]> git.proxmox.com Git - qemu.git/blob - block.c
Merge branch 's390-for-upstream' of git://repo.or.cz/qemu/agraf
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
84 int64_t sector_num, int nb_sectors);
85
86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
87 bool is_write, double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
89 double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
91 bool is_write, int64_t *wait);
92
93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
94 QTAILQ_HEAD_INITIALIZER(bdrv_states);
95
96 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
97 QLIST_HEAD_INITIALIZER(bdrv_drivers);
98
99 /* The device to use for VM snapshots */
100 static BlockDriverState *bs_snapshots;
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 bs->slice_time = 0;
141 memset(&bs->io_base, 0, sizeof(bs->io_base));
142 }
143
144 static void bdrv_block_timer(void *opaque)
145 {
146 BlockDriverState *bs = opaque;
147
148 qemu_co_queue_next(&bs->throttled_reqs);
149 }
150
151 void bdrv_io_limits_enable(BlockDriverState *bs)
152 {
153 qemu_co_queue_init(&bs->throttled_reqs);
154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
156 bs->slice_start = qemu_get_clock_ns(vm_clock);
157 bs->slice_end = bs->slice_start + bs->slice_time;
158 memset(&bs->io_base, 0, sizeof(bs->io_base));
159 bs->io_limits_enabled = true;
160 }
161
162 bool bdrv_io_limits_enabled(BlockDriverState *bs)
163 {
164 BlockIOLimit *io_limits = &bs->io_limits;
165 return io_limits->bps[BLOCK_IO_LIMIT_READ]
166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
168 || io_limits->iops[BLOCK_IO_LIMIT_READ]
169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
171 }
172
173 static void bdrv_io_limits_intercept(BlockDriverState *bs,
174 bool is_write, int nb_sectors)
175 {
176 int64_t wait_time = -1;
177
178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
179 qemu_co_queue_wait(&bs->throttled_reqs);
180 }
181
182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
183 * throttled requests will not be dequeued until the current request is
184 * allowed to be serviced. So if the current request still exceeds the
185 * limits, it will be inserted to the head. All requests followed it will
186 * be still in throttled_reqs queue.
187 */
188
189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
190 qemu_mod_timer(bs->block_timer,
191 wait_time + qemu_get_clock_ns(vm_clock));
192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
193 }
194
195 qemu_co_queue_next(&bs->throttled_reqs);
196 }
197
198 /* check if the path starts with "<protocol>:" */
199 static int path_has_protocol(const char *path)
200 {
201 const char *p;
202
203 #ifdef _WIN32
204 if (is_windows_drive(path) ||
205 is_windows_drive_prefix(path)) {
206 return 0;
207 }
208 p = path + strcspn(path, ":/\\");
209 #else
210 p = path + strcspn(path, ":/");
211 #endif
212
213 return *p == ':';
214 }
215
216 int path_is_absolute(const char *path)
217 {
218 #ifdef _WIN32
219 /* specific case for names like: "\\.\d:" */
220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
221 return 1;
222 }
223 return (*path == '/' || *path == '\\');
224 #else
225 return (*path == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
274 {
275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
276 pstrcpy(dest, sz, bs->backing_file);
277 } else {
278 path_combine(dest, sz, bs->filename, bs->backing_file);
279 }
280 }
281
282 void bdrv_register(BlockDriver *bdrv)
283 {
284 /* Block drivers without coroutine functions need emulation */
285 if (!bdrv->bdrv_co_readv) {
286 bdrv->bdrv_co_readv = bdrv_co_readv_em;
287 bdrv->bdrv_co_writev = bdrv_co_writev_em;
288
289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
290 * the block driver lacks aio we need to emulate that too.
291 */
292 if (!bdrv->bdrv_aio_readv) {
293 /* add AIO emulation layer */
294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
296 }
297 }
298
299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
300 }
301
302 /* create a new block device (by default it is empty) */
303 BlockDriverState *bdrv_new(const char *device_name)
304 {
305 BlockDriverState *bs;
306
307 bs = g_malloc0(sizeof(BlockDriverState));
308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
309 if (device_name[0] != '\0') {
310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
311 }
312 bdrv_iostatus_disable(bs);
313 return bs;
314 }
315
316 BlockDriver *bdrv_find_format(const char *format_name)
317 {
318 BlockDriver *drv1;
319 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
320 if (!strcmp(drv1->format_name, format_name)) {
321 return drv1;
322 }
323 }
324 return NULL;
325 }
326
327 static int bdrv_is_whitelisted(BlockDriver *drv)
328 {
329 static const char *whitelist[] = {
330 CONFIG_BDRV_WHITELIST
331 };
332 const char **p;
333
334 if (!whitelist[0])
335 return 1; /* no whitelist, anything goes */
336
337 for (p = whitelist; *p; p++) {
338 if (!strcmp(drv->format_name, *p)) {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
346 {
347 BlockDriver *drv = bdrv_find_format(format_name);
348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
349 }
350
351 typedef struct CreateCo {
352 BlockDriver *drv;
353 char *filename;
354 QEMUOptionParameter *options;
355 int ret;
356 } CreateCo;
357
358 static void coroutine_fn bdrv_create_co_entry(void *opaque)
359 {
360 CreateCo *cco = opaque;
361 assert(cco->drv);
362
363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
364 }
365
366 int bdrv_create(BlockDriver *drv, const char* filename,
367 QEMUOptionParameter *options)
368 {
369 int ret;
370
371 Coroutine *co;
372 CreateCo cco = {
373 .drv = drv,
374 .filename = g_strdup(filename),
375 .options = options,
376 .ret = NOT_DONE,
377 };
378
379 if (!drv->bdrv_create) {
380 return -ENOTSUP;
381 }
382
383 if (qemu_in_coroutine()) {
384 /* Fast-path if already in coroutine context */
385 bdrv_create_co_entry(&cco);
386 } else {
387 co = qemu_coroutine_create(bdrv_create_co_entry);
388 qemu_coroutine_enter(co, &cco);
389 while (cco.ret == NOT_DONE) {
390 qemu_aio_wait();
391 }
392 }
393
394 ret = cco.ret;
395 g_free(cco.filename);
396
397 return ret;
398 }
399
400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
401 {
402 BlockDriver *drv;
403
404 drv = bdrv_find_protocol(filename);
405 if (drv == NULL) {
406 return -ENOENT;
407 }
408
409 return bdrv_create(drv, filename, options);
410 }
411
412 /*
413 * Create a uniquely-named empty temporary file.
414 * Return 0 upon success, otherwise a negative errno value.
415 */
416 int get_tmp_filename(char *filename, int size)
417 {
418 #ifdef _WIN32
419 char temp_dir[MAX_PATH];
420 /* GetTempFileName requires that its output buffer (4th param)
421 have length MAX_PATH or greater. */
422 assert(size >= MAX_PATH);
423 return (GetTempPath(MAX_PATH, temp_dir)
424 && GetTempFileName(temp_dir, "qem", 0, filename)
425 ? 0 : -GetLastError());
426 #else
427 int fd;
428 const char *tmpdir;
429 tmpdir = getenv("TMPDIR");
430 if (!tmpdir)
431 tmpdir = "/tmp";
432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
433 return -EOVERFLOW;
434 }
435 fd = mkstemp(filename);
436 if (fd < 0 || close(fd)) {
437 return -errno;
438 }
439 return 0;
440 #endif
441 }
442
443 /*
444 * Detect host devices. By convention, /dev/cdrom[N] is always
445 * recognized as a host CDROM.
446 */
447 static BlockDriver *find_hdev_driver(const char *filename)
448 {
449 int score_max = 0, score;
450 BlockDriver *drv = NULL, *d;
451
452 QLIST_FOREACH(d, &bdrv_drivers, list) {
453 if (d->bdrv_probe_device) {
454 score = d->bdrv_probe_device(filename);
455 if (score > score_max) {
456 score_max = score;
457 drv = d;
458 }
459 }
460 }
461
462 return drv;
463 }
464
465 BlockDriver *bdrv_find_protocol(const char *filename)
466 {
467 BlockDriver *drv1;
468 char protocol[128];
469 int len;
470 const char *p;
471
472 /* TODO Drivers without bdrv_file_open must be specified explicitly */
473
474 /*
475 * XXX(hch): we really should not let host device detection
476 * override an explicit protocol specification, but moving this
477 * later breaks access to device names with colons in them.
478 * Thanks to the brain-dead persistent naming schemes on udev-
479 * based Linux systems those actually are quite common.
480 */
481 drv1 = find_hdev_driver(filename);
482 if (drv1) {
483 return drv1;
484 }
485
486 if (!path_has_protocol(filename)) {
487 return bdrv_find_format("file");
488 }
489 p = strchr(filename, ':');
490 assert(p != NULL);
491 len = p - filename;
492 if (len > sizeof(protocol) - 1)
493 len = sizeof(protocol) - 1;
494 memcpy(protocol, filename, len);
495 protocol[len] = '\0';
496 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
497 if (drv1->protocol_name &&
498 !strcmp(drv1->protocol_name, protocol)) {
499 return drv1;
500 }
501 }
502 return NULL;
503 }
504
505 static int find_image_format(const char *filename, BlockDriver **pdrv)
506 {
507 int ret, score, score_max;
508 BlockDriver *drv1, *drv;
509 uint8_t buf[2048];
510 BlockDriverState *bs;
511
512 ret = bdrv_file_open(&bs, filename, 0);
513 if (ret < 0) {
514 *pdrv = NULL;
515 return ret;
516 }
517
518 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
519 if (bs->sg || !bdrv_is_inserted(bs)) {
520 bdrv_delete(bs);
521 drv = bdrv_find_format("raw");
522 if (!drv) {
523 ret = -ENOENT;
524 }
525 *pdrv = drv;
526 return ret;
527 }
528
529 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
530 bdrv_delete(bs);
531 if (ret < 0) {
532 *pdrv = NULL;
533 return ret;
534 }
535
536 score_max = 0;
537 drv = NULL;
538 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
539 if (drv1->bdrv_probe) {
540 score = drv1->bdrv_probe(buf, ret, filename);
541 if (score > score_max) {
542 score_max = score;
543 drv = drv1;
544 }
545 }
546 }
547 if (!drv) {
548 ret = -ENOENT;
549 }
550 *pdrv = drv;
551 return ret;
552 }
553
554 /**
555 * Set the current 'total_sectors' value
556 */
557 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
558 {
559 BlockDriver *drv = bs->drv;
560
561 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
562 if (bs->sg)
563 return 0;
564
565 /* query actual device if possible, otherwise just trust the hint */
566 if (drv->bdrv_getlength) {
567 int64_t length = drv->bdrv_getlength(bs);
568 if (length < 0) {
569 return length;
570 }
571 hint = length >> BDRV_SECTOR_BITS;
572 }
573
574 bs->total_sectors = hint;
575 return 0;
576 }
577
578 /**
579 * Set open flags for a given cache mode
580 *
581 * Return 0 on success, -1 if the cache mode was invalid.
582 */
583 int bdrv_parse_cache_flags(const char *mode, int *flags)
584 {
585 *flags &= ~BDRV_O_CACHE_MASK;
586
587 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
588 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
589 } else if (!strcmp(mode, "directsync")) {
590 *flags |= BDRV_O_NOCACHE;
591 } else if (!strcmp(mode, "writeback")) {
592 *flags |= BDRV_O_CACHE_WB;
593 } else if (!strcmp(mode, "unsafe")) {
594 *flags |= BDRV_O_CACHE_WB;
595 *flags |= BDRV_O_NO_FLUSH;
596 } else if (!strcmp(mode, "writethrough")) {
597 /* this is the default */
598 } else {
599 return -1;
600 }
601
602 return 0;
603 }
604
605 /**
606 * The copy-on-read flag is actually a reference count so multiple users may
607 * use the feature without worrying about clobbering its previous state.
608 * Copy-on-read stays enabled until all users have called to disable it.
609 */
610 void bdrv_enable_copy_on_read(BlockDriverState *bs)
611 {
612 bs->copy_on_read++;
613 }
614
615 void bdrv_disable_copy_on_read(BlockDriverState *bs)
616 {
617 assert(bs->copy_on_read > 0);
618 bs->copy_on_read--;
619 }
620
621 /*
622 * Common part for opening disk images and files
623 */
624 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
625 int flags, BlockDriver *drv)
626 {
627 int ret, open_flags;
628
629 assert(drv != NULL);
630 assert(bs->file == NULL);
631
632 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
633
634 bs->open_flags = flags;
635 bs->buffer_alignment = 512;
636
637 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
638 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
639 bdrv_enable_copy_on_read(bs);
640 }
641
642 pstrcpy(bs->filename, sizeof(bs->filename), filename);
643
644 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
645 return -ENOTSUP;
646 }
647
648 bs->drv = drv;
649 bs->opaque = g_malloc0(drv->instance_size);
650
651 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
652 open_flags = flags | BDRV_O_CACHE_WB;
653
654 /*
655 * Clear flags that are internal to the block layer before opening the
656 * image.
657 */
658 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
659
660 /*
661 * Snapshots should be writable.
662 */
663 if (bs->is_temporary) {
664 open_flags |= BDRV_O_RDWR;
665 }
666
667 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
668
669 /* Open the image, either directly or using a protocol */
670 if (drv->bdrv_file_open) {
671 ret = drv->bdrv_file_open(bs, filename, open_flags);
672 } else {
673 ret = bdrv_file_open(&bs->file, filename, open_flags);
674 if (ret >= 0) {
675 ret = drv->bdrv_open(bs, open_flags);
676 }
677 }
678
679 if (ret < 0) {
680 goto free_and_fail;
681 }
682
683 ret = refresh_total_sectors(bs, bs->total_sectors);
684 if (ret < 0) {
685 goto free_and_fail;
686 }
687
688 #ifndef _WIN32
689 if (bs->is_temporary) {
690 unlink(filename);
691 }
692 #endif
693 return 0;
694
695 free_and_fail:
696 if (bs->file) {
697 bdrv_delete(bs->file);
698 bs->file = NULL;
699 }
700 g_free(bs->opaque);
701 bs->opaque = NULL;
702 bs->drv = NULL;
703 return ret;
704 }
705
706 /*
707 * Opens a file using a protocol (file, host_device, nbd, ...)
708 */
709 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
710 {
711 BlockDriverState *bs;
712 BlockDriver *drv;
713 int ret;
714
715 drv = bdrv_find_protocol(filename);
716 if (!drv) {
717 return -ENOENT;
718 }
719
720 bs = bdrv_new("");
721 ret = bdrv_open_common(bs, filename, flags, drv);
722 if (ret < 0) {
723 bdrv_delete(bs);
724 return ret;
725 }
726 bs->growable = 1;
727 *pbs = bs;
728 return 0;
729 }
730
731 /*
732 * Opens a disk image (raw, qcow2, vmdk, ...)
733 */
734 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
735 BlockDriver *drv)
736 {
737 int ret;
738 char tmp_filename[PATH_MAX];
739
740 if (flags & BDRV_O_SNAPSHOT) {
741 BlockDriverState *bs1;
742 int64_t total_size;
743 int is_protocol = 0;
744 BlockDriver *bdrv_qcow2;
745 QEMUOptionParameter *options;
746 char backing_filename[PATH_MAX];
747
748 /* if snapshot, we create a temporary backing file and open it
749 instead of opening 'filename' directly */
750
751 /* if there is a backing file, use it */
752 bs1 = bdrv_new("");
753 ret = bdrv_open(bs1, filename, 0, drv);
754 if (ret < 0) {
755 bdrv_delete(bs1);
756 return ret;
757 }
758 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
759
760 if (bs1->drv && bs1->drv->protocol_name)
761 is_protocol = 1;
762
763 bdrv_delete(bs1);
764
765 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
766 if (ret < 0) {
767 return ret;
768 }
769
770 /* Real path is meaningless for protocols */
771 if (is_protocol)
772 snprintf(backing_filename, sizeof(backing_filename),
773 "%s", filename);
774 else if (!realpath(filename, backing_filename))
775 return -errno;
776
777 bdrv_qcow2 = bdrv_find_format("qcow2");
778 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
779
780 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
781 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
782 if (drv) {
783 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
784 drv->format_name);
785 }
786
787 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
788 free_option_parameters(options);
789 if (ret < 0) {
790 return ret;
791 }
792
793 filename = tmp_filename;
794 drv = bdrv_qcow2;
795 bs->is_temporary = 1;
796 }
797
798 /* Find the right image format driver */
799 if (!drv) {
800 ret = find_image_format(filename, &drv);
801 }
802
803 if (!drv) {
804 goto unlink_and_fail;
805 }
806
807 /* Open the image */
808 ret = bdrv_open_common(bs, filename, flags, drv);
809 if (ret < 0) {
810 goto unlink_and_fail;
811 }
812
813 /* If there is a backing file, use it */
814 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
815 char backing_filename[PATH_MAX];
816 int back_flags;
817 BlockDriver *back_drv = NULL;
818
819 bs->backing_hd = bdrv_new("");
820 bdrv_get_full_backing_filename(bs, backing_filename,
821 sizeof(backing_filename));
822
823 if (bs->backing_format[0] != '\0') {
824 back_drv = bdrv_find_format(bs->backing_format);
825 }
826
827 /* backing files always opened read-only */
828 back_flags =
829 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
830
831 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
832 if (ret < 0) {
833 bdrv_close(bs);
834 return ret;
835 }
836 if (bs->is_temporary) {
837 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
838 } else {
839 /* base image inherits from "parent" */
840 bs->backing_hd->keep_read_only = bs->keep_read_only;
841 }
842 }
843
844 if (!bdrv_key_required(bs)) {
845 bdrv_dev_change_media_cb(bs, true);
846 }
847
848 /* throttling disk I/O limits */
849 if (bs->io_limits_enabled) {
850 bdrv_io_limits_enable(bs);
851 }
852
853 return 0;
854
855 unlink_and_fail:
856 if (bs->is_temporary) {
857 unlink(filename);
858 }
859 return ret;
860 }
861
862 void bdrv_close(BlockDriverState *bs)
863 {
864 bdrv_flush(bs);
865 if (bs->drv) {
866 if (bs->job) {
867 block_job_cancel_sync(bs->job);
868 }
869 bdrv_drain_all();
870
871 if (bs == bs_snapshots) {
872 bs_snapshots = NULL;
873 }
874 if (bs->backing_hd) {
875 bdrv_delete(bs->backing_hd);
876 bs->backing_hd = NULL;
877 }
878 bs->drv->bdrv_close(bs);
879 g_free(bs->opaque);
880 #ifdef _WIN32
881 if (bs->is_temporary) {
882 unlink(bs->filename);
883 }
884 #endif
885 bs->opaque = NULL;
886 bs->drv = NULL;
887 bs->copy_on_read = 0;
888 bs->backing_file[0] = '\0';
889 bs->backing_format[0] = '\0';
890 bs->total_sectors = 0;
891 bs->encrypted = 0;
892 bs->valid_key = 0;
893 bs->sg = 0;
894 bs->growable = 0;
895
896 if (bs->file != NULL) {
897 bdrv_delete(bs->file);
898 bs->file = NULL;
899 }
900
901 bdrv_dev_change_media_cb(bs, false);
902 }
903
904 /*throttling disk I/O limits*/
905 if (bs->io_limits_enabled) {
906 bdrv_io_limits_disable(bs);
907 }
908 }
909
910 void bdrv_close_all(void)
911 {
912 BlockDriverState *bs;
913
914 QTAILQ_FOREACH(bs, &bdrv_states, list) {
915 bdrv_close(bs);
916 }
917 }
918
919 /*
920 * Wait for pending requests to complete across all BlockDriverStates
921 *
922 * This function does not flush data to disk, use bdrv_flush_all() for that
923 * after calling this function.
924 *
925 * Note that completion of an asynchronous I/O operation can trigger any
926 * number of other I/O operations on other devices---for example a coroutine
927 * can be arbitrarily complex and a constant flow of I/O can come until the
928 * coroutine is complete. Because of this, it is not possible to have a
929 * function to drain a single device's I/O queue.
930 */
931 void bdrv_drain_all(void)
932 {
933 BlockDriverState *bs;
934 bool busy;
935
936 do {
937 busy = qemu_aio_wait();
938
939 /* FIXME: We do not have timer support here, so this is effectively
940 * a busy wait.
941 */
942 QTAILQ_FOREACH(bs, &bdrv_states, list) {
943 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
944 qemu_co_queue_restart_all(&bs->throttled_reqs);
945 busy = true;
946 }
947 }
948 } while (busy);
949
950 /* If requests are still pending there is a bug somewhere */
951 QTAILQ_FOREACH(bs, &bdrv_states, list) {
952 assert(QLIST_EMPTY(&bs->tracked_requests));
953 assert(qemu_co_queue_empty(&bs->throttled_reqs));
954 }
955 }
956
957 /* make a BlockDriverState anonymous by removing from bdrv_state list.
958 Also, NULL terminate the device_name to prevent double remove */
959 void bdrv_make_anon(BlockDriverState *bs)
960 {
961 if (bs->device_name[0] != '\0') {
962 QTAILQ_REMOVE(&bdrv_states, bs, list);
963 }
964 bs->device_name[0] = '\0';
965 }
966
967 static void bdrv_rebind(BlockDriverState *bs)
968 {
969 if (bs->drv && bs->drv->bdrv_rebind) {
970 bs->drv->bdrv_rebind(bs);
971 }
972 }
973
974 /*
975 * Add new bs contents at the top of an image chain while the chain is
976 * live, while keeping required fields on the top layer.
977 *
978 * This will modify the BlockDriverState fields, and swap contents
979 * between bs_new and bs_top. Both bs_new and bs_top are modified.
980 *
981 * bs_new is required to be anonymous.
982 *
983 * This function does not create any image files.
984 */
985 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
986 {
987 BlockDriverState tmp;
988
989 /* bs_new must be anonymous */
990 assert(bs_new->device_name[0] == '\0');
991
992 tmp = *bs_new;
993
994 /* there are some fields that need to stay on the top layer: */
995 tmp.open_flags = bs_top->open_flags;
996
997 /* dev info */
998 tmp.dev_ops = bs_top->dev_ops;
999 tmp.dev_opaque = bs_top->dev_opaque;
1000 tmp.dev = bs_top->dev;
1001 tmp.buffer_alignment = bs_top->buffer_alignment;
1002 tmp.copy_on_read = bs_top->copy_on_read;
1003
1004 tmp.enable_write_cache = bs_top->enable_write_cache;
1005
1006 /* i/o timing parameters */
1007 tmp.slice_time = bs_top->slice_time;
1008 tmp.slice_start = bs_top->slice_start;
1009 tmp.slice_end = bs_top->slice_end;
1010 tmp.io_limits = bs_top->io_limits;
1011 tmp.io_base = bs_top->io_base;
1012 tmp.throttled_reqs = bs_top->throttled_reqs;
1013 tmp.block_timer = bs_top->block_timer;
1014 tmp.io_limits_enabled = bs_top->io_limits_enabled;
1015
1016 /* geometry */
1017 tmp.cyls = bs_top->cyls;
1018 tmp.heads = bs_top->heads;
1019 tmp.secs = bs_top->secs;
1020 tmp.translation = bs_top->translation;
1021
1022 /* r/w error */
1023 tmp.on_read_error = bs_top->on_read_error;
1024 tmp.on_write_error = bs_top->on_write_error;
1025
1026 /* i/o status */
1027 tmp.iostatus_enabled = bs_top->iostatus_enabled;
1028 tmp.iostatus = bs_top->iostatus;
1029
1030 /* keep the same entry in bdrv_states */
1031 pstrcpy(tmp.device_name, sizeof(tmp.device_name), bs_top->device_name);
1032 tmp.list = bs_top->list;
1033
1034 /* The contents of 'tmp' will become bs_top, as we are
1035 * swapping bs_new and bs_top contents. */
1036 tmp.backing_hd = bs_new;
1037 pstrcpy(tmp.backing_file, sizeof(tmp.backing_file), bs_top->filename);
1038 pstrcpy(tmp.backing_format, sizeof(tmp.backing_format),
1039 bs_top->drv ? bs_top->drv->format_name : "");
1040
1041 /* swap contents of the fixed new bs and the current top */
1042 *bs_new = *bs_top;
1043 *bs_top = tmp;
1044
1045 /* device_name[] was carried over from the old bs_top. bs_new
1046 * shouldn't be in bdrv_states, so we need to make device_name[]
1047 * reflect the anonymity of bs_new
1048 */
1049 bs_new->device_name[0] = '\0';
1050
1051 /* clear the copied fields in the new backing file */
1052 bdrv_detach_dev(bs_new, bs_new->dev);
1053
1054 qemu_co_queue_init(&bs_new->throttled_reqs);
1055 memset(&bs_new->io_base, 0, sizeof(bs_new->io_base));
1056 memset(&bs_new->io_limits, 0, sizeof(bs_new->io_limits));
1057 bdrv_iostatus_disable(bs_new);
1058
1059 /* we don't use bdrv_io_limits_disable() for this, because we don't want
1060 * to affect or delete the block_timer, as it has been moved to bs_top */
1061 bs_new->io_limits_enabled = false;
1062 bs_new->block_timer = NULL;
1063 bs_new->slice_time = 0;
1064 bs_new->slice_start = 0;
1065 bs_new->slice_end = 0;
1066
1067 bdrv_rebind(bs_new);
1068 bdrv_rebind(bs_top);
1069 }
1070
1071 void bdrv_delete(BlockDriverState *bs)
1072 {
1073 assert(!bs->dev);
1074 assert(!bs->job);
1075 assert(!bs->in_use);
1076
1077 /* remove from list, if necessary */
1078 bdrv_make_anon(bs);
1079
1080 bdrv_close(bs);
1081
1082 assert(bs != bs_snapshots);
1083 g_free(bs);
1084 }
1085
1086 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1087 /* TODO change to DeviceState *dev when all users are qdevified */
1088 {
1089 if (bs->dev) {
1090 return -EBUSY;
1091 }
1092 bs->dev = dev;
1093 bdrv_iostatus_reset(bs);
1094 return 0;
1095 }
1096
1097 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1098 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1099 {
1100 if (bdrv_attach_dev(bs, dev) < 0) {
1101 abort();
1102 }
1103 }
1104
1105 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1106 /* TODO change to DeviceState *dev when all users are qdevified */
1107 {
1108 assert(bs->dev == dev);
1109 bs->dev = NULL;
1110 bs->dev_ops = NULL;
1111 bs->dev_opaque = NULL;
1112 bs->buffer_alignment = 512;
1113 }
1114
1115 /* TODO change to return DeviceState * when all users are qdevified */
1116 void *bdrv_get_attached_dev(BlockDriverState *bs)
1117 {
1118 return bs->dev;
1119 }
1120
1121 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1122 void *opaque)
1123 {
1124 bs->dev_ops = ops;
1125 bs->dev_opaque = opaque;
1126 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1127 bs_snapshots = NULL;
1128 }
1129 }
1130
1131 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1132 BlockQMPEventAction action, int is_read)
1133 {
1134 QObject *data;
1135 const char *action_str;
1136
1137 switch (action) {
1138 case BDRV_ACTION_REPORT:
1139 action_str = "report";
1140 break;
1141 case BDRV_ACTION_IGNORE:
1142 action_str = "ignore";
1143 break;
1144 case BDRV_ACTION_STOP:
1145 action_str = "stop";
1146 break;
1147 default:
1148 abort();
1149 }
1150
1151 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1152 bdrv->device_name,
1153 action_str,
1154 is_read ? "read" : "write");
1155 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1156
1157 qobject_decref(data);
1158 }
1159
1160 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1161 {
1162 QObject *data;
1163
1164 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1165 bdrv_get_device_name(bs), ejected);
1166 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1167
1168 qobject_decref(data);
1169 }
1170
1171 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1172 {
1173 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1174 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1175 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1176 if (tray_was_closed) {
1177 /* tray open */
1178 bdrv_emit_qmp_eject_event(bs, true);
1179 }
1180 if (load) {
1181 /* tray close */
1182 bdrv_emit_qmp_eject_event(bs, false);
1183 }
1184 }
1185 }
1186
1187 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1188 {
1189 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1190 }
1191
1192 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1193 {
1194 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1195 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1196 }
1197 }
1198
1199 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1200 {
1201 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1202 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1203 }
1204 return false;
1205 }
1206
1207 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1208 {
1209 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1210 bs->dev_ops->resize_cb(bs->dev_opaque);
1211 }
1212 }
1213
1214 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1215 {
1216 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1217 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1218 }
1219 return false;
1220 }
1221
1222 /*
1223 * Run consistency checks on an image
1224 *
1225 * Returns 0 if the check could be completed (it doesn't mean that the image is
1226 * free of errors) or -errno when an internal error occurred. The results of the
1227 * check are stored in res.
1228 */
1229 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1230 {
1231 if (bs->drv->bdrv_check == NULL) {
1232 return -ENOTSUP;
1233 }
1234
1235 memset(res, 0, sizeof(*res));
1236 return bs->drv->bdrv_check(bs, res, fix);
1237 }
1238
1239 #define COMMIT_BUF_SECTORS 2048
1240
1241 /* commit COW file into the raw image */
1242 int bdrv_commit(BlockDriverState *bs)
1243 {
1244 BlockDriver *drv = bs->drv;
1245 BlockDriver *backing_drv;
1246 int64_t sector, total_sectors;
1247 int n, ro, open_flags;
1248 int ret = 0, rw_ret = 0;
1249 uint8_t *buf;
1250 char filename[1024];
1251 BlockDriverState *bs_rw, *bs_ro;
1252
1253 if (!drv)
1254 return -ENOMEDIUM;
1255
1256 if (!bs->backing_hd) {
1257 return -ENOTSUP;
1258 }
1259
1260 if (bs->backing_hd->keep_read_only) {
1261 return -EACCES;
1262 }
1263
1264 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1265 return -EBUSY;
1266 }
1267
1268 backing_drv = bs->backing_hd->drv;
1269 ro = bs->backing_hd->read_only;
1270 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1271 open_flags = bs->backing_hd->open_flags;
1272
1273 if (ro) {
1274 /* re-open as RW */
1275 bdrv_delete(bs->backing_hd);
1276 bs->backing_hd = NULL;
1277 bs_rw = bdrv_new("");
1278 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1279 backing_drv);
1280 if (rw_ret < 0) {
1281 bdrv_delete(bs_rw);
1282 /* try to re-open read-only */
1283 bs_ro = bdrv_new("");
1284 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1285 backing_drv);
1286 if (ret < 0) {
1287 bdrv_delete(bs_ro);
1288 /* drive not functional anymore */
1289 bs->drv = NULL;
1290 return ret;
1291 }
1292 bs->backing_hd = bs_ro;
1293 return rw_ret;
1294 }
1295 bs->backing_hd = bs_rw;
1296 }
1297
1298 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1299 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1300
1301 for (sector = 0; sector < total_sectors; sector += n) {
1302 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1303
1304 if (bdrv_read(bs, sector, buf, n) != 0) {
1305 ret = -EIO;
1306 goto ro_cleanup;
1307 }
1308
1309 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1310 ret = -EIO;
1311 goto ro_cleanup;
1312 }
1313 }
1314 }
1315
1316 if (drv->bdrv_make_empty) {
1317 ret = drv->bdrv_make_empty(bs);
1318 bdrv_flush(bs);
1319 }
1320
1321 /*
1322 * Make sure all data we wrote to the backing device is actually
1323 * stable on disk.
1324 */
1325 if (bs->backing_hd)
1326 bdrv_flush(bs->backing_hd);
1327
1328 ro_cleanup:
1329 g_free(buf);
1330
1331 if (ro) {
1332 /* re-open as RO */
1333 bdrv_delete(bs->backing_hd);
1334 bs->backing_hd = NULL;
1335 bs_ro = bdrv_new("");
1336 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1337 backing_drv);
1338 if (ret < 0) {
1339 bdrv_delete(bs_ro);
1340 /* drive not functional anymore */
1341 bs->drv = NULL;
1342 return ret;
1343 }
1344 bs->backing_hd = bs_ro;
1345 bs->backing_hd->keep_read_only = 0;
1346 }
1347
1348 return ret;
1349 }
1350
1351 int bdrv_commit_all(void)
1352 {
1353 BlockDriverState *bs;
1354
1355 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1356 int ret = bdrv_commit(bs);
1357 if (ret < 0) {
1358 return ret;
1359 }
1360 }
1361 return 0;
1362 }
1363
1364 struct BdrvTrackedRequest {
1365 BlockDriverState *bs;
1366 int64_t sector_num;
1367 int nb_sectors;
1368 bool is_write;
1369 QLIST_ENTRY(BdrvTrackedRequest) list;
1370 Coroutine *co; /* owner, used for deadlock detection */
1371 CoQueue wait_queue; /* coroutines blocked on this request */
1372 };
1373
1374 /**
1375 * Remove an active request from the tracked requests list
1376 *
1377 * This function should be called when a tracked request is completing.
1378 */
1379 static void tracked_request_end(BdrvTrackedRequest *req)
1380 {
1381 QLIST_REMOVE(req, list);
1382 qemu_co_queue_restart_all(&req->wait_queue);
1383 }
1384
1385 /**
1386 * Add an active request to the tracked requests list
1387 */
1388 static void tracked_request_begin(BdrvTrackedRequest *req,
1389 BlockDriverState *bs,
1390 int64_t sector_num,
1391 int nb_sectors, bool is_write)
1392 {
1393 *req = (BdrvTrackedRequest){
1394 .bs = bs,
1395 .sector_num = sector_num,
1396 .nb_sectors = nb_sectors,
1397 .is_write = is_write,
1398 .co = qemu_coroutine_self(),
1399 };
1400
1401 qemu_co_queue_init(&req->wait_queue);
1402
1403 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1404 }
1405
1406 /**
1407 * Round a region to cluster boundaries
1408 */
1409 static void round_to_clusters(BlockDriverState *bs,
1410 int64_t sector_num, int nb_sectors,
1411 int64_t *cluster_sector_num,
1412 int *cluster_nb_sectors)
1413 {
1414 BlockDriverInfo bdi;
1415
1416 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1417 *cluster_sector_num = sector_num;
1418 *cluster_nb_sectors = nb_sectors;
1419 } else {
1420 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1421 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1422 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1423 nb_sectors, c);
1424 }
1425 }
1426
1427 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1428 int64_t sector_num, int nb_sectors) {
1429 /* aaaa bbbb */
1430 if (sector_num >= req->sector_num + req->nb_sectors) {
1431 return false;
1432 }
1433 /* bbbb aaaa */
1434 if (req->sector_num >= sector_num + nb_sectors) {
1435 return false;
1436 }
1437 return true;
1438 }
1439
1440 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1441 int64_t sector_num, int nb_sectors)
1442 {
1443 BdrvTrackedRequest *req;
1444 int64_t cluster_sector_num;
1445 int cluster_nb_sectors;
1446 bool retry;
1447
1448 /* If we touch the same cluster it counts as an overlap. This guarantees
1449 * that allocating writes will be serialized and not race with each other
1450 * for the same cluster. For example, in copy-on-read it ensures that the
1451 * CoR read and write operations are atomic and guest writes cannot
1452 * interleave between them.
1453 */
1454 round_to_clusters(bs, sector_num, nb_sectors,
1455 &cluster_sector_num, &cluster_nb_sectors);
1456
1457 do {
1458 retry = false;
1459 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1460 if (tracked_request_overlaps(req, cluster_sector_num,
1461 cluster_nb_sectors)) {
1462 /* Hitting this means there was a reentrant request, for
1463 * example, a block driver issuing nested requests. This must
1464 * never happen since it means deadlock.
1465 */
1466 assert(qemu_coroutine_self() != req->co);
1467
1468 qemu_co_queue_wait(&req->wait_queue);
1469 retry = true;
1470 break;
1471 }
1472 }
1473 } while (retry);
1474 }
1475
1476 /*
1477 * Return values:
1478 * 0 - success
1479 * -EINVAL - backing format specified, but no file
1480 * -ENOSPC - can't update the backing file because no space is left in the
1481 * image file header
1482 * -ENOTSUP - format driver doesn't support changing the backing file
1483 */
1484 int bdrv_change_backing_file(BlockDriverState *bs,
1485 const char *backing_file, const char *backing_fmt)
1486 {
1487 BlockDriver *drv = bs->drv;
1488 int ret;
1489
1490 /* Backing file format doesn't make sense without a backing file */
1491 if (backing_fmt && !backing_file) {
1492 return -EINVAL;
1493 }
1494
1495 if (drv->bdrv_change_backing_file != NULL) {
1496 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1497 } else {
1498 ret = -ENOTSUP;
1499 }
1500
1501 if (ret == 0) {
1502 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1503 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1504 }
1505 return ret;
1506 }
1507
1508 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1509 size_t size)
1510 {
1511 int64_t len;
1512
1513 if (!bdrv_is_inserted(bs))
1514 return -ENOMEDIUM;
1515
1516 if (bs->growable)
1517 return 0;
1518
1519 len = bdrv_getlength(bs);
1520
1521 if (offset < 0)
1522 return -EIO;
1523
1524 if ((offset > len) || (len - offset < size))
1525 return -EIO;
1526
1527 return 0;
1528 }
1529
1530 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1531 int nb_sectors)
1532 {
1533 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1534 nb_sectors * BDRV_SECTOR_SIZE);
1535 }
1536
1537 typedef struct RwCo {
1538 BlockDriverState *bs;
1539 int64_t sector_num;
1540 int nb_sectors;
1541 QEMUIOVector *qiov;
1542 bool is_write;
1543 int ret;
1544 } RwCo;
1545
1546 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1547 {
1548 RwCo *rwco = opaque;
1549
1550 if (!rwco->is_write) {
1551 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1552 rwco->nb_sectors, rwco->qiov, 0);
1553 } else {
1554 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1555 rwco->nb_sectors, rwco->qiov, 0);
1556 }
1557 }
1558
1559 /*
1560 * Process a synchronous request using coroutines
1561 */
1562 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1563 int nb_sectors, bool is_write)
1564 {
1565 QEMUIOVector qiov;
1566 struct iovec iov = {
1567 .iov_base = (void *)buf,
1568 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1569 };
1570 Coroutine *co;
1571 RwCo rwco = {
1572 .bs = bs,
1573 .sector_num = sector_num,
1574 .nb_sectors = nb_sectors,
1575 .qiov = &qiov,
1576 .is_write = is_write,
1577 .ret = NOT_DONE,
1578 };
1579
1580 qemu_iovec_init_external(&qiov, &iov, 1);
1581
1582 /**
1583 * In sync call context, when the vcpu is blocked, this throttling timer
1584 * will not fire; so the I/O throttling function has to be disabled here
1585 * if it has been enabled.
1586 */
1587 if (bs->io_limits_enabled) {
1588 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1589 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1590 bdrv_io_limits_disable(bs);
1591 }
1592
1593 if (qemu_in_coroutine()) {
1594 /* Fast-path if already in coroutine context */
1595 bdrv_rw_co_entry(&rwco);
1596 } else {
1597 co = qemu_coroutine_create(bdrv_rw_co_entry);
1598 qemu_coroutine_enter(co, &rwco);
1599 while (rwco.ret == NOT_DONE) {
1600 qemu_aio_wait();
1601 }
1602 }
1603 return rwco.ret;
1604 }
1605
1606 /* return < 0 if error. See bdrv_write() for the return codes */
1607 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1608 uint8_t *buf, int nb_sectors)
1609 {
1610 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1611 }
1612
1613 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1614
1615 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1616 int nb_sectors, int dirty)
1617 {
1618 int64_t start, end;
1619 unsigned long val, idx, bit;
1620
1621 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1622 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1623
1624 for (; start <= end; start++) {
1625 idx = start / BITS_PER_LONG;
1626 bit = start % BITS_PER_LONG;
1627 val = bs->dirty_bitmap[idx];
1628 if (dirty) {
1629 if (!(val & (1UL << bit))) {
1630 bs->dirty_count++;
1631 val |= 1UL << bit;
1632 }
1633 } else {
1634 if (val & (1UL << bit)) {
1635 bs->dirty_count--;
1636 val &= ~(1UL << bit);
1637 }
1638 }
1639 bs->dirty_bitmap[idx] = val;
1640 }
1641 }
1642
1643 /* Return < 0 if error. Important errors are:
1644 -EIO generic I/O error (may happen for all errors)
1645 -ENOMEDIUM No media inserted.
1646 -EINVAL Invalid sector number or nb_sectors
1647 -EACCES Trying to write a read-only device
1648 */
1649 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1650 const uint8_t *buf, int nb_sectors)
1651 {
1652 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1653 }
1654
1655 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1656 void *buf, int count1)
1657 {
1658 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1659 int len, nb_sectors, count;
1660 int64_t sector_num;
1661 int ret;
1662
1663 count = count1;
1664 /* first read to align to sector start */
1665 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1666 if (len > count)
1667 len = count;
1668 sector_num = offset >> BDRV_SECTOR_BITS;
1669 if (len > 0) {
1670 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1671 return ret;
1672 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1673 count -= len;
1674 if (count == 0)
1675 return count1;
1676 sector_num++;
1677 buf += len;
1678 }
1679
1680 /* read the sectors "in place" */
1681 nb_sectors = count >> BDRV_SECTOR_BITS;
1682 if (nb_sectors > 0) {
1683 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1684 return ret;
1685 sector_num += nb_sectors;
1686 len = nb_sectors << BDRV_SECTOR_BITS;
1687 buf += len;
1688 count -= len;
1689 }
1690
1691 /* add data from the last sector */
1692 if (count > 0) {
1693 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1694 return ret;
1695 memcpy(buf, tmp_buf, count);
1696 }
1697 return count1;
1698 }
1699
1700 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1701 const void *buf, int count1)
1702 {
1703 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1704 int len, nb_sectors, count;
1705 int64_t sector_num;
1706 int ret;
1707
1708 count = count1;
1709 /* first write to align to sector start */
1710 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1711 if (len > count)
1712 len = count;
1713 sector_num = offset >> BDRV_SECTOR_BITS;
1714 if (len > 0) {
1715 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1716 return ret;
1717 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1718 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1719 return ret;
1720 count -= len;
1721 if (count == 0)
1722 return count1;
1723 sector_num++;
1724 buf += len;
1725 }
1726
1727 /* write the sectors "in place" */
1728 nb_sectors = count >> BDRV_SECTOR_BITS;
1729 if (nb_sectors > 0) {
1730 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1731 return ret;
1732 sector_num += nb_sectors;
1733 len = nb_sectors << BDRV_SECTOR_BITS;
1734 buf += len;
1735 count -= len;
1736 }
1737
1738 /* add data from the last sector */
1739 if (count > 0) {
1740 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1741 return ret;
1742 memcpy(tmp_buf, buf, count);
1743 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1744 return ret;
1745 }
1746 return count1;
1747 }
1748
1749 /*
1750 * Writes to the file and ensures that no writes are reordered across this
1751 * request (acts as a barrier)
1752 *
1753 * Returns 0 on success, -errno in error cases.
1754 */
1755 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1756 const void *buf, int count)
1757 {
1758 int ret;
1759
1760 ret = bdrv_pwrite(bs, offset, buf, count);
1761 if (ret < 0) {
1762 return ret;
1763 }
1764
1765 /* No flush needed for cache modes that already do it */
1766 if (bs->enable_write_cache) {
1767 bdrv_flush(bs);
1768 }
1769
1770 return 0;
1771 }
1772
1773 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1774 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1775 {
1776 /* Perform I/O through a temporary buffer so that users who scribble over
1777 * their read buffer while the operation is in progress do not end up
1778 * modifying the image file. This is critical for zero-copy guest I/O
1779 * where anything might happen inside guest memory.
1780 */
1781 void *bounce_buffer;
1782
1783 BlockDriver *drv = bs->drv;
1784 struct iovec iov;
1785 QEMUIOVector bounce_qiov;
1786 int64_t cluster_sector_num;
1787 int cluster_nb_sectors;
1788 size_t skip_bytes;
1789 int ret;
1790
1791 /* Cover entire cluster so no additional backing file I/O is required when
1792 * allocating cluster in the image file.
1793 */
1794 round_to_clusters(bs, sector_num, nb_sectors,
1795 &cluster_sector_num, &cluster_nb_sectors);
1796
1797 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1798 cluster_sector_num, cluster_nb_sectors);
1799
1800 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1801 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1802 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1803
1804 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1805 &bounce_qiov);
1806 if (ret < 0) {
1807 goto err;
1808 }
1809
1810 if (drv->bdrv_co_write_zeroes &&
1811 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1812 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
1813 cluster_nb_sectors);
1814 } else {
1815 /* This does not change the data on the disk, it is not necessary
1816 * to flush even in cache=writethrough mode.
1817 */
1818 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1819 &bounce_qiov);
1820 }
1821
1822 if (ret < 0) {
1823 /* It might be okay to ignore write errors for guest requests. If this
1824 * is a deliberate copy-on-read then we don't want to ignore the error.
1825 * Simply report it in all cases.
1826 */
1827 goto err;
1828 }
1829
1830 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1831 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1832 nb_sectors * BDRV_SECTOR_SIZE);
1833
1834 err:
1835 qemu_vfree(bounce_buffer);
1836 return ret;
1837 }
1838
1839 /*
1840 * Handle a read request in coroutine context
1841 */
1842 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1843 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1844 BdrvRequestFlags flags)
1845 {
1846 BlockDriver *drv = bs->drv;
1847 BdrvTrackedRequest req;
1848 int ret;
1849
1850 if (!drv) {
1851 return -ENOMEDIUM;
1852 }
1853 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1854 return -EIO;
1855 }
1856
1857 /* throttling disk read I/O */
1858 if (bs->io_limits_enabled) {
1859 bdrv_io_limits_intercept(bs, false, nb_sectors);
1860 }
1861
1862 if (bs->copy_on_read) {
1863 flags |= BDRV_REQ_COPY_ON_READ;
1864 }
1865 if (flags & BDRV_REQ_COPY_ON_READ) {
1866 bs->copy_on_read_in_flight++;
1867 }
1868
1869 if (bs->copy_on_read_in_flight) {
1870 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1871 }
1872
1873 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1874
1875 if (flags & BDRV_REQ_COPY_ON_READ) {
1876 int pnum;
1877
1878 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1879 if (ret < 0) {
1880 goto out;
1881 }
1882
1883 if (!ret || pnum != nb_sectors) {
1884 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1885 goto out;
1886 }
1887 }
1888
1889 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1890
1891 out:
1892 tracked_request_end(&req);
1893
1894 if (flags & BDRV_REQ_COPY_ON_READ) {
1895 bs->copy_on_read_in_flight--;
1896 }
1897
1898 return ret;
1899 }
1900
1901 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1902 int nb_sectors, QEMUIOVector *qiov)
1903 {
1904 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1905
1906 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1907 }
1908
1909 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1910 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1911 {
1912 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1913
1914 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1915 BDRV_REQ_COPY_ON_READ);
1916 }
1917
1918 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1919 int64_t sector_num, int nb_sectors)
1920 {
1921 BlockDriver *drv = bs->drv;
1922 QEMUIOVector qiov;
1923 struct iovec iov;
1924 int ret;
1925
1926 /* TODO Emulate only part of misaligned requests instead of letting block
1927 * drivers return -ENOTSUP and emulate everything */
1928
1929 /* First try the efficient write zeroes operation */
1930 if (drv->bdrv_co_write_zeroes) {
1931 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1932 if (ret != -ENOTSUP) {
1933 return ret;
1934 }
1935 }
1936
1937 /* Fall back to bounce buffer if write zeroes is unsupported */
1938 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1939 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1940 memset(iov.iov_base, 0, iov.iov_len);
1941 qemu_iovec_init_external(&qiov, &iov, 1);
1942
1943 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1944
1945 qemu_vfree(iov.iov_base);
1946 return ret;
1947 }
1948
1949 /*
1950 * Handle a write request in coroutine context
1951 */
1952 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1953 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1954 BdrvRequestFlags flags)
1955 {
1956 BlockDriver *drv = bs->drv;
1957 BdrvTrackedRequest req;
1958 int ret;
1959
1960 if (!bs->drv) {
1961 return -ENOMEDIUM;
1962 }
1963 if (bs->read_only) {
1964 return -EACCES;
1965 }
1966 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1967 return -EIO;
1968 }
1969
1970 /* throttling disk write I/O */
1971 if (bs->io_limits_enabled) {
1972 bdrv_io_limits_intercept(bs, true, nb_sectors);
1973 }
1974
1975 if (bs->copy_on_read_in_flight) {
1976 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1977 }
1978
1979 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1980
1981 if (flags & BDRV_REQ_ZERO_WRITE) {
1982 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1983 } else {
1984 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1985 }
1986
1987 if (ret == 0 && !bs->enable_write_cache) {
1988 ret = bdrv_co_flush(bs);
1989 }
1990
1991 if (bs->dirty_bitmap) {
1992 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1993 }
1994
1995 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1996 bs->wr_highest_sector = sector_num + nb_sectors - 1;
1997 }
1998
1999 tracked_request_end(&req);
2000
2001 return ret;
2002 }
2003
2004 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2005 int nb_sectors, QEMUIOVector *qiov)
2006 {
2007 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2008
2009 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2010 }
2011
2012 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2013 int64_t sector_num, int nb_sectors)
2014 {
2015 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2016
2017 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2018 BDRV_REQ_ZERO_WRITE);
2019 }
2020
2021 /**
2022 * Truncate file to 'offset' bytes (needed only for file protocols)
2023 */
2024 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2025 {
2026 BlockDriver *drv = bs->drv;
2027 int ret;
2028 if (!drv)
2029 return -ENOMEDIUM;
2030 if (!drv->bdrv_truncate)
2031 return -ENOTSUP;
2032 if (bs->read_only)
2033 return -EACCES;
2034 if (bdrv_in_use(bs))
2035 return -EBUSY;
2036 ret = drv->bdrv_truncate(bs, offset);
2037 if (ret == 0) {
2038 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2039 bdrv_dev_resize_cb(bs);
2040 }
2041 return ret;
2042 }
2043
2044 /**
2045 * Length of a allocated file in bytes. Sparse files are counted by actual
2046 * allocated space. Return < 0 if error or unknown.
2047 */
2048 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2049 {
2050 BlockDriver *drv = bs->drv;
2051 if (!drv) {
2052 return -ENOMEDIUM;
2053 }
2054 if (drv->bdrv_get_allocated_file_size) {
2055 return drv->bdrv_get_allocated_file_size(bs);
2056 }
2057 if (bs->file) {
2058 return bdrv_get_allocated_file_size(bs->file);
2059 }
2060 return -ENOTSUP;
2061 }
2062
2063 /**
2064 * Length of a file in bytes. Return < 0 if error or unknown.
2065 */
2066 int64_t bdrv_getlength(BlockDriverState *bs)
2067 {
2068 BlockDriver *drv = bs->drv;
2069 if (!drv)
2070 return -ENOMEDIUM;
2071
2072 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2073 if (drv->bdrv_getlength) {
2074 return drv->bdrv_getlength(bs);
2075 }
2076 }
2077 return bs->total_sectors * BDRV_SECTOR_SIZE;
2078 }
2079
2080 /* return 0 as number of sectors if no device present or error */
2081 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2082 {
2083 int64_t length;
2084 length = bdrv_getlength(bs);
2085 if (length < 0)
2086 length = 0;
2087 else
2088 length = length >> BDRV_SECTOR_BITS;
2089 *nb_sectors_ptr = length;
2090 }
2091
2092 struct partition {
2093 uint8_t boot_ind; /* 0x80 - active */
2094 uint8_t head; /* starting head */
2095 uint8_t sector; /* starting sector */
2096 uint8_t cyl; /* starting cylinder */
2097 uint8_t sys_ind; /* What partition type */
2098 uint8_t end_head; /* end head */
2099 uint8_t end_sector; /* end sector */
2100 uint8_t end_cyl; /* end cylinder */
2101 uint32_t start_sect; /* starting sector counting from 0 */
2102 uint32_t nr_sects; /* nr of sectors in partition */
2103 } QEMU_PACKED;
2104
2105 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
2106 static int guess_disk_lchs(BlockDriverState *bs,
2107 int *pcylinders, int *pheads, int *psectors)
2108 {
2109 uint8_t buf[BDRV_SECTOR_SIZE];
2110 int ret, i, heads, sectors, cylinders;
2111 struct partition *p;
2112 uint32_t nr_sects;
2113 uint64_t nb_sectors;
2114 bool enabled;
2115
2116 bdrv_get_geometry(bs, &nb_sectors);
2117
2118 /**
2119 * The function will be invoked during startup not only in sync I/O mode,
2120 * but also in async I/O mode. So the I/O throttling function has to
2121 * be disabled temporarily here, not permanently.
2122 */
2123 enabled = bs->io_limits_enabled;
2124 bs->io_limits_enabled = false;
2125 ret = bdrv_read(bs, 0, buf, 1);
2126 bs->io_limits_enabled = enabled;
2127 if (ret < 0)
2128 return -1;
2129 /* test msdos magic */
2130 if (buf[510] != 0x55 || buf[511] != 0xaa)
2131 return -1;
2132 for(i = 0; i < 4; i++) {
2133 p = ((struct partition *)(buf + 0x1be)) + i;
2134 nr_sects = le32_to_cpu(p->nr_sects);
2135 if (nr_sects && p->end_head) {
2136 /* We make the assumption that the partition terminates on
2137 a cylinder boundary */
2138 heads = p->end_head + 1;
2139 sectors = p->end_sector & 63;
2140 if (sectors == 0)
2141 continue;
2142 cylinders = nb_sectors / (heads * sectors);
2143 if (cylinders < 1 || cylinders > 16383)
2144 continue;
2145 *pheads = heads;
2146 *psectors = sectors;
2147 *pcylinders = cylinders;
2148 #if 0
2149 printf("guessed geometry: LCHS=%d %d %d\n",
2150 cylinders, heads, sectors);
2151 #endif
2152 return 0;
2153 }
2154 }
2155 return -1;
2156 }
2157
2158 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
2159 {
2160 int translation, lba_detected = 0;
2161 int cylinders, heads, secs;
2162 uint64_t nb_sectors;
2163
2164 /* if a geometry hint is available, use it */
2165 bdrv_get_geometry(bs, &nb_sectors);
2166 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
2167 translation = bdrv_get_translation_hint(bs);
2168 if (cylinders != 0) {
2169 *pcyls = cylinders;
2170 *pheads = heads;
2171 *psecs = secs;
2172 } else {
2173 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
2174 if (heads > 16) {
2175 /* if heads > 16, it means that a BIOS LBA
2176 translation was active, so the default
2177 hardware geometry is OK */
2178 lba_detected = 1;
2179 goto default_geometry;
2180 } else {
2181 *pcyls = cylinders;
2182 *pheads = heads;
2183 *psecs = secs;
2184 /* disable any translation to be in sync with
2185 the logical geometry */
2186 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
2187 bdrv_set_translation_hint(bs,
2188 BIOS_ATA_TRANSLATION_NONE);
2189 }
2190 }
2191 } else {
2192 default_geometry:
2193 /* if no geometry, use a standard physical disk geometry */
2194 cylinders = nb_sectors / (16 * 63);
2195
2196 if (cylinders > 16383)
2197 cylinders = 16383;
2198 else if (cylinders < 2)
2199 cylinders = 2;
2200 *pcyls = cylinders;
2201 *pheads = 16;
2202 *psecs = 63;
2203 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
2204 if ((*pcyls * *pheads) <= 131072) {
2205 bdrv_set_translation_hint(bs,
2206 BIOS_ATA_TRANSLATION_LARGE);
2207 } else {
2208 bdrv_set_translation_hint(bs,
2209 BIOS_ATA_TRANSLATION_LBA);
2210 }
2211 }
2212 }
2213 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
2214 }
2215 }
2216
2217 void bdrv_set_geometry_hint(BlockDriverState *bs,
2218 int cyls, int heads, int secs)
2219 {
2220 bs->cyls = cyls;
2221 bs->heads = heads;
2222 bs->secs = secs;
2223 }
2224
2225 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
2226 {
2227 bs->translation = translation;
2228 }
2229
2230 void bdrv_get_geometry_hint(BlockDriverState *bs,
2231 int *pcyls, int *pheads, int *psecs)
2232 {
2233 *pcyls = bs->cyls;
2234 *pheads = bs->heads;
2235 *psecs = bs->secs;
2236 }
2237
2238 /* throttling disk io limits */
2239 void bdrv_set_io_limits(BlockDriverState *bs,
2240 BlockIOLimit *io_limits)
2241 {
2242 bs->io_limits = *io_limits;
2243 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2244 }
2245
2246 /* Recognize floppy formats */
2247 typedef struct FDFormat {
2248 FDriveType drive;
2249 uint8_t last_sect;
2250 uint8_t max_track;
2251 uint8_t max_head;
2252 FDriveRate rate;
2253 } FDFormat;
2254
2255 static const FDFormat fd_formats[] = {
2256 /* First entry is default format */
2257 /* 1.44 MB 3"1/2 floppy disks */
2258 { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2259 { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2260 { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2261 { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2262 { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2263 { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2264 { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2265 { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2266 /* 2.88 MB 3"1/2 floppy disks */
2267 { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2268 { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2269 { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2270 { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2271 { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2272 /* 720 kB 3"1/2 floppy disks */
2273 { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, },
2274 { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2275 { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2276 { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2277 { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2278 { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2279 /* 1.2 MB 5"1/4 floppy disks */
2280 { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2281 { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2282 { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2283 { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2284 { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2285 /* 720 kB 5"1/4 floppy disks */
2286 { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_250K, },
2287 { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2288 /* 360 kB 5"1/4 floppy disks */
2289 { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, },
2290 { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, },
2291 { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2292 { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2293 /* 320 kB 5"1/4 floppy disks */
2294 { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_250K, },
2295 { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_250K, },
2296 /* 360 kB must match 5"1/4 better than 3"1/2... */
2297 { FDRIVE_DRV_144, 9, 80, 0, FDRIVE_RATE_250K, },
2298 /* end */
2299 { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2300 };
2301
2302 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2303 int *max_track, int *last_sect,
2304 FDriveType drive_in, FDriveType *drive,
2305 FDriveRate *rate)
2306 {
2307 const FDFormat *parse;
2308 uint64_t nb_sectors, size;
2309 int i, first_match, match;
2310
2311 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2312 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2313 /* User defined disk */
2314 *rate = FDRIVE_RATE_500K;
2315 } else {
2316 bdrv_get_geometry(bs, &nb_sectors);
2317 match = -1;
2318 first_match = -1;
2319 for (i = 0; ; i++) {
2320 parse = &fd_formats[i];
2321 if (parse->drive == FDRIVE_DRV_NONE) {
2322 break;
2323 }
2324 if (drive_in == parse->drive ||
2325 drive_in == FDRIVE_DRV_NONE) {
2326 size = (parse->max_head + 1) * parse->max_track *
2327 parse->last_sect;
2328 if (nb_sectors == size) {
2329 match = i;
2330 break;
2331 }
2332 if (first_match == -1) {
2333 first_match = i;
2334 }
2335 }
2336 }
2337 if (match == -1) {
2338 if (first_match == -1) {
2339 match = 1;
2340 } else {
2341 match = first_match;
2342 }
2343 parse = &fd_formats[match];
2344 }
2345 *nb_heads = parse->max_head + 1;
2346 *max_track = parse->max_track;
2347 *last_sect = parse->last_sect;
2348 *drive = parse->drive;
2349 *rate = parse->rate;
2350 }
2351 }
2352
2353 int bdrv_get_translation_hint(BlockDriverState *bs)
2354 {
2355 return bs->translation;
2356 }
2357
2358 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2359 BlockErrorAction on_write_error)
2360 {
2361 bs->on_read_error = on_read_error;
2362 bs->on_write_error = on_write_error;
2363 }
2364
2365 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2366 {
2367 return is_read ? bs->on_read_error : bs->on_write_error;
2368 }
2369
2370 int bdrv_is_read_only(BlockDriverState *bs)
2371 {
2372 return bs->read_only;
2373 }
2374
2375 int bdrv_is_sg(BlockDriverState *bs)
2376 {
2377 return bs->sg;
2378 }
2379
2380 int bdrv_enable_write_cache(BlockDriverState *bs)
2381 {
2382 return bs->enable_write_cache;
2383 }
2384
2385 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2386 {
2387 bs->enable_write_cache = wce;
2388 }
2389
2390 int bdrv_is_encrypted(BlockDriverState *bs)
2391 {
2392 if (bs->backing_hd && bs->backing_hd->encrypted)
2393 return 1;
2394 return bs->encrypted;
2395 }
2396
2397 int bdrv_key_required(BlockDriverState *bs)
2398 {
2399 BlockDriverState *backing_hd = bs->backing_hd;
2400
2401 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2402 return 1;
2403 return (bs->encrypted && !bs->valid_key);
2404 }
2405
2406 int bdrv_set_key(BlockDriverState *bs, const char *key)
2407 {
2408 int ret;
2409 if (bs->backing_hd && bs->backing_hd->encrypted) {
2410 ret = bdrv_set_key(bs->backing_hd, key);
2411 if (ret < 0)
2412 return ret;
2413 if (!bs->encrypted)
2414 return 0;
2415 }
2416 if (!bs->encrypted) {
2417 return -EINVAL;
2418 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2419 return -ENOMEDIUM;
2420 }
2421 ret = bs->drv->bdrv_set_key(bs, key);
2422 if (ret < 0) {
2423 bs->valid_key = 0;
2424 } else if (!bs->valid_key) {
2425 bs->valid_key = 1;
2426 /* call the change callback now, we skipped it on open */
2427 bdrv_dev_change_media_cb(bs, true);
2428 }
2429 return ret;
2430 }
2431
2432 const char *bdrv_get_format_name(BlockDriverState *bs)
2433 {
2434 return bs->drv ? bs->drv->format_name : NULL;
2435 }
2436
2437 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2438 void *opaque)
2439 {
2440 BlockDriver *drv;
2441
2442 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2443 it(opaque, drv->format_name);
2444 }
2445 }
2446
2447 BlockDriverState *bdrv_find(const char *name)
2448 {
2449 BlockDriverState *bs;
2450
2451 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2452 if (!strcmp(name, bs->device_name)) {
2453 return bs;
2454 }
2455 }
2456 return NULL;
2457 }
2458
2459 BlockDriverState *bdrv_next(BlockDriverState *bs)
2460 {
2461 if (!bs) {
2462 return QTAILQ_FIRST(&bdrv_states);
2463 }
2464 return QTAILQ_NEXT(bs, list);
2465 }
2466
2467 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2468 {
2469 BlockDriverState *bs;
2470
2471 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2472 it(opaque, bs);
2473 }
2474 }
2475
2476 const char *bdrv_get_device_name(BlockDriverState *bs)
2477 {
2478 return bs->device_name;
2479 }
2480
2481 int bdrv_get_flags(BlockDriverState *bs)
2482 {
2483 return bs->open_flags;
2484 }
2485
2486 void bdrv_flush_all(void)
2487 {
2488 BlockDriverState *bs;
2489
2490 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2491 bdrv_flush(bs);
2492 }
2493 }
2494
2495 int bdrv_has_zero_init(BlockDriverState *bs)
2496 {
2497 assert(bs->drv);
2498
2499 if (bs->drv->bdrv_has_zero_init) {
2500 return bs->drv->bdrv_has_zero_init(bs);
2501 }
2502
2503 return 1;
2504 }
2505
2506 typedef struct BdrvCoIsAllocatedData {
2507 BlockDriverState *bs;
2508 int64_t sector_num;
2509 int nb_sectors;
2510 int *pnum;
2511 int ret;
2512 bool done;
2513 } BdrvCoIsAllocatedData;
2514
2515 /*
2516 * Returns true iff the specified sector is present in the disk image. Drivers
2517 * not implementing the functionality are assumed to not support backing files,
2518 * hence all their sectors are reported as allocated.
2519 *
2520 * If 'sector_num' is beyond the end of the disk image the return value is 0
2521 * and 'pnum' is set to 0.
2522 *
2523 * 'pnum' is set to the number of sectors (including and immediately following
2524 * the specified sector) that are known to be in the same
2525 * allocated/unallocated state.
2526 *
2527 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2528 * beyond the end of the disk image it will be clamped.
2529 */
2530 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2531 int nb_sectors, int *pnum)
2532 {
2533 int64_t n;
2534
2535 if (sector_num >= bs->total_sectors) {
2536 *pnum = 0;
2537 return 0;
2538 }
2539
2540 n = bs->total_sectors - sector_num;
2541 if (n < nb_sectors) {
2542 nb_sectors = n;
2543 }
2544
2545 if (!bs->drv->bdrv_co_is_allocated) {
2546 *pnum = nb_sectors;
2547 return 1;
2548 }
2549
2550 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2551 }
2552
2553 /* Coroutine wrapper for bdrv_is_allocated() */
2554 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2555 {
2556 BdrvCoIsAllocatedData *data = opaque;
2557 BlockDriverState *bs = data->bs;
2558
2559 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2560 data->pnum);
2561 data->done = true;
2562 }
2563
2564 /*
2565 * Synchronous wrapper around bdrv_co_is_allocated().
2566 *
2567 * See bdrv_co_is_allocated() for details.
2568 */
2569 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2570 int *pnum)
2571 {
2572 Coroutine *co;
2573 BdrvCoIsAllocatedData data = {
2574 .bs = bs,
2575 .sector_num = sector_num,
2576 .nb_sectors = nb_sectors,
2577 .pnum = pnum,
2578 .done = false,
2579 };
2580
2581 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2582 qemu_coroutine_enter(co, &data);
2583 while (!data.done) {
2584 qemu_aio_wait();
2585 }
2586 return data.ret;
2587 }
2588
2589 /*
2590 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2591 *
2592 * Return true if the given sector is allocated in any image between
2593 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2594 * sector is allocated in any image of the chain. Return false otherwise.
2595 *
2596 * 'pnum' is set to the number of sectors (including and immediately following
2597 * the specified sector) that are known to be in the same
2598 * allocated/unallocated state.
2599 *
2600 */
2601 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2602 BlockDriverState *base,
2603 int64_t sector_num,
2604 int nb_sectors, int *pnum)
2605 {
2606 BlockDriverState *intermediate;
2607 int ret, n = nb_sectors;
2608
2609 intermediate = top;
2610 while (intermediate && intermediate != base) {
2611 int pnum_inter;
2612 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2613 &pnum_inter);
2614 if (ret < 0) {
2615 return ret;
2616 } else if (ret) {
2617 *pnum = pnum_inter;
2618 return 1;
2619 }
2620
2621 /*
2622 * [sector_num, nb_sectors] is unallocated on top but intermediate
2623 * might have
2624 *
2625 * [sector_num+x, nr_sectors] allocated.
2626 */
2627 if (n > pnum_inter) {
2628 n = pnum_inter;
2629 }
2630
2631 intermediate = intermediate->backing_hd;
2632 }
2633
2634 *pnum = n;
2635 return 0;
2636 }
2637
2638 BlockInfoList *qmp_query_block(Error **errp)
2639 {
2640 BlockInfoList *head = NULL, *cur_item = NULL;
2641 BlockDriverState *bs;
2642
2643 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2644 BlockInfoList *info = g_malloc0(sizeof(*info));
2645
2646 info->value = g_malloc0(sizeof(*info->value));
2647 info->value->device = g_strdup(bs->device_name);
2648 info->value->type = g_strdup("unknown");
2649 info->value->locked = bdrv_dev_is_medium_locked(bs);
2650 info->value->removable = bdrv_dev_has_removable_media(bs);
2651
2652 if (bdrv_dev_has_removable_media(bs)) {
2653 info->value->has_tray_open = true;
2654 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2655 }
2656
2657 if (bdrv_iostatus_is_enabled(bs)) {
2658 info->value->has_io_status = true;
2659 info->value->io_status = bs->iostatus;
2660 }
2661
2662 if (bs->drv) {
2663 info->value->has_inserted = true;
2664 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2665 info->value->inserted->file = g_strdup(bs->filename);
2666 info->value->inserted->ro = bs->read_only;
2667 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2668 info->value->inserted->encrypted = bs->encrypted;
2669 if (bs->backing_file[0]) {
2670 info->value->inserted->has_backing_file = true;
2671 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2672 }
2673
2674 if (bs->io_limits_enabled) {
2675 info->value->inserted->bps =
2676 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2677 info->value->inserted->bps_rd =
2678 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2679 info->value->inserted->bps_wr =
2680 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2681 info->value->inserted->iops =
2682 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2683 info->value->inserted->iops_rd =
2684 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2685 info->value->inserted->iops_wr =
2686 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2687 }
2688 }
2689
2690 /* XXX: waiting for the qapi to support GSList */
2691 if (!cur_item) {
2692 head = cur_item = info;
2693 } else {
2694 cur_item->next = info;
2695 cur_item = info;
2696 }
2697 }
2698
2699 return head;
2700 }
2701
2702 /* Consider exposing this as a full fledged QMP command */
2703 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2704 {
2705 BlockStats *s;
2706
2707 s = g_malloc0(sizeof(*s));
2708
2709 if (bs->device_name[0]) {
2710 s->has_device = true;
2711 s->device = g_strdup(bs->device_name);
2712 }
2713
2714 s->stats = g_malloc0(sizeof(*s->stats));
2715 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2716 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2717 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2718 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2719 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2720 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2721 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2722 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2723 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2724
2725 if (bs->file) {
2726 s->has_parent = true;
2727 s->parent = qmp_query_blockstat(bs->file, NULL);
2728 }
2729
2730 return s;
2731 }
2732
2733 BlockStatsList *qmp_query_blockstats(Error **errp)
2734 {
2735 BlockStatsList *head = NULL, *cur_item = NULL;
2736 BlockDriverState *bs;
2737
2738 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2739 BlockStatsList *info = g_malloc0(sizeof(*info));
2740 info->value = qmp_query_blockstat(bs, NULL);
2741
2742 /* XXX: waiting for the qapi to support GSList */
2743 if (!cur_item) {
2744 head = cur_item = info;
2745 } else {
2746 cur_item->next = info;
2747 cur_item = info;
2748 }
2749 }
2750
2751 return head;
2752 }
2753
2754 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2755 {
2756 if (bs->backing_hd && bs->backing_hd->encrypted)
2757 return bs->backing_file;
2758 else if (bs->encrypted)
2759 return bs->filename;
2760 else
2761 return NULL;
2762 }
2763
2764 void bdrv_get_backing_filename(BlockDriverState *bs,
2765 char *filename, int filename_size)
2766 {
2767 pstrcpy(filename, filename_size, bs->backing_file);
2768 }
2769
2770 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2771 const uint8_t *buf, int nb_sectors)
2772 {
2773 BlockDriver *drv = bs->drv;
2774 if (!drv)
2775 return -ENOMEDIUM;
2776 if (!drv->bdrv_write_compressed)
2777 return -ENOTSUP;
2778 if (bdrv_check_request(bs, sector_num, nb_sectors))
2779 return -EIO;
2780
2781 if (bs->dirty_bitmap) {
2782 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2783 }
2784
2785 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2786 }
2787
2788 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2789 {
2790 BlockDriver *drv = bs->drv;
2791 if (!drv)
2792 return -ENOMEDIUM;
2793 if (!drv->bdrv_get_info)
2794 return -ENOTSUP;
2795 memset(bdi, 0, sizeof(*bdi));
2796 return drv->bdrv_get_info(bs, bdi);
2797 }
2798
2799 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2800 int64_t pos, int size)
2801 {
2802 BlockDriver *drv = bs->drv;
2803 if (!drv)
2804 return -ENOMEDIUM;
2805 if (drv->bdrv_save_vmstate)
2806 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2807 if (bs->file)
2808 return bdrv_save_vmstate(bs->file, buf, pos, size);
2809 return -ENOTSUP;
2810 }
2811
2812 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2813 int64_t pos, int size)
2814 {
2815 BlockDriver *drv = bs->drv;
2816 if (!drv)
2817 return -ENOMEDIUM;
2818 if (drv->bdrv_load_vmstate)
2819 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2820 if (bs->file)
2821 return bdrv_load_vmstate(bs->file, buf, pos, size);
2822 return -ENOTSUP;
2823 }
2824
2825 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2826 {
2827 BlockDriver *drv = bs->drv;
2828
2829 if (!drv || !drv->bdrv_debug_event) {
2830 return;
2831 }
2832
2833 return drv->bdrv_debug_event(bs, event);
2834
2835 }
2836
2837 /**************************************************************/
2838 /* handling of snapshots */
2839
2840 int bdrv_can_snapshot(BlockDriverState *bs)
2841 {
2842 BlockDriver *drv = bs->drv;
2843 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2844 return 0;
2845 }
2846
2847 if (!drv->bdrv_snapshot_create) {
2848 if (bs->file != NULL) {
2849 return bdrv_can_snapshot(bs->file);
2850 }
2851 return 0;
2852 }
2853
2854 return 1;
2855 }
2856
2857 int bdrv_is_snapshot(BlockDriverState *bs)
2858 {
2859 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2860 }
2861
2862 BlockDriverState *bdrv_snapshots(void)
2863 {
2864 BlockDriverState *bs;
2865
2866 if (bs_snapshots) {
2867 return bs_snapshots;
2868 }
2869
2870 bs = NULL;
2871 while ((bs = bdrv_next(bs))) {
2872 if (bdrv_can_snapshot(bs)) {
2873 bs_snapshots = bs;
2874 return bs;
2875 }
2876 }
2877 return NULL;
2878 }
2879
2880 int bdrv_snapshot_create(BlockDriverState *bs,
2881 QEMUSnapshotInfo *sn_info)
2882 {
2883 BlockDriver *drv = bs->drv;
2884 if (!drv)
2885 return -ENOMEDIUM;
2886 if (drv->bdrv_snapshot_create)
2887 return drv->bdrv_snapshot_create(bs, sn_info);
2888 if (bs->file)
2889 return bdrv_snapshot_create(bs->file, sn_info);
2890 return -ENOTSUP;
2891 }
2892
2893 int bdrv_snapshot_goto(BlockDriverState *bs,
2894 const char *snapshot_id)
2895 {
2896 BlockDriver *drv = bs->drv;
2897 int ret, open_ret;
2898
2899 if (!drv)
2900 return -ENOMEDIUM;
2901 if (drv->bdrv_snapshot_goto)
2902 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2903
2904 if (bs->file) {
2905 drv->bdrv_close(bs);
2906 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2907 open_ret = drv->bdrv_open(bs, bs->open_flags);
2908 if (open_ret < 0) {
2909 bdrv_delete(bs->file);
2910 bs->drv = NULL;
2911 return open_ret;
2912 }
2913 return ret;
2914 }
2915
2916 return -ENOTSUP;
2917 }
2918
2919 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2920 {
2921 BlockDriver *drv = bs->drv;
2922 if (!drv)
2923 return -ENOMEDIUM;
2924 if (drv->bdrv_snapshot_delete)
2925 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2926 if (bs->file)
2927 return bdrv_snapshot_delete(bs->file, snapshot_id);
2928 return -ENOTSUP;
2929 }
2930
2931 int bdrv_snapshot_list(BlockDriverState *bs,
2932 QEMUSnapshotInfo **psn_info)
2933 {
2934 BlockDriver *drv = bs->drv;
2935 if (!drv)
2936 return -ENOMEDIUM;
2937 if (drv->bdrv_snapshot_list)
2938 return drv->bdrv_snapshot_list(bs, psn_info);
2939 if (bs->file)
2940 return bdrv_snapshot_list(bs->file, psn_info);
2941 return -ENOTSUP;
2942 }
2943
2944 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2945 const char *snapshot_name)
2946 {
2947 BlockDriver *drv = bs->drv;
2948 if (!drv) {
2949 return -ENOMEDIUM;
2950 }
2951 if (!bs->read_only) {
2952 return -EINVAL;
2953 }
2954 if (drv->bdrv_snapshot_load_tmp) {
2955 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2956 }
2957 return -ENOTSUP;
2958 }
2959
2960 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2961 const char *backing_file)
2962 {
2963 if (!bs->drv) {
2964 return NULL;
2965 }
2966
2967 if (bs->backing_hd) {
2968 if (strcmp(bs->backing_file, backing_file) == 0) {
2969 return bs->backing_hd;
2970 } else {
2971 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2972 }
2973 }
2974
2975 return NULL;
2976 }
2977
2978 #define NB_SUFFIXES 4
2979
2980 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2981 {
2982 static const char suffixes[NB_SUFFIXES] = "KMGT";
2983 int64_t base;
2984 int i;
2985
2986 if (size <= 999) {
2987 snprintf(buf, buf_size, "%" PRId64, size);
2988 } else {
2989 base = 1024;
2990 for(i = 0; i < NB_SUFFIXES; i++) {
2991 if (size < (10 * base)) {
2992 snprintf(buf, buf_size, "%0.1f%c",
2993 (double)size / base,
2994 suffixes[i]);
2995 break;
2996 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2997 snprintf(buf, buf_size, "%" PRId64 "%c",
2998 ((size + (base >> 1)) / base),
2999 suffixes[i]);
3000 break;
3001 }
3002 base = base * 1024;
3003 }
3004 }
3005 return buf;
3006 }
3007
3008 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3009 {
3010 char buf1[128], date_buf[128], clock_buf[128];
3011 #ifdef _WIN32
3012 struct tm *ptm;
3013 #else
3014 struct tm tm;
3015 #endif
3016 time_t ti;
3017 int64_t secs;
3018
3019 if (!sn) {
3020 snprintf(buf, buf_size,
3021 "%-10s%-20s%7s%20s%15s",
3022 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3023 } else {
3024 ti = sn->date_sec;
3025 #ifdef _WIN32
3026 ptm = localtime(&ti);
3027 strftime(date_buf, sizeof(date_buf),
3028 "%Y-%m-%d %H:%M:%S", ptm);
3029 #else
3030 localtime_r(&ti, &tm);
3031 strftime(date_buf, sizeof(date_buf),
3032 "%Y-%m-%d %H:%M:%S", &tm);
3033 #endif
3034 secs = sn->vm_clock_nsec / 1000000000;
3035 snprintf(clock_buf, sizeof(clock_buf),
3036 "%02d:%02d:%02d.%03d",
3037 (int)(secs / 3600),
3038 (int)((secs / 60) % 60),
3039 (int)(secs % 60),
3040 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3041 snprintf(buf, buf_size,
3042 "%-10s%-20s%7s%20s%15s",
3043 sn->id_str, sn->name,
3044 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3045 date_buf,
3046 clock_buf);
3047 }
3048 return buf;
3049 }
3050
3051 /**************************************************************/
3052 /* async I/Os */
3053
3054 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3055 QEMUIOVector *qiov, int nb_sectors,
3056 BlockDriverCompletionFunc *cb, void *opaque)
3057 {
3058 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3059
3060 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3061 cb, opaque, false);
3062 }
3063
3064 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3065 QEMUIOVector *qiov, int nb_sectors,
3066 BlockDriverCompletionFunc *cb, void *opaque)
3067 {
3068 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3069
3070 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3071 cb, opaque, true);
3072 }
3073
3074
3075 typedef struct MultiwriteCB {
3076 int error;
3077 int num_requests;
3078 int num_callbacks;
3079 struct {
3080 BlockDriverCompletionFunc *cb;
3081 void *opaque;
3082 QEMUIOVector *free_qiov;
3083 } callbacks[];
3084 } MultiwriteCB;
3085
3086 static void multiwrite_user_cb(MultiwriteCB *mcb)
3087 {
3088 int i;
3089
3090 for (i = 0; i < mcb->num_callbacks; i++) {
3091 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3092 if (mcb->callbacks[i].free_qiov) {
3093 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3094 }
3095 g_free(mcb->callbacks[i].free_qiov);
3096 }
3097 }
3098
3099 static void multiwrite_cb(void *opaque, int ret)
3100 {
3101 MultiwriteCB *mcb = opaque;
3102
3103 trace_multiwrite_cb(mcb, ret);
3104
3105 if (ret < 0 && !mcb->error) {
3106 mcb->error = ret;
3107 }
3108
3109 mcb->num_requests--;
3110 if (mcb->num_requests == 0) {
3111 multiwrite_user_cb(mcb);
3112 g_free(mcb);
3113 }
3114 }
3115
3116 static int multiwrite_req_compare(const void *a, const void *b)
3117 {
3118 const BlockRequest *req1 = a, *req2 = b;
3119
3120 /*
3121 * Note that we can't simply subtract req2->sector from req1->sector
3122 * here as that could overflow the return value.
3123 */
3124 if (req1->sector > req2->sector) {
3125 return 1;
3126 } else if (req1->sector < req2->sector) {
3127 return -1;
3128 } else {
3129 return 0;
3130 }
3131 }
3132
3133 /*
3134 * Takes a bunch of requests and tries to merge them. Returns the number of
3135 * requests that remain after merging.
3136 */
3137 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3138 int num_reqs, MultiwriteCB *mcb)
3139 {
3140 int i, outidx;
3141
3142 // Sort requests by start sector
3143 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3144
3145 // Check if adjacent requests touch the same clusters. If so, combine them,
3146 // filling up gaps with zero sectors.
3147 outidx = 0;
3148 for (i = 1; i < num_reqs; i++) {
3149 int merge = 0;
3150 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3151
3152 // Handle exactly sequential writes and overlapping writes.
3153 if (reqs[i].sector <= oldreq_last) {
3154 merge = 1;
3155 }
3156
3157 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3158 merge = 0;
3159 }
3160
3161 if (merge) {
3162 size_t size;
3163 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3164 qemu_iovec_init(qiov,
3165 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3166
3167 // Add the first request to the merged one. If the requests are
3168 // overlapping, drop the last sectors of the first request.
3169 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3170 qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
3171
3172 // We should need to add any zeros between the two requests
3173 assert (reqs[i].sector <= oldreq_last);
3174
3175 // Add the second request
3176 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
3177
3178 reqs[outidx].nb_sectors = qiov->size >> 9;
3179 reqs[outidx].qiov = qiov;
3180
3181 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3182 } else {
3183 outidx++;
3184 reqs[outidx].sector = reqs[i].sector;
3185 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3186 reqs[outidx].qiov = reqs[i].qiov;
3187 }
3188 }
3189
3190 return outidx + 1;
3191 }
3192
3193 /*
3194 * Submit multiple AIO write requests at once.
3195 *
3196 * On success, the function returns 0 and all requests in the reqs array have
3197 * been submitted. In error case this function returns -1, and any of the
3198 * requests may or may not be submitted yet. In particular, this means that the
3199 * callback will be called for some of the requests, for others it won't. The
3200 * caller must check the error field of the BlockRequest to wait for the right
3201 * callbacks (if error != 0, no callback will be called).
3202 *
3203 * The implementation may modify the contents of the reqs array, e.g. to merge
3204 * requests. However, the fields opaque and error are left unmodified as they
3205 * are used to signal failure for a single request to the caller.
3206 */
3207 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3208 {
3209 MultiwriteCB *mcb;
3210 int i;
3211
3212 /* don't submit writes if we don't have a medium */
3213 if (bs->drv == NULL) {
3214 for (i = 0; i < num_reqs; i++) {
3215 reqs[i].error = -ENOMEDIUM;
3216 }
3217 return -1;
3218 }
3219
3220 if (num_reqs == 0) {
3221 return 0;
3222 }
3223
3224 // Create MultiwriteCB structure
3225 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3226 mcb->num_requests = 0;
3227 mcb->num_callbacks = num_reqs;
3228
3229 for (i = 0; i < num_reqs; i++) {
3230 mcb->callbacks[i].cb = reqs[i].cb;
3231 mcb->callbacks[i].opaque = reqs[i].opaque;
3232 }
3233
3234 // Check for mergable requests
3235 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3236
3237 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3238
3239 /* Run the aio requests. */
3240 mcb->num_requests = num_reqs;
3241 for (i = 0; i < num_reqs; i++) {
3242 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3243 reqs[i].nb_sectors, multiwrite_cb, mcb);
3244 }
3245
3246 return 0;
3247 }
3248
3249 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3250 {
3251 acb->pool->cancel(acb);
3252 }
3253
3254 /* block I/O throttling */
3255 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3256 bool is_write, double elapsed_time, uint64_t *wait)
3257 {
3258 uint64_t bps_limit = 0;
3259 double bytes_limit, bytes_base, bytes_res;
3260 double slice_time, wait_time;
3261
3262 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3263 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3264 } else if (bs->io_limits.bps[is_write]) {
3265 bps_limit = bs->io_limits.bps[is_write];
3266 } else {
3267 if (wait) {
3268 *wait = 0;
3269 }
3270
3271 return false;
3272 }
3273
3274 slice_time = bs->slice_end - bs->slice_start;
3275 slice_time /= (NANOSECONDS_PER_SECOND);
3276 bytes_limit = bps_limit * slice_time;
3277 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3278 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3279 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3280 }
3281
3282 /* bytes_base: the bytes of data which have been read/written; and
3283 * it is obtained from the history statistic info.
3284 * bytes_res: the remaining bytes of data which need to be read/written.
3285 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3286 * the total time for completing reading/writting all data.
3287 */
3288 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3289
3290 if (bytes_base + bytes_res <= bytes_limit) {
3291 if (wait) {
3292 *wait = 0;
3293 }
3294
3295 return false;
3296 }
3297
3298 /* Calc approx time to dispatch */
3299 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3300
3301 /* When the I/O rate at runtime exceeds the limits,
3302 * bs->slice_end need to be extended in order that the current statistic
3303 * info can be kept until the timer fire, so it is increased and tuned
3304 * based on the result of experiment.
3305 */
3306 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3307 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3308 if (wait) {
3309 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3310 }
3311
3312 return true;
3313 }
3314
3315 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3316 double elapsed_time, uint64_t *wait)
3317 {
3318 uint64_t iops_limit = 0;
3319 double ios_limit, ios_base;
3320 double slice_time, wait_time;
3321
3322 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3323 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3324 } else if (bs->io_limits.iops[is_write]) {
3325 iops_limit = bs->io_limits.iops[is_write];
3326 } else {
3327 if (wait) {
3328 *wait = 0;
3329 }
3330
3331 return false;
3332 }
3333
3334 slice_time = bs->slice_end - bs->slice_start;
3335 slice_time /= (NANOSECONDS_PER_SECOND);
3336 ios_limit = iops_limit * slice_time;
3337 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3338 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3339 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3340 }
3341
3342 if (ios_base + 1 <= ios_limit) {
3343 if (wait) {
3344 *wait = 0;
3345 }
3346
3347 return false;
3348 }
3349
3350 /* Calc approx time to dispatch */
3351 wait_time = (ios_base + 1) / iops_limit;
3352 if (wait_time > elapsed_time) {
3353 wait_time = wait_time - elapsed_time;
3354 } else {
3355 wait_time = 0;
3356 }
3357
3358 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3359 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3360 if (wait) {
3361 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3362 }
3363
3364 return true;
3365 }
3366
3367 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3368 bool is_write, int64_t *wait)
3369 {
3370 int64_t now, max_wait;
3371 uint64_t bps_wait = 0, iops_wait = 0;
3372 double elapsed_time;
3373 int bps_ret, iops_ret;
3374
3375 now = qemu_get_clock_ns(vm_clock);
3376 if ((bs->slice_start < now)
3377 && (bs->slice_end > now)) {
3378 bs->slice_end = now + bs->slice_time;
3379 } else {
3380 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3381 bs->slice_start = now;
3382 bs->slice_end = now + bs->slice_time;
3383
3384 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3385 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3386
3387 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3388 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3389 }
3390
3391 elapsed_time = now - bs->slice_start;
3392 elapsed_time /= (NANOSECONDS_PER_SECOND);
3393
3394 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3395 is_write, elapsed_time, &bps_wait);
3396 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3397 elapsed_time, &iops_wait);
3398 if (bps_ret || iops_ret) {
3399 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3400 if (wait) {
3401 *wait = max_wait;
3402 }
3403
3404 now = qemu_get_clock_ns(vm_clock);
3405 if (bs->slice_end < now + max_wait) {
3406 bs->slice_end = now + max_wait;
3407 }
3408
3409 return true;
3410 }
3411
3412 if (wait) {
3413 *wait = 0;
3414 }
3415
3416 return false;
3417 }
3418
3419 /**************************************************************/
3420 /* async block device emulation */
3421
3422 typedef struct BlockDriverAIOCBSync {
3423 BlockDriverAIOCB common;
3424 QEMUBH *bh;
3425 int ret;
3426 /* vector translation state */
3427 QEMUIOVector *qiov;
3428 uint8_t *bounce;
3429 int is_write;
3430 } BlockDriverAIOCBSync;
3431
3432 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3433 {
3434 BlockDriverAIOCBSync *acb =
3435 container_of(blockacb, BlockDriverAIOCBSync, common);
3436 qemu_bh_delete(acb->bh);
3437 acb->bh = NULL;
3438 qemu_aio_release(acb);
3439 }
3440
3441 static AIOPool bdrv_em_aio_pool = {
3442 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3443 .cancel = bdrv_aio_cancel_em,
3444 };
3445
3446 static void bdrv_aio_bh_cb(void *opaque)
3447 {
3448 BlockDriverAIOCBSync *acb = opaque;
3449
3450 if (!acb->is_write)
3451 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3452 qemu_vfree(acb->bounce);
3453 acb->common.cb(acb->common.opaque, acb->ret);
3454 qemu_bh_delete(acb->bh);
3455 acb->bh = NULL;
3456 qemu_aio_release(acb);
3457 }
3458
3459 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3460 int64_t sector_num,
3461 QEMUIOVector *qiov,
3462 int nb_sectors,
3463 BlockDriverCompletionFunc *cb,
3464 void *opaque,
3465 int is_write)
3466
3467 {
3468 BlockDriverAIOCBSync *acb;
3469
3470 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3471 acb->is_write = is_write;
3472 acb->qiov = qiov;
3473 acb->bounce = qemu_blockalign(bs, qiov->size);
3474 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3475
3476 if (is_write) {
3477 qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3478 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3479 } else {
3480 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3481 }
3482
3483 qemu_bh_schedule(acb->bh);
3484
3485 return &acb->common;
3486 }
3487
3488 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3489 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3490 BlockDriverCompletionFunc *cb, void *opaque)
3491 {
3492 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3493 }
3494
3495 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3496 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3497 BlockDriverCompletionFunc *cb, void *opaque)
3498 {
3499 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3500 }
3501
3502
3503 typedef struct BlockDriverAIOCBCoroutine {
3504 BlockDriverAIOCB common;
3505 BlockRequest req;
3506 bool is_write;
3507 QEMUBH* bh;
3508 } BlockDriverAIOCBCoroutine;
3509
3510 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3511 {
3512 qemu_aio_flush();
3513 }
3514
3515 static AIOPool bdrv_em_co_aio_pool = {
3516 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3517 .cancel = bdrv_aio_co_cancel_em,
3518 };
3519
3520 static void bdrv_co_em_bh(void *opaque)
3521 {
3522 BlockDriverAIOCBCoroutine *acb = opaque;
3523
3524 acb->common.cb(acb->common.opaque, acb->req.error);
3525 qemu_bh_delete(acb->bh);
3526 qemu_aio_release(acb);
3527 }
3528
3529 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3530 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3531 {
3532 BlockDriverAIOCBCoroutine *acb = opaque;
3533 BlockDriverState *bs = acb->common.bs;
3534
3535 if (!acb->is_write) {
3536 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3537 acb->req.nb_sectors, acb->req.qiov, 0);
3538 } else {
3539 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3540 acb->req.nb_sectors, acb->req.qiov, 0);
3541 }
3542
3543 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3544 qemu_bh_schedule(acb->bh);
3545 }
3546
3547 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3548 int64_t sector_num,
3549 QEMUIOVector *qiov,
3550 int nb_sectors,
3551 BlockDriverCompletionFunc *cb,
3552 void *opaque,
3553 bool is_write)
3554 {
3555 Coroutine *co;
3556 BlockDriverAIOCBCoroutine *acb;
3557
3558 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3559 acb->req.sector = sector_num;
3560 acb->req.nb_sectors = nb_sectors;
3561 acb->req.qiov = qiov;
3562 acb->is_write = is_write;
3563
3564 co = qemu_coroutine_create(bdrv_co_do_rw);
3565 qemu_coroutine_enter(co, acb);
3566
3567 return &acb->common;
3568 }
3569
3570 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3571 {
3572 BlockDriverAIOCBCoroutine *acb = opaque;
3573 BlockDriverState *bs = acb->common.bs;
3574
3575 acb->req.error = bdrv_co_flush(bs);
3576 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3577 qemu_bh_schedule(acb->bh);
3578 }
3579
3580 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3581 BlockDriverCompletionFunc *cb, void *opaque)
3582 {
3583 trace_bdrv_aio_flush(bs, opaque);
3584
3585 Coroutine *co;
3586 BlockDriverAIOCBCoroutine *acb;
3587
3588 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3589 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3590 qemu_coroutine_enter(co, acb);
3591
3592 return &acb->common;
3593 }
3594
3595 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3596 {
3597 BlockDriverAIOCBCoroutine *acb = opaque;
3598 BlockDriverState *bs = acb->common.bs;
3599
3600 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3601 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3602 qemu_bh_schedule(acb->bh);
3603 }
3604
3605 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3606 int64_t sector_num, int nb_sectors,
3607 BlockDriverCompletionFunc *cb, void *opaque)
3608 {
3609 Coroutine *co;
3610 BlockDriverAIOCBCoroutine *acb;
3611
3612 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3613
3614 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3615 acb->req.sector = sector_num;
3616 acb->req.nb_sectors = nb_sectors;
3617 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3618 qemu_coroutine_enter(co, acb);
3619
3620 return &acb->common;
3621 }
3622
3623 void bdrv_init(void)
3624 {
3625 module_call_init(MODULE_INIT_BLOCK);
3626 }
3627
3628 void bdrv_init_with_whitelist(void)
3629 {
3630 use_bdrv_whitelist = 1;
3631 bdrv_init();
3632 }
3633
3634 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3635 BlockDriverCompletionFunc *cb, void *opaque)
3636 {
3637 BlockDriverAIOCB *acb;
3638
3639 if (pool->free_aiocb) {
3640 acb = pool->free_aiocb;
3641 pool->free_aiocb = acb->next;
3642 } else {
3643 acb = g_malloc0(pool->aiocb_size);
3644 acb->pool = pool;
3645 }
3646 acb->bs = bs;
3647 acb->cb = cb;
3648 acb->opaque = opaque;
3649 return acb;
3650 }
3651
3652 void qemu_aio_release(void *p)
3653 {
3654 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3655 AIOPool *pool = acb->pool;
3656 acb->next = pool->free_aiocb;
3657 pool->free_aiocb = acb;
3658 }
3659
3660 /**************************************************************/
3661 /* Coroutine block device emulation */
3662
3663 typedef struct CoroutineIOCompletion {
3664 Coroutine *coroutine;
3665 int ret;
3666 } CoroutineIOCompletion;
3667
3668 static void bdrv_co_io_em_complete(void *opaque, int ret)
3669 {
3670 CoroutineIOCompletion *co = opaque;
3671
3672 co->ret = ret;
3673 qemu_coroutine_enter(co->coroutine, NULL);
3674 }
3675
3676 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3677 int nb_sectors, QEMUIOVector *iov,
3678 bool is_write)
3679 {
3680 CoroutineIOCompletion co = {
3681 .coroutine = qemu_coroutine_self(),
3682 };
3683 BlockDriverAIOCB *acb;
3684
3685 if (is_write) {
3686 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3687 bdrv_co_io_em_complete, &co);
3688 } else {
3689 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3690 bdrv_co_io_em_complete, &co);
3691 }
3692
3693 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3694 if (!acb) {
3695 return -EIO;
3696 }
3697 qemu_coroutine_yield();
3698
3699 return co.ret;
3700 }
3701
3702 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3703 int64_t sector_num, int nb_sectors,
3704 QEMUIOVector *iov)
3705 {
3706 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3707 }
3708
3709 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3710 int64_t sector_num, int nb_sectors,
3711 QEMUIOVector *iov)
3712 {
3713 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3714 }
3715
3716 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3717 {
3718 RwCo *rwco = opaque;
3719
3720 rwco->ret = bdrv_co_flush(rwco->bs);
3721 }
3722
3723 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3724 {
3725 int ret;
3726
3727 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3728 return 0;
3729 }
3730
3731 /* Write back cached data to the OS even with cache=unsafe */
3732 if (bs->drv->bdrv_co_flush_to_os) {
3733 ret = bs->drv->bdrv_co_flush_to_os(bs);
3734 if (ret < 0) {
3735 return ret;
3736 }
3737 }
3738
3739 /* But don't actually force it to the disk with cache=unsafe */
3740 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3741 return 0;
3742 }
3743
3744 if (bs->drv->bdrv_co_flush_to_disk) {
3745 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3746 } else if (bs->drv->bdrv_aio_flush) {
3747 BlockDriverAIOCB *acb;
3748 CoroutineIOCompletion co = {
3749 .coroutine = qemu_coroutine_self(),
3750 };
3751
3752 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3753 if (acb == NULL) {
3754 ret = -EIO;
3755 } else {
3756 qemu_coroutine_yield();
3757 ret = co.ret;
3758 }
3759 } else {
3760 /*
3761 * Some block drivers always operate in either writethrough or unsafe
3762 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3763 * know how the server works (because the behaviour is hardcoded or
3764 * depends on server-side configuration), so we can't ensure that
3765 * everything is safe on disk. Returning an error doesn't work because
3766 * that would break guests even if the server operates in writethrough
3767 * mode.
3768 *
3769 * Let's hope the user knows what he's doing.
3770 */
3771 ret = 0;
3772 }
3773 if (ret < 0) {
3774 return ret;
3775 }
3776
3777 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3778 * in the case of cache=unsafe, so there are no useless flushes.
3779 */
3780 return bdrv_co_flush(bs->file);
3781 }
3782
3783 void bdrv_invalidate_cache(BlockDriverState *bs)
3784 {
3785 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3786 bs->drv->bdrv_invalidate_cache(bs);
3787 }
3788 }
3789
3790 void bdrv_invalidate_cache_all(void)
3791 {
3792 BlockDriverState *bs;
3793
3794 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3795 bdrv_invalidate_cache(bs);
3796 }
3797 }
3798
3799 void bdrv_clear_incoming_migration_all(void)
3800 {
3801 BlockDriverState *bs;
3802
3803 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3804 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3805 }
3806 }
3807
3808 int bdrv_flush(BlockDriverState *bs)
3809 {
3810 Coroutine *co;
3811 RwCo rwco = {
3812 .bs = bs,
3813 .ret = NOT_DONE,
3814 };
3815
3816 if (qemu_in_coroutine()) {
3817 /* Fast-path if already in coroutine context */
3818 bdrv_flush_co_entry(&rwco);
3819 } else {
3820 co = qemu_coroutine_create(bdrv_flush_co_entry);
3821 qemu_coroutine_enter(co, &rwco);
3822 while (rwco.ret == NOT_DONE) {
3823 qemu_aio_wait();
3824 }
3825 }
3826
3827 return rwco.ret;
3828 }
3829
3830 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3831 {
3832 RwCo *rwco = opaque;
3833
3834 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3835 }
3836
3837 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3838 int nb_sectors)
3839 {
3840 if (!bs->drv) {
3841 return -ENOMEDIUM;
3842 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3843 return -EIO;
3844 } else if (bs->read_only) {
3845 return -EROFS;
3846 } else if (bs->drv->bdrv_co_discard) {
3847 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3848 } else if (bs->drv->bdrv_aio_discard) {
3849 BlockDriverAIOCB *acb;
3850 CoroutineIOCompletion co = {
3851 .coroutine = qemu_coroutine_self(),
3852 };
3853
3854 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3855 bdrv_co_io_em_complete, &co);
3856 if (acb == NULL) {
3857 return -EIO;
3858 } else {
3859 qemu_coroutine_yield();
3860 return co.ret;
3861 }
3862 } else {
3863 return 0;
3864 }
3865 }
3866
3867 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3868 {
3869 Coroutine *co;
3870 RwCo rwco = {
3871 .bs = bs,
3872 .sector_num = sector_num,
3873 .nb_sectors = nb_sectors,
3874 .ret = NOT_DONE,
3875 };
3876
3877 if (qemu_in_coroutine()) {
3878 /* Fast-path if already in coroutine context */
3879 bdrv_discard_co_entry(&rwco);
3880 } else {
3881 co = qemu_coroutine_create(bdrv_discard_co_entry);
3882 qemu_coroutine_enter(co, &rwco);
3883 while (rwco.ret == NOT_DONE) {
3884 qemu_aio_wait();
3885 }
3886 }
3887
3888 return rwco.ret;
3889 }
3890
3891 /**************************************************************/
3892 /* removable device support */
3893
3894 /**
3895 * Return TRUE if the media is present
3896 */
3897 int bdrv_is_inserted(BlockDriverState *bs)
3898 {
3899 BlockDriver *drv = bs->drv;
3900
3901 if (!drv)
3902 return 0;
3903 if (!drv->bdrv_is_inserted)
3904 return 1;
3905 return drv->bdrv_is_inserted(bs);
3906 }
3907
3908 /**
3909 * Return whether the media changed since the last call to this
3910 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3911 */
3912 int bdrv_media_changed(BlockDriverState *bs)
3913 {
3914 BlockDriver *drv = bs->drv;
3915
3916 if (drv && drv->bdrv_media_changed) {
3917 return drv->bdrv_media_changed(bs);
3918 }
3919 return -ENOTSUP;
3920 }
3921
3922 /**
3923 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3924 */
3925 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3926 {
3927 BlockDriver *drv = bs->drv;
3928
3929 if (drv && drv->bdrv_eject) {
3930 drv->bdrv_eject(bs, eject_flag);
3931 }
3932
3933 if (bs->device_name[0] != '\0') {
3934 bdrv_emit_qmp_eject_event(bs, eject_flag);
3935 }
3936 }
3937
3938 /**
3939 * Lock or unlock the media (if it is locked, the user won't be able
3940 * to eject it manually).
3941 */
3942 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3943 {
3944 BlockDriver *drv = bs->drv;
3945
3946 trace_bdrv_lock_medium(bs, locked);
3947
3948 if (drv && drv->bdrv_lock_medium) {
3949 drv->bdrv_lock_medium(bs, locked);
3950 }
3951 }
3952
3953 /* needed for generic scsi interface */
3954
3955 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3956 {
3957 BlockDriver *drv = bs->drv;
3958
3959 if (drv && drv->bdrv_ioctl)
3960 return drv->bdrv_ioctl(bs, req, buf);
3961 return -ENOTSUP;
3962 }
3963
3964 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3965 unsigned long int req, void *buf,
3966 BlockDriverCompletionFunc *cb, void *opaque)
3967 {
3968 BlockDriver *drv = bs->drv;
3969
3970 if (drv && drv->bdrv_aio_ioctl)
3971 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3972 return NULL;
3973 }
3974
3975 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3976 {
3977 bs->buffer_alignment = align;
3978 }
3979
3980 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3981 {
3982 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3983 }
3984
3985 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3986 {
3987 int64_t bitmap_size;
3988
3989 bs->dirty_count = 0;
3990 if (enable) {
3991 if (!bs->dirty_bitmap) {
3992 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3993 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
3994 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
3995
3996 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
3997 }
3998 } else {
3999 if (bs->dirty_bitmap) {
4000 g_free(bs->dirty_bitmap);
4001 bs->dirty_bitmap = NULL;
4002 }
4003 }
4004 }
4005
4006 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4007 {
4008 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4009
4010 if (bs->dirty_bitmap &&
4011 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4012 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4013 (1UL << (chunk % (sizeof(unsigned long) * 8))));
4014 } else {
4015 return 0;
4016 }
4017 }
4018
4019 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4020 int nr_sectors)
4021 {
4022 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4023 }
4024
4025 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4026 {
4027 return bs->dirty_count;
4028 }
4029
4030 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4031 {
4032 assert(bs->in_use != in_use);
4033 bs->in_use = in_use;
4034 }
4035
4036 int bdrv_in_use(BlockDriverState *bs)
4037 {
4038 return bs->in_use;
4039 }
4040
4041 void bdrv_iostatus_enable(BlockDriverState *bs)
4042 {
4043 bs->iostatus_enabled = true;
4044 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4045 }
4046
4047 /* The I/O status is only enabled if the drive explicitly
4048 * enables it _and_ the VM is configured to stop on errors */
4049 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4050 {
4051 return (bs->iostatus_enabled &&
4052 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
4053 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
4054 bs->on_read_error == BLOCK_ERR_STOP_ANY));
4055 }
4056
4057 void bdrv_iostatus_disable(BlockDriverState *bs)
4058 {
4059 bs->iostatus_enabled = false;
4060 }
4061
4062 void bdrv_iostatus_reset(BlockDriverState *bs)
4063 {
4064 if (bdrv_iostatus_is_enabled(bs)) {
4065 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4066 }
4067 }
4068
4069 /* XXX: Today this is set by device models because it makes the implementation
4070 quite simple. However, the block layer knows about the error, so it's
4071 possible to implement this without device models being involved */
4072 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4073 {
4074 if (bdrv_iostatus_is_enabled(bs) &&
4075 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4076 assert(error >= 0);
4077 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4078 BLOCK_DEVICE_IO_STATUS_FAILED;
4079 }
4080 }
4081
4082 void
4083 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4084 enum BlockAcctType type)
4085 {
4086 assert(type < BDRV_MAX_IOTYPE);
4087
4088 cookie->bytes = bytes;
4089 cookie->start_time_ns = get_clock();
4090 cookie->type = type;
4091 }
4092
4093 void
4094 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4095 {
4096 assert(cookie->type < BDRV_MAX_IOTYPE);
4097
4098 bs->nr_bytes[cookie->type] += cookie->bytes;
4099 bs->nr_ops[cookie->type]++;
4100 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4101 }
4102
4103 int bdrv_img_create(const char *filename, const char *fmt,
4104 const char *base_filename, const char *base_fmt,
4105 char *options, uint64_t img_size, int flags)
4106 {
4107 QEMUOptionParameter *param = NULL, *create_options = NULL;
4108 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4109 BlockDriverState *bs = NULL;
4110 BlockDriver *drv, *proto_drv;
4111 BlockDriver *backing_drv = NULL;
4112 int ret = 0;
4113
4114 /* Find driver and parse its options */
4115 drv = bdrv_find_format(fmt);
4116 if (!drv) {
4117 error_report("Unknown file format '%s'", fmt);
4118 ret = -EINVAL;
4119 goto out;
4120 }
4121
4122 proto_drv = bdrv_find_protocol(filename);
4123 if (!proto_drv) {
4124 error_report("Unknown protocol '%s'", filename);
4125 ret = -EINVAL;
4126 goto out;
4127 }
4128
4129 create_options = append_option_parameters(create_options,
4130 drv->create_options);
4131 create_options = append_option_parameters(create_options,
4132 proto_drv->create_options);
4133
4134 /* Create parameter list with default values */
4135 param = parse_option_parameters("", create_options, param);
4136
4137 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4138
4139 /* Parse -o options */
4140 if (options) {
4141 param = parse_option_parameters(options, create_options, param);
4142 if (param == NULL) {
4143 error_report("Invalid options for file format '%s'.", fmt);
4144 ret = -EINVAL;
4145 goto out;
4146 }
4147 }
4148
4149 if (base_filename) {
4150 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4151 base_filename)) {
4152 error_report("Backing file not supported for file format '%s'",
4153 fmt);
4154 ret = -EINVAL;
4155 goto out;
4156 }
4157 }
4158
4159 if (base_fmt) {
4160 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4161 error_report("Backing file format not supported for file "
4162 "format '%s'", fmt);
4163 ret = -EINVAL;
4164 goto out;
4165 }
4166 }
4167
4168 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4169 if (backing_file && backing_file->value.s) {
4170 if (!strcmp(filename, backing_file->value.s)) {
4171 error_report("Error: Trying to create an image with the "
4172 "same filename as the backing file");
4173 ret = -EINVAL;
4174 goto out;
4175 }
4176 }
4177
4178 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4179 if (backing_fmt && backing_fmt->value.s) {
4180 backing_drv = bdrv_find_format(backing_fmt->value.s);
4181 if (!backing_drv) {
4182 error_report("Unknown backing file format '%s'",
4183 backing_fmt->value.s);
4184 ret = -EINVAL;
4185 goto out;
4186 }
4187 }
4188
4189 // The size for the image must always be specified, with one exception:
4190 // If we are using a backing file, we can obtain the size from there
4191 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4192 if (size && size->value.n == -1) {
4193 if (backing_file && backing_file->value.s) {
4194 uint64_t size;
4195 char buf[32];
4196 int back_flags;
4197
4198 /* backing files always opened read-only */
4199 back_flags =
4200 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4201
4202 bs = bdrv_new("");
4203
4204 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4205 if (ret < 0) {
4206 error_report("Could not open '%s'", backing_file->value.s);
4207 goto out;
4208 }
4209 bdrv_get_geometry(bs, &size);
4210 size *= 512;
4211
4212 snprintf(buf, sizeof(buf), "%" PRId64, size);
4213 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4214 } else {
4215 error_report("Image creation needs a size parameter");
4216 ret = -EINVAL;
4217 goto out;
4218 }
4219 }
4220
4221 printf("Formatting '%s', fmt=%s ", filename, fmt);
4222 print_option_parameters(param);
4223 puts("");
4224
4225 ret = bdrv_create(drv, filename, param);
4226
4227 if (ret < 0) {
4228 if (ret == -ENOTSUP) {
4229 error_report("Formatting or formatting option not supported for "
4230 "file format '%s'", fmt);
4231 } else if (ret == -EFBIG) {
4232 error_report("The image size is too large for file format '%s'",
4233 fmt);
4234 } else {
4235 error_report("%s: error while creating %s: %s", filename, fmt,
4236 strerror(-ret));
4237 }
4238 }
4239
4240 out:
4241 free_option_parameters(create_options);
4242 free_option_parameters(param);
4243
4244 if (bs) {
4245 bdrv_delete(bs);
4246 }
4247
4248 return ret;
4249 }
4250
4251 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4252 int64_t speed, BlockDriverCompletionFunc *cb,
4253 void *opaque, Error **errp)
4254 {
4255 BlockJob *job;
4256
4257 if (bs->job || bdrv_in_use(bs)) {
4258 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs));
4259 return NULL;
4260 }
4261 bdrv_set_in_use(bs, 1);
4262
4263 job = g_malloc0(job_type->instance_size);
4264 job->job_type = job_type;
4265 job->bs = bs;
4266 job->cb = cb;
4267 job->opaque = opaque;
4268 job->busy = true;
4269 bs->job = job;
4270
4271 /* Only set speed when necessary to avoid NotSupported error */
4272 if (speed != 0) {
4273 Error *local_err = NULL;
4274
4275 block_job_set_speed(job, speed, &local_err);
4276 if (error_is_set(&local_err)) {
4277 bs->job = NULL;
4278 g_free(job);
4279 bdrv_set_in_use(bs, 0);
4280 error_propagate(errp, local_err);
4281 return NULL;
4282 }
4283 }
4284 return job;
4285 }
4286
4287 void block_job_complete(BlockJob *job, int ret)
4288 {
4289 BlockDriverState *bs = job->bs;
4290
4291 assert(bs->job == job);
4292 job->cb(job->opaque, ret);
4293 bs->job = NULL;
4294 g_free(job);
4295 bdrv_set_in_use(bs, 0);
4296 }
4297
4298 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp)
4299 {
4300 Error *local_err = NULL;
4301
4302 if (!job->job_type->set_speed) {
4303 error_set(errp, QERR_NOT_SUPPORTED);
4304 return;
4305 }
4306 job->job_type->set_speed(job, speed, &local_err);
4307 if (error_is_set(&local_err)) {
4308 error_propagate(errp, local_err);
4309 return;
4310 }
4311
4312 job->speed = speed;
4313 }
4314
4315 void block_job_cancel(BlockJob *job)
4316 {
4317 job->cancelled = true;
4318 if (job->co && !job->busy) {
4319 qemu_coroutine_enter(job->co, NULL);
4320 }
4321 }
4322
4323 bool block_job_is_cancelled(BlockJob *job)
4324 {
4325 return job->cancelled;
4326 }
4327
4328 struct BlockCancelData {
4329 BlockJob *job;
4330 BlockDriverCompletionFunc *cb;
4331 void *opaque;
4332 bool cancelled;
4333 int ret;
4334 };
4335
4336 static void block_job_cancel_cb(void *opaque, int ret)
4337 {
4338 struct BlockCancelData *data = opaque;
4339
4340 data->cancelled = block_job_is_cancelled(data->job);
4341 data->ret = ret;
4342 data->cb(data->opaque, ret);
4343 }
4344
4345 int block_job_cancel_sync(BlockJob *job)
4346 {
4347 struct BlockCancelData data;
4348 BlockDriverState *bs = job->bs;
4349
4350 assert(bs->job == job);
4351
4352 /* Set up our own callback to store the result and chain to
4353 * the original callback.
4354 */
4355 data.job = job;
4356 data.cb = job->cb;
4357 data.opaque = job->opaque;
4358 data.ret = -EINPROGRESS;
4359 job->cb = block_job_cancel_cb;
4360 job->opaque = &data;
4361 block_job_cancel(job);
4362 while (data.ret == -EINPROGRESS) {
4363 qemu_aio_wait();
4364 }
4365 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret;
4366 }
4367
4368 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns)
4369 {
4370 /* Check cancellation *before* setting busy = false, too! */
4371 if (!block_job_is_cancelled(job)) {
4372 job->busy = false;
4373 co_sleep_ns(clock, ns);
4374 job->busy = true;
4375 }
4376 }