch (action) {
1400 case BDRV_ACTION_REPORT:
1401 action_str = "report";
1402 break;
1403 case BDRV_ACTION_IGNORE:
1404 action_str = "ignore";
1405 break;
1406 case BDRV_ACTION_STOP:
1407 action_str = "stop";
1408 break;
1409 default:
1410 abort();
1411 }
1412
1413 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1414 bdrv->device_name,
1415 action_str,
1416 is_read ? "read" : "write");
1417 monitor_protocol_event(ev, data);
1418
1419 qobject_decref(data);
1420 }
1421
1422 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1423 {
1424 QObject *data;
1425
1426 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1427 bdrv_get_device_name(bs), ejected);
1428 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1429
1430 qobject_decref(data);
1431 }
1432
1433 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1434 {
1435 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1436 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1437 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1438 if (tray_was_closed) {
1439 /* tray open */
1440 bdrv_emit_qmp_eject_event(bs, true);
1441 }
1442 if (load) {
1443 /* tray close */
1444 bdrv_emit_qmp_eject_event(bs, false);
1445 }
1446 }
1447 }
1448
1449 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1450 {
1451 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1452 }
1453
1454 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1455 {
1456 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1457 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1458 }
1459 }
1460
1461 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1462 {
1463 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1464 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1465 }
1466 return false;
1467 }
1468
1469 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1470 {
1471 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1472 bs->dev_ops->resize_cb(bs->dev_opaque);
1473 }
1474 }
1475
1476 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1477 {
1478 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1479 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1480 }
1481 return false;
1482 }
1483
1484 /*
1485 * Run consistency checks on an image
1486 *
1487 * Returns 0 if the check could be completed (it doesn't mean that the image is
1488 * free of errors) or -errno when an internal error occurred. The results of the
1489 * check are stored in res.
1490 */
1491 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1492 {
1493 if (bs->drv->bdrv_check == NULL) {
1494 return -ENOTSUP;
1495 }
1496
1497 memset(res, 0, sizeof(*res));
1498 return bs->drv->bdrv_check(bs, res, fix);
1499 }
1500
1501 #define COMMIT_BUF_SECTORS 2048
1502
1503 /* commit COW file into the raw image */
1504 int bdrv_commit(BlockDriverState *bs)
1505 {
1506 BlockDriver *drv = bs->drv;
1507 int64_t sector, total_sectors;
1508 int n, ro, open_flags;
1509 int ret = 0;
1510 uint8_t *buf;
1511 char filename[PATH_MAX];
1512
1513 if (!drv)
1514 return -ENOMEDIUM;
1515
1516 if (!bs->backing_hd) {
1517 return -ENOTSUP;
1518 }
1519
1520 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1521 return -EBUSY;
1522 }
1523
1524 ro = bs->backing_hd->read_only;
1525 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1526 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1527 open_flags = bs->backing_hd->open_flags;
1528
1529 if (ro) {
1530 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1531 return -EACCES;
1532 }
1533 }
1534
1535 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1536 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1537
1538 for (sector = 0; sector < total_sectors; sector += n) {
1539 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1540
1541 if (bdrv_read(bs, sector, buf, n) != 0) {
1542 ret = -EIO;
1543 goto ro_cleanup;
1544 }
1545
1546 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1547 ret = -EIO;
1548 goto ro_cleanup;
1549 }
1550 }
1551 }
1552
1553 if (drv->bdrv_make_empty) {
1554 ret = drv->bdrv_make_empty(bs);
1555 bdrv_flush(bs);
1556 }
1557
1558 /*
1559 * Make sure all data we wrote to the backing device is actually
1560 * stable on disk.
1561 */
1562 if (bs->backing_hd)
1563 bdrv_flush(bs->backing_hd);
1564
1565 ro_cleanup:
1566 g_free(buf);
1567
1568 if (ro) {
1569 /* ignoring error return here */
1570 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1571 }
1572
1573 return ret;
1574 }
1575
1576 int bdrv_commit_all(void)
1577 {
1578 BlockDriverState *bs;
1579
1580 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1581 int ret = bdrv_commit(bs);
1582 if (ret < 0) {
1583 return ret;
1584 }
1585 }
1586 return 0;
1587 }
1588
1589 struct BdrvTrackedRequest {
1590 BlockDriverState *bs;
1591 int64_t sector_num;
1592 int nb_sectors;
1593 bool is_write;
1594 QLIST_ENTRY(BdrvTrackedRequest) list;
1595 Coroutine *co; /* owner, used for deadlock detection */
1596 CoQueue wait_queue; /* coroutines blocked on this request */
1597 };
1598
1599 /**
1600 * Remove an active request from the tracked requests list
1601 *
1602 * This function should be called when a tracked request is completing.
1603 */
1604 static void tracked_request_end(BdrvTrackedRequest *req)
1605 {
1606 QLIST_REMOVE(req, list);
1607 qemu_co_queue_restart_all(&req->wait_queue);
1608 }
1609
1610 /**
1611 * Add an active request to the tracked requests list
1612 */
1613 static void tracked_request_begin(BdrvTrackedRequest *req,
1614 BlockDriverState *bs,
1615 int64_t sector_num,
1616 int nb_sectors, bool is_write)
1617 {
1618 *req = (BdrvTrackedRequest){
1619 .bs = bs,
1620 .sector_num = sector_num,
1621 .nb_sectors = nb_sectors,
1622 .is_write = is_write,
1623 .co = qemu_coroutine_self(),
1624 };
1625
1626 qemu_co_queue_init(&req->wait_queue);
1627
1628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1629 }
1630
1631 /**
1632 * Round a region to cluster boundaries
1633 */
1634 static void round_to_clusters(BlockDriverState *bs,
1635 int64_t sector_num, int nb_sectors,
1636 int64_t *cluster_sector_num,
1637 int *cluster_nb_sectors)
1638 {
1639 BlockDriverInfo bdi;
1640
1641 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1642 *cluster_sector_num = sector_num;
1643 *cluster_nb_sectors = nb_sectors;
1644 } else {
1645 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1646 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1647 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1648 nb_sectors, c);
1649 }
1650 }
1651
1652 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1653 int64_t sector_num, int nb_sectors) {
1654 /* aaaa bbbb */
1655 if (sector_num >= req->sector_num + req->nb_sectors) {
1656 return false;
1657 }
1658 /* bbbb aaaa */
1659 if (req->sector_num >= sector_num + nb_sectors) {
1660 return false;
1661 }
1662 return true;
1663 }
1664
1665 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1666 int64_t sector_num, int nb_sectors)
1667 {
1668 BdrvTrackedRequest *req;
1669 int64_t cluster_sector_num;
1670 int cluster_nb_sectors;
1671 bool retry;
1672
1673 /* If we touch the same cluster it counts as an overlap. This guarantees
1674 * that allocating writes will be serialized and not race with each other
1675 * for the same cluster. For example, in copy-on-read it ensures that the
1676 * CoR read and write operations are atomic and guest writes cannot
1677 * interleave between them.
1678 */
1679 round_to_clusters(bs, sector_num, nb_sectors,
1680 &cluster_sector_num, &cluster_nb_sectors);
1681
1682 do {
1683 retry = false;
1684 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1685 if (tracked_request_overlaps(req, cluster_sector_num,
1686 cluster_nb_sectors)) {
1687 /* Hitting this means there was a reentrant request, for
1688 * example, a block driver issuing nested requests. This must
1689 * never happen since it means deadlock.
1690 */
1691 assert(qemu_coroutine_self() != req->co);
1692
1693 qemu_co_queue_wait(&req->wait_queue);
1694 retry = true;
1695 break;
1696 }
1697 }
1698 } while (retry);
1699 }
1700
1701 /*
1702 * Return values:
1703 * 0 - success
1704 * -EINVAL - backing format specified, but no file
1705 * -ENOSPC - can't update the backing file because no space is left in the
1706 * image file header
1707 * -ENOTSUP - format driver doesn't support changing the backing file
1708 */
1709 int bdrv_change_backing_file(BlockDriverState *bs,
1710 const char *backing_file, const char *backing_fmt)
1711 {
1712 BlockDriver *drv = bs->drv;
1713 int ret;
1714
1715 /* Backing file format doesn't make sense without a backing file */
1716 if (backing_fmt && !backing_file) {
1717 return -EINVAL;
1718 }
1719
1720 if (drv->bdrv_change_backing_file != NULL) {
1721 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1722 } else {
1723 ret = -ENOTSUP;
1724 }
1725
1726 if (ret == 0) {
1727 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1728 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1729 }
1730 return ret;
1731 }
1732
1733 /*
1734 * Finds the image layer in the chain that has 'bs' as its backing file.
1735 *
1736 * active is the current topmost image.
1737 *
1738 * Returns NULL if bs is not found in active's image chain,
1739 * or if active == bs.
1740 */
1741 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1742 BlockDriverState *bs)
1743 {
1744 BlockDriverState *overlay = NULL;
1745 BlockDriverState *intermediate;
1746
1747 assert(active != NULL);
1748 assert(bs != NULL);
1749
1750 /* if bs is the same as active, then by definition it has no overlay
1751 */
1752 if (active == bs) {
1753 return NULL;
1754 }
1755
1756 intermediate = active;
1757 while (intermediate->backing_hd) {
1758 if (intermediate->backing_hd == bs) {
1759 overlay = intermediate;
1760 break;
1761 }
1762 intermediate = intermediate->backing_hd;
1763 }
1764
1765 return overlay;
1766 }
1767
1768 typedef struct BlkIntermediateStates {
1769 BlockDriverState *bs;
1770 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1771 } BlkIntermediateStates;
1772
1773
1774 /*
1775 * Drops images above 'base' up to and including 'top', and sets the image
1776 * above 'top' to have base as its backing file.
1777 *
1778 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1779 * information in 'bs' can be properly updated.
1780 *
1781 * E.g., this will convert the following chain:
1782 * bottom <- base <- intermediate <- top <- active
1783 *
1784 * to
1785 *
1786 * bottom <- base <- active
1787 *
1788 * It is allowed for bottom==base, in which case it converts:
1789 *
1790 * base <- intermediate <- top <- active
1791 *
1792 * to
1793 *
1794 * base <- active
1795 *
1796 * Error conditions:
1797 * if active == top, that is considered an error
1798 *
1799 */
1800 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1801 BlockDriverState *base)
1802 {
1803 BlockDriverState *intermediate;
1804 BlockDriverState *base_bs = NULL;
1805 BlockDriverState *new_top_bs = NULL;
1806 BlkIntermediateStates *intermediate_state, *next;
1807 int ret = -EIO;
1808
1809 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1810 QSIMPLEQ_INIT(&states_to_delete);
1811
1812 if (!top->drv || !base->drv) {
1813 goto exit;
1814 }
1815
1816 new_top_bs = bdrv_find_overlay(active, top);
1817
1818 if (new_top_bs == NULL) {
1819 /* we could not find the image above 'top', this is an error */
1820 goto exit;
1821 }
1822
1823 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1824 * to do, no intermediate images */
1825 if (new_top_bs->backing_hd == base) {
1826 ret = 0;
1827 goto exit;
1828 }
1829
1830 intermediate = top;
1831
1832 /* now we will go down through the list, and add each BDS we find
1833 * into our deletion queue, until we hit the 'base'
1834 */
1835 while (intermediate) {
1836 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1837 intermediate_state->bs = intermediate;
1838 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1839
1840 if (intermediate->backing_hd == base) {
1841 base_bs = intermediate->backing_hd;
1842 break;
1843 }
1844 intermediate = intermediate->backing_hd;
1845 }
1846 if (base_bs == NULL) {
1847 /* something went wrong, we did not end at the base. safely
1848 * unravel everything, and exit with error */
1849 goto exit;
1850 }
1851
1852 /* success - we can delete the intermediate states, and link top->base */
1853 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1854 base_bs->drv ? base_bs->drv->format_name : "");
1855 if (ret) {
1856 goto exit;
1857 }
1858 new_top_bs->backing_hd = base_bs;
1859
1860
1861 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1862 /* so that bdrv_close() does not recursively close the chain */
1863 intermediate_state->bs->backing_hd = NULL;
1864 bdrv_delete(intermediate_state->bs);
1865 }
1866 ret = 0;
1867
1868 exit:
1869 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1870 g_free(intermediate_state);
1871 }
1872 return ret;
1873 }
1874
1875
1876 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1877 size_t size)
1878 {
1879 int64_t len;
1880
1881 if (!bdrv_is_inserted(bs))
1882 return -ENOMEDIUM;
1883
1884 if (bs->growable)
1885 return 0;
1886
1887 len = bdrv_getlength(bs);
1888
1889 if (offset < 0)
1890 return -EIO;
1891
1892 if ((offset > len) || (len - offset < size))
1893 return -EIO;
1894
1895 return 0;
1896 }
1897
1898 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1899 int nb_sectors)
1900 {
1901 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1902 nb_sectors * BDRV_SECTOR_SIZE);
1903 }
1904
1905 typedef struct RwCo {
1906 BlockDriverState *bs;
1907 int64_t sector_num;
1908 int nb_sectors;
1909 QEMUIOVector *qiov;
1910 bool is_write;
1911 int ret;
1912 } RwCo;
1913
1914 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1915 {
1916 RwCo *rwco = opaque;
1917
1918 if (!rwco->is_write) {
1919 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1920 rwco->nb_sectors, rwco->qiov, 0);
1921 } else {
1922 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1923 rwco->nb_sectors, rwco->qiov, 0);
1924 }
1925 }
1926
1927 /*
1928 * Process a synchronous request using coroutines
1929 */
1930 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1931 int nb_sectors, bool is_write)
1932 {
1933 QEMUIOVector qiov;
1934 struct iovec iov = {
1935 .iov_base = (void *)buf,
1936 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1937 };
1938 Coroutine *co;
1939 RwCo rwco = {
1940 .bs = bs,
1941 .sector_num = sector_num,
1942 .nb_sectors = nb_sectors,
1943 .qiov = &qiov,
1944 .is_write = is_write,
1945 .ret = NOT_DONE,
1946 };
1947
1948 qemu_iovec_init_external(&qiov, &iov, 1);
1949
1950 /**
1951 * In sync call context, when the vcpu is blocked, this throttling timer
1952 * will not fire; so the I/O throttling function has to be disabled here
1953 * if it has been enabled.
1954 */
1955 if (bs->io_limits_enabled) {
1956 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1957 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1958 bdrv_io_limits_disable(bs);
1959 }
1960
1961 if (qemu_in_coroutine()) {
1962 /* Fast-path if already in coroutine context */
1963 bdrv_rw_co_entry(&rwco);
1964 } else {
1965 co = qemu_coroutine_create(bdrv_rw_co_entry);
1966 qemu_coroutine_enter(co, &rwco);
1967 while (rwco.ret == NOT_DONE) {
1968 qemu_aio_wait();
1969 }
1970 }
1971 return rwco.ret;
1972 }
1973
1974 /* return < 0 if error. See bdrv_write() for the return codes */
1975 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1976 uint8_t *buf, int nb_sectors)
1977 {
1978 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1979 }
1980
1981 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1982 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1983 uint8_t *buf, int nb_sectors)
1984 {
1985 bool enabled;
1986 int ret;
1987
1988 enabled = bs->io_limits_enabled;
1989 bs->io_limits_enabled = false;
1990 ret = bdrv_read(bs, 0, buf, 1);
1991 bs->io_limits_enabled = enabled;
1992 return ret;
1993 }
1994
1995 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1996
1997 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1998 int nb_sectors, int dirty)
1999 {
2000 int64_t start, end;
2001 unsigned long val, idx, bit;
2002
2003 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2004 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2005
2006 for (; start <= end; start++) {
2007 idx = start / BITS_PER_LONG;
2008 bit = start % BITS_PER_LONG;
2009 val = bs->dirty_bitmap[idx];
2010 if (dirty) {
2011 if (!(val & (1UL << bit))) {
2012 bs->dirty_count++;
2013 val |= 1UL << bit;
2014 }
2015 } else {
2016 if (val & (1UL << bit)) {
2017 bs->dirty_count--;
2018 val &= ~(1UL << bit);
2019 }
2020 }
2021 bs->dirty_bitmap[idx] = val;
2022 }
2023 }
2024
2025 /* Return < 0 if error. Important errors are:
2026 -EIO generic I/O error (may happen for all errors)
2027 -ENOMEDIUM No media inserted.
2028 -EINVAL Invalid sector number or nb_sectors
2029 -EACCES Trying to write a read-only device
2030 */
2031 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2032 const uint8_t *buf, int nb_sectors)
2033 {
2034 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2035 }
2036
2037 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2038 void *buf, int count1)
2039 {
2040 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2041 int len, nb_sectors, count;
2042 int64_t sector_num;
2043 int ret;
2044
2045 count = count1;
2046 /* first read to align to sector start */
2047 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2048 if (len > count)
2049 len = count;
2050 sector_num = offset >> BDRV_SECTOR_BITS;
2051 if (len > 0) {
2052 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2053 return ret;
2054 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2055 count -= len;
2056 if (count == 0)
2057 return count1;
2058 sector_num++;
2059 buf += len;
2060 }
2061
2062 /* read the sectors "in place" */
2063 nb_sectors = count >> BDRV_SECTOR_BITS;
2064 if (nb_sectors > 0) {
2065 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2066 return ret;
2067 sector_num += nb_sectors;
2068 len = nb_sectors << BDRV_SECTOR_BITS;
2069 buf += len;
2070 count -= len;
2071 }
2072
2073 /* add data from the last sector */
2074 if (count > 0) {
2075 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2076 return ret;
2077 memcpy(buf, tmp_buf, count);
2078 }
2079 return count1;
2080 }
2081
2082 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2083 const void *buf, int count1)
2084 {
2085 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2086 int len, nb_sectors, count;
2087 int64_t sector_num;
2088 int ret;
2089
2090 count = count1;
2091 /* first write to align to sector start */
2092 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2093 if (len > count)
2094 len = count;
2095 sector_num = offset >> BDRV_SECTOR_BITS;
2096 if (len > 0) {
2097 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2098 return ret;
2099 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2100 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2101 return ret;
2102 count -= len;
2103 if (count == 0)
2104 return count1;
2105 sector_num++;
2106 buf += len;
2107 }
2108
2109 /* write the sectors "in place" */
2110 nb_sectors = count >> BDRV_SECTOR_BITS;
2111 if (nb_sectors > 0) {
2112 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2113 return ret;
2114 sector_num += nb_sectors;
2115 len = nb_sectors << BDRV_SECTOR_BITS;
2116 buf += len;
2117 count -= len;
2118 }
2119
2120 /* add data from the last sector */
2121 if (count > 0) {
2122 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2123 return ret;
2124 memcpy(tmp_buf, buf, count);
2125 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2126 return ret;
2127 }
2128 return count1;
2129 }
2130
2131 /*
2132 * Writes to the file and ensures that no writes are reordered across this
2133 * request (acts as a barrier)
2134 *
2135 * Returns 0 on success, -errno in error cases.
2136 */
2137 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2138 const void *buf, int count)
2139 {
2140 int ret;
2141
2142 ret = bdrv_pwrite(bs, offset, buf, count);
2143 if (ret < 0) {
2144 return ret;
2145 }
2146
2147 /* No flush needed for cache modes that already do it */
2148 if (bs->enable_write_cache) {
2149 bdrv_flush(bs);
2150 }
2151
2152 return 0;
2153 }
2154
2155 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2156 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2157 {
2158 /* Perform I/O through a temporary buffer so that users who scribble over
2159 * their read buffer while the operation is in progress do not end up
2160 * modifying the image file. This is critical for zero-copy guest I/O
2161 * where anything might happen inside guest memory.
2162 */
2163 void *bounce_buffer;
2164
2165 BlockDriver *drv = bs->drv;
2166 struct iovec iov;
2167 QEMUIOVector bounce_qiov;
2168 int64_t cluster_sector_num;
2169 int cluster_nb_sectors;
2170 size_t skip_bytes;
2171 int ret;
2172
2173 /* Cover entire cluster so no additional backing file I/O is required when
2174 * allocating cluster in the image file.
2175 */
2176 round_to_clusters(bs, sector_num, nb_sectors,
2177 &cluster_sector_num, &cluster_nb_sectors);
2178
2179 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2180 cluster_sector_num, cluster_nb_sectors);
2181
2182 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2183 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2184 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2185
2186 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2187 &bounce_qiov);
2188 if (ret < 0) {
2189 goto err;
2190 }
2191
2192 if (drv->bdrv_co_write_zeroes &&
2193 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2194 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2195 cluster_nb_sectors);
2196 } else {
2197 /* This does not change the data on the disk, it is not necessary
2198 * to flush even in cache=writethrough mode.
2199 */
2200 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2201 &bounce_qiov);
2202 }
2203
2204 if (ret < 0) {
2205 /* It might be okay to ignore write errors for guest requests. If this
2206 * is a deliberate copy-on-read then we don't want to ignore the error.
2207 * Simply report it in all cases.
2208 */
2209 goto err;
2210 }
2211
2212 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2213 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2214 nb_sectors * BDRV_SECTOR_SIZE);
2215
2216 err:
2217 qemu_vfree(bounce_buffer);
2218 return ret;
2219 }
2220
2221 /*
2222 * Handle a read request in coroutine context
2223 */
2224 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2225 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2226 BdrvRequestFlags flags)
2227 {
2228 BlockDriver *drv = bs->drv;
2229 BdrvTrackedRequest req;
2230 int ret;
2231
2232 if (!drv) {
2233 return -ENOMEDIUM;
2234 }
2235 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2236 return -EIO;
2237 }
2238
2239 /* throttling disk read I/O */
2240 if (bs->io_limits_enabled) {
2241 bdrv_io_limits_intercept(bs, false, nb_sectors);
2242 }
2243
2244 if (bs->copy_on_read) {
2245 flags |= BDRV_REQ_COPY_ON_READ;
2246 }
2247 if (flags & BDRV_REQ_COPY_ON_READ) {
2248 bs->copy_on_read_in_flight++;
2249 }
2250
2251 if (bs->copy_on_read_in_flight) {
2252 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2253 }
2254
2255 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2256
2257 if (flags & BDRV_REQ_COPY_ON_READ) {
2258 int pnum;
2259
2260 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2261 if (ret < 0) {
2262 goto out;
2263 }
2264
2265 if (!ret || pnum != nb_sectors) {
2266 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2267 goto out;
2268 }
2269 }
2270
2271 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2272
2273 out:
2274 tracked_request_end(&req);
2275
2276 if (flags & BDRV_REQ_COPY_ON_READ) {
2277 bs->copy_on_read_in_flight--;
2278 }
2279
2280 return ret;
2281 }
2282
2283 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2284 int nb_sectors, QEMUIOVector *qiov)
2285 {
2286 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2287
2288 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2289 }
2290
2291 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2292 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2293 {
2294 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2295
2296 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2297 BDRV_REQ_COPY_ON_READ);
2298 }
2299
2300 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2301 int64_t sector_num, int nb_sectors)
2302 {
2303 BlockDriver *drv = bs->drv;
2304 QEMUIOVector qiov;
2305 struct iovec iov;
2306 int ret;
2307
2308 /* TODO Emulate only part of misaligned requests instead of letting block
2309 * drivers return -ENOTSUP and emulate everything */
2310
2311 /* First try the efficient write zeroes operation */
2312 if (drv->bdrv_co_write_zeroes) {
2313 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2314 if (ret != -ENOTSUP) {
2315 return ret;
2316 }
2317 }
2318
2319 /* Fall back to bounce buffer if write zeroes is unsupported */
2320 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2321 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2322 memset(iov.iov_base, 0, iov.iov_len);
2323 qemu_iovec_init_external(&qiov, &iov, 1);
2324
2325 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2326
2327 qemu_vfree(iov.iov_base);
2328 return ret;
2329 }
2330
2331 /*
2332 * Handle a write request in coroutine context
2333 */
2334 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2335 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2336 BdrvRequestFlags flags)
2337 {
2338 BlockDriver *drv = bs->drv;
2339 BdrvTrackedRequest req;
2340 int ret;
2341
2342 if (!bs->drv) {
2343 return -ENOMEDIUM;
2344 }
2345 if (bs->read_only) {
2346 return -EACCES;
2347 }
2348 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2349 return -EIO;
2350 }
2351
2352 /* throttling disk write I/O */
2353 if (bs->io_limits_enabled) {
2354 bdrv_io_limits_intercept(bs, true, nb_sectors);
2355 }
2356
2357 if (bs->copy_on_read_in_flight) {
2358 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2359 }
2360
2361 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2362
2363 if (flags & BDRV_REQ_ZERO_WRITE) {
2364 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2365 } else {
2366 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2367 }
2368
2369 if (ret == 0 && !bs->enable_write_cache) {
2370 ret = bdrv_co_flush(bs);
2371 }
2372
2373 if (bs->dirty_bitmap) {
2374 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2375 }
2376
2377 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2378 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2379 }
2380
2381 tracked_request_end(&req);
2382
2383 return ret;
2384 }
2385
2386 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2387 int nb_sectors, QEMUIOVector *qiov)
2388 {
2389 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2390
2391 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2392 }
2393
2394 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2395 int64_t sector_num, int nb_sectors)
2396 {
2397 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2398
2399 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2400 BDRV_REQ_ZERO_WRITE);
2401 }
2402
2403 /**
2404 * Truncate file to 'offset' bytes (needed only for file protocols)
2405 */
2406 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2407 {
2408 BlockDriver *drv = bs->drv;
2409 int ret;
2410 if (!drv)
2411 return -ENOMEDIUM;
2412 if (!drv->bdrv_truncate)
2413 return -ENOTSUP;
2414 if (bs->read_only)
2415 return -EACCES;
2416 if (bdrv_in_use(bs))
2417 return -EBUSY;
2418 ret = drv->bdrv_truncate(bs, offset);
2419 if (ret == 0) {
2420 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2421 bdrv_dev_resize_cb(bs);
2422 }
2423 return ret;
2424 }
2425
2426 /**
2427 * Length of a allocated file in bytes. Sparse files are counted by actual
2428 * allocated space. Return < 0 if error or unknown.
2429 */
2430 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2431 {
2432 BlockDriver *drv = bs->drv;
2433 if (!drv) {
2434 return -ENOMEDIUM;
2435 }
2436 if (drv->bdrv_get_allocated_file_size) {
2437 return drv->bdrv_get_allocated_file_size(bs);
2438 }
2439 if (bs->file) {
2440 return bdrv_get_allocated_file_size(bs->file);
2441 }
2442 return -ENOTSUP;
2443 }
2444
2445 /**
2446 * Length of a file in bytes. Return < 0 if error or unknown.
2447 */
2448 int64_t bdrv_getlength(BlockDriverState *bs)
2449 {
2450 BlockDriver *drv = bs->drv;
2451 if (!drv)
2452 return -ENOMEDIUM;
2453
2454 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2455 if (drv->bdrv_getlength) {
2456 return drv->bdrv_getlength(bs);
2457 }
2458 }
2459 return bs->total_sectors * BDRV_SECTOR_SIZE;
2460 }
2461
2462 /* return 0 as number of sectors if no device present or error */
2463 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2464 {
2465 int64_t length;
2466 length = bdrv_getlength(bs);
2467 if (length < 0)
2468 length = 0;
2469 else
2470 length = length >> BDRV_SECTOR_BITS;
2471 *nb_sectors_ptr = length;
2472 }
2473
2474 /* throttling disk io limits */
2475 void bdrv_set_io_limits(BlockDriverState *bs,
2476 BlockIOLimit *io_limits)
2477 {
2478 bs->io_limits = *io_limits;
2479 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2480 }
2481
2482 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2483 BlockdevOnError on_write_error)
2484 {
2485 bs->on_read_error = on_read_error;
2486 bs->on_write_error = on_write_error;
2487 }
2488
2489 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2490 {
2491 return is_read ? bs->on_read_error : bs->on_write_error;
2492 }
2493
2494 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2495 {
2496 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2497
2498 switch (on_err) {
2499 case BLOCKDEV_ON_ERROR_ENOSPC:
2500 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2501 case BLOCKDEV_ON_ERROR_STOP:
2502 return BDRV_ACTION_STOP;
2503 case BLOCKDEV_ON_ERROR_REPORT:
2504 return BDRV_ACTION_REPORT;
2505 case BLOCKDEV_ON_ERROR_IGNORE:
2506 return BDRV_ACTION_IGNORE;
2507 default:
2508 abort();
2509 }
2510 }
2511
2512 /* This is done by device models because, while the block layer knows
2513 * about the error, it does not know whether an operation comes from
2514 * the device or the block layer (from a job, for example).
2515 */
2516 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2517 bool is_read, int error)
2518 {
2519 assert(error >= 0);
2520 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2521 if (action == BDRV_ACTION_STOP) {
2522 vm_stop(RUN_STATE_IO_ERROR);
2523 bdrv_iostatus_set_err(bs, error);
2524 }
2525 }
2526
2527 int bdrv_is_read_only(BlockDriverState *bs)
2528 {
2529 return bs->read_only;
2530 }
2531
2532 int bdrv_is_sg(BlockDriverState *bs)
2533 {
2534 return bs->sg;
2535 }
2536
2537 int bdrv_enable_write_cache(BlockDriverState *bs)
2538 {
2539 return bs->enable_write_cache;
2540 }
2541
2542 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2543 {
2544 bs->enable_write_cache = wce;
2545
2546 /* so a reopen() will preserve wce */
2547 if (wce) {
2548 bs->open_flags |= BDRV_O_CACHE_WB;
2549 } else {
2550 bs->open_flags &= ~BDRV_O_CACHE_WB;
2551 }
2552 }
2553
2554 int bdrv_is_encrypted(BlockDriverState *bs)
2555 {
2556 if (bs->backing_hd && bs->backing_hd->encrypted)
2557 return 1;
2558 return bs->encrypted;
2559 }
2560
2561 int bdrv_key_required(BlockDriverState *bs)
2562 {
2563 BlockDriverState *backing_hd = bs->backing_hd;
2564
2565 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2566 return 1;
2567 return (bs->encrypted && !bs->valid_key);
2568 }
2569
2570 int bdrv_set_key(BlockDriverState *bs, const char *key)
2571 {
2572 int ret;
2573 if (bs->backing_hd && bs->backing_hd->encrypted) {
2574 ret = bdrv_set_key(bs->backing_hd, key);
2575 if (ret < 0)
2576 return ret;
2577 if (!bs->encrypted)
2578 return 0;
2579 }
2580 if (!bs->encrypted) {
2581 return -EINVAL;
2582 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2583 return -ENOMEDIUM;
2584 }
2585 ret = bs->drv->bdrv_set_key(bs, key);
2586 if (ret < 0) {
2587 bs->valid_key = 0;
2588 } else if (!bs->valid_key) {
2589 bs->valid_key = 1;
2590 /* call the change callback now, we skipped it on open */
2591 bdrv_dev_change_media_cb(bs, true);
2592 }
2593 return ret;
2594 }
2595
2596 const char *bdrv_get_format_name(BlockDriverState *bs)
2597 {
2598 return bs->drv ? bs->drv->format_name : NULL;
2599 }
2600
2601 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2602 void *opaque)
2603 {
2604 BlockDriver *drv;
2605
2606 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2607 it(opaque, drv->format_name);
2608 }
2609 }
2610
2611 BlockDriverState *bdrv_find(const char *name)
2612 {
2613 BlockDriverState *bs;
2614
2615 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2616 if (!strcmp(name, bs->device_name)) {
2617 return bs;
2618 }
2619 }
2620 return NULL;
2621 }
2622
2623 BlockDriverState *bdrv_next(BlockDriverState *bs)
2624 {
2625 if (!bs) {
2626 return QTAILQ_FIRST(&bdrv_states);
2627 }
2628 return QTAILQ_NEXT(bs, list);
2629 }
2630
2631 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2632 {
2633 BlockDriverState *bs;
2634
2635 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2636 it(opaque, bs);
2637 }
2638 }
2639
2640 const char *bdrv_get_device_name(BlockDriverState *bs)
2641 {
2642 return bs->device_name;
2643 }
2644
2645 int bdrv_get_flags(BlockDriverState *bs)
2646 {
2647 return bs->open_flags;
2648 }
2649
2650 void bdrv_flush_all(void)
2651 {
2652 BlockDriverState *bs;
2653
2654 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2655 bdrv_flush(bs);
2656 }
2657 }
2658
2659 int bdrv_has_zero_init(BlockDriverState *bs)
2660 {
2661 assert(bs->drv);
2662
2663 if (bs->drv->bdrv_has_zero_init) {
2664 return bs->drv->bdrv_has_zero_init(bs);
2665 }
2666
2667 return 1;
2668 }
2669
2670 typedef struct BdrvCoIsAllocatedData {
2671 BlockDriverState *bs;
2672 int64_t sector_num;
2673 int nb_sectors;
2674 int *pnum;
2675 int ret;
2676 bool done;
2677 } BdrvCoIsAllocatedData;
2678
2679 /*
2680 * Returns true iff the specified sector is present in the disk image. Drivers
2681 * not implementing the functionality are assumed to not support backing files,
2682 * hence all their sectors are reported as allocated.
2683 *
2684 * If 'sector_num' is beyond the end of the disk image the return value is 0
2685 * and 'pnum' is set to 0.
2686 *
2687 * 'pnum' is set to the number of sectors (including and immediately following
2688 * the specified sector) that are known to be in the same
2689 * allocated/unallocated state.
2690 *
2691 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2692 * beyond the end of the disk image it will be clamped.
2693 */
2694 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2695 int nb_sectors, int *pnum)
2696 {
2697 int64_t n;
2698
2699 if (sector_num >= bs->total_sectors) {
2700 *pnum = 0;
2701 return 0;
2702 }
2703
2704 n = bs->total_sectors - sector_num;
2705 if (n < nb_sectors) {
2706 nb_sectors = n;
2707 }
2708
2709 if (!bs->drv->bdrv_co_is_allocated) {
2710 *pnum = nb_sectors;
2711 return 1;
2712 }
2713
2714 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2715 }
2716
2717 /* Coroutine wrapper for bdrv_is_allocated() */
2718 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2719 {
2720 BdrvCoIsAllocatedData *data = opaque;
2721 BlockDriverState *bs = data->bs;
2722
2723 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2724 data->pnum);
2725 data->done = true;
2726 }
2727
2728 /*
2729 * Synchronous wrapper around bdrv_co_is_allocated().
2730 *
2731 * See bdrv_co_is_allocated() for details.
2732 */
2733 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2734 int *pnum)
2735 {
2736 Coroutine *co;
2737 BdrvCoIsAllocatedData data = {
2738 .bs = bs,
2739 .sector_num = sector_num,
2740 .nb_sectors = nb_sectors,
2741 .pnum = pnum,
2742 .done = false,
2743 };
2744
2745 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2746 qemu_coroutine_enter(co, &data);
2747 while (!data.done) {
2748 qemu_aio_wait();
2749 }
2750 return data.ret;
2751 }
2752
2753 /*
2754 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2755 *
2756 * Return true if the given sector is allocated in any image between
2757 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2758 * sector is allocated in any image of the chain. Return false otherwise.
2759 *
2760 * 'pnum' is set to the number of sectors (including and immediately following
2761 * the specified sector) that are known to be in the same
2762 * allocated/unallocated state.
2763 *
2764 */
2765 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2766 BlockDriverState *base,
2767 int64_t sector_num,
2768 int nb_sectors, int *pnum)
2769 {
2770 BlockDriverState *intermediate;
2771 int ret, n = nb_sectors;
2772
2773 intermediate = top;
2774 while (intermediate && intermediate != base) {
2775 int pnum_inter;
2776 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2777 &pnum_inter);
2778 if (ret < 0) {
2779 return ret;
2780 } else if (ret) {
2781 *pnum = pnum_inter;
2782 return 1;
2783 }
2784
2785 /*
2786 * [sector_num, nb_sectors] is unallocated on top but intermediate
2787 * might have
2788 *
2789 * [sector_num+x, nr_sectors] allocated.
2790 */
2791 if (n > pnum_inter) {
2792 n = pnum_inter;
2793 }
2794
2795 intermediate = intermediate->backing_hd;
2796 }
2797
2798 *pnum = n;
2799 return 0;
2800 }
2801
2802 BlockInfoList *qmp_query_block(Error **errp)
2803 {
2804 BlockInfoList *head = NULL, *cur_item = NULL;
2805 BlockDriverState *bs;
2806
2807 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2808 BlockInfoList *info = g_malloc0(sizeof(*info));
2809
2810 info->value = g_malloc0(sizeof(*info->value));
2811 info->value->device = g_strdup(bs->device_name);
2812 info->value->type = g_strdup("unknown");
2813 info->value->locked = bdrv_dev_is_medium_locked(bs);
2814 info->value->removable = bdrv_dev_has_removable_media(bs);
2815
2816 if (bdrv_dev_has_removable_media(bs)) {
2817 info->value->has_tray_open = true;
2818 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2819 }
2820
2821 if (bdrv_iostatus_is_enabled(bs)) {
2822 info->value->has_io_status = true;
2823 info->value->io_status = bs->iostatus;
2824 }
2825
2826 if (bs->drv) {
2827 info->value->has_inserted = true;
2828 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2829 info->value->inserted->file = g_strdup(bs->filename);
2830 info->value->inserted->ro = bs->read_only;
2831 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2832 info->value->inserted->encrypted = bs->encrypted;
2833 info->value->inserted->encryption_key_missing = bdrv_key_required(bs);
2834 if (bs->backing_file[0]) {
2835 info->value->inserted->has_backing_file = true;
2836 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2837 }
2838
2839 info->value->inserted->backing_file_depth =
2840 bdrv_get_backing_file_depth(bs);
2841
2842 if (bs->io_limits_enabled) {
2843 info->value->inserted->bps =
2844 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2845 info->value->inserted->bps_rd =
2846 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2847 info->value->inserted->bps_wr =
2848 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2849 info->value->inserted->iops =
2850 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2851 info->value->inserted->iops_rd =
2852 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2853 info->value->inserted->iops_wr =
2854 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2855 }
2856 }
2857
2858 /* XXX: waiting for the qapi to support GSList */
2859 if (!cur_item) {
2860 head = cur_item = info;
2861 } else {
2862 cur_item->next = info;
2863 cur_item = info;
2864 }
2865 }
2866
2867 return head;
2868 }
2869
2870 /* Consider exposing this as a full fledged QMP command */
2871 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2872 {
2873 BlockStats *s;
2874
2875 s = g_malloc0(sizeof(*s));
2876
2877 if (bs->device_name[0]) {
2878 s->has_device = true;
2879 s->device = g_strdup(bs->device_name);
2880 }
2881
2882 s->stats = g_malloc0(sizeof(*s->stats));
2883 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2884 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2885 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2886 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2887 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2888 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2889 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2890 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2891 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2892
2893 if (bs->file) {
2894 s->has_parent = true;
2895 s->parent = qmp_query_blockstat(bs->file, NULL);
2896 }
2897
2898 return s;
2899 }
2900
2901 BlockStatsList *qmp_query_blockstats(Error **errp)
2902 {
2903 BlockStatsList *head = NULL, *cur_item = NULL;
2904 BlockDriverState *bs;
2905
2906 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2907 BlockStatsList *info = g_malloc0(sizeof(*info));
2908 info->value = qmp_query_blockstat(bs, NULL);
2909
2910 /* XXX: waiting for the qapi to support GSList */
2911 if (!cur_item) {
2912 head = cur_item = info;
2913 } else {
2914 cur_item->next = info;
2915 cur_item = info;
2916 }
2917 }
2918
2919 return head;
2920 }
2921
2922 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2923 {
2924 if (bs->backing_hd && bs->backing_hd->encrypted)
2925 return bs->backing_file;
2926 else if (bs->encrypted)
2927 return bs->filename;
2928 else
2929 return NULL;
2930 }
2931
2932 void bdrv_get_backing_filename(BlockDriverState *bs,
2933 char *filename, int filename_size)
2934 {
2935 pstrcpy(filename, filename_size, bs->backing_file);
2936 }
2937
2938 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2939 const uint8_t *buf, int nb_sectors)
2940 {
2941 BlockDriver *drv = bs->drv;
2942 if (!drv)
2943 return -ENOMEDIUM;
2944 if (!drv->bdrv_write_compressed)
2945 return -ENOTSUP;
2946 if (bdrv_check_request(bs, sector_num, nb_sectors))
2947 return -EIO;
2948
2949 if (bs->dirty_bitmap) {
2950 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2951 }
2952
2953 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2954 }
2955
2956 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2957 {
2958 BlockDriver *drv = bs->drv;
2959 if (!drv)
2960 return -ENOMEDIUM;
2961 if (!drv->bdrv_get_info)
2962 return -ENOTSUP;
2963 memset(bdi, 0, sizeof(*bdi));
2964 return drv->bdrv_get_info(bs, bdi);
2965 }
2966
2967 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2968 int64_t pos, int size)
2969 {
2970 BlockDriver *drv = bs->drv;
2971 if (!drv)
2972 return -ENOMEDIUM;
2973 if (drv->bdrv_save_vmstate)
2974 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2975 if (bs->file)
2976 return bdrv_save_vmstate(bs->file, buf, pos, size);
2977 return -ENOTSUP;
2978 }
2979
2980 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2981 int64_t pos, int size)
2982 {
2983 BlockDriver *drv = bs->drv;
2984 if (!drv)
2985 return -ENOMEDIUM;
2986 if (drv->bdrv_load_vmstate)
2987 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2988 if (bs->file)
2989 return bdrv_load_vmstate(bs->file, buf, pos, size);
2990 return -ENOTSUP;
2991 }
2992
2993 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2994 {
2995 BlockDriver *drv = bs->drv;
2996
2997 if (!drv || !drv->bdrv_debug_event) {
2998 return;
2999 }
3000
3001 drv->bdrv_debug_event(bs, event);
3002
3003 }
3004
3005 /**************************************************************/
3006 /* handling of snapshots */
3007
3008 int bdrv_can_snapshot(BlockDriverState *bs)
3009 {
3010 BlockDriver *drv = bs->drv;
3011 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3012 return 0;
3013 }
3014
3015 if (!drv->bdrv_snapshot_create) {
3016 if (bs->file != NULL) {
3017 return bdrv_can_snapshot(bs->file);
3018 }
3019 return 0;
3020 }
3021
3022 return 1;
3023 }
3024
3025 int bdrv_is_snapshot(BlockDriverState *bs)
3026 {
3027 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3028 }
3029
3030 BlockDriverState *bdrv_snapshots(void)
3031 {
3032 BlockDriverState *bs;
3033
3034 if (bs_snapshots) {
3035 return bs_snapshots;
3036 }
3037
3038 bs = NULL;
3039 while ((bs = bdrv_next(bs))) {
3040 if (bdrv_can_snapshot(bs)) {
3041 bs_snapshots = bs;
3042 return bs;
3043 }
3044 }
3045 return NULL;
3046 }
3047
3048 int bdrv_snapshot_create(BlockDriverState *bs,
3049 QEMUSnapshotInfo *sn_info)
3050 {
3051 BlockDriver *drv = bs->drv;
3052 if (!drv)
3053 return -ENOMEDIUM;
3054 if (drv->bdrv_snapshot_create)
3055 return drv->bdrv_snapshot_create(bs, sn_info);
3056 if (bs->file)
3057 return bdrv_snapshot_create(bs->file, sn_info);
3058 return -ENOTSUP;
3059 }
3060
3061 int bdrv_snapshot_goto(BlockDriverState *bs,
3062 const char *snapshot_id)
3063 {
3064 BlockDriver *drv = bs->drv;
3065 int ret, open_ret;
3066
3067 if (!drv)
3068 return -ENOMEDIUM;
3069 if (drv->bdrv_snapshot_goto)
3070 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3071
3072 if (bs->file) {
3073 drv->bdrv_close(bs);
3074 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3075 open_ret = drv->bdrv_open(bs, bs->open_flags);
3076 if (open_ret < 0) {
3077 bdrv_delete(bs->file);
3078 bs->drv = NULL;
3079 return open_ret;
3080 }
3081 return ret;
3082 }
3083
3084 return -ENOTSUP;
3085 }
3086
3087 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3088 {
3089 BlockDriver *drv = bs->drv;
3090 if (!drv)
3091 return -ENOMEDIUM;
3092 if (drv->bdrv_snapshot_delete)
3093 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3094 if (bs->file)
3095 return bdrv_snapshot_delete(bs->file, snapshot_id);
3096 return -ENOTSUP;
3097 }
3098
3099 int bdrv_snapshot_list(BlockDriverState *bs,
3100 QEMUSnapshotInfo **psn_info)
3101 {
3102 BlockDriver *drv = bs->drv;
3103 if (!drv)
3104 return -ENOMEDIUM;
3105 if (drv->bdrv_snapshot_list)
3106 return drv->bdrv_snapshot_list(bs, psn_info);
3107 if (bs->file)
3108 return bdrv_snapshot_list(bs->file, psn_info);
3109 return -ENOTSUP;
3110 }
3111
3112 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3113 const char *snapshot_name)
3114 {
3115 BlockDriver *drv = bs->drv;
3116 if (!drv) {
3117 return -ENOMEDIUM;
3118 }
3119 if (!bs->read_only) {
3120 return -EINVAL;
3121 }
3122 if (drv->bdrv_snapshot_load_tmp) {
3123 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3124 }
3125 return -ENOTSUP;
3126 }
3127
3128 /* backing_file can either be relative, or absolute, or a protocol. If it is
3129 * relative, it must be relative to the chain. So, passing in bs->filename
3130 * from a BDS as backing_file should not be done, as that may be relative to
3131 * the CWD rather than the chain. */
3132 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3133 const char *backing_file)
3134 {
3135 char *filename_full = NULL;
3136 char *backing_file_full = NULL;
3137 char *filename_tmp = NULL;
3138 int is_protocol = 0;
3139 BlockDriverState *curr_bs = NULL;
3140 BlockDriverState *retval = NULL;
3141
3142 if (!bs || !bs->drv || !backing_file) {
3143 return NULL;
3144 }
3145
3146 filename_full = g_malloc(PATH_MAX);
3147 backing_file_full = g_malloc(PATH_MAX);
3148 filename_tmp = g_malloc(PATH_MAX);
3149
3150 is_protocol = path_has_protocol(backing_file);
3151
3152 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3153
3154 /* If either of the filename paths is actually a protocol, then
3155 * compare unmodified paths; otherwise make paths relative */
3156 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3157 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3158 retval = curr_bs->backing_hd;
3159 break;
3160 }
3161 } else {
3162 /* If not an absolute filename path, make it relative to the current
3163 * image's filename path */
3164 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3165 backing_file);
3166
3167 /* We are going to compare absolute pathnames */
3168 if (!realpath(filename_tmp, filename_full)) {
3169 continue;
3170 }
3171
3172 /* We need to make sure the backing filename we are comparing against
3173 * is relative to the current image filename (or absolute) */
3174 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3175 curr_bs->backing_file);
3176
3177 if (!realpath(filename_tmp, backing_file_full)) {
3178 continue;
3179 }
3180
3181 if (strcmp(backing_file_full, filename_full) == 0) {
3182 retval = curr_bs->backing_hd;
3183 break;
3184 }
3185 }
3186 }
3187
3188 g_free(filename_full);
3189 g_free(backing_file_full);
3190 g_free(filename_tmp);
3191 return retval;
3192 }
3193
3194 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3195 {
3196 if (!bs->drv) {
3197 return 0;
3198 }
3199
3200 if (!bs->backing_hd) {
3201 return 0;
3202 }
3203
3204 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3205 }
3206
3207 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3208 {
3209 BlockDriverState *curr_bs = NULL;
3210
3211 if (!bs) {
3212 return NULL;
3213 }
3214
3215 curr_bs = bs;
3216
3217 while (curr_bs->backing_hd) {
3218 curr_bs = curr_bs->backing_hd;
3219 }
3220 return curr_bs;
3221 }
3222
3223 #define NB_SUFFIXES 4
3224
3225 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3226 {
3227 static const char suffixes[NB_SUFFIXES] = "KMGT";
3228 int64_t base;
3229 int i;
3230
3231 if (size <= 999) {
3232 snprintf(buf, buf_size, "%" PRId64, size);
3233 } else {
3234 base = 1024;
3235 for(i = 0; i < NB_SUFFIXES; i++) {
3236 if (size < (10 * base)) {
3237 snprintf(buf, buf_size, "%0.1f%c",
3238 (double)size / base,
3239 suffixes[i]);
3240 break;
3241 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3242 snprintf(buf, buf_size, "%" PRId64 "%c",
3243 ((size + (base >> 1)) / base),
3244 suffixes[i]);
3245 break;
3246 }
3247 base = base * 1024;
3248 }
3249 }
3250 return buf;
3251 }
3252
3253 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3254 {
3255 char buf1[128], date_buf[128], clock_buf[128];
3256 #ifdef _WIN32
3257 struct tm *ptm;
3258 #else
3259 struct tm tm;
3260 #endif
3261 time_t ti;
3262 int64_t secs;
3263
3264 if (!sn) {
3265 snprintf(buf, buf_size,
3266 "%-10s%-20s%7s%20s%15s",
3267 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3268 } else {
3269 ti = sn->date_sec;
3270 #ifdef _WIN32
3271 ptm = localtime(&ti);
3272 strftime(date_buf, sizeof(date_buf),
3273 "%Y-%m-%d %H:%M:%S", ptm);
3274 #else
3275 localtime_r(&ti, &tm);
3276 strftime(date_buf, sizeof(date_buf),
3277 "%Y-%m-%d %H:%M:%S", &tm);
3278 #endif
3279 secs = sn->vm_clock_nsec / 1000000000;
3280 snprintf(clock_buf, sizeof(clock_buf),
3281 "%02d:%02d:%02d.%03d",
3282 (int)(secs / 3600),
3283 (int)((secs / 60) % 60),
3284 (int)(secs % 60),
3285 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3286 snprintf(buf, buf_size,
3287 "%-10s%-20s%7s%20s%15s",
3288 sn->id_str, sn->name,
3289 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3290 date_buf,
3291 clock_buf);
3292 }
3293 return buf;
3294 }
3295
3296 /**************************************************************/
3297 /* async I/Os */
3298
3299 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3300 QEMUIOVector *qiov, int nb_sectors,
3301 BlockDriverCompletionFunc *cb, void *opaque)
3302 {
3303 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3304
3305 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3306 cb, opaque, false);
3307 }
3308
3309 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3310 QEMUIOVector *qiov, int nb_sectors,
3311 BlockDriverCompletionFunc *cb, void *opaque)
3312 {
3313 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3314
3315 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3316 cb, opaque, true);
3317 }
3318
3319
3320 typedef struct MultiwriteCB {
3321 int error;
3322 int num_requests;
3323 int num_callbacks;
3324 struct {
3325 BlockDriverCompletionFunc *cb;
3326 void *opaque;
3327 QEMUIOVector *free_qiov;
3328 } callbacks[];
3329 } MultiwriteCB;
3330
3331 static void multiwrite_user_cb(MultiwriteCB *mcb)
3332 {
3333 int i;
3334
3335 for (i = 0; i < mcb->num_callbacks; i++) {
3336 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3337 if (mcb->callbacks[i].free_qiov) {
3338 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3339 }
3340 g_free(mcb->callbacks[i].free_qiov);
3341 }
3342 }
3343
3344 static void multiwrite_cb(void *opaque, int ret)
3345 {
3346 MultiwriteCB *mcb = opaque;
3347
3348 trace_multiwrite_cb(mcb, ret);
3349
3350 if (ret < 0 && !mcb->error) {
3351 mcb->error = ret;
3352 }
3353
3354 mcb->num_requests--;
3355 if (mcb->num_requests == 0) {
3356 multiwrite_user_cb(mcb);
3357 g_free(mcb);
3358 }
3359 }
3360
3361 static int multiwrite_req_compare(const void *a, const void *b)
3362 {
3363 const BlockRequest *req1 = a, *req2 = b;
3364
3365 /*
3366 * Note that we can't simply subtract req2->sector from req1->sector
3367 * here as that could overflow the return value.
3368 */
3369 if (req1->sector > req2->sector) {
3370 return 1;
3371 } else if (req1->sector < req2->sector) {
3372 return -1;
3373 } else {
3374 return 0;
3375 }
3376 }
3377
3378 /*
3379 * Takes a bunch of requests and tries to merge them. Returns the number of
3380 * requests that remain after merging.
3381 */
3382 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3383 int num_reqs, MultiwriteCB *mcb)
3384 {
3385 int i, outidx;
3386
3387 // Sort requests by start sector
3388 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3389
3390 // Check if adjacent requests touch the same clusters. If so, combine them,
3391 // filling up gaps with zero sectors.
3392 outidx = 0;
3393 for (i = 1; i < num_reqs; i++) {
3394 int merge = 0;
3395 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3396
3397 // Handle exactly sequential writes and overlapping writes.
3398 if (reqs[i].sector <= oldreq_last) {
3399 merge = 1;
3400 }
3401
3402 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3403 merge = 0;
3404 }
3405
3406 if (merge) {
3407 size_t size;
3408 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3409 qemu_iovec_init(qiov,
3410 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3411
3412 // Add the first request to the merged one. If the requests are
3413 // overlapping, drop the last sectors of the first request.
3414 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3415 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3416
3417 // We should need to add any zeros between the two requests
3418 assert (reqs[i].sector <= oldreq_last);
3419
3420 // Add the second request
3421 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3422
3423 reqs[outidx].nb_sectors = qiov->size >> 9;
3424 reqs[outidx].qiov = qiov;
3425
3426 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3427 } else {
3428 outidx++;
3429 reqs[outidx].sector = reqs[i].sector;
3430 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3431 reqs[outidx].qiov = reqs[i].qiov;
3432 }
3433 }
3434
3435 return outidx + 1;
3436 }
3437
3438 /*
3439 * Submit multiple AIO write requests at once.
3440 *
3441 * On success, the function returns 0 and all requests in the reqs array have
3442 * been submitted. In error case this function returns -1, and any of the
3443 * requests may or may not be submitted yet. In particular, this means that the
3444 * callback will be called for some of the requests, for others it won't. The
3445 * caller must check the error field of the BlockRequest to wait for the right
3446 * callbacks (if error != 0, no callback will be called).
3447 *
3448 * The implementation may modify the contents of the reqs array, e.g. to merge
3449 * requests. However, the fields opaque and error are left unmodified as they
3450 * are used to signal failure for a single request to the caller.
3451 */
3452 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3453 {
3454 MultiwriteCB *mcb;
3455 int i;
3456
3457 /* don't submit writes if we don't have a medium */
3458 if (bs->drv == NULL) {
3459 for (i = 0; i < num_reqs; i++) {
3460 reqs[i].error = -ENOMEDIUM;
3461 }
3462 return -1;
3463 }
3464
3465 if (num_reqs == 0) {
3466 return 0;
3467 }
3468
3469 // Create MultiwriteCB structure
3470 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3471 mcb->num_requests = 0;
3472 mcb->num_callbacks = num_reqs;
3473
3474 for (i = 0; i < num_reqs; i++) {
3475 mcb->callbacks[i].cb = reqs[i].cb;
3476 mcb->callbacks[i].opaque = reqs[i].opaque;
3477 }
3478
3479 // Check for mergable requests
3480 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3481
3482 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3483
3484 /* Run the aio requests. */
3485 mcb->num_requests = num_reqs;
3486 for (i = 0; i < num_reqs; i++) {
3487 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3488 reqs[i].nb_sectors, multiwrite_cb, mcb);
3489 }
3490
3491 return 0;
3492 }
3493
3494 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3495 {
3496 acb->pool->cancel(acb);
3497 }
3498
3499 /* block I/O throttling */
3500 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3501 bool is_write, double elapsed_time, uint64_t *wait)
3502 {
3503 uint64_t bps_limit = 0;
3504 double bytes_limit, bytes_base, bytes_res;
3505 double slice_time, wait_time;
3506
3507 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3508 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3509 } else if (bs->io_limits.bps[is_write]) {
3510 bps_limit = bs->io_limits.bps[is_write];
3511 } else {
3512 if (wait) {
3513 *wait = 0;
3514 }
3515
3516 return false;
3517 }
3518
3519 slice_time = bs->slice_end - bs->slice_start;
3520 slice_time /= (NANOSECONDS_PER_SECOND);
3521 bytes_limit = bps_limit * slice_time;
3522 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3523 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3524 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3525 }
3526
3527 /* bytes_base: the bytes of data which have been read/written; and
3528 * it is obtained from the history statistic info.
3529 * bytes_res: the remaining bytes of data which need to be read/written.
3530 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3531 * the total time for completing reading/writting all data.
3532 */
3533 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3534
3535 if (bytes_base + bytes_res <= bytes_limit) {
3536 if (wait) {
3537 *wait = 0;
3538 }
3539
3540 return false;
3541 }
3542
3543 /* Calc approx time to dispatch */
3544 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3545
3546 /* When the I/O rate at runtime exceeds the limits,
3547 * bs->slice_end need to be extended in order that the current statistic
3548 * info can be kept until the timer fire, so it is increased and tuned
3549 * based on the result of experiment.
3550 */
3551 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3552 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3553 if (wait) {
3554 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3555 }
3556
3557 return true;
3558 }
3559
3560 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3561 double elapsed_time, uint64_t *wait)
3562 {
3563 uint64_t iops_limit = 0;
3564 double ios_limit, ios_base;
3565 double slice_time, wait_time;
3566
3567 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3568 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3569 } else if (bs->io_limits.iops[is_write]) {
3570 iops_limit = bs->io_limits.iops[is_write];
3571 } else {
3572 if (wait) {
3573 *wait = 0;
3574 }
3575
3576 return false;
3577 }
3578
3579 slice_time = bs->slice_end - bs->slice_start;
3580 slice_time /= (NANOSECONDS_PER_SECOND);
3581 ios_limit = iops_limit * slice_time;
3582 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3583 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3584 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3585 }
3586
3587 if (ios_base + 1 <= ios_limit) {
3588 if (wait) {
3589 *wait = 0;
3590 }
3591
3592 return false;
3593 }
3594
3595 /* Calc approx time to dispatch */
3596 wait_time = (ios_base + 1) / iops_limit;
3597 if (wait_time > elapsed_time) {
3598 wait_time = wait_time - elapsed_time;
3599 } else {
3600 wait_time = 0;
3601 }
3602
3603 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3604 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3605 if (wait) {
3606 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3607 }
3608
3609 return true;
3610 }
3611
3612 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3613 bool is_write, int64_t *wait)
3614 {
3615 int64_t now, max_wait;
3616 uint64_t bps_wait = 0, iops_wait = 0;
3617 double elapsed_time;
3618 int bps_ret, iops_ret;
3619
3620 now = qemu_get_clock_ns(vm_clock);
3621 if ((bs->slice_start < now)
3622 && (bs->slice_end > now)) {
3623 bs->slice_end = now + bs->slice_time;
3624 } else {
3625 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3626 bs->slice_start = now;
3627 bs->slice_end = now + bs->slice_time;
3628
3629 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3630 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3631
3632 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3633 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3634 }
3635
3636 elapsed_time = now - bs->slice_start;
3637 elapsed_time /= (NANOSECONDS_PER_SECOND);
3638
3639 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3640 is_write, elapsed_time, &bps_wait);
3641 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3642 elapsed_time, &iops_wait);
3643 if (bps_ret || iops_ret) {
3644 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3645 if (wait) {
3646 *wait = max_wait;
3647 }
3648
3649 now = qemu_get_clock_ns(vm_clock);
3650 if (bs->slice_end < now + max_wait) {
3651 bs->slice_end = now + max_wait;
3652 }
3653
3654 return true;
3655 }
3656
3657 if (wait) {
3658 *wait = 0;
3659 }
3660
3661 return false;
3662 }
3663
3664 /**************************************************************/
3665 /* async block device emulation */
3666
3667 typedef struct BlockDriverAIOCBSync {
3668 BlockDriverAIOCB common;
3669 QEMUBH *bh;
3670 int ret;
3671 /* vector translation state */
3672 QEMUIOVector *qiov;
3673 uint8_t *bounce;
3674 int is_write;
3675 } BlockDriverAIOCBSync;
3676
3677 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3678 {
3679 BlockDriverAIOCBSync *acb =
3680 container_of(blockacb, BlockDriverAIOCBSync, common);
3681 qemu_bh_delete(acb->bh);
3682 acb->bh = NULL;
3683 qemu_aio_release(acb);
3684 }
3685
3686 static AIOPool bdrv_em_aio_pool = {
3687 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3688 .cancel = bdrv_aio_cancel_em,
3689 };
3690
3691 static void bdrv_aio_bh_cb(void *opaque)
3692 {
3693 BlockDriverAIOCBSync *acb = opaque;
3694
3695 if (!acb->is_write)
3696 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3697 qemu_vfree(acb->bounce);
3698 acb->common.cb(acb->common.opaque, acb->ret);
3699 qemu_bh_delete(acb->bh);
3700 acb->bh = NULL;
3701 qemu_aio_release(acb);
3702 }
3703
3704 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3705 int64_t sector_num,
3706 QEMUIOVector *qiov,
3707 int nb_sectors,
3708 BlockDriverCompletionFunc *cb,
3709 void *opaque,
3710 int is_write)
3711
3712 {
3713 BlockDriverAIOCBSync *acb;
3714
3715 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3716 acb->is_write = is_write;
3717 acb->qiov = qiov;
3718 acb->bounce = qemu_blockalign(bs, qiov->size);
3719 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3720
3721 if (is_write) {
3722 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3723 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3724 } else {
3725 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3726 }
3727
3728 qemu_bh_schedule(acb->bh);
3729
3730 return &acb->common;
3731 }
3732
3733 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3734 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3735 BlockDriverCompletionFunc *cb, void *opaque)
3736 {
3737 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3738 }
3739
3740 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3741 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3742 BlockDriverCompletionFunc *cb, void *opaque)
3743 {
3744 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3745 }
3746
3747
3748 typedef struct BlockDriverAIOCBCoroutine {
3749 BlockDriverAIOCB common;
3750 BlockRequest req;
3751 bool is_write;
3752 QEMUBH* bh;
3753 } BlockDriverAIOCBCoroutine;
3754
3755 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3756 {
3757 qemu_aio_flush();
3758 }
3759
3760 static AIOPool bdrv_em_co_aio_pool = {
3761 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3762 .cancel = bdrv_aio_co_cancel_em,
3763 };
3764
3765 static void bdrv_co_em_bh(void *opaque)
3766 {
3767 BlockDriverAIOCBCoroutine *acb = opaque;
3768
3769 acb->common.cb(acb->common.opaque, acb->req.error);
3770 qemu_bh_delete(acb->bh);
3771 qemu_aio_release(acb);
3772 }
3773
3774 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3775 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3776 {
3777 BlockDriverAIOCBCoroutine *acb = opaque;
3778 BlockDriverState *bs = acb->common.bs;
3779
3780 if (!acb->is_write) {
3781 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3782 acb->req.nb_sectors, acb->req.qiov, 0);
3783 } else {
3784 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3785 acb->req.nb_sectors, acb->req.qiov, 0);
3786 }
3787
3788 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3789 qemu_bh_schedule(acb->bh);
3790 }
3791
3792 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3793 int64_t sector_num,
3794 QEMUIOVector *qiov,
3795 int nb_sectors,
3796 BlockDriverCompletionFunc *cb,
3797 void *opaque,
3798 bool is_write)
3799 {
3800 Coroutine *co;
3801 BlockDriverAIOCBCoroutine *acb;
3802
3803 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3804 acb->req.sector = sector_num;
3805 acb->req.nb_sectors = nb_sectors;
3806 acb->req.qiov = qiov;
3807 acb->is_write = is_write;
3808
3809 co = qemu_coroutine_create(bdrv_co_do_rw);
3810 qemu_coroutine_enter(co, acb);
3811
3812 return &acb->common;
3813 }
3814
3815 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3816 {
3817 BlockDriverAIOCBCoroutine *acb = opaque;
3818 BlockDriverState *bs = acb->common.bs;
3819
3820 acb->req.error = bdrv_co_flush(bs);
3821 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3822 qemu_bh_schedule(acb->bh);
3823 }
3824
3825 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3826 BlockDriverCompletionFunc *cb, void *opaque)
3827 {
3828 trace_bdrv_aio_flush(bs, opaque);
3829
3830 Coroutine *co;
3831 BlockDriverAIOCBCoroutine *acb;
3832
3833 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3834 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3835 qemu_coroutine_enter(co, acb);
3836
3837 return &acb->common;
3838 }
3839
3840 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3841 {
3842 BlockDriverAIOCBCoroutine *acb = opaque;
3843 BlockDriverState *bs = acb->common.bs;
3844
3845 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3846 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3847 qemu_bh_schedule(acb->bh);
3848 }
3849
3850 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3851 int64_t sector_num, int nb_sectors,
3852 BlockDriverCompletionFunc *cb, void *opaque)
3853 {
3854 Coroutine *co;
3855 BlockDriverAIOCBCoroutine *acb;
3856
3857 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3858
3859 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3860 acb->req.sector = sector_num;
3861 acb->req.nb_sectors = nb_sectors;
3862 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3863 qemu_coroutine_enter(co, acb);
3864
3865 return &acb->common;
3866 }
3867
3868 void bdrv_init(void)
3869 {
3870 module_call_init(MODULE_INIT_BLOCK);
3871 }
3872
3873 void bdrv_init_with_whitelist(void)
3874 {
3875 use_bdrv_whitelist = 1;
3876 bdrv_init();
3877 }
3878
3879 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3880 BlockDriverCompletionFunc *cb, void *opaque)
3881 {
3882 BlockDriverAIOCB *acb;
3883
3884 if (pool->free_aiocb) {
3885 acb = pool->free_aiocb;
3886 pool->free_aiocb = acb->next;
3887 } else {
3888 acb = g_malloc0(pool->aiocb_size);
3889 acb->pool = pool;
3890 }
3891 acb->bs = bs;
3892 acb->cb = cb;
3893 acb->opaque = opaque;
3894 return acb;
3895 }
3896
3897 void qemu_aio_release(void *p)
3898 {
3899 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3900 AIOPool *pool = acb->pool;
3901 acb->next = pool->free_aiocb;
3902 pool->free_aiocb = acb;
3903 }
3904
3905 /**************************************************************/
3906 /* Coroutine block device emulation */
3907
3908 typedef struct CoroutineIOCompletion {
3909 Coroutine *coroutine;
3910 int ret;
3911 } CoroutineIOCompletion;
3912
3913 static void bdrv_co_io_em_complete(void *opaque, int ret)
3914 {
3915 CoroutineIOCompletion *co = opaque;
3916
3917 co->ret = ret;
3918 qemu_coroutine_enter(co->coroutine, NULL);
3919 }
3920
3921 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3922 int nb_sectors, QEMUIOVector *iov,
3923 bool is_write)
3924 {
3925 CoroutineIOCompletion co = {
3926 .coroutine = qemu_coroutine_self(),
3927 };
3928 BlockDriverAIOCB *acb;
3929
3930 if (is_write) {
3931 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3932 bdrv_co_io_em_complete, &co);
3933 } else {
3934 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3935 bdrv_co_io_em_complete, &co);
3936 }
3937
3938 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3939 if (!acb) {
3940 return -EIO;
3941 }
3942 qemu_coroutine_yield();
3943
3944 return co.ret;
3945 }
3946
3947 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3948 int64_t sector_num, int nb_sectors,
3949 QEMUIOVector *iov)
3950 {
3951 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3952 }
3953
3954 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3955 int64_t sector_num, int nb_sectors,
3956 QEMUIOVector *iov)
3957 {
3958 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3959 }
3960
3961 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3962 {
3963 RwCo *rwco = opaque;
3964
3965 rwco->ret = bdrv_co_flush(rwco->bs);
3966 }
3967
3968 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3969 {
3970 int ret;
3971
3972 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3973 return 0;
3974 }
3975
3976 /* Write back cached data to the OS even with cache=unsafe */
3977 if (bs->drv->bdrv_co_flush_to_os) {
3978 ret = bs->drv->bdrv_co_flush_to_os(bs);
3979 if (ret < 0) {
3980 return ret;
3981 }
3982 }
3983
3984 /* But don't actually force it to the disk with cache=unsafe */
3985 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3986 goto flush_parent;
3987 }
3988
3989 if (bs->drv->bdrv_co_flush_to_disk) {
3990 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3991 } else if (bs->drv->bdrv_aio_flush) {
3992 BlockDriverAIOCB *acb;
3993 CoroutineIOCompletion co = {
3994 .coroutine = qemu_coroutine_self(),
3995 };
3996
3997 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3998 if (acb == NULL) {
3999 ret = -EIO;
4000 } else {
4001 qemu_coroutine_yield();
4002 ret = co.ret;
4003 }
4004 } else {
4005 /*
4006 * Some block drivers always operate in either writethrough or unsafe
4007 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4008 * know how the server works (because the behaviour is hardcoded or
4009 * depends on server-side configuration), so we can't ensure that
4010 * everything is safe on disk. Returning an error doesn't work because
4011 * that would break guests even if the server operates in writethrough
4012 * mode.
4013 *
4014 * Let's hope the user knows what he's doing.
4015 */
4016 ret = 0;
4017 }
4018 if (ret < 0) {
4019 return ret;
4020 }
4021
4022 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4023 * in the case of cache=unsafe, so there are no useless flushes.
4024 */
4025 flush_parent:
4026 return bdrv_co_flush(bs->file);
4027 }
4028
4029 void bdrv_invalidate_cache(BlockDriverState *bs)
4030 {
4031 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4032 bs->drv->bdrv_invalidate_cache(bs);
4033 }
4034 }
4035
4036 void bdrv_invalidate_cache_all(void)
4037 {
4038 BlockDriverState *bs;
4039
4040 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4041 bdrv_invalidate_cache(bs);
4042 }
4043 }
4044
4045 void bdrv_clear_incoming_migration_all(void)
4046 {
4047 BlockDriverState *bs;
4048
4049 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4050 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4051 }
4052 }
4053
4054 int bdrv_flush(BlockDriverState *bs)
4055 {
4056 Coroutine *co;
4057 RwCo rwco = {
4058 .bs = bs,
4059 .ret = NOT_DONE,
4060 };
4061
4062 if (qemu_in_coroutine()) {
4063 /* Fast-path if already in coroutine context */
4064 bdrv_flush_co_entry(&rwco);
4065 } else {
4066 co = qemu_coroutine_create(bdrv_flush_co_entry);
4067 qemu_coroutine_enter(co, &rwco);
4068 while (rwco.ret == NOT_DONE) {
4069 qemu_aio_wait();
4070 }
4071 }
4072
4073 return rwco.ret;
4074 }
4075
4076 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4077 {
4078 RwCo *rwco = opaque;
4079
4080 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4081 }
4082
4083 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4084 int nb_sectors)
4085 {
4086 if (!bs->drv) {
4087 return -ENOMEDIUM;
4088 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4089 return -EIO;
4090 } else if (bs->read_only) {
4091 return -EROFS;
4092 } else if (bs->drv->bdrv_co_discard) {
4093 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4094 } else if (bs->drv->bdrv_aio_discard) {
4095 BlockDriverAIOCB *acb;
4096 CoroutineIOCompletion co = {
4097 .coroutine = qemu_coroutine_self(),
4098 };
4099
4100 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4101 bdrv_co_io_em_complete, &co);
4102 if (acb == NULL) {
4103 return -EIO;
4104 } else {
4105 qemu_coroutine_yield();
4106 return co.ret;
4107 }
4108 } else {
4109 return 0;
4110 }
4111 }
4112
4113 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4114 {
4115 Coroutine *co;
4116 RwCo rwco = {
4117 .bs = bs,
4118 .sector_num = sector_num,
4119 .nb_sectors = nb_sectors,
4120 .ret = NOT_DONE,
4121 };
4122
4123 if (qemu_in_coroutine()) {
4124 /* Fast-path if already in coroutine context */
4125 bdrv_discard_co_entry(&rwco);
4126 } else {
4127 co = qemu_coroutine_create(bdrv_discard_co_entry);
4128 qemu_coroutine_enter(co, &rwco);
4129 while (rwco.ret == NOT_DONE) {
4130 qemu_aio_wait();
4131 }
4132 }
4133
4134 return rwco.ret;
4135 }
4136
4137 /**************************************************************/
4138 /* removable device support */
4139
4140 /**
4141 * Return TRUE if the media is present
4142 */
4143 int bdrv_is_inserted(BlockDriverState *bs)
4144 {
4145 BlockDriver *drv = bs->drv;
4146
4147 if (!drv)
4148 return 0;
4149 if (!drv->bdrv_is_inserted)
4150 return 1;
4151 return drv->bdrv_is_inserted(bs);
4152 }
4153
4154 /**
4155 * Return whether the media changed since the last call to this
4156 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4157 */
4158 int bdrv_media_changed(BlockDriverState *bs)
4159 {
4160 BlockDriver *drv = bs->drv;
4161
4162 if (drv && drv->bdrv_media_changed) {
4163 return drv->bdrv_media_changed(bs);
4164 }
4165 return -ENOTSUP;
4166 }
4167
4168 /**
4169 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4170 */
4171 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4172 {
4173 BlockDriver *drv = bs->drv;
4174
4175 if (drv && drv->bdrv_eject) {
4176 drv->bdrv_eject(bs, eject_flag);
4177 }
4178
4179 if (bs->device_name[0] != '\0') {
4180 bdrv_emit_qmp_eject_event(bs, eject_flag);
4181 }
4182 }
4183
4184 /**
4185 * Lock or unlock the media (if it is locked, the user won't be able
4186 * to eject it manually).
4187 */
4188 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4189 {
4190 BlockDriver *drv = bs->drv;
4191
4192 trace_bdrv_lock_medium(bs, locked);
4193
4194 if (drv && drv->bdrv_lock_medium) {
4195 drv->bdrv_lock_medium(bs, locked);
4196 }
4197 }
4198
4199 /* needed for generic scsi interface */
4200
4201 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4202 {
4203 BlockDriver *drv = bs->drv;
4204
4205 if (drv && drv->bdrv_ioctl)
4206 return drv->bdrv_ioctl(bs, req, buf);
4207 return -ENOTSUP;
4208 }
4209
4210 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4211 unsigned long int req, void *buf,
4212 BlockDriverCompletionFunc *cb, void *opaque)
4213 {
4214 BlockDriver *drv = bs->drv;
4215
4216 if (drv && drv->bdrv_aio_ioctl)
4217 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4218 return NULL;
4219 }
4220
4221 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4222 {
4223 bs->buffer_alignment = align;
4224 }
4225
4226 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4227 {
4228 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4229 }
4230
4231 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4232 {
4233 int64_t bitmap_size;
4234
4235 bs->dirty_count = 0;
4236 if (enable) {
4237 if (!bs->dirty_bitmap) {
4238 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4239 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4240 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4241
4242 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4243 }
4244 } else {
4245 if (bs->dirty_bitmap) {
4246 g_free(bs->dirty_bitmap);
4247 bs->dirty_bitmap = NULL;
4248 }
4249 }
4250 }
4251
4252 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4253 {
4254 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4255
4256 if (bs->dirty_bitmap &&
4257 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4258 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4259 (1UL << (chunk % (sizeof(unsigned long) * 8))));
4260 } else {
4261 return 0;
4262 }
4263 }
4264
4265 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4266 int nr_sectors)
4267 {
4268 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4269 }
4270
4271 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4272 {
4273 return bs->dirty_count;
4274 }
4275
4276 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4277 {
4278 assert(bs->in_use != in_use);
4279 bs->in_use = in_use;
4280 }
4281
4282 int bdrv_in_use(BlockDriverState *bs)
4283 {
4284 return bs->in_use;
4285 }
4286
4287 void bdrv_iostatus_enable(BlockDriverState *bs)
4288 {
4289 bs->iostatus_enabled = true;
4290 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4291 }
4292
4293 /* The I/O status is only enabled if the drive explicitly
4294 * enables it _and_ the VM is configured to stop on errors */
4295 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4296 {
4297 return (bs->iostatus_enabled &&
4298 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4299 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4300 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4301 }
4302
4303 void bdrv_iostatus_disable(BlockDriverState *bs)
4304 {
4305 bs->iostatus_enabled = false;
4306 }
4307
4308 void bdrv_iostatus_reset(BlockDriverState *bs)
4309 {
4310 if (bdrv_iostatus_is_enabled(bs)) {
4311 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4312 }
4313 }
4314
4315 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4316 {
4317 assert(bdrv_iostatus_is_enabled(bs));
4318 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4319 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4320 BLOCK_DEVICE_IO_STATUS_FAILED;
4321 }
4322 }
4323
4324 void
4325 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4326 enum BlockAcctType type)
4327 {
4328 assert(type < BDRV_MAX_IOTYPE);
4329
4330 cookie->bytes = bytes;
4331 cookie->start_time_ns = get_clock();
4332 cookie->type = type;
4333 }
4334
4335 void
4336 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4337 {
4338 assert(cookie->type < BDRV_MAX_IOTYPE);
4339
4340 bs->nr_bytes[cookie->type] += cookie->bytes;
4341 bs->nr_ops[cookie->type]++;
4342 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4343 }
4344
4345 int bdrv_img_create(const char *filename, const char *fmt,
4346 const char *base_filename, const char *base_fmt,
4347 char *options, uint64_t img_size, int flags)
4348 {
4349 QEMUOptionParameter *param = NULL, *create_options = NULL;
4350 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4351 BlockDriverState *bs = NULL;
4352 BlockDriver *drv, *proto_drv;
4353 BlockDriver *backing_drv = NULL;
4354 int ret = 0;
4355
4356 /* Find driver and parse its options */
4357 drv = bdrv_find_format(fmt);
4358 if (!drv) {
4359 error_report("Unknown file format '%s'", fmt);
4360 ret = -EINVAL;
4361 goto out;
4362 }
4363
4364 proto_drv = bdrv_find_protocol(filename);
4365 if (!proto_drv) {
4366 error_report("Unknown protocol '%s'", filename);
4367 ret = -EINVAL;
4368 goto out;
4369 }
4370
4371 create_options = append_option_parameters(create_options,
4372 drv->create_options);
4373 create_options = append_option_parameters(create_options,
4374 proto_drv->create_options);
4375
4376 /* Create parameter list with default values */
4377 param = parse_option_parameters("", create_options, param);
4378
4379 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4380
4381 /* Parse -o options */
4382 if (options) {
4383 param = parse_option_parameters(options, create_options, param);
4384 if (param == NULL) {
4385 error_report("Invalid options for file format '%s'.", fmt);
4386 ret = -EINVAL;
4387 goto out;
4388 }
4389 }
4390
4391 if (base_filename) {
4392 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4393 base_filename)) {
4394 error_report("Backing file not supported for file format '%s'",
4395 fmt);
4396 ret = -EINVAL;
4397 goto out;
4398 }
4399 }
4400
4401 if (base_fmt) {
4402 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4403 error_report("Backing file format not supported for file "
4404 "format '%s'", fmt);
4405 ret = -EINVAL;
4406 goto out;
4407 }
4408 }
4409
4410 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4411 if (backing_file && backing_file->value.s) {
4412 if (!strcmp(filename, backing_file->value.s)) {
4413 error_report("Error: Trying to create an image with the "
4414 "same filename as the backing file");
4415 ret = -EINVAL;
4416 goto out;
4417 }
4418 }
4419
4420 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4421 if (backing_fmt && backing_fmt->value.s) {
4422 backing_drv = bdrv_find_format(backing_fmt->value.s);
4423 if (!backing_drv) {
4424 error_report("Unknown backing file format '%s'",
4425 backing_fmt->value.s);
4426 ret = -EINVAL;
4427 goto out;
4428 }
4429 }
4430
4431 // The size for the image must always be specified, with one exception:
4432 // If we are using a backing file, we can obtain the size from there
4433 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4434 if (size && size->value.n == -1) {
4435 if (backing_file && backing_file->value.s) {
4436 uint64_t size;
4437 char buf[32];
4438 int back_flags;
4439
4440 /* backing files always opened read-only */
4441 back_flags =
4442 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4443
4444 bs = bdrv_new("");
4445
4446 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4447 if (ret < 0) {
4448 error_report("Could not open '%s'", backing_file->value.s);
4449 goto out;
4450 }
4451 bdrv_get_geometry(bs, &size);
4452 size *= 512;
4453
4454 snprintf(buf, sizeof(buf), "%" PRId64, size);
4455 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4456 } else {
4457 error_report("Image creation needs a size parameter");
4458 ret = -EINVAL;
4459 goto out;
4460 }
4461 }
4462
4463 printf("Formatting '%s', fmt=%s ", filename, fmt);
4464 print_option_parameters(param);
4465 puts("");
4466
4467 ret = bdrv_create(drv, filename, param);
4468
4469 if (ret < 0) {
4470 if (ret == -ENOTSUP) {
4471 error_report("Formatting or formatting option not supported for "
4472 "file format '%s'", fmt);
4473 } else if (ret == -EFBIG) {
4474 error_report("The image size is too large for file format '%s'",
4475 fmt);
4476 } else {
4477 error_report("%s: error while creating %s: %s", filename, fmt,
4478 strerror(-ret));
4479 }
4480 }
4481
4482 out:
4483 free_option_parameters(create_options);
4484 free_option_parameters(param);
4485
4486 if (bs) {
4487 bdrv_delete(bs);
4488 }
4489
4490 return ret;
4491 }