]> git.proxmox.com Git - qemu.git/blob - block.c
block: export dirty bitmap information in query-block
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "qemu-coroutine.h"
34 #include "qmp-commands.h"
35 #include "qemu-timer.h"
36
37 #ifdef CONFIG_BSD
38 #include <sys/types.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <sys/queue.h>
42 #ifndef __DragonFly__
43 #include <sys/disk.h>
44 #endif
45 #endif
46
47 #ifdef _WIN32
48 #include <windows.h>
49 #endif
50
51 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
52
53 typedef enum {
54 BDRV_REQ_COPY_ON_READ = 0x1,
55 BDRV_REQ_ZERO_WRITE = 0x2,
56 } BdrvRequestFlags;
57
58 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
59 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
60 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
61 BlockDriverCompletionFunc *cb, void *opaque);
62 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
63 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
64 BlockDriverCompletionFunc *cb, void *opaque);
65 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
66 int64_t sector_num, int nb_sectors,
67 QEMUIOVector *iov);
68 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
69 int64_t sector_num, int nb_sectors,
70 QEMUIOVector *iov);
71 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
72 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
73 BdrvRequestFlags flags);
74 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
75 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
76 BdrvRequestFlags flags);
77 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
78 int64_t sector_num,
79 QEMUIOVector *qiov,
80 int nb_sectors,
81 BlockDriverCompletionFunc *cb,
82 void *opaque,
83 bool is_write);
84 static void coroutine_fn bdrv_co_do_rw(void *opaque);
85 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
86 int64_t sector_num, int nb_sectors);
87
88 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
89 bool is_write, double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
91 double elapsed_time, uint64_t *wait);
92 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
93 bool is_write, int64_t *wait);
94
95 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
96 QTAILQ_HEAD_INITIALIZER(bdrv_states);
97
98 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
99 QLIST_HEAD_INITIALIZER(bdrv_drivers);
100
101 /* The device to use for VM snapshots */
102 static BlockDriverState *bs_snapshots;
103
104 /* If non-zero, use only whitelisted block drivers */
105 static int use_bdrv_whitelist;
106
107 #ifdef _WIN32
108 static int is_windows_drive_prefix(const char *filename)
109 {
110 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
111 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
112 filename[1] == ':');
113 }
114
115 int is_windows_drive(const char *filename)
116 {
117 if (is_windows_drive_prefix(filename) &&
118 filename[2] == '\0')
119 return 1;
120 if (strstart(filename, "\\\\.\\", NULL) ||
121 strstart(filename, "//./", NULL))
122 return 1;
123 return 0;
124 }
125 #endif
126
127 /* throttling disk I/O limits */
128 void bdrv_io_limits_disable(BlockDriverState *bs)
129 {
130 bs->io_limits_enabled = false;
131
132 while (qemu_co_queue_next(&bs->throttled_reqs));
133
134 if (bs->block_timer) {
135 qemu_del_timer(bs->block_timer);
136 qemu_free_timer(bs->block_timer);
137 bs->block_timer = NULL;
138 }
139
140 bs->slice_start = 0;
141 bs->slice_end = 0;
142 bs->slice_time = 0;
143 memset(&bs->io_base, 0, sizeof(bs->io_base));
144 }
145
146 static void bdrv_block_timer(void *opaque)
147 {
148 BlockDriverState *bs = opaque;
149
150 qemu_co_queue_next(&bs->throttled_reqs);
151 }
152
153 void bdrv_io_limits_enable(BlockDriverState *bs)
154 {
155 qemu_co_queue_init(&bs->throttled_reqs);
156 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
157 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
158 bs->slice_start = qemu_get_clock_ns(vm_clock);
159 bs->slice_end = bs->slice_start + bs->slice_time;
160 memset(&bs->io_base, 0, sizeof(bs->io_base));
161 bs->io_limits_enabled = true;
162 }
163
164 bool bdrv_io_limits_enabled(BlockDriverState *bs)
165 {
166 BlockIOLimit *io_limits = &bs->io_limits;
167 return io_limits->bps[BLOCK_IO_LIMIT_READ]
168 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
169 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
170 || io_limits->iops[BLOCK_IO_LIMIT_READ]
171 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
172 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
173 }
174
175 static void bdrv_io_limits_intercept(BlockDriverState *bs,
176 bool is_write, int nb_sectors)
177 {
178 int64_t wait_time = -1;
179
180 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
181 qemu_co_queue_wait(&bs->throttled_reqs);
182 }
183
184 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
185 * throttled requests will not be dequeued until the current request is
186 * allowed to be serviced. So if the current request still exceeds the
187 * limits, it will be inserted to the head. All requests followed it will
188 * be still in throttled_reqs queue.
189 */
190
191 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
192 qemu_mod_timer(bs->block_timer,
193 wait_time + qemu_get_clock_ns(vm_clock));
194 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
195 }
196
197 qemu_co_queue_next(&bs->throttled_reqs);
198 }
199
200 /* check if the path starts with "<protocol>:" */
201 static int path_has_protocol(const char *path)
202 {
203 const char *p;
204
205 #ifdef _WIN32
206 if (is_windows_drive(path) ||
207 is_windows_drive_prefix(path)) {
208 return 0;
209 }
210 p = path + strcspn(path, ":/\\");
211 #else
212 p = path + strcspn(path, ":/");
213 #endif
214
215 return *p == ':';
216 }
217
218 int path_is_absolute(const char *path)
219 {
220 #ifdef _WIN32
221 /* specific case for names like: "\\.\d:" */
222 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
223 return 1;
224 }
225 return (*path == '/' || *path == '\\');
226 #else
227 return (*path == '/');
228 #endif
229 }
230
231 /* if filename is absolute, just copy it to dest. Otherwise, build a
232 path to it by considering it is relative to base_path. URL are
233 supported. */
234 void path_combine(char *dest, int dest_size,
235 const char *base_path,
236 const char *filename)
237 {
238 const char *p, *p1;
239 int len;
240
241 if (dest_size <= 0)
242 return;
243 if (path_is_absolute(filename)) {
244 pstrcpy(dest, dest_size, filename);
245 } else {
246 p = strchr(base_path, ':');
247 if (p)
248 p++;
249 else
250 p = base_path;
251 p1 = strrchr(base_path, '/');
252 #ifdef _WIN32
253 {
254 const char *p2;
255 p2 = strrchr(base_path, '\\');
256 if (!p1 || p2 > p1)
257 p1 = p2;
258 }
259 #endif
260 if (p1)
261 p1++;
262 else
263 p1 = base_path;
264 if (p1 > p)
265 p = p1;
266 len = p - base_path;
267 if (len > dest_size - 1)
268 len = dest_size - 1;
269 memcpy(dest, base_path, len);
270 dest[len] = '\0';
271 pstrcat(dest, dest_size, filename);
272 }
273 }
274
275 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
276 {
277 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
278 pstrcpy(dest, sz, bs->backing_file);
279 } else {
280 path_combine(dest, sz, bs->filename, bs->backing_file);
281 }
282 }
283
284 void bdrv_register(BlockDriver *bdrv)
285 {
286 /* Block drivers without coroutine functions need emulation */
287 if (!bdrv->bdrv_co_readv) {
288 bdrv->bdrv_co_readv = bdrv_co_readv_em;
289 bdrv->bdrv_co_writev = bdrv_co_writev_em;
290
291 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
292 * the block driver lacks aio we need to emulate that too.
293 */
294 if (!bdrv->bdrv_aio_readv) {
295 /* add AIO emulation layer */
296 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
297 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
298 }
299 }
300
301 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
302 }
303
304 /* create a new block device (by default it is empty) */
305 BlockDriverState *bdrv_new(const char *device_name)
306 {
307 BlockDriverState *bs;
308
309 bs = g_malloc0(sizeof(BlockDriverState));
310 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
311 if (device_name[0] != '\0') {
312 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
313 }
314 bdrv_iostatus_disable(bs);
315 return bs;
316 }
317
318 BlockDriver *bdrv_find_format(const char *format_name)
319 {
320 BlockDriver *drv1;
321 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
322 if (!strcmp(drv1->format_name, format_name)) {
323 return drv1;
324 }
325 }
326 return NULL;
327 }
328
329 static int bdrv_is_whitelisted(BlockDriver *drv)
330 {
331 static const char *whitelist[] = {
332 CONFIG_BDRV_WHITELIST
333 };
334 const char **p;
335
336 if (!whitelist[0])
337 return 1; /* no whitelist, anything goes */
338
339 for (p = whitelist; *p; p++) {
340 if (!strcmp(drv->format_name, *p)) {
341 return 1;
342 }
343 }
344 return 0;
345 }
346
347 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
348 {
349 BlockDriver *drv = bdrv_find_format(format_name);
350 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
351 }
352
353 typedef struct CreateCo {
354 BlockDriver *drv;
355 char *filename;
356 QEMUOptionParameter *options;
357 int ret;
358 } CreateCo;
359
360 static void coroutine_fn bdrv_create_co_entry(void *opaque)
361 {
362 CreateCo *cco = opaque;
363 assert(cco->drv);
364
365 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
366 }
367
368 int bdrv_create(BlockDriver *drv, const char* filename,
369 QEMUOptionParameter *options)
370 {
371 int ret;
372
373 Coroutine *co;
374 CreateCo cco = {
375 .drv = drv,
376 .filename = g_strdup(filename),
377 .options = options,
378 .ret = NOT_DONE,
379 };
380
381 if (!drv->bdrv_create) {
382 ret = -ENOTSUP;
383 goto out;
384 }
385
386 if (qemu_in_coroutine()) {
387 /* Fast-path if already in coroutine context */
388 bdrv_create_co_entry(&cco);
389 } else {
390 co = qemu_coroutine_create(bdrv_create_co_entry);
391 qemu_coroutine_enter(co, &cco);
392 while (cco.ret == NOT_DONE) {
393 qemu_aio_wait();
394 }
395 }
396
397 ret = cco.ret;
398
399 out:
400 g_free(cco.filename);
401 return ret;
402 }
403
404 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
405 {
406 BlockDriver *drv;
407
408 drv = bdrv_find_protocol(filename);
409 if (drv == NULL) {
410 return -ENOENT;
411 }
412
413 return bdrv_create(drv, filename, options);
414 }
415
416 /*
417 * Create a uniquely-named empty temporary file.
418 * Return 0 upon success, otherwise a negative errno value.
419 */
420 int get_tmp_filename(char *filename, int size)
421 {
422 #ifdef _WIN32
423 char temp_dir[MAX_PATH];
424 /* GetTempFileName requires that its output buffer (4th param)
425 have length MAX_PATH or greater. */
426 assert(size >= MAX_PATH);
427 return (GetTempPath(MAX_PATH, temp_dir)
428 && GetTempFileName(temp_dir, "qem", 0, filename)
429 ? 0 : -GetLastError());
430 #else
431 int fd;
432 const char *tmpdir;
433 tmpdir = getenv("TMPDIR");
434 if (!tmpdir)
435 tmpdir = "/tmp";
436 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
437 return -EOVERFLOW;
438 }
439 fd = mkstemp(filename);
440 if (fd < 0) {
441 return -errno;
442 }
443 if (close(fd) != 0) {
444 unlink(filename);
445 return -errno;
446 }
447 return 0;
448 #endif
449 }
450
451 /*
452 * Detect host devices. By convention, /dev/cdrom[N] is always
453 * recognized as a host CDROM.
454 */
455 static BlockDriver *find_hdev_driver(const char *filename)
456 {
457 int score_max = 0, score;
458 BlockDriver *drv = NULL, *d;
459
460 QLIST_FOREACH(d, &bdrv_drivers, list) {
461 if (d->bdrv_probe_device) {
462 score = d->bdrv_probe_device(filename);
463 if (score > score_max) {
464 score_max = score;
465 drv = d;
466 }
467 }
468 }
469
470 return drv;
471 }
472
473 BlockDriver *bdrv_find_protocol(const char *filename)
474 {
475 BlockDriver *drv1;
476 char protocol[128];
477 int len;
478 const char *p;
479
480 /* TODO Drivers without bdrv_file_open must be specified explicitly */
481
482 /*
483 * XXX(hch): we really should not let host device detection
484 * override an explicit protocol specification, but moving this
485 * later breaks access to device names with colons in them.
486 * Thanks to the brain-dead persistent naming schemes on udev-
487 * based Linux systems those actually are quite common.
488 */
489 drv1 = find_hdev_driver(filename);
490 if (drv1) {
491 return drv1;
492 }
493
494 if (!path_has_protocol(filename)) {
495 return bdrv_find_format("file");
496 }
497 p = strchr(filename, ':');
498 assert(p != NULL);
499 len = p - filename;
500 if (len > sizeof(protocol) - 1)
501 len = sizeof(protocol) - 1;
502 memcpy(protocol, filename, len);
503 protocol[len] = '\0';
504 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
505 if (drv1->protocol_name &&
506 !strcmp(drv1->protocol_name, protocol)) {
507 return drv1;
508 }
509 }
510 return NULL;
511 }
512
513 static int find_image_format(const char *filename, BlockDriver **pdrv)
514 {
515 int ret, score, score_max;
516 BlockDriver *drv1, *drv;
517 uint8_t buf[2048];
518 BlockDriverState *bs;
519
520 ret = bdrv_file_open(&bs, filename, 0);
521 if (ret < 0) {
522 *pdrv = NULL;
523 return ret;
524 }
525
526 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
527 if (bs->sg || !bdrv_is_inserted(bs)) {
528 bdrv_delete(bs);
529 drv = bdrv_find_format("raw");
530 if (!drv) {
531 ret = -ENOENT;
532 }
533 *pdrv = drv;
534 return ret;
535 }
536
537 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
538 bdrv_delete(bs);
539 if (ret < 0) {
540 *pdrv = NULL;
541 return ret;
542 }
543
544 score_max = 0;
545 drv = NULL;
546 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
547 if (drv1->bdrv_probe) {
548 score = drv1->bdrv_probe(buf, ret, filename);
549 if (score > score_max) {
550 score_max = score;
551 drv = drv1;
552 }
553 }
554 }
555 if (!drv) {
556 ret = -ENOENT;
557 }
558 *pdrv = drv;
559 return ret;
560 }
561
562 /**
563 * Set the current 'total_sectors' value
564 */
565 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
566 {
567 BlockDriver *drv = bs->drv;
568
569 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
570 if (bs->sg)
571 return 0;
572
573 /* query actual device if possible, otherwise just trust the hint */
574 if (drv->bdrv_getlength) {
575 int64_t length = drv->bdrv_getlength(bs);
576 if (length < 0) {
577 return length;
578 }
579 hint = length >> BDRV_SECTOR_BITS;
580 }
581
582 bs->total_sectors = hint;
583 return 0;
584 }
585
586 /**
587 * Set open flags for a given cache mode
588 *
589 * Return 0 on success, -1 if the cache mode was invalid.
590 */
591 int bdrv_parse_cache_flags(const char *mode, int *flags)
592 {
593 *flags &= ~BDRV_O_CACHE_MASK;
594
595 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
596 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
597 } else if (!strcmp(mode, "directsync")) {
598 *flags |= BDRV_O_NOCACHE;
599 } else if (!strcmp(mode, "writeback")) {
600 *flags |= BDRV_O_CACHE_WB;
601 } else if (!strcmp(mode, "unsafe")) {
602 *flags |= BDRV_O_CACHE_WB;
603 *flags |= BDRV_O_NO_FLUSH;
604 } else if (!strcmp(mode, "writethrough")) {
605 /* this is the default */
606 } else {
607 return -1;
608 }
609
610 return 0;
611 }
612
613 /**
614 * The copy-on-read flag is actually a reference count so multiple users may
615 * use the feature without worrying about clobbering its previous state.
616 * Copy-on-read stays enabled until all users have called to disable it.
617 */
618 void bdrv_enable_copy_on_read(BlockDriverState *bs)
619 {
620 bs->copy_on_read++;
621 }
622
623 void bdrv_disable_copy_on_read(BlockDriverState *bs)
624 {
625 assert(bs->copy_on_read > 0);
626 bs->copy_on_read--;
627 }
628
629 /*
630 * Common part for opening disk images and files
631 */
632 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
633 int flags, BlockDriver *drv)
634 {
635 int ret, open_flags;
636
637 assert(drv != NULL);
638 assert(bs->file == NULL);
639
640 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
641
642 bs->open_flags = flags;
643 bs->buffer_alignment = 512;
644
645 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
646 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
647 bdrv_enable_copy_on_read(bs);
648 }
649
650 pstrcpy(bs->filename, sizeof(bs->filename), filename);
651
652 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
653 return -ENOTSUP;
654 }
655
656 bs->drv = drv;
657 bs->opaque = g_malloc0(drv->instance_size);
658
659 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
660 open_flags = flags | BDRV_O_CACHE_WB;
661
662 /*
663 * Clear flags that are internal to the block layer before opening the
664 * image.
665 */
666 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
667
668 /*
669 * Snapshots should be writable.
670 */
671 if (bs->is_temporary) {
672 open_flags |= BDRV_O_RDWR;
673 }
674
675 bs->read_only = !(open_flags & BDRV_O_RDWR);
676
677 /* Open the image, either directly or using a protocol */
678 if (drv->bdrv_file_open) {
679 ret = drv->bdrv_file_open(bs, filename, open_flags);
680 } else {
681 ret = bdrv_file_open(&bs->file, filename, open_flags);
682 if (ret >= 0) {
683 ret = drv->bdrv_open(bs, open_flags);
684 }
685 }
686
687 if (ret < 0) {
688 goto free_and_fail;
689 }
690
691 ret = refresh_total_sectors(bs, bs->total_sectors);
692 if (ret < 0) {
693 goto free_and_fail;
694 }
695
696 #ifndef _WIN32
697 if (bs->is_temporary) {
698 unlink(filename);
699 }
700 #endif
701 return 0;
702
703 free_and_fail:
704 if (bs->file) {
705 bdrv_delete(bs->file);
706 bs->file = NULL;
707 }
708 g_free(bs->opaque);
709 bs->opaque = NULL;
710 bs->drv = NULL;
711 return ret;
712 }
713
714 /*
715 * Opens a file using a protocol (file, host_device, nbd, ...)
716 */
717 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
718 {
719 BlockDriverState *bs;
720 BlockDriver *drv;
721 int ret;
722
723 drv = bdrv_find_protocol(filename);
724 if (!drv) {
725 return -ENOENT;
726 }
727
728 bs = bdrv_new("");
729 ret = bdrv_open_common(bs, filename, flags, drv);
730 if (ret < 0) {
731 bdrv_delete(bs);
732 return ret;
733 }
734 bs->growable = 1;
735 *pbs = bs;
736 return 0;
737 }
738
739 int bdrv_open_backing_file(BlockDriverState *bs)
740 {
741 char backing_filename[PATH_MAX];
742 int back_flags, ret;
743 BlockDriver *back_drv = NULL;
744
745 if (bs->backing_hd != NULL) {
746 return 0;
747 }
748
749 bs->open_flags &= ~BDRV_O_NO_BACKING;
750 if (bs->backing_file[0] == '\0') {
751 return 0;
752 }
753
754 bs->backing_hd = bdrv_new("");
755 bdrv_get_full_backing_filename(bs, backing_filename,
756 sizeof(backing_filename));
757
758 if (bs->backing_format[0] != '\0') {
759 back_drv = bdrv_find_format(bs->backing_format);
760 }
761
762 /* backing files always opened read-only */
763 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
764
765 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
766 if (ret < 0) {
767 bdrv_delete(bs->backing_hd);
768 bs->backing_hd = NULL;
769 bs->open_flags |= BDRV_O_NO_BACKING;
770 return ret;
771 }
772 return 0;
773 }
774
775 /*
776 * Opens a disk image (raw, qcow2, vmdk, ...)
777 */
778 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
779 BlockDriver *drv)
780 {
781 int ret;
782 char tmp_filename[PATH_MAX];
783
784 if (flags & BDRV_O_SNAPSHOT) {
785 BlockDriverState *bs1;
786 int64_t total_size;
787 int is_protocol = 0;
788 BlockDriver *bdrv_qcow2;
789 QEMUOptionParameter *options;
790 char backing_filename[PATH_MAX];
791
792 /* if snapshot, we create a temporary backing file and open it
793 instead of opening 'filename' directly */
794
795 /* if there is a backing file, use it */
796 bs1 = bdrv_new("");
797 ret = bdrv_open(bs1, filename, 0, drv);
798 if (ret < 0) {
799 bdrv_delete(bs1);
800 return ret;
801 }
802 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
803
804 if (bs1->drv && bs1->drv->protocol_name)
805 is_protocol = 1;
806
807 bdrv_delete(bs1);
808
809 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
810 if (ret < 0) {
811 return ret;
812 }
813
814 /* Real path is meaningless for protocols */
815 if (is_protocol)
816 snprintf(backing_filename, sizeof(backing_filename),
817 "%s", filename);
818 else if (!realpath(filename, backing_filename))
819 return -errno;
820
821 bdrv_qcow2 = bdrv_find_format("qcow2");
822 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
823
824 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
825 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
826 if (drv) {
827 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
828 drv->format_name);
829 }
830
831 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
832 free_option_parameters(options);
833 if (ret < 0) {
834 return ret;
835 }
836
837 filename = tmp_filename;
838 drv = bdrv_qcow2;
839 bs->is_temporary = 1;
840 }
841
842 /* Find the right image format driver */
843 if (!drv) {
844 ret = find_image_format(filename, &drv);
845 }
846
847 if (!drv) {
848 goto unlink_and_fail;
849 }
850
851 if (flags & BDRV_O_RDWR) {
852 flags |= BDRV_O_ALLOW_RDWR;
853 }
854
855 /* Open the image */
856 ret = bdrv_open_common(bs, filename, flags, drv);
857 if (ret < 0) {
858 goto unlink_and_fail;
859 }
860
861 /* If there is a backing file, use it */
862 if ((flags & BDRV_O_NO_BACKING) == 0) {
863 ret = bdrv_open_backing_file(bs);
864 if (ret < 0) {
865 bdrv_close(bs);
866 return ret;
867 }
868 }
869
870 if (!bdrv_key_required(bs)) {
871 bdrv_dev_change_media_cb(bs, true);
872 }
873
874 /* throttling disk I/O limits */
875 if (bs->io_limits_enabled) {
876 bdrv_io_limits_enable(bs);
877 }
878
879 return 0;
880
881 unlink_and_fail:
882 if (bs->is_temporary) {
883 unlink(filename);
884 }
885 return ret;
886 }
887
888 typedef struct BlockReopenQueueEntry {
889 bool prepared;
890 BDRVReopenState state;
891 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
892 } BlockReopenQueueEntry;
893
894 /*
895 * Adds a BlockDriverState to a simple queue for an atomic, transactional
896 * reopen of multiple devices.
897 *
898 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
899 * already performed, or alternatively may be NULL a new BlockReopenQueue will
900 * be created and initialized. This newly created BlockReopenQueue should be
901 * passed back in for subsequent calls that are intended to be of the same
902 * atomic 'set'.
903 *
904 * bs is the BlockDriverState to add to the reopen queue.
905 *
906 * flags contains the open flags for the associated bs
907 *
908 * returns a pointer to bs_queue, which is either the newly allocated
909 * bs_queue, or the existing bs_queue being used.
910 *
911 */
912 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
913 BlockDriverState *bs, int flags)
914 {
915 assert(bs != NULL);
916
917 BlockReopenQueueEntry *bs_entry;
918 if (bs_queue == NULL) {
919 bs_queue = g_new0(BlockReopenQueue, 1);
920 QSIMPLEQ_INIT(bs_queue);
921 }
922
923 if (bs->file) {
924 bdrv_reopen_queue(bs_queue, bs->file, flags);
925 }
926
927 bs_entry = g_new0(BlockReopenQueueEntry, 1);
928 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
929
930 bs_entry->state.bs = bs;
931 bs_entry->state.flags = flags;
932
933 return bs_queue;
934 }
935
936 /*
937 * Reopen multiple BlockDriverStates atomically & transactionally.
938 *
939 * The queue passed in (bs_queue) must have been built up previous
940 * via bdrv_reopen_queue().
941 *
942 * Reopens all BDS specified in the queue, with the appropriate
943 * flags. All devices are prepared for reopen, and failure of any
944 * device will cause all device changes to be abandonded, and intermediate
945 * data cleaned up.
946 *
947 * If all devices prepare successfully, then the changes are committed
948 * to all devices.
949 *
950 */
951 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
952 {
953 int ret = -1;
954 BlockReopenQueueEntry *bs_entry, *next;
955 Error *local_err = NULL;
956
957 assert(bs_queue != NULL);
958
959 bdrv_drain_all();
960
961 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
962 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
963 error_propagate(errp, local_err);
964 goto cleanup;
965 }
966 bs_entry->prepared = true;
967 }
968
969 /* If we reach this point, we have success and just need to apply the
970 * changes
971 */
972 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
973 bdrv_reopen_commit(&bs_entry->state);
974 }
975
976 ret = 0;
977
978 cleanup:
979 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
980 if (ret && bs_entry->prepared) {
981 bdrv_reopen_abort(&bs_entry->state);
982 }
983 g_free(bs_entry);
984 }
985 g_free(bs_queue);
986 return ret;
987 }
988
989
990 /* Reopen a single BlockDriverState with the specified flags. */
991 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
992 {
993 int ret = -1;
994 Error *local_err = NULL;
995 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
996
997 ret = bdrv_reopen_multiple(queue, &local_err);
998 if (local_err != NULL) {
999 error_propagate(errp, local_err);
1000 }
1001 return ret;
1002 }
1003
1004
1005 /*
1006 * Prepares a BlockDriverState for reopen. All changes are staged in the
1007 * 'opaque' field of the BDRVReopenState, which is used and allocated by
1008 * the block driver layer .bdrv_reopen_prepare()
1009 *
1010 * bs is the BlockDriverState to reopen
1011 * flags are the new open flags
1012 * queue is the reopen queue
1013 *
1014 * Returns 0 on success, non-zero on error. On error errp will be set
1015 * as well.
1016 *
1017 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1018 * It is the responsibility of the caller to then call the abort() or
1019 * commit() for any other BDS that have been left in a prepare() state
1020 *
1021 */
1022 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1023 Error **errp)
1024 {
1025 int ret = -1;
1026 Error *local_err = NULL;
1027 BlockDriver *drv;
1028
1029 assert(reopen_state != NULL);
1030 assert(reopen_state->bs->drv != NULL);
1031 drv = reopen_state->bs->drv;
1032
1033 /* if we are to stay read-only, do not allow permission change
1034 * to r/w */
1035 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1036 reopen_state->flags & BDRV_O_RDWR) {
1037 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1038 reopen_state->bs->device_name);
1039 goto error;
1040 }
1041
1042
1043 ret = bdrv_flush(reopen_state->bs);
1044 if (ret) {
1045 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1046 strerror(-ret));
1047 goto error;
1048 }
1049
1050 if (drv->bdrv_reopen_prepare) {
1051 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1052 if (ret) {
1053 if (local_err != NULL) {
1054 error_propagate(errp, local_err);
1055 } else {
1056 error_set(errp, QERR_OPEN_FILE_FAILED,
1057 reopen_state->bs->filename);
1058 }
1059 goto error;
1060 }
1061 } else {
1062 /* It is currently mandatory to have a bdrv_reopen_prepare()
1063 * handler for each supported drv. */
1064 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1065 drv->format_name, reopen_state->bs->device_name,
1066 "reopening of file");
1067 ret = -1;
1068 goto error;
1069 }
1070
1071 ret = 0;
1072
1073 error:
1074 return ret;
1075 }
1076
1077 /*
1078 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1079 * makes them final by swapping the staging BlockDriverState contents into
1080 * the active BlockDriverState contents.
1081 */
1082 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1083 {
1084 BlockDriver *drv;
1085
1086 assert(reopen_state != NULL);
1087 drv = reopen_state->bs->drv;
1088 assert(drv != NULL);
1089
1090 /* If there are any driver level actions to take */
1091 if (drv->bdrv_reopen_commit) {
1092 drv->bdrv_reopen_commit(reopen_state);
1093 }
1094
1095 /* set BDS specific flags now */
1096 reopen_state->bs->open_flags = reopen_state->flags;
1097 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1098 BDRV_O_CACHE_WB);
1099 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1100 }
1101
1102 /*
1103 * Abort the reopen, and delete and free the staged changes in
1104 * reopen_state
1105 */
1106 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1107 {
1108 BlockDriver *drv;
1109
1110 assert(reopen_state != NULL);
1111 drv = reopen_state->bs->drv;
1112 assert(drv != NULL);
1113
1114 if (drv->bdrv_reopen_abort) {
1115 drv->bdrv_reopen_abort(reopen_state);
1116 }
1117 }
1118
1119
1120 void bdrv_close(BlockDriverState *bs)
1121 {
1122 bdrv_flush(bs);
1123 if (bs->drv) {
1124 if (bs->job) {
1125 block_job_cancel_sync(bs->job);
1126 }
1127 bdrv_drain_all();
1128
1129 if (bs == bs_snapshots) {
1130 bs_snapshots = NULL;
1131 }
1132 if (bs->backing_hd) {
1133 bdrv_delete(bs->backing_hd);
1134 bs->backing_hd = NULL;
1135 }
1136 bs->drv->bdrv_close(bs);
1137 g_free(bs->opaque);
1138 #ifdef _WIN32
1139 if (bs->is_temporary) {
1140 unlink(bs->filename);
1141 }
1142 #endif
1143 bs->opaque = NULL;
1144 bs->drv = NULL;
1145 bs->copy_on_read = 0;
1146 bs->backing_file[0] = '\0';
1147 bs->backing_format[0] = '\0';
1148 bs->total_sectors = 0;
1149 bs->encrypted = 0;
1150 bs->valid_key = 0;
1151 bs->sg = 0;
1152 bs->growable = 0;
1153
1154 if (bs->file != NULL) {
1155 bdrv_delete(bs->file);
1156 bs->file = NULL;
1157 }
1158 }
1159
1160 bdrv_dev_change_media_cb(bs, false);
1161
1162 /*throttling disk I/O limits*/
1163 if (bs->io_limits_enabled) {
1164 bdrv_io_limits_disable(bs);
1165 }
1166 }
1167
1168 void bdrv_close_all(void)
1169 {
1170 BlockDriverState *bs;
1171
1172 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1173 bdrv_close(bs);
1174 }
1175 }
1176
1177 /*
1178 * Wait for pending requests to complete across all BlockDriverStates
1179 *
1180 * This function does not flush data to disk, use bdrv_flush_all() for that
1181 * after calling this function.
1182 *
1183 * Note that completion of an asynchronous I/O operation can trigger any
1184 * number of other I/O operations on other devices---for example a coroutine
1185 * can be arbitrarily complex and a constant flow of I/O can come until the
1186 * coroutine is complete. Because of this, it is not possible to have a
1187 * function to drain a single device's I/O queue.
1188 */
1189 void bdrv_drain_all(void)
1190 {
1191 BlockDriverState *bs;
1192 bool busy;
1193
1194 do {
1195 busy = qemu_aio_wait();
1196
1197 /* FIXME: We do not have timer support here, so this is effectively
1198 * a busy wait.
1199 */
1200 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1201 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1202 qemu_co_queue_restart_all(&bs->throttled_reqs);
1203 busy = true;
1204 }
1205 }
1206 } while (busy);
1207
1208 /* If requests are still pending there is a bug somewhere */
1209 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1210 assert(QLIST_EMPTY(&bs->tracked_requests));
1211 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1212 }
1213 }
1214
1215 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1216 Also, NULL terminate the device_name to prevent double remove */
1217 void bdrv_make_anon(BlockDriverState *bs)
1218 {
1219 if (bs->device_name[0] != '\0') {
1220 QTAILQ_REMOVE(&bdrv_states, bs, list);
1221 }
1222 bs->device_name[0] = '\0';
1223 }
1224
1225 static void bdrv_rebind(BlockDriverState *bs)
1226 {
1227 if (bs->drv && bs->drv->bdrv_rebind) {
1228 bs->drv->bdrv_rebind(bs);
1229 }
1230 }
1231
1232 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1233 BlockDriverState *bs_src)
1234 {
1235 /* move some fields that need to stay attached to the device */
1236 bs_dest->open_flags = bs_src->open_flags;
1237
1238 /* dev info */
1239 bs_dest->dev_ops = bs_src->dev_ops;
1240 bs_dest->dev_opaque = bs_src->dev_opaque;
1241 bs_dest->dev = bs_src->dev;
1242 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1243 bs_dest->copy_on_read = bs_src->copy_on_read;
1244
1245 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1246
1247 /* i/o timing parameters */
1248 bs_dest->slice_time = bs_src->slice_time;
1249 bs_dest->slice_start = bs_src->slice_start;
1250 bs_dest->slice_end = bs_src->slice_end;
1251 bs_dest->io_limits = bs_src->io_limits;
1252 bs_dest->io_base = bs_src->io_base;
1253 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1254 bs_dest->block_timer = bs_src->block_timer;
1255 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1256
1257 /* r/w error */
1258 bs_dest->on_read_error = bs_src->on_read_error;
1259 bs_dest->on_write_error = bs_src->on_write_error;
1260
1261 /* i/o status */
1262 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1263 bs_dest->iostatus = bs_src->iostatus;
1264
1265 /* dirty bitmap */
1266 bs_dest->dirty_count = bs_src->dirty_count;
1267 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1268
1269 /* job */
1270 bs_dest->in_use = bs_src->in_use;
1271 bs_dest->job = bs_src->job;
1272
1273 /* keep the same entry in bdrv_states */
1274 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1275 bs_src->device_name);
1276 bs_dest->list = bs_src->list;
1277 }
1278
1279 /*
1280 * Swap bs contents for two image chains while they are live,
1281 * while keeping required fields on the BlockDriverState that is
1282 * actually attached to a device.
1283 *
1284 * This will modify the BlockDriverState fields, and swap contents
1285 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1286 *
1287 * bs_new is required to be anonymous.
1288 *
1289 * This function does not create any image files.
1290 */
1291 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1292 {
1293 BlockDriverState tmp;
1294
1295 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1296 assert(bs_new->device_name[0] == '\0');
1297 assert(bs_new->dirty_bitmap == NULL);
1298 assert(bs_new->job == NULL);
1299 assert(bs_new->dev == NULL);
1300 assert(bs_new->in_use == 0);
1301 assert(bs_new->io_limits_enabled == false);
1302 assert(bs_new->block_timer == NULL);
1303
1304 tmp = *bs_new;
1305 *bs_new = *bs_old;
1306 *bs_old = tmp;
1307
1308 /* there are some fields that should not be swapped, move them back */
1309 bdrv_move_feature_fields(&tmp, bs_old);
1310 bdrv_move_feature_fields(bs_old, bs_new);
1311 bdrv_move_feature_fields(bs_new, &tmp);
1312
1313 /* bs_new shouldn't be in bdrv_states even after the swap! */
1314 assert(bs_new->device_name[0] == '\0');
1315
1316 /* Check a few fields that should remain attached to the device */
1317 assert(bs_new->dev == NULL);
1318 assert(bs_new->job == NULL);
1319 assert(bs_new->in_use == 0);
1320 assert(bs_new->io_limits_enabled == false);
1321 assert(bs_new->block_timer == NULL);
1322
1323 bdrv_rebind(bs_new);
1324 bdrv_rebind(bs_old);
1325 }
1326
1327 /*
1328 * Add new bs contents at the top of an image chain while the chain is
1329 * live, while keeping required fields on the top layer.
1330 *
1331 * This will modify the BlockDriverState fields, and swap contents
1332 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1333 *
1334 * bs_new is required to be anonymous.
1335 *
1336 * This function does not create any image files.
1337 */
1338 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1339 {
1340 bdrv_swap(bs_new, bs_top);
1341
1342 /* The contents of 'tmp' will become bs_top, as we are
1343 * swapping bs_new and bs_top contents. */
1344 bs_top->backing_hd = bs_new;
1345 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1346 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1347 bs_new->filename);
1348 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1349 bs_new->drv ? bs_new->drv->format_name : "");
1350 }
1351
1352 void bdrv_delete(BlockDriverState *bs)
1353 {
1354 assert(!bs->dev);
1355 assert(!bs->job);
1356 assert(!bs->in_use);
1357
1358 /* remove from list, if necessary */
1359 bdrv_make_anon(bs);
1360
1361 bdrv_close(bs);
1362
1363 assert(bs != bs_snapshots);
1364 g_free(bs);
1365 }
1366
1367 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1368 /* TODO change to DeviceState *dev when all users are qdevified */
1369 {
1370 if (bs->dev) {
1371 return -EBUSY;
1372 }
1373 bs->dev = dev;
1374 bdrv_iostatus_reset(bs);
1375 return 0;
1376 }
1377
1378 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1379 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1380 {
1381 if (bdrv_attach_dev(bs, dev) < 0) {
1382 abort();
1383 }
1384 }
1385
1386 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1387 /* TODO change to DeviceState *dev when all users are qdevified */
1388 {
1389 assert(bs->dev == dev);
1390 bs->dev = NULL;
1391 bs->dev_ops = NULL;
1392 bs->dev_opaque = NULL;
1393 bs->buffer_alignment = 512;
1394 }
1395
1396 /* TODO change to return DeviceState * when all users are qdevified */
1397 void *bdrv_get_attached_dev(BlockDriverState *bs)
1398 {
1399 return bs->dev;
1400 }
1401
1402 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1403 void *opaque)
1404 {
1405 bs->dev_ops = ops;
1406 bs->dev_opaque = opaque;
1407 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1408 bs_snapshots = NULL;
1409 }
1410 }
1411
1412 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1413 enum MonitorEvent ev,
1414 BlockErrorAction action, bool is_read)
1415 {
1416 QObject *data;
1417 const char *action_str;
1418
1419 switch (action) {
1420 case BDRV_ACTION_REPORT:
1421 action_str = "report";
1422 break;
1423 case BDRV_ACTION_IGNORE:
1424 action_str = "ignore";
1425 break;
1426 case BDRV_ACTION_STOP:
1427 action_str = "stop";
1428 break;
1429 default:
1430 abort();
1431 }
1432
1433 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1434 bdrv->device_name,
1435 action_str,
1436 is_read ? "read" : "write");
1437 monitor_protocol_event(ev, data);
1438
1439 qobject_decref(data);
1440 }
1441
1442 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1443 {
1444 QObject *data;
1445
1446 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1447 bdrv_get_device_name(bs), ejected);
1448 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1449
1450 qobject_decref(data);
1451 }
1452
1453 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1454 {
1455 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1456 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1457 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1458 if (tray_was_closed) {
1459 /* tray open */
1460 bdrv_emit_qmp_eject_event(bs, true);
1461 }
1462 if (load) {
1463 /* tray close */
1464 bdrv_emit_qmp_eject_event(bs, false);
1465 }
1466 }
1467 }
1468
1469 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1470 {
1471 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1472 }
1473
1474 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1475 {
1476 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1477 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1478 }
1479 }
1480
1481 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1482 {
1483 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1484 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1485 }
1486 return false;
1487 }
1488
1489 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1490 {
1491 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1492 bs->dev_ops->resize_cb(bs->dev_opaque);
1493 }
1494 }
1495
1496 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1497 {
1498 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1499 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1500 }
1501 return false;
1502 }
1503
1504 /*
1505 * Run consistency checks on an image
1506 *
1507 * Returns 0 if the check could be completed (it doesn't mean that the image is
1508 * free of errors) or -errno when an internal error occurred. The results of the
1509 * check are stored in res.
1510 */
1511 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1512 {
1513 if (bs->drv->bdrv_check == NULL) {
1514 return -ENOTSUP;
1515 }
1516
1517 memset(res, 0, sizeof(*res));
1518 return bs->drv->bdrv_check(bs, res, fix);
1519 }
1520
1521 #define COMMIT_BUF_SECTORS 2048
1522
1523 /* commit COW file into the raw image */
1524 int bdrv_commit(BlockDriverState *bs)
1525 {
1526 BlockDriver *drv = bs->drv;
1527 int64_t sector, total_sectors;
1528 int n, ro, open_flags;
1529 int ret = 0;
1530 uint8_t *buf;
1531 char filename[PATH_MAX];
1532
1533 if (!drv)
1534 return -ENOMEDIUM;
1535
1536 if (!bs->backing_hd) {
1537 return -ENOTSUP;
1538 }
1539
1540 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1541 return -EBUSY;
1542 }
1543
1544 ro = bs->backing_hd->read_only;
1545 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1546 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1547 open_flags = bs->backing_hd->open_flags;
1548
1549 if (ro) {
1550 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1551 return -EACCES;
1552 }
1553 }
1554
1555 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1556 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1557
1558 for (sector = 0; sector < total_sectors; sector += n) {
1559 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1560
1561 if (bdrv_read(bs, sector, buf, n) != 0) {
1562 ret = -EIO;
1563 goto ro_cleanup;
1564 }
1565
1566 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1567 ret = -EIO;
1568 goto ro_cleanup;
1569 }
1570 }
1571 }
1572
1573 if (drv->bdrv_make_empty) {
1574 ret = drv->bdrv_make_empty(bs);
1575 bdrv_flush(bs);
1576 }
1577
1578 /*
1579 * Make sure all data we wrote to the backing device is actually
1580 * stable on disk.
1581 */
1582 if (bs->backing_hd)
1583 bdrv_flush(bs->backing_hd);
1584
1585 ro_cleanup:
1586 g_free(buf);
1587
1588 if (ro) {
1589 /* ignoring error return here */
1590 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1591 }
1592
1593 return ret;
1594 }
1595
1596 int bdrv_commit_all(void)
1597 {
1598 BlockDriverState *bs;
1599
1600 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1601 int ret = bdrv_commit(bs);
1602 if (ret < 0) {
1603 return ret;
1604 }
1605 }
1606 return 0;
1607 }
1608
1609 struct BdrvTrackedRequest {
1610 BlockDriverState *bs;
1611 int64_t sector_num;
1612 int nb_sectors;
1613 bool is_write;
1614 QLIST_ENTRY(BdrvTrackedRequest) list;
1615 Coroutine *co; /* owner, used for deadlock detection */
1616 CoQueue wait_queue; /* coroutines blocked on this request */
1617 };
1618
1619 /**
1620 * Remove an active request from the tracked requests list
1621 *
1622 * This function should be called when a tracked request is completing.
1623 */
1624 static void tracked_request_end(BdrvTrackedRequest *req)
1625 {
1626 QLIST_REMOVE(req, list);
1627 qemu_co_queue_restart_all(&req->wait_queue);
1628 }
1629
1630 /**
1631 * Add an active request to the tracked requests list
1632 */
1633 static void tracked_request_begin(BdrvTrackedRequest *req,
1634 BlockDriverState *bs,
1635 int64_t sector_num,
1636 int nb_sectors, bool is_write)
1637 {
1638 *req = (BdrvTrackedRequest){
1639 .bs = bs,
1640 .sector_num = sector_num,
1641 .nb_sectors = nb_sectors,
1642 .is_write = is_write,
1643 .co = qemu_coroutine_self(),
1644 };
1645
1646 qemu_co_queue_init(&req->wait_queue);
1647
1648 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1649 }
1650
1651 /**
1652 * Round a region to cluster boundaries
1653 */
1654 static void round_to_clusters(BlockDriverState *bs,
1655 int64_t sector_num, int nb_sectors,
1656 int64_t *cluster_sector_num,
1657 int *cluster_nb_sectors)
1658 {
1659 BlockDriverInfo bdi;
1660
1661 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1662 *cluster_sector_num = sector_num;
1663 *cluster_nb_sectors = nb_sectors;
1664 } else {
1665 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1666 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1667 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1668 nb_sectors, c);
1669 }
1670 }
1671
1672 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1673 int64_t sector_num, int nb_sectors) {
1674 /* aaaa bbbb */
1675 if (sector_num >= req->sector_num + req->nb_sectors) {
1676 return false;
1677 }
1678 /* bbbb aaaa */
1679 if (req->sector_num >= sector_num + nb_sectors) {
1680 return false;
1681 }
1682 return true;
1683 }
1684
1685 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1686 int64_t sector_num, int nb_sectors)
1687 {
1688 BdrvTrackedRequest *req;
1689 int64_t cluster_sector_num;
1690 int cluster_nb_sectors;
1691 bool retry;
1692
1693 /* If we touch the same cluster it counts as an overlap. This guarantees
1694 * that allocating writes will be serialized and not race with each other
1695 * for the same cluster. For example, in copy-on-read it ensures that the
1696 * CoR read and write operations are atomic and guest writes cannot
1697 * interleave between them.
1698 */
1699 round_to_clusters(bs, sector_num, nb_sectors,
1700 &cluster_sector_num, &cluster_nb_sectors);
1701
1702 do {
1703 retry = false;
1704 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1705 if (tracked_request_overlaps(req, cluster_sector_num,
1706 cluster_nb_sectors)) {
1707 /* Hitting this means there was a reentrant request, for
1708 * example, a block driver issuing nested requests. This must
1709 * never happen since it means deadlock.
1710 */
1711 assert(qemu_coroutine_self() != req->co);
1712
1713 qemu_co_queue_wait(&req->wait_queue);
1714 retry = true;
1715 break;
1716 }
1717 }
1718 } while (retry);
1719 }
1720
1721 /*
1722 * Return values:
1723 * 0 - success
1724 * -EINVAL - backing format specified, but no file
1725 * -ENOSPC - can't update the backing file because no space is left in the
1726 * image file header
1727 * -ENOTSUP - format driver doesn't support changing the backing file
1728 */
1729 int bdrv_change_backing_file(BlockDriverState *bs,
1730 const char *backing_file, const char *backing_fmt)
1731 {
1732 BlockDriver *drv = bs->drv;
1733 int ret;
1734
1735 /* Backing file format doesn't make sense without a backing file */
1736 if (backing_fmt && !backing_file) {
1737 return -EINVAL;
1738 }
1739
1740 if (drv->bdrv_change_backing_file != NULL) {
1741 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1742 } else {
1743 ret = -ENOTSUP;
1744 }
1745
1746 if (ret == 0) {
1747 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1748 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1749 }
1750 return ret;
1751 }
1752
1753 /*
1754 * Finds the image layer in the chain that has 'bs' as its backing file.
1755 *
1756 * active is the current topmost image.
1757 *
1758 * Returns NULL if bs is not found in active's image chain,
1759 * or if active == bs.
1760 */
1761 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1762 BlockDriverState *bs)
1763 {
1764 BlockDriverState *overlay = NULL;
1765 BlockDriverState *intermediate;
1766
1767 assert(active != NULL);
1768 assert(bs != NULL);
1769
1770 /* if bs is the same as active, then by definition it has no overlay
1771 */
1772 if (active == bs) {
1773 return NULL;
1774 }
1775
1776 intermediate = active;
1777 while (intermediate->backing_hd) {
1778 if (intermediate->backing_hd == bs) {
1779 overlay = intermediate;
1780 break;
1781 }
1782 intermediate = intermediate->backing_hd;
1783 }
1784
1785 return overlay;
1786 }
1787
1788 typedef struct BlkIntermediateStates {
1789 BlockDriverState *bs;
1790 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1791 } BlkIntermediateStates;
1792
1793
1794 /*
1795 * Drops images above 'base' up to and including 'top', and sets the image
1796 * above 'top' to have base as its backing file.
1797 *
1798 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1799 * information in 'bs' can be properly updated.
1800 *
1801 * E.g., this will convert the following chain:
1802 * bottom <- base <- intermediate <- top <- active
1803 *
1804 * to
1805 *
1806 * bottom <- base <- active
1807 *
1808 * It is allowed for bottom==base, in which case it converts:
1809 *
1810 * base <- intermediate <- top <- active
1811 *
1812 * to
1813 *
1814 * base <- active
1815 *
1816 * Error conditions:
1817 * if active == top, that is considered an error
1818 *
1819 */
1820 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1821 BlockDriverState *base)
1822 {
1823 BlockDriverState *intermediate;
1824 BlockDriverState *base_bs = NULL;
1825 BlockDriverState *new_top_bs = NULL;
1826 BlkIntermediateStates *intermediate_state, *next;
1827 int ret = -EIO;
1828
1829 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1830 QSIMPLEQ_INIT(&states_to_delete);
1831
1832 if (!top->drv || !base->drv) {
1833 goto exit;
1834 }
1835
1836 new_top_bs = bdrv_find_overlay(active, top);
1837
1838 if (new_top_bs == NULL) {
1839 /* we could not find the image above 'top', this is an error */
1840 goto exit;
1841 }
1842
1843 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1844 * to do, no intermediate images */
1845 if (new_top_bs->backing_hd == base) {
1846 ret = 0;
1847 goto exit;
1848 }
1849
1850 intermediate = top;
1851
1852 /* now we will go down through the list, and add each BDS we find
1853 * into our deletion queue, until we hit the 'base'
1854 */
1855 while (intermediate) {
1856 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1857 intermediate_state->bs = intermediate;
1858 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1859
1860 if (intermediate->backing_hd == base) {
1861 base_bs = intermediate->backing_hd;
1862 break;
1863 }
1864 intermediate = intermediate->backing_hd;
1865 }
1866 if (base_bs == NULL) {
1867 /* something went wrong, we did not end at the base. safely
1868 * unravel everything, and exit with error */
1869 goto exit;
1870 }
1871
1872 /* success - we can delete the intermediate states, and link top->base */
1873 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1874 base_bs->drv ? base_bs->drv->format_name : "");
1875 if (ret) {
1876 goto exit;
1877 }
1878 new_top_bs->backing_hd = base_bs;
1879
1880
1881 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1882 /* so that bdrv_close() does not recursively close the chain */
1883 intermediate_state->bs->backing_hd = NULL;
1884 bdrv_delete(intermediate_state->bs);
1885 }
1886 ret = 0;
1887
1888 exit:
1889 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1890 g_free(intermediate_state);
1891 }
1892 return ret;
1893 }
1894
1895
1896 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1897 size_t size)
1898 {
1899 int64_t len;
1900
1901 if (!bdrv_is_inserted(bs))
1902 return -ENOMEDIUM;
1903
1904 if (bs->growable)
1905 return 0;
1906
1907 len = bdrv_getlength(bs);
1908
1909 if (offset < 0)
1910 return -EIO;
1911
1912 if ((offset > len) || (len - offset < size))
1913 return -EIO;
1914
1915 return 0;
1916 }
1917
1918 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1919 int nb_sectors)
1920 {
1921 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1922 nb_sectors * BDRV_SECTOR_SIZE);
1923 }
1924
1925 typedef struct RwCo {
1926 BlockDriverState *bs;
1927 int64_t sector_num;
1928 int nb_sectors;
1929 QEMUIOVector *qiov;
1930 bool is_write;
1931 int ret;
1932 } RwCo;
1933
1934 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1935 {
1936 RwCo *rwco = opaque;
1937
1938 if (!rwco->is_write) {
1939 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1940 rwco->nb_sectors, rwco->qiov, 0);
1941 } else {
1942 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1943 rwco->nb_sectors, rwco->qiov, 0);
1944 }
1945 }
1946
1947 /*
1948 * Process a synchronous request using coroutines
1949 */
1950 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1951 int nb_sectors, bool is_write)
1952 {
1953 QEMUIOVector qiov;
1954 struct iovec iov = {
1955 .iov_base = (void *)buf,
1956 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1957 };
1958 Coroutine *co;
1959 RwCo rwco = {
1960 .bs = bs,
1961 .sector_num = sector_num,
1962 .nb_sectors = nb_sectors,
1963 .qiov = &qiov,
1964 .is_write = is_write,
1965 .ret = NOT_DONE,
1966 };
1967
1968 qemu_iovec_init_external(&qiov, &iov, 1);
1969
1970 /**
1971 * In sync call context, when the vcpu is blocked, this throttling timer
1972 * will not fire; so the I/O throttling function has to be disabled here
1973 * if it has been enabled.
1974 */
1975 if (bs->io_limits_enabled) {
1976 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1977 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1978 bdrv_io_limits_disable(bs);
1979 }
1980
1981 if (qemu_in_coroutine()) {
1982 /* Fast-path if already in coroutine context */
1983 bdrv_rw_co_entry(&rwco);
1984 } else {
1985 co = qemu_coroutine_create(bdrv_rw_co_entry);
1986 qemu_coroutine_enter(co, &rwco);
1987 while (rwco.ret == NOT_DONE) {
1988 qemu_aio_wait();
1989 }
1990 }
1991 return rwco.ret;
1992 }
1993
1994 /* return < 0 if error. See bdrv_write() for the return codes */
1995 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1996 uint8_t *buf, int nb_sectors)
1997 {
1998 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1999 }
2000
2001 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2002 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2003 uint8_t *buf, int nb_sectors)
2004 {
2005 bool enabled;
2006 int ret;
2007
2008 enabled = bs->io_limits_enabled;
2009 bs->io_limits_enabled = false;
2010 ret = bdrv_read(bs, 0, buf, 1);
2011 bs->io_limits_enabled = enabled;
2012 return ret;
2013 }
2014
2015 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
2016
2017 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
2018 int nb_sectors, int dirty)
2019 {
2020 int64_t start, end;
2021 unsigned long val, idx, bit;
2022
2023 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2024 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2025
2026 for (; start <= end; start++) {
2027 idx = start / BITS_PER_LONG;
2028 bit = start % BITS_PER_LONG;
2029 val = bs->dirty_bitmap[idx];
2030 if (dirty) {
2031 if (!(val & (1UL << bit))) {
2032 bs->dirty_count++;
2033 val |= 1UL << bit;
2034 }
2035 } else {
2036 if (val & (1UL << bit)) {
2037 bs->dirty_count--;
2038 val &= ~(1UL << bit);
2039 }
2040 }
2041 bs->dirty_bitmap[idx] = val;
2042 }
2043 }
2044
2045 /* Return < 0 if error. Important errors are:
2046 -EIO generic I/O error (may happen for all errors)
2047 -ENOMEDIUM No media inserted.
2048 -EINVAL Invalid sector number or nb_sectors
2049 -EACCES Trying to write a read-only device
2050 */
2051 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2052 const uint8_t *buf, int nb_sectors)
2053 {
2054 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2055 }
2056
2057 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2058 void *buf, int count1)
2059 {
2060 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2061 int len, nb_sectors, count;
2062 int64_t sector_num;
2063 int ret;
2064
2065 count = count1;
2066 /* first read to align to sector start */
2067 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2068 if (len > count)
2069 len = count;
2070 sector_num = offset >> BDRV_SECTOR_BITS;
2071 if (len > 0) {
2072 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2073 return ret;
2074 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2075 count -= len;
2076 if (count == 0)
2077 return count1;
2078 sector_num++;
2079 buf += len;
2080 }
2081
2082 /* read the sectors "in place" */
2083 nb_sectors = count >> BDRV_SECTOR_BITS;
2084 if (nb_sectors > 0) {
2085 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2086 return ret;
2087 sector_num += nb_sectors;
2088 len = nb_sectors << BDRV_SECTOR_BITS;
2089 buf += len;
2090 count -= len;
2091 }
2092
2093 /* add data from the last sector */
2094 if (count > 0) {
2095 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2096 return ret;
2097 memcpy(buf, tmp_buf, count);
2098 }
2099 return count1;
2100 }
2101
2102 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2103 const void *buf, int count1)
2104 {
2105 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2106 int len, nb_sectors, count;
2107 int64_t sector_num;
2108 int ret;
2109
2110 count = count1;
2111 /* first write to align to sector start */
2112 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2113 if (len > count)
2114 len = count;
2115 sector_num = offset >> BDRV_SECTOR_BITS;
2116 if (len > 0) {
2117 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2118 return ret;
2119 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2120 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2121 return ret;
2122 count -= len;
2123 if (count == 0)
2124 return count1;
2125 sector_num++;
2126 buf += len;
2127 }
2128
2129 /* write the sectors "in place" */
2130 nb_sectors = count >> BDRV_SECTOR_BITS;
2131 if (nb_sectors > 0) {
2132 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2133 return ret;
2134 sector_num += nb_sectors;
2135 len = nb_sectors << BDRV_SECTOR_BITS;
2136 buf += len;
2137 count -= len;
2138 }
2139
2140 /* add data from the last sector */
2141 if (count > 0) {
2142 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2143 return ret;
2144 memcpy(tmp_buf, buf, count);
2145 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2146 return ret;
2147 }
2148 return count1;
2149 }
2150
2151 /*
2152 * Writes to the file and ensures that no writes are reordered across this
2153 * request (acts as a barrier)
2154 *
2155 * Returns 0 on success, -errno in error cases.
2156 */
2157 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2158 const void *buf, int count)
2159 {
2160 int ret;
2161
2162 ret = bdrv_pwrite(bs, offset, buf, count);
2163 if (ret < 0) {
2164 return ret;
2165 }
2166
2167 /* No flush needed for cache modes that already do it */
2168 if (bs->enable_write_cache) {
2169 bdrv_flush(bs);
2170 }
2171
2172 return 0;
2173 }
2174
2175 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2176 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2177 {
2178 /* Perform I/O through a temporary buffer so that users who scribble over
2179 * their read buffer while the operation is in progress do not end up
2180 * modifying the image file. This is critical for zero-copy guest I/O
2181 * where anything might happen inside guest memory.
2182 */
2183 void *bounce_buffer;
2184
2185 BlockDriver *drv = bs->drv;
2186 struct iovec iov;
2187 QEMUIOVector bounce_qiov;
2188 int64_t cluster_sector_num;
2189 int cluster_nb_sectors;
2190 size_t skip_bytes;
2191 int ret;
2192
2193 /* Cover entire cluster so no additional backing file I/O is required when
2194 * allocating cluster in the image file.
2195 */
2196 round_to_clusters(bs, sector_num, nb_sectors,
2197 &cluster_sector_num, &cluster_nb_sectors);
2198
2199 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2200 cluster_sector_num, cluster_nb_sectors);
2201
2202 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2203 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2204 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2205
2206 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2207 &bounce_qiov);
2208 if (ret < 0) {
2209 goto err;
2210 }
2211
2212 if (drv->bdrv_co_write_zeroes &&
2213 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2214 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2215 cluster_nb_sectors);
2216 } else {
2217 /* This does not change the data on the disk, it is not necessary
2218 * to flush even in cache=writethrough mode.
2219 */
2220 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2221 &bounce_qiov);
2222 }
2223
2224 if (ret < 0) {
2225 /* It might be okay to ignore write errors for guest requests. If this
2226 * is a deliberate copy-on-read then we don't want to ignore the error.
2227 * Simply report it in all cases.
2228 */
2229 goto err;
2230 }
2231
2232 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2233 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2234 nb_sectors * BDRV_SECTOR_SIZE);
2235
2236 err:
2237 qemu_vfree(bounce_buffer);
2238 return ret;
2239 }
2240
2241 /*
2242 * Handle a read request in coroutine context
2243 */
2244 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2245 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2246 BdrvRequestFlags flags)
2247 {
2248 BlockDriver *drv = bs->drv;
2249 BdrvTrackedRequest req;
2250 int ret;
2251
2252 if (!drv) {
2253 return -ENOMEDIUM;
2254 }
2255 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2256 return -EIO;
2257 }
2258
2259 /* throttling disk read I/O */
2260 if (bs->io_limits_enabled) {
2261 bdrv_io_limits_intercept(bs, false, nb_sectors);
2262 }
2263
2264 if (bs->copy_on_read) {
2265 flags |= BDRV_REQ_COPY_ON_READ;
2266 }
2267 if (flags & BDRV_REQ_COPY_ON_READ) {
2268 bs->copy_on_read_in_flight++;
2269 }
2270
2271 if (bs->copy_on_read_in_flight) {
2272 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2273 }
2274
2275 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2276
2277 if (flags & BDRV_REQ_COPY_ON_READ) {
2278 int pnum;
2279
2280 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2281 if (ret < 0) {
2282 goto out;
2283 }
2284
2285 if (!ret || pnum != nb_sectors) {
2286 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2287 goto out;
2288 }
2289 }
2290
2291 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2292
2293 out:
2294 tracked_request_end(&req);
2295
2296 if (flags & BDRV_REQ_COPY_ON_READ) {
2297 bs->copy_on_read_in_flight--;
2298 }
2299
2300 return ret;
2301 }
2302
2303 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2304 int nb_sectors, QEMUIOVector *qiov)
2305 {
2306 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2307
2308 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2309 }
2310
2311 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2312 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2313 {
2314 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2315
2316 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2317 BDRV_REQ_COPY_ON_READ);
2318 }
2319
2320 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2321 int64_t sector_num, int nb_sectors)
2322 {
2323 BlockDriver *drv = bs->drv;
2324 QEMUIOVector qiov;
2325 struct iovec iov;
2326 int ret;
2327
2328 /* TODO Emulate only part of misaligned requests instead of letting block
2329 * drivers return -ENOTSUP and emulate everything */
2330
2331 /* First try the efficient write zeroes operation */
2332 if (drv->bdrv_co_write_zeroes) {
2333 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2334 if (ret != -ENOTSUP) {
2335 return ret;
2336 }
2337 }
2338
2339 /* Fall back to bounce buffer if write zeroes is unsupported */
2340 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2341 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2342 memset(iov.iov_base, 0, iov.iov_len);
2343 qemu_iovec_init_external(&qiov, &iov, 1);
2344
2345 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2346
2347 qemu_vfree(iov.iov_base);
2348 return ret;
2349 }
2350
2351 /*
2352 * Handle a write request in coroutine context
2353 */
2354 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2355 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2356 BdrvRequestFlags flags)
2357 {
2358 BlockDriver *drv = bs->drv;
2359 BdrvTrackedRequest req;
2360 int ret;
2361
2362 if (!bs->drv) {
2363 return -ENOMEDIUM;
2364 }
2365 if (bs->read_only) {
2366 return -EACCES;
2367 }
2368 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2369 return -EIO;
2370 }
2371
2372 /* throttling disk write I/O */
2373 if (bs->io_limits_enabled) {
2374 bdrv_io_limits_intercept(bs, true, nb_sectors);
2375 }
2376
2377 if (bs->copy_on_read_in_flight) {
2378 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2379 }
2380
2381 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2382
2383 if (flags & BDRV_REQ_ZERO_WRITE) {
2384 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2385 } else {
2386 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2387 }
2388
2389 if (ret == 0 && !bs->enable_write_cache) {
2390 ret = bdrv_co_flush(bs);
2391 }
2392
2393 if (bs->dirty_bitmap) {
2394 bdrv_set_dirty(bs, sector_num, nb_sectors);
2395 }
2396
2397 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2398 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2399 }
2400
2401 tracked_request_end(&req);
2402
2403 return ret;
2404 }
2405
2406 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2407 int nb_sectors, QEMUIOVector *qiov)
2408 {
2409 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2410
2411 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2412 }
2413
2414 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2415 int64_t sector_num, int nb_sectors)
2416 {
2417 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2418
2419 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2420 BDRV_REQ_ZERO_WRITE);
2421 }
2422
2423 /**
2424 * Truncate file to 'offset' bytes (needed only for file protocols)
2425 */
2426 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2427 {
2428 BlockDriver *drv = bs->drv;
2429 int ret;
2430 if (!drv)
2431 return -ENOMEDIUM;
2432 if (!drv->bdrv_truncate)
2433 return -ENOTSUP;
2434 if (bs->read_only)
2435 return -EACCES;
2436 if (bdrv_in_use(bs))
2437 return -EBUSY;
2438 ret = drv->bdrv_truncate(bs, offset);
2439 if (ret == 0) {
2440 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2441 bdrv_dev_resize_cb(bs);
2442 }
2443 return ret;
2444 }
2445
2446 /**
2447 * Length of a allocated file in bytes. Sparse files are counted by actual
2448 * allocated space. Return < 0 if error or unknown.
2449 */
2450 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2451 {
2452 BlockDriver *drv = bs->drv;
2453 if (!drv) {
2454 return -ENOMEDIUM;
2455 }
2456 if (drv->bdrv_get_allocated_file_size) {
2457 return drv->bdrv_get_allocated_file_size(bs);
2458 }
2459 if (bs->file) {
2460 return bdrv_get_allocated_file_size(bs->file);
2461 }
2462 return -ENOTSUP;
2463 }
2464
2465 /**
2466 * Length of a file in bytes. Return < 0 if error or unknown.
2467 */
2468 int64_t bdrv_getlength(BlockDriverState *bs)
2469 {
2470 BlockDriver *drv = bs->drv;
2471 if (!drv)
2472 return -ENOMEDIUM;
2473
2474 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2475 if (drv->bdrv_getlength) {
2476 return drv->bdrv_getlength(bs);
2477 }
2478 }
2479 return bs->total_sectors * BDRV_SECTOR_SIZE;
2480 }
2481
2482 /* return 0 as number of sectors if no device present or error */
2483 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2484 {
2485 int64_t length;
2486 length = bdrv_getlength(bs);
2487 if (length < 0)
2488 length = 0;
2489 else
2490 length = length >> BDRV_SECTOR_BITS;
2491 *nb_sectors_ptr = length;
2492 }
2493
2494 /* throttling disk io limits */
2495 void bdrv_set_io_limits(BlockDriverState *bs,
2496 BlockIOLimit *io_limits)
2497 {
2498 bs->io_limits = *io_limits;
2499 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2500 }
2501
2502 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2503 BlockdevOnError on_write_error)
2504 {
2505 bs->on_read_error = on_read_error;
2506 bs->on_write_error = on_write_error;
2507 }
2508
2509 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2510 {
2511 return is_read ? bs->on_read_error : bs->on_write_error;
2512 }
2513
2514 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2515 {
2516 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2517
2518 switch (on_err) {
2519 case BLOCKDEV_ON_ERROR_ENOSPC:
2520 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2521 case BLOCKDEV_ON_ERROR_STOP:
2522 return BDRV_ACTION_STOP;
2523 case BLOCKDEV_ON_ERROR_REPORT:
2524 return BDRV_ACTION_REPORT;
2525 case BLOCKDEV_ON_ERROR_IGNORE:
2526 return BDRV_ACTION_IGNORE;
2527 default:
2528 abort();
2529 }
2530 }
2531
2532 /* This is done by device models because, while the block layer knows
2533 * about the error, it does not know whether an operation comes from
2534 * the device or the block layer (from a job, for example).
2535 */
2536 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2537 bool is_read, int error)
2538 {
2539 assert(error >= 0);
2540 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2541 if (action == BDRV_ACTION_STOP) {
2542 vm_stop(RUN_STATE_IO_ERROR);
2543 bdrv_iostatus_set_err(bs, error);
2544 }
2545 }
2546
2547 int bdrv_is_read_only(BlockDriverState *bs)
2548 {
2549 return bs->read_only;
2550 }
2551
2552 int bdrv_is_sg(BlockDriverState *bs)
2553 {
2554 return bs->sg;
2555 }
2556
2557 int bdrv_enable_write_cache(BlockDriverState *bs)
2558 {
2559 return bs->enable_write_cache;
2560 }
2561
2562 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2563 {
2564 bs->enable_write_cache = wce;
2565
2566 /* so a reopen() will preserve wce */
2567 if (wce) {
2568 bs->open_flags |= BDRV_O_CACHE_WB;
2569 } else {
2570 bs->open_flags &= ~BDRV_O_CACHE_WB;
2571 }
2572 }
2573
2574 int bdrv_is_encrypted(BlockDriverState *bs)
2575 {
2576 if (bs->backing_hd && bs->backing_hd->encrypted)
2577 return 1;
2578 return bs->encrypted;
2579 }
2580
2581 int bdrv_key_required(BlockDriverState *bs)
2582 {
2583 BlockDriverState *backing_hd = bs->backing_hd;
2584
2585 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2586 return 1;
2587 return (bs->encrypted && !bs->valid_key);
2588 }
2589
2590 int bdrv_set_key(BlockDriverState *bs, const char *key)
2591 {
2592 int ret;
2593 if (bs->backing_hd && bs->backing_hd->encrypted) {
2594 ret = bdrv_set_key(bs->backing_hd, key);
2595 if (ret < 0)
2596 return ret;
2597 if (!bs->encrypted)
2598 return 0;
2599 }
2600 if (!bs->encrypted) {
2601 return -EINVAL;
2602 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2603 return -ENOMEDIUM;
2604 }
2605 ret = bs->drv->bdrv_set_key(bs, key);
2606 if (ret < 0) {
2607 bs->valid_key = 0;
2608 } else if (!bs->valid_key) {
2609 bs->valid_key = 1;
2610 /* call the change callback now, we skipped it on open */
2611 bdrv_dev_change_media_cb(bs, true);
2612 }
2613 return ret;
2614 }
2615
2616 const char *bdrv_get_format_name(BlockDriverState *bs)
2617 {
2618 return bs->drv ? bs->drv->format_name : NULL;
2619 }
2620
2621 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2622 void *opaque)
2623 {
2624 BlockDriver *drv;
2625
2626 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2627 it(opaque, drv->format_name);
2628 }
2629 }
2630
2631 BlockDriverState *bdrv_find(const char *name)
2632 {
2633 BlockDriverState *bs;
2634
2635 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2636 if (!strcmp(name, bs->device_name)) {
2637 return bs;
2638 }
2639 }
2640 return NULL;
2641 }
2642
2643 BlockDriverState *bdrv_next(BlockDriverState *bs)
2644 {
2645 if (!bs) {
2646 return QTAILQ_FIRST(&bdrv_states);
2647 }
2648 return QTAILQ_NEXT(bs, list);
2649 }
2650
2651 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2652 {
2653 BlockDriverState *bs;
2654
2655 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2656 it(opaque, bs);
2657 }
2658 }
2659
2660 const char *bdrv_get_device_name(BlockDriverState *bs)
2661 {
2662 return bs->device_name;
2663 }
2664
2665 int bdrv_get_flags(BlockDriverState *bs)
2666 {
2667 return bs->open_flags;
2668 }
2669
2670 void bdrv_flush_all(void)
2671 {
2672 BlockDriverState *bs;
2673
2674 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2675 bdrv_flush(bs);
2676 }
2677 }
2678
2679 int bdrv_has_zero_init(BlockDriverState *bs)
2680 {
2681 assert(bs->drv);
2682
2683 if (bs->drv->bdrv_has_zero_init) {
2684 return bs->drv->bdrv_has_zero_init(bs);
2685 }
2686
2687 return 1;
2688 }
2689
2690 typedef struct BdrvCoIsAllocatedData {
2691 BlockDriverState *bs;
2692 int64_t sector_num;
2693 int nb_sectors;
2694 int *pnum;
2695 int ret;
2696 bool done;
2697 } BdrvCoIsAllocatedData;
2698
2699 /*
2700 * Returns true iff the specified sector is present in the disk image. Drivers
2701 * not implementing the functionality are assumed to not support backing files,
2702 * hence all their sectors are reported as allocated.
2703 *
2704 * If 'sector_num' is beyond the end of the disk image the return value is 0
2705 * and 'pnum' is set to 0.
2706 *
2707 * 'pnum' is set to the number of sectors (including and immediately following
2708 * the specified sector) that are known to be in the same
2709 * allocated/unallocated state.
2710 *
2711 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2712 * beyond the end of the disk image it will be clamped.
2713 */
2714 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2715 int nb_sectors, int *pnum)
2716 {
2717 int64_t n;
2718
2719 if (sector_num >= bs->total_sectors) {
2720 *pnum = 0;
2721 return 0;
2722 }
2723
2724 n = bs->total_sectors - sector_num;
2725 if (n < nb_sectors) {
2726 nb_sectors = n;
2727 }
2728
2729 if (!bs->drv->bdrv_co_is_allocated) {
2730 *pnum = nb_sectors;
2731 return 1;
2732 }
2733
2734 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2735 }
2736
2737 /* Coroutine wrapper for bdrv_is_allocated() */
2738 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2739 {
2740 BdrvCoIsAllocatedData *data = opaque;
2741 BlockDriverState *bs = data->bs;
2742
2743 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2744 data->pnum);
2745 data->done = true;
2746 }
2747
2748 /*
2749 * Synchronous wrapper around bdrv_co_is_allocated().
2750 *
2751 * See bdrv_co_is_allocated() for details.
2752 */
2753 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2754 int *pnum)
2755 {
2756 Coroutine *co;
2757 BdrvCoIsAllocatedData data = {
2758 .bs = bs,
2759 .sector_num = sector_num,
2760 .nb_sectors = nb_sectors,
2761 .pnum = pnum,
2762 .done = false,
2763 };
2764
2765 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2766 qemu_coroutine_enter(co, &data);
2767 while (!data.done) {
2768 qemu_aio_wait();
2769 }
2770 return data.ret;
2771 }
2772
2773 /*
2774 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2775 *
2776 * Return true if the given sector is allocated in any image between
2777 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2778 * sector is allocated in any image of the chain. Return false otherwise.
2779 *
2780 * 'pnum' is set to the number of sectors (including and immediately following
2781 * the specified sector) that are known to be in the same
2782 * allocated/unallocated state.
2783 *
2784 */
2785 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2786 BlockDriverState *base,
2787 int64_t sector_num,
2788 int nb_sectors, int *pnum)
2789 {
2790 BlockDriverState *intermediate;
2791 int ret, n = nb_sectors;
2792
2793 intermediate = top;
2794 while (intermediate && intermediate != base) {
2795 int pnum_inter;
2796 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2797 &pnum_inter);
2798 if (ret < 0) {
2799 return ret;
2800 } else if (ret) {
2801 *pnum = pnum_inter;
2802 return 1;
2803 }
2804
2805 /*
2806 * [sector_num, nb_sectors] is unallocated on top but intermediate
2807 * might have
2808 *
2809 * [sector_num+x, nr_sectors] allocated.
2810 */
2811 if (n > pnum_inter) {
2812 n = pnum_inter;
2813 }
2814
2815 intermediate = intermediate->backing_hd;
2816 }
2817
2818 *pnum = n;
2819 return 0;
2820 }
2821
2822 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2823 {
2824 BlockInfo *info = g_malloc0(sizeof(*info));
2825 info->device = g_strdup(bs->device_name);
2826 info->type = g_strdup("unknown");
2827 info->locked = bdrv_dev_is_medium_locked(bs);
2828 info->removable = bdrv_dev_has_removable_media(bs);
2829
2830 if (bdrv_dev_has_removable_media(bs)) {
2831 info->has_tray_open = true;
2832 info->tray_open = bdrv_dev_is_tray_open(bs);
2833 }
2834
2835 if (bdrv_iostatus_is_enabled(bs)) {
2836 info->has_io_status = true;
2837 info->io_status = bs->iostatus;
2838 }
2839
2840 if (bs->dirty_bitmap) {
2841 info->has_dirty = true;
2842 info->dirty = g_malloc0(sizeof(*info->dirty));
2843 info->dirty->count = bdrv_get_dirty_count(bs) *
2844 BDRV_SECTORS_PER_DIRTY_CHUNK * BDRV_SECTOR_SIZE;
2845 }
2846
2847 if (bs->drv) {
2848 info->has_inserted = true;
2849 info->inserted = g_malloc0(sizeof(*info->inserted));
2850 info->inserted->file = g_strdup(bs->filename);
2851 info->inserted->ro = bs->read_only;
2852 info->inserted->drv = g_strdup(bs->drv->format_name);
2853 info->inserted->encrypted = bs->encrypted;
2854 info->inserted->encryption_key_missing = bdrv_key_required(bs);
2855
2856 if (bs->backing_file[0]) {
2857 info->inserted->has_backing_file = true;
2858 info->inserted->backing_file = g_strdup(bs->backing_file);
2859 }
2860
2861 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
2862
2863 if (bs->io_limits_enabled) {
2864 info->inserted->bps =
2865 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2866 info->inserted->bps_rd =
2867 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2868 info->inserted->bps_wr =
2869 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2870 info->inserted->iops =
2871 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2872 info->inserted->iops_rd =
2873 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2874 info->inserted->iops_wr =
2875 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2876 }
2877 }
2878 return info;
2879 }
2880
2881 BlockInfoList *qmp_query_block(Error **errp)
2882 {
2883 BlockInfoList *head = NULL, **p_next = &head;
2884 BlockDriverState *bs;
2885
2886 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2887 BlockInfoList *info = g_malloc0(sizeof(*info));
2888 info->value = bdrv_query_info(bs);
2889
2890 *p_next = info;
2891 p_next = &info->next;
2892 }
2893
2894 return head;
2895 }
2896
2897 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
2898 {
2899 BlockStats *s;
2900
2901 s = g_malloc0(sizeof(*s));
2902
2903 if (bs->device_name[0]) {
2904 s->has_device = true;
2905 s->device = g_strdup(bs->device_name);
2906 }
2907
2908 s->stats = g_malloc0(sizeof(*s->stats));
2909 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2910 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2911 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2912 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2913 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2914 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2915 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2916 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2917 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2918
2919 if (bs->file) {
2920 s->has_parent = true;
2921 s->parent = bdrv_query_stats(bs->file);
2922 }
2923
2924 return s;
2925 }
2926
2927 BlockStatsList *qmp_query_blockstats(Error **errp)
2928 {
2929 BlockStatsList *head = NULL, **p_next = &head;
2930 BlockDriverState *bs;
2931
2932 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2933 BlockStatsList *info = g_malloc0(sizeof(*info));
2934 info->value = bdrv_query_stats(bs);
2935
2936 *p_next = info;
2937 p_next = &info->next;
2938 }
2939
2940 return head;
2941 }
2942
2943 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2944 {
2945 if (bs->backing_hd && bs->backing_hd->encrypted)
2946 return bs->backing_file;
2947 else if (bs->encrypted)
2948 return bs->filename;
2949 else
2950 return NULL;
2951 }
2952
2953 void bdrv_get_backing_filename(BlockDriverState *bs,
2954 char *filename, int filename_size)
2955 {
2956 pstrcpy(filename, filename_size, bs->backing_file);
2957 }
2958
2959 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2960 const uint8_t *buf, int nb_sectors)
2961 {
2962 BlockDriver *drv = bs->drv;
2963 if (!drv)
2964 return -ENOMEDIUM;
2965 if (!drv->bdrv_write_compressed)
2966 return -ENOTSUP;
2967 if (bdrv_check_request(bs, sector_num, nb_sectors))
2968 return -EIO;
2969
2970 assert(!bs->dirty_bitmap);
2971
2972 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2973 }
2974
2975 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2976 {
2977 BlockDriver *drv = bs->drv;
2978 if (!drv)
2979 return -ENOMEDIUM;
2980 if (!drv->bdrv_get_info)
2981 return -ENOTSUP;
2982 memset(bdi, 0, sizeof(*bdi));
2983 return drv->bdrv_get_info(bs, bdi);
2984 }
2985
2986 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2987 int64_t pos, int size)
2988 {
2989 BlockDriver *drv = bs->drv;
2990 if (!drv)
2991 return -ENOMEDIUM;
2992 if (drv->bdrv_save_vmstate)
2993 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2994 if (bs->file)
2995 return bdrv_save_vmstate(bs->file, buf, pos, size);
2996 return -ENOTSUP;
2997 }
2998
2999 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3000 int64_t pos, int size)
3001 {
3002 BlockDriver *drv = bs->drv;
3003 if (!drv)
3004 return -ENOMEDIUM;
3005 if (drv->bdrv_load_vmstate)
3006 return drv->bdrv_load_vmstate(bs, buf, pos, size);
3007 if (bs->file)
3008 return bdrv_load_vmstate(bs->file, buf, pos, size);
3009 return -ENOTSUP;
3010 }
3011
3012 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3013 {
3014 BlockDriver *drv = bs->drv;
3015
3016 if (!drv || !drv->bdrv_debug_event) {
3017 return;
3018 }
3019
3020 drv->bdrv_debug_event(bs, event);
3021
3022 }
3023
3024 /**************************************************************/
3025 /* handling of snapshots */
3026
3027 int bdrv_can_snapshot(BlockDriverState *bs)
3028 {
3029 BlockDriver *drv = bs->drv;
3030 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3031 return 0;
3032 }
3033
3034 if (!drv->bdrv_snapshot_create) {
3035 if (bs->file != NULL) {
3036 return bdrv_can_snapshot(bs->file);
3037 }
3038 return 0;
3039 }
3040
3041 return 1;
3042 }
3043
3044 int bdrv_is_snapshot(BlockDriverState *bs)
3045 {
3046 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3047 }
3048
3049 BlockDriverState *bdrv_snapshots(void)
3050 {
3051 BlockDriverState *bs;
3052
3053 if (bs_snapshots) {
3054 return bs_snapshots;
3055 }
3056
3057 bs = NULL;
3058 while ((bs = bdrv_next(bs))) {
3059 if (bdrv_can_snapshot(bs)) {
3060 bs_snapshots = bs;
3061 return bs;
3062 }
3063 }
3064 return NULL;
3065 }
3066
3067 int bdrv_snapshot_create(BlockDriverState *bs,
3068 QEMUSnapshotInfo *sn_info)
3069 {
3070 BlockDriver *drv = bs->drv;
3071 if (!drv)
3072 return -ENOMEDIUM;
3073 if (drv->bdrv_snapshot_create)
3074 return drv->bdrv_snapshot_create(bs, sn_info);
3075 if (bs->file)
3076 return bdrv_snapshot_create(bs->file, sn_info);
3077 return -ENOTSUP;
3078 }
3079
3080 int bdrv_snapshot_goto(BlockDriverState *bs,
3081 const char *snapshot_id)
3082 {
3083 BlockDriver *drv = bs->drv;
3084 int ret, open_ret;
3085
3086 if (!drv)
3087 return -ENOMEDIUM;
3088 if (drv->bdrv_snapshot_goto)
3089 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3090
3091 if (bs->file) {
3092 drv->bdrv_close(bs);
3093 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3094 open_ret = drv->bdrv_open(bs, bs->open_flags);
3095 if (open_ret < 0) {
3096 bdrv_delete(bs->file);
3097 bs->drv = NULL;
3098 return open_ret;
3099 }
3100 return ret;
3101 }
3102
3103 return -ENOTSUP;
3104 }
3105
3106 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3107 {
3108 BlockDriver *drv = bs->drv;
3109 if (!drv)
3110 return -ENOMEDIUM;
3111 if (drv->bdrv_snapshot_delete)
3112 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3113 if (bs->file)
3114 return bdrv_snapshot_delete(bs->file, snapshot_id);
3115 return -ENOTSUP;
3116 }
3117
3118 int bdrv_snapshot_list(BlockDriverState *bs,
3119 QEMUSnapshotInfo **psn_info)
3120 {
3121 BlockDriver *drv = bs->drv;
3122 if (!drv)
3123 return -ENOMEDIUM;
3124 if (drv->bdrv_snapshot_list)
3125 return drv->bdrv_snapshot_list(bs, psn_info);
3126 if (bs->file)
3127 return bdrv_snapshot_list(bs->file, psn_info);
3128 return -ENOTSUP;
3129 }
3130
3131 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3132 const char *snapshot_name)
3133 {
3134 BlockDriver *drv = bs->drv;
3135 if (!drv) {
3136 return -ENOMEDIUM;
3137 }
3138 if (!bs->read_only) {
3139 return -EINVAL;
3140 }
3141 if (drv->bdrv_snapshot_load_tmp) {
3142 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3143 }
3144 return -ENOTSUP;
3145 }
3146
3147 /* backing_file can either be relative, or absolute, or a protocol. If it is
3148 * relative, it must be relative to the chain. So, passing in bs->filename
3149 * from a BDS as backing_file should not be done, as that may be relative to
3150 * the CWD rather than the chain. */
3151 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3152 const char *backing_file)
3153 {
3154 char *filename_full = NULL;
3155 char *backing_file_full = NULL;
3156 char *filename_tmp = NULL;
3157 int is_protocol = 0;
3158 BlockDriverState *curr_bs = NULL;
3159 BlockDriverState *retval = NULL;
3160
3161 if (!bs || !bs->drv || !backing_file) {
3162 return NULL;
3163 }
3164
3165 filename_full = g_malloc(PATH_MAX);
3166 backing_file_full = g_malloc(PATH_MAX);
3167 filename_tmp = g_malloc(PATH_MAX);
3168
3169 is_protocol = path_has_protocol(backing_file);
3170
3171 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3172
3173 /* If either of the filename paths is actually a protocol, then
3174 * compare unmodified paths; otherwise make paths relative */
3175 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3176 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3177 retval = curr_bs->backing_hd;
3178 break;
3179 }
3180 } else {
3181 /* If not an absolute filename path, make it relative to the current
3182 * image's filename path */
3183 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3184 backing_file);
3185
3186 /* We are going to compare absolute pathnames */
3187 if (!realpath(filename_tmp, filename_full)) {
3188 continue;
3189 }
3190
3191 /* We need to make sure the backing filename we are comparing against
3192 * is relative to the current image filename (or absolute) */
3193 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3194 curr_bs->backing_file);
3195
3196 if (!realpath(filename_tmp, backing_file_full)) {
3197 continue;
3198 }
3199
3200 if (strcmp(backing_file_full, filename_full) == 0) {
3201 retval = curr_bs->backing_hd;
3202 break;
3203 }
3204 }
3205 }
3206
3207 g_free(filename_full);
3208 g_free(backing_file_full);
3209 g_free(filename_tmp);
3210 return retval;
3211 }
3212
3213 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3214 {
3215 if (!bs->drv) {
3216 return 0;
3217 }
3218
3219 if (!bs->backing_hd) {
3220 return 0;
3221 }
3222
3223 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3224 }
3225
3226 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3227 {
3228 BlockDriverState *curr_bs = NULL;
3229
3230 if (!bs) {
3231 return NULL;
3232 }
3233
3234 curr_bs = bs;
3235
3236 while (curr_bs->backing_hd) {
3237 curr_bs = curr_bs->backing_hd;
3238 }
3239 return curr_bs;
3240 }
3241
3242 #define NB_SUFFIXES 4
3243
3244 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3245 {
3246 static const char suffixes[NB_SUFFIXES] = "KMGT";
3247 int64_t base;
3248 int i;
3249
3250 if (size <= 999) {
3251 snprintf(buf, buf_size, "%" PRId64, size);
3252 } else {
3253 base = 1024;
3254 for(i = 0; i < NB_SUFFIXES; i++) {
3255 if (size < (10 * base)) {
3256 snprintf(buf, buf_size, "%0.1f%c",
3257 (double)size / base,
3258 suffixes[i]);
3259 break;
3260 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3261 snprintf(buf, buf_size, "%" PRId64 "%c",
3262 ((size + (base >> 1)) / base),
3263 suffixes[i]);
3264 break;
3265 }
3266 base = base * 1024;
3267 }
3268 }
3269 return buf;
3270 }
3271
3272 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3273 {
3274 char buf1[128], date_buf[128], clock_buf[128];
3275 #ifdef _WIN32
3276 struct tm *ptm;
3277 #else
3278 struct tm tm;
3279 #endif
3280 time_t ti;
3281 int64_t secs;
3282
3283 if (!sn) {
3284 snprintf(buf, buf_size,
3285 "%-10s%-20s%7s%20s%15s",
3286 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3287 } else {
3288 ti = sn->date_sec;
3289 #ifdef _WIN32
3290 ptm = localtime(&ti);
3291 strftime(date_buf, sizeof(date_buf),
3292 "%Y-%m-%d %H:%M:%S", ptm);
3293 #else
3294 localtime_r(&ti, &tm);
3295 strftime(date_buf, sizeof(date_buf),
3296 "%Y-%m-%d %H:%M:%S", &tm);
3297 #endif
3298 secs = sn->vm_clock_nsec / 1000000000;
3299 snprintf(clock_buf, sizeof(clock_buf),
3300 "%02d:%02d:%02d.%03d",
3301 (int)(secs / 3600),
3302 (int)((secs / 60) % 60),
3303 (int)(secs % 60),
3304 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3305 snprintf(buf, buf_size,
3306 "%-10s%-20s%7s%20s%15s",
3307 sn->id_str, sn->name,
3308 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3309 date_buf,
3310 clock_buf);
3311 }
3312 return buf;
3313 }
3314
3315 /**************************************************************/
3316 /* async I/Os */
3317
3318 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3319 QEMUIOVector *qiov, int nb_sectors,
3320 BlockDriverCompletionFunc *cb, void *opaque)
3321 {
3322 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3323
3324 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3325 cb, opaque, false);
3326 }
3327
3328 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3329 QEMUIOVector *qiov, int nb_sectors,
3330 BlockDriverCompletionFunc *cb, void *opaque)
3331 {
3332 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3333
3334 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3335 cb, opaque, true);
3336 }
3337
3338
3339 typedef struct MultiwriteCB {
3340 int error;
3341 int num_requests;
3342 int num_callbacks;
3343 struct {
3344 BlockDriverCompletionFunc *cb;
3345 void *opaque;
3346 QEMUIOVector *free_qiov;
3347 } callbacks[];
3348 } MultiwriteCB;
3349
3350 static void multiwrite_user_cb(MultiwriteCB *mcb)
3351 {
3352 int i;
3353
3354 for (i = 0; i < mcb->num_callbacks; i++) {
3355 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3356 if (mcb->callbacks[i].free_qiov) {
3357 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3358 }
3359 g_free(mcb->callbacks[i].free_qiov);
3360 }
3361 }
3362
3363 static void multiwrite_cb(void *opaque, int ret)
3364 {
3365 MultiwriteCB *mcb = opaque;
3366
3367 trace_multiwrite_cb(mcb, ret);
3368
3369 if (ret < 0 && !mcb->error) {
3370 mcb->error = ret;
3371 }
3372
3373 mcb->num_requests--;
3374 if (mcb->num_requests == 0) {
3375 multiwrite_user_cb(mcb);
3376 g_free(mcb);
3377 }
3378 }
3379
3380 static int multiwrite_req_compare(const void *a, const void *b)
3381 {
3382 const BlockRequest *req1 = a, *req2 = b;
3383
3384 /*
3385 * Note that we can't simply subtract req2->sector from req1->sector
3386 * here as that could overflow the return value.
3387 */
3388 if (req1->sector > req2->sector) {
3389 return 1;
3390 } else if (req1->sector < req2->sector) {
3391 return -1;
3392 } else {
3393 return 0;
3394 }
3395 }
3396
3397 /*
3398 * Takes a bunch of requests and tries to merge them. Returns the number of
3399 * requests that remain after merging.
3400 */
3401 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3402 int num_reqs, MultiwriteCB *mcb)
3403 {
3404 int i, outidx;
3405
3406 // Sort requests by start sector
3407 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3408
3409 // Check if adjacent requests touch the same clusters. If so, combine them,
3410 // filling up gaps with zero sectors.
3411 outidx = 0;
3412 for (i = 1; i < num_reqs; i++) {
3413 int merge = 0;
3414 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3415
3416 // Handle exactly sequential writes and overlapping writes.
3417 if (reqs[i].sector <= oldreq_last) {
3418 merge = 1;
3419 }
3420
3421 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3422 merge = 0;
3423 }
3424
3425 if (merge) {
3426 size_t size;
3427 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3428 qemu_iovec_init(qiov,
3429 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3430
3431 // Add the first request to the merged one. If the requests are
3432 // overlapping, drop the last sectors of the first request.
3433 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3434 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3435
3436 // We should need to add any zeros between the two requests
3437 assert (reqs[i].sector <= oldreq_last);
3438
3439 // Add the second request
3440 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3441
3442 reqs[outidx].nb_sectors = qiov->size >> 9;
3443 reqs[outidx].qiov = qiov;
3444
3445 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3446 } else {
3447 outidx++;
3448 reqs[outidx].sector = reqs[i].sector;
3449 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3450 reqs[outidx].qiov = reqs[i].qiov;
3451 }
3452 }
3453
3454 return outidx + 1;
3455 }
3456
3457 /*
3458 * Submit multiple AIO write requests at once.
3459 *
3460 * On success, the function returns 0 and all requests in the reqs array have
3461 * been submitted. In error case this function returns -1, and any of the
3462 * requests may or may not be submitted yet. In particular, this means that the
3463 * callback will be called for some of the requests, for others it won't. The
3464 * caller must check the error field of the BlockRequest to wait for the right
3465 * callbacks (if error != 0, no callback will be called).
3466 *
3467 * The implementation may modify the contents of the reqs array, e.g. to merge
3468 * requests. However, the fields opaque and error are left unmodified as they
3469 * are used to signal failure for a single request to the caller.
3470 */
3471 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3472 {
3473 MultiwriteCB *mcb;
3474 int i;
3475
3476 /* don't submit writes if we don't have a medium */
3477 if (bs->drv == NULL) {
3478 for (i = 0; i < num_reqs; i++) {
3479 reqs[i].error = -ENOMEDIUM;
3480 }
3481 return -1;
3482 }
3483
3484 if (num_reqs == 0) {
3485 return 0;
3486 }
3487
3488 // Create MultiwriteCB structure
3489 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3490 mcb->num_requests = 0;
3491 mcb->num_callbacks = num_reqs;
3492
3493 for (i = 0; i < num_reqs; i++) {
3494 mcb->callbacks[i].cb = reqs[i].cb;
3495 mcb->callbacks[i].opaque = reqs[i].opaque;
3496 }
3497
3498 // Check for mergable requests
3499 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3500
3501 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3502
3503 /* Run the aio requests. */
3504 mcb->num_requests = num_reqs;
3505 for (i = 0; i < num_reqs; i++) {
3506 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3507 reqs[i].nb_sectors, multiwrite_cb, mcb);
3508 }
3509
3510 return 0;
3511 }
3512
3513 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3514 {
3515 acb->pool->cancel(acb);
3516 }
3517
3518 /* block I/O throttling */
3519 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3520 bool is_write, double elapsed_time, uint64_t *wait)
3521 {
3522 uint64_t bps_limit = 0;
3523 double bytes_limit, bytes_base, bytes_res;
3524 double slice_time, wait_time;
3525
3526 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3527 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3528 } else if (bs->io_limits.bps[is_write]) {
3529 bps_limit = bs->io_limits.bps[is_write];
3530 } else {
3531 if (wait) {
3532 *wait = 0;
3533 }
3534
3535 return false;
3536 }
3537
3538 slice_time = bs->slice_end - bs->slice_start;
3539 slice_time /= (NANOSECONDS_PER_SECOND);
3540 bytes_limit = bps_limit * slice_time;
3541 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3542 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3543 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3544 }
3545
3546 /* bytes_base: the bytes of data which have been read/written; and
3547 * it is obtained from the history statistic info.
3548 * bytes_res: the remaining bytes of data which need to be read/written.
3549 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3550 * the total time for completing reading/writting all data.
3551 */
3552 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3553
3554 if (bytes_base + bytes_res <= bytes_limit) {
3555 if (wait) {
3556 *wait = 0;
3557 }
3558
3559 return false;
3560 }
3561
3562 /* Calc approx time to dispatch */
3563 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3564
3565 /* When the I/O rate at runtime exceeds the limits,
3566 * bs->slice_end need to be extended in order that the current statistic
3567 * info can be kept until the timer fire, so it is increased and tuned
3568 * based on the result of experiment.
3569 */
3570 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3571 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3572 if (wait) {
3573 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3574 }
3575
3576 return true;
3577 }
3578
3579 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3580 double elapsed_time, uint64_t *wait)
3581 {
3582 uint64_t iops_limit = 0;
3583 double ios_limit, ios_base;
3584 double slice_time, wait_time;
3585
3586 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3587 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3588 } else if (bs->io_limits.iops[is_write]) {
3589 iops_limit = bs->io_limits.iops[is_write];
3590 } else {
3591 if (wait) {
3592 *wait = 0;
3593 }
3594
3595 return false;
3596 }
3597
3598 slice_time = bs->slice_end - bs->slice_start;
3599 slice_time /= (NANOSECONDS_PER_SECOND);
3600 ios_limit = iops_limit * slice_time;
3601 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3602 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3603 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3604 }
3605
3606 if (ios_base + 1 <= ios_limit) {
3607 if (wait) {
3608 *wait = 0;
3609 }
3610
3611 return false;
3612 }
3613
3614 /* Calc approx time to dispatch */
3615 wait_time = (ios_base + 1) / iops_limit;
3616 if (wait_time > elapsed_time) {
3617 wait_time = wait_time - elapsed_time;
3618 } else {
3619 wait_time = 0;
3620 }
3621
3622 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3623 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3624 if (wait) {
3625 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3626 }
3627
3628 return true;
3629 }
3630
3631 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3632 bool is_write, int64_t *wait)
3633 {
3634 int64_t now, max_wait;
3635 uint64_t bps_wait = 0, iops_wait = 0;
3636 double elapsed_time;
3637 int bps_ret, iops_ret;
3638
3639 now = qemu_get_clock_ns(vm_clock);
3640 if ((bs->slice_start < now)
3641 && (bs->slice_end > now)) {
3642 bs->slice_end = now + bs->slice_time;
3643 } else {
3644 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3645 bs->slice_start = now;
3646 bs->slice_end = now + bs->slice_time;
3647
3648 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3649 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3650
3651 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3652 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3653 }
3654
3655 elapsed_time = now - bs->slice_start;
3656 elapsed_time /= (NANOSECONDS_PER_SECOND);
3657
3658 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3659 is_write, elapsed_time, &bps_wait);
3660 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3661 elapsed_time, &iops_wait);
3662 if (bps_ret || iops_ret) {
3663 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3664 if (wait) {
3665 *wait = max_wait;
3666 }
3667
3668 now = qemu_get_clock_ns(vm_clock);
3669 if (bs->slice_end < now + max_wait) {
3670 bs->slice_end = now + max_wait;
3671 }
3672
3673 return true;
3674 }
3675
3676 if (wait) {
3677 *wait = 0;
3678 }
3679
3680 return false;
3681 }
3682
3683 /**************************************************************/
3684 /* async block device emulation */
3685
3686 typedef struct BlockDriverAIOCBSync {
3687 BlockDriverAIOCB common;
3688 QEMUBH *bh;
3689 int ret;
3690 /* vector translation state */
3691 QEMUIOVector *qiov;
3692 uint8_t *bounce;
3693 int is_write;
3694 } BlockDriverAIOCBSync;
3695
3696 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3697 {
3698 BlockDriverAIOCBSync *acb =
3699 container_of(blockacb, BlockDriverAIOCBSync, common);
3700 qemu_bh_delete(acb->bh);
3701 acb->bh = NULL;
3702 qemu_aio_release(acb);
3703 }
3704
3705 static AIOPool bdrv_em_aio_pool = {
3706 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3707 .cancel = bdrv_aio_cancel_em,
3708 };
3709
3710 static void bdrv_aio_bh_cb(void *opaque)
3711 {
3712 BlockDriverAIOCBSync *acb = opaque;
3713
3714 if (!acb->is_write)
3715 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3716 qemu_vfree(acb->bounce);
3717 acb->common.cb(acb->common.opaque, acb->ret);
3718 qemu_bh_delete(acb->bh);
3719 acb->bh = NULL;
3720 qemu_aio_release(acb);
3721 }
3722
3723 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3724 int64_t sector_num,
3725 QEMUIOVector *qiov,
3726 int nb_sectors,
3727 BlockDriverCompletionFunc *cb,
3728 void *opaque,
3729 int is_write)
3730
3731 {
3732 BlockDriverAIOCBSync *acb;
3733
3734 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3735 acb->is_write = is_write;
3736 acb->qiov = qiov;
3737 acb->bounce = qemu_blockalign(bs, qiov->size);
3738 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3739
3740 if (is_write) {
3741 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3742 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3743 } else {
3744 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3745 }
3746
3747 qemu_bh_schedule(acb->bh);
3748
3749 return &acb->common;
3750 }
3751
3752 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3753 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3754 BlockDriverCompletionFunc *cb, void *opaque)
3755 {
3756 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3757 }
3758
3759 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3760 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3761 BlockDriverCompletionFunc *cb, void *opaque)
3762 {
3763 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3764 }
3765
3766
3767 typedef struct BlockDriverAIOCBCoroutine {
3768 BlockDriverAIOCB common;
3769 BlockRequest req;
3770 bool is_write;
3771 QEMUBH* bh;
3772 } BlockDriverAIOCBCoroutine;
3773
3774 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3775 {
3776 qemu_aio_flush();
3777 }
3778
3779 static AIOPool bdrv_em_co_aio_pool = {
3780 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3781 .cancel = bdrv_aio_co_cancel_em,
3782 };
3783
3784 static void bdrv_co_em_bh(void *opaque)
3785 {
3786 BlockDriverAIOCBCoroutine *acb = opaque;
3787
3788 acb->common.cb(acb->common.opaque, acb->req.error);
3789 qemu_bh_delete(acb->bh);
3790 qemu_aio_release(acb);
3791 }
3792
3793 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3794 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3795 {
3796 BlockDriverAIOCBCoroutine *acb = opaque;
3797 BlockDriverState *bs = acb->common.bs;
3798
3799 if (!acb->is_write) {
3800 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3801 acb->req.nb_sectors, acb->req.qiov, 0);
3802 } else {
3803 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3804 acb->req.nb_sectors, acb->req.qiov, 0);
3805 }
3806
3807 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3808 qemu_bh_schedule(acb->bh);
3809 }
3810
3811 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3812 int64_t sector_num,
3813 QEMUIOVector *qiov,
3814 int nb_sectors,
3815 BlockDriverCompletionFunc *cb,
3816 void *opaque,
3817 bool is_write)
3818 {
3819 Coroutine *co;
3820 BlockDriverAIOCBCoroutine *acb;
3821
3822 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3823 acb->req.sector = sector_num;
3824 acb->req.nb_sectors = nb_sectors;
3825 acb->req.qiov = qiov;
3826 acb->is_write = is_write;
3827
3828 co = qemu_coroutine_create(bdrv_co_do_rw);
3829 qemu_coroutine_enter(co, acb);
3830
3831 return &acb->common;
3832 }
3833
3834 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3835 {
3836 BlockDriverAIOCBCoroutine *acb = opaque;
3837 BlockDriverState *bs = acb->common.bs;
3838
3839 acb->req.error = bdrv_co_flush(bs);
3840 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3841 qemu_bh_schedule(acb->bh);
3842 }
3843
3844 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3845 BlockDriverCompletionFunc *cb, void *opaque)
3846 {
3847 trace_bdrv_aio_flush(bs, opaque);
3848
3849 Coroutine *co;
3850 BlockDriverAIOCBCoroutine *acb;
3851
3852 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3853 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3854 qemu_coroutine_enter(co, acb);
3855
3856 return &acb->common;
3857 }
3858
3859 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3860 {
3861 BlockDriverAIOCBCoroutine *acb = opaque;
3862 BlockDriverState *bs = acb->common.bs;
3863
3864 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3865 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3866 qemu_bh_schedule(acb->bh);
3867 }
3868
3869 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3870 int64_t sector_num, int nb_sectors,
3871 BlockDriverCompletionFunc *cb, void *opaque)
3872 {
3873 Coroutine *co;
3874 BlockDriverAIOCBCoroutine *acb;
3875
3876 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3877
3878 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3879 acb->req.sector = sector_num;
3880 acb->req.nb_sectors = nb_sectors;
3881 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3882 qemu_coroutine_enter(co, acb);
3883
3884 return &acb->common;
3885 }
3886
3887 void bdrv_init(void)
3888 {
3889 module_call_init(MODULE_INIT_BLOCK);
3890 }
3891
3892 void bdrv_init_with_whitelist(void)
3893 {
3894 use_bdrv_whitelist = 1;
3895 bdrv_init();
3896 }
3897
3898 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3899 BlockDriverCompletionFunc *cb, void *opaque)
3900 {
3901 BlockDriverAIOCB *acb;
3902
3903 if (pool->free_aiocb) {
3904 acb = pool->free_aiocb;
3905 pool->free_aiocb = acb->next;
3906 } else {
3907 acb = g_malloc0(pool->aiocb_size);
3908 acb->pool = pool;
3909 }
3910 acb->bs = bs;
3911 acb->cb = cb;
3912 acb->opaque = opaque;
3913 return acb;
3914 }
3915
3916 void qemu_aio_release(void *p)
3917 {
3918 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3919 AIOPool *pool = acb->pool;
3920 acb->next = pool->free_aiocb;
3921 pool->free_aiocb = acb;
3922 }
3923
3924 /**************************************************************/
3925 /* Coroutine block device emulation */
3926
3927 typedef struct CoroutineIOCompletion {
3928 Coroutine *coroutine;
3929 int ret;
3930 } CoroutineIOCompletion;
3931
3932 static void bdrv_co_io_em_complete(void *opaque, int ret)
3933 {
3934 CoroutineIOCompletion *co = opaque;
3935
3936 co->ret = ret;
3937 qemu_coroutine_enter(co->coroutine, NULL);
3938 }
3939
3940 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3941 int nb_sectors, QEMUIOVector *iov,
3942 bool is_write)
3943 {
3944 CoroutineIOCompletion co = {
3945 .coroutine = qemu_coroutine_self(),
3946 };
3947 BlockDriverAIOCB *acb;
3948
3949 if (is_write) {
3950 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3951 bdrv_co_io_em_complete, &co);
3952 } else {
3953 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3954 bdrv_co_io_em_complete, &co);
3955 }
3956
3957 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3958 if (!acb) {
3959 return -EIO;
3960 }
3961 qemu_coroutine_yield();
3962
3963 return co.ret;
3964 }
3965
3966 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3967 int64_t sector_num, int nb_sectors,
3968 QEMUIOVector *iov)
3969 {
3970 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3971 }
3972
3973 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3974 int64_t sector_num, int nb_sectors,
3975 QEMUIOVector *iov)
3976 {
3977 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3978 }
3979
3980 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3981 {
3982 RwCo *rwco = opaque;
3983
3984 rwco->ret = bdrv_co_flush(rwco->bs);
3985 }
3986
3987 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3988 {
3989 int ret;
3990
3991 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3992 return 0;
3993 }
3994
3995 /* Write back cached data to the OS even with cache=unsafe */
3996 if (bs->drv->bdrv_co_flush_to_os) {
3997 ret = bs->drv->bdrv_co_flush_to_os(bs);
3998 if (ret < 0) {
3999 return ret;
4000 }
4001 }
4002
4003 /* But don't actually force it to the disk with cache=unsafe */
4004 if (bs->open_flags & BDRV_O_NO_FLUSH) {
4005 goto flush_parent;
4006 }
4007
4008 if (bs->drv->bdrv_co_flush_to_disk) {
4009 ret = bs->drv->bdrv_co_flush_to_disk(bs);
4010 } else if (bs->drv->bdrv_aio_flush) {
4011 BlockDriverAIOCB *acb;
4012 CoroutineIOCompletion co = {
4013 .coroutine = qemu_coroutine_self(),
4014 };
4015
4016 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4017 if (acb == NULL) {
4018 ret = -EIO;
4019 } else {
4020 qemu_coroutine_yield();
4021 ret = co.ret;
4022 }
4023 } else {
4024 /*
4025 * Some block drivers always operate in either writethrough or unsafe
4026 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4027 * know how the server works (because the behaviour is hardcoded or
4028 * depends on server-side configuration), so we can't ensure that
4029 * everything is safe on disk. Returning an error doesn't work because
4030 * that would break guests even if the server operates in writethrough
4031 * mode.
4032 *
4033 * Let's hope the user knows what he's doing.
4034 */
4035 ret = 0;
4036 }
4037 if (ret < 0) {
4038 return ret;
4039 }
4040
4041 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4042 * in the case of cache=unsafe, so there are no useless flushes.
4043 */
4044 flush_parent:
4045 return bdrv_co_flush(bs->file);
4046 }
4047
4048 void bdrv_invalidate_cache(BlockDriverState *bs)
4049 {
4050 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4051 bs->drv->bdrv_invalidate_cache(bs);
4052 }
4053 }
4054
4055 void bdrv_invalidate_cache_all(void)
4056 {
4057 BlockDriverState *bs;
4058
4059 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4060 bdrv_invalidate_cache(bs);
4061 }
4062 }
4063
4064 void bdrv_clear_incoming_migration_all(void)
4065 {
4066 BlockDriverState *bs;
4067
4068 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4069 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4070 }
4071 }
4072
4073 int bdrv_flush(BlockDriverState *bs)
4074 {
4075 Coroutine *co;
4076 RwCo rwco = {
4077 .bs = bs,
4078 .ret = NOT_DONE,
4079 };
4080
4081 if (qemu_in_coroutine()) {
4082 /* Fast-path if already in coroutine context */
4083 bdrv_flush_co_entry(&rwco);
4084 } else {
4085 co = qemu_coroutine_create(bdrv_flush_co_entry);
4086 qemu_coroutine_enter(co, &rwco);
4087 while (rwco.ret == NOT_DONE) {
4088 qemu_aio_wait();
4089 }
4090 }
4091
4092 return rwco.ret;
4093 }
4094
4095 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4096 {
4097 RwCo *rwco = opaque;
4098
4099 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4100 }
4101
4102 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4103 int nb_sectors)
4104 {
4105 if (!bs->drv) {
4106 return -ENOMEDIUM;
4107 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4108 return -EIO;
4109 } else if (bs->read_only) {
4110 return -EROFS;
4111 } else if (bs->drv->bdrv_co_discard) {
4112 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4113 } else if (bs->drv->bdrv_aio_discard) {
4114 BlockDriverAIOCB *acb;
4115 CoroutineIOCompletion co = {
4116 .coroutine = qemu_coroutine_self(),
4117 };
4118
4119 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4120 bdrv_co_io_em_complete, &co);
4121 if (acb == NULL) {
4122 return -EIO;
4123 } else {
4124 qemu_coroutine_yield();
4125 return co.ret;
4126 }
4127 } else {
4128 return 0;
4129 }
4130 }
4131
4132 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4133 {
4134 Coroutine *co;
4135 RwCo rwco = {
4136 .bs = bs,
4137 .sector_num = sector_num,
4138 .nb_sectors = nb_sectors,
4139 .ret = NOT_DONE,
4140 };
4141
4142 if (qemu_in_coroutine()) {
4143 /* Fast-path if already in coroutine context */
4144 bdrv_discard_co_entry(&rwco);
4145 } else {
4146 co = qemu_coroutine_create(bdrv_discard_co_entry);
4147 qemu_coroutine_enter(co, &rwco);
4148 while (rwco.ret == NOT_DONE) {
4149 qemu_aio_wait();
4150 }
4151 }
4152
4153 return rwco.ret;
4154 }
4155
4156 /**************************************************************/
4157 /* removable device support */
4158
4159 /**
4160 * Return TRUE if the media is present
4161 */
4162 int bdrv_is_inserted(BlockDriverState *bs)
4163 {
4164 BlockDriver *drv = bs->drv;
4165
4166 if (!drv)
4167 return 0;
4168 if (!drv->bdrv_is_inserted)
4169 return 1;
4170 return drv->bdrv_is_inserted(bs);
4171 }
4172
4173 /**
4174 * Return whether the media changed since the last call to this
4175 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4176 */
4177 int bdrv_media_changed(BlockDriverState *bs)
4178 {
4179 BlockDriver *drv = bs->drv;
4180
4181 if (drv && drv->bdrv_media_changed) {
4182 return drv->bdrv_media_changed(bs);
4183 }
4184 return -ENOTSUP;
4185 }
4186
4187 /**
4188 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4189 */
4190 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4191 {
4192 BlockDriver *drv = bs->drv;
4193
4194 if (drv && drv->bdrv_eject) {
4195 drv->bdrv_eject(bs, eject_flag);
4196 }
4197
4198 if (bs->device_name[0] != '\0') {
4199 bdrv_emit_qmp_eject_event(bs, eject_flag);
4200 }
4201 }
4202
4203 /**
4204 * Lock or unlock the media (if it is locked, the user won't be able
4205 * to eject it manually).
4206 */
4207 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4208 {
4209 BlockDriver *drv = bs->drv;
4210
4211 trace_bdrv_lock_medium(bs, locked);
4212
4213 if (drv && drv->bdrv_lock_medium) {
4214 drv->bdrv_lock_medium(bs, locked);
4215 }
4216 }
4217
4218 /* needed for generic scsi interface */
4219
4220 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4221 {
4222 BlockDriver *drv = bs->drv;
4223
4224 if (drv && drv->bdrv_ioctl)
4225 return drv->bdrv_ioctl(bs, req, buf);
4226 return -ENOTSUP;
4227 }
4228
4229 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4230 unsigned long int req, void *buf,
4231 BlockDriverCompletionFunc *cb, void *opaque)
4232 {
4233 BlockDriver *drv = bs->drv;
4234
4235 if (drv && drv->bdrv_aio_ioctl)
4236 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4237 return NULL;
4238 }
4239
4240 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4241 {
4242 bs->buffer_alignment = align;
4243 }
4244
4245 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4246 {
4247 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4248 }
4249
4250 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4251 {
4252 int64_t bitmap_size;
4253
4254 bs->dirty_count = 0;
4255 if (enable) {
4256 if (!bs->dirty_bitmap) {
4257 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4258 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4259 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4260
4261 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4262 }
4263 } else {
4264 if (bs->dirty_bitmap) {
4265 g_free(bs->dirty_bitmap);
4266 bs->dirty_bitmap = NULL;
4267 }
4268 }
4269 }
4270
4271 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4272 {
4273 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4274
4275 if (bs->dirty_bitmap &&
4276 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4277 return !!(bs->dirty_bitmap[chunk / BITS_PER_LONG] &
4278 (1UL << (chunk % BITS_PER_LONG)));
4279 } else {
4280 return 0;
4281 }
4282 }
4283
4284 int64_t bdrv_get_next_dirty(BlockDriverState *bs, int64_t sector)
4285 {
4286 int64_t chunk;
4287 int bit, elem;
4288
4289 /* Avoid an infinite loop. */
4290 assert(bs->dirty_count > 0);
4291
4292 sector = (sector | (BDRV_SECTORS_PER_DIRTY_CHUNK - 1)) + 1;
4293 chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4294
4295 QEMU_BUILD_BUG_ON(sizeof(bs->dirty_bitmap[0]) * 8 != BITS_PER_LONG);
4296 elem = chunk / BITS_PER_LONG;
4297 bit = chunk % BITS_PER_LONG;
4298 for (;;) {
4299 if (sector >= bs->total_sectors) {
4300 sector = 0;
4301 bit = elem = 0;
4302 }
4303 if (bit == 0 && bs->dirty_bitmap[elem] == 0) {
4304 sector += BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4305 elem++;
4306 } else {
4307 if (bs->dirty_bitmap[elem] & (1UL << bit)) {
4308 return sector;
4309 }
4310 sector += BDRV_SECTORS_PER_DIRTY_CHUNK;
4311 if (++bit == BITS_PER_LONG) {
4312 bit = 0;
4313 elem++;
4314 }
4315 }
4316 }
4317 }
4318
4319 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4320 int nr_sectors)
4321 {
4322 set_dirty_bitmap(bs, cur_sector, nr_sectors, 1);
4323 }
4324
4325 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4326 int nr_sectors)
4327 {
4328 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4329 }
4330
4331 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4332 {
4333 return bs->dirty_count;
4334 }
4335
4336 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4337 {
4338 assert(bs->in_use != in_use);
4339 bs->in_use = in_use;
4340 }
4341
4342 int bdrv_in_use(BlockDriverState *bs)
4343 {
4344 return bs->in_use;
4345 }
4346
4347 void bdrv_iostatus_enable(BlockDriverState *bs)
4348 {
4349 bs->iostatus_enabled = true;
4350 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4351 }
4352
4353 /* The I/O status is only enabled if the drive explicitly
4354 * enables it _and_ the VM is configured to stop on errors */
4355 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4356 {
4357 return (bs->iostatus_enabled &&
4358 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4359 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4360 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4361 }
4362
4363 void bdrv_iostatus_disable(BlockDriverState *bs)
4364 {
4365 bs->iostatus_enabled = false;
4366 }
4367
4368 void bdrv_iostatus_reset(BlockDriverState *bs)
4369 {
4370 if (bdrv_iostatus_is_enabled(bs)) {
4371 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4372 }
4373 }
4374
4375 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4376 {
4377 assert(bdrv_iostatus_is_enabled(bs));
4378 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4379 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4380 BLOCK_DEVICE_IO_STATUS_FAILED;
4381 }
4382 }
4383
4384 void
4385 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4386 enum BlockAcctType type)
4387 {
4388 assert(type < BDRV_MAX_IOTYPE);
4389
4390 cookie->bytes = bytes;
4391 cookie->start_time_ns = get_clock();
4392 cookie->type = type;
4393 }
4394
4395 void
4396 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4397 {
4398 assert(cookie->type < BDRV_MAX_IOTYPE);
4399
4400 bs->nr_bytes[cookie->type] += cookie->bytes;
4401 bs->nr_ops[cookie->type]++;
4402 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4403 }
4404
4405 int bdrv_img_create(const char *filename, const char *fmt,
4406 const char *base_filename, const char *base_fmt,
4407 char *options, uint64_t img_size, int flags)
4408 {
4409 QEMUOptionParameter *param = NULL, *create_options = NULL;
4410 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4411 BlockDriverState *bs = NULL;
4412 BlockDriver *drv, *proto_drv;
4413 BlockDriver *backing_drv = NULL;
4414 int ret = 0;
4415
4416 /* Find driver and parse its options */
4417 drv = bdrv_find_format(fmt);
4418 if (!drv) {
4419 error_report("Unknown file format '%s'", fmt);
4420 ret = -EINVAL;
4421 goto out;
4422 }
4423
4424 proto_drv = bdrv_find_protocol(filename);
4425 if (!proto_drv) {
4426 error_report("Unknown protocol '%s'", filename);
4427 ret = -EINVAL;
4428 goto out;
4429 }
4430
4431 create_options = append_option_parameters(create_options,
4432 drv->create_options);
4433 create_options = append_option_parameters(create_options,
4434 proto_drv->create_options);
4435
4436 /* Create parameter list with default values */
4437 param = parse_option_parameters("", create_options, param);
4438
4439 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4440
4441 /* Parse -o options */
4442 if (options) {
4443 param = parse_option_parameters(options, create_options, param);
4444 if (param == NULL) {
4445 error_report("Invalid options for file format '%s'.", fmt);
4446 ret = -EINVAL;
4447 goto out;
4448 }
4449 }
4450
4451 if (base_filename) {
4452 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4453 base_filename)) {
4454 error_report("Backing file not supported for file format '%s'",
4455 fmt);
4456 ret = -EINVAL;
4457 goto out;
4458 }
4459 }
4460
4461 if (base_fmt) {
4462 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4463 error_report("Backing file format not supported for file "
4464 "format '%s'", fmt);
4465 ret = -EINVAL;
4466 goto out;
4467 }
4468 }
4469
4470 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4471 if (backing_file && backing_file->value.s) {
4472 if (!strcmp(filename, backing_file->value.s)) {
4473 error_report("Error: Trying to create an image with the "
4474 "same filename as the backing file");
4475 ret = -EINVAL;
4476 goto out;
4477 }
4478 }
4479
4480 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4481 if (backing_fmt && backing_fmt->value.s) {
4482 backing_drv = bdrv_find_format(backing_fmt->value.s);
4483 if (!backing_drv) {
4484 error_report("Unknown backing file format '%s'",
4485 backing_fmt->value.s);
4486 ret = -EINVAL;
4487 goto out;
4488 }
4489 }
4490
4491 // The size for the image must always be specified, with one exception:
4492 // If we are using a backing file, we can obtain the size from there
4493 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4494 if (size && size->value.n == -1) {
4495 if (backing_file && backing_file->value.s) {
4496 uint64_t size;
4497 char buf[32];
4498 int back_flags;
4499
4500 /* backing files always opened read-only */
4501 back_flags =
4502 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4503
4504 bs = bdrv_new("");
4505
4506 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4507 if (ret < 0) {
4508 error_report("Could not open '%s'", backing_file->value.s);
4509 goto out;
4510 }
4511 bdrv_get_geometry(bs, &size);
4512 size *= 512;
4513
4514 snprintf(buf, sizeof(buf), "%" PRId64, size);
4515 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4516 } else {
4517 error_report("Image creation needs a size parameter");
4518 ret = -EINVAL;
4519 goto out;
4520 }
4521 }
4522
4523 printf("Formatting '%s', fmt=%s ", filename, fmt);
4524 print_option_parameters(param);
4525 puts("");
4526
4527 ret = bdrv_create(drv, filename, param);
4528
4529 if (ret < 0) {
4530 if (ret == -ENOTSUP) {
4531 error_report("Formatting or formatting option not supported for "
4532 "file format '%s'", fmt);
4533 } else if (ret == -EFBIG) {
4534 error_report("The image size is too large for file format '%s'",
4535 fmt);
4536 } else {
4537 error_report("%s: error while creating %s: %s", filename, fmt,
4538 strerror(-ret));
4539 }
4540 }
4541
4542 out:
4543 free_option_parameters(create_options);
4544 free_option_parameters(param);
4545
4546 if (bs) {
4547 bdrv_delete(bs);
4548 }
4549
4550 return ret;
4551 }