]> git.proxmox.com Git - qemu.git/blob - block.c
Merge remote-tracking branch 'origin/master' into staging
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
84 int64_t sector_num, int nb_sectors);
85
86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
87 bool is_write, double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
89 double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
91 bool is_write, int64_t *wait);
92
93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
94 QTAILQ_HEAD_INITIALIZER(bdrv_states);
95
96 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
97 QLIST_HEAD_INITIALIZER(bdrv_drivers);
98
99 /* The device to use for VM snapshots */
100 static BlockDriverState *bs_snapshots;
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 bs->slice_time = 0;
141 memset(&bs->io_base, 0, sizeof(bs->io_base));
142 }
143
144 static void bdrv_block_timer(void *opaque)
145 {
146 BlockDriverState *bs = opaque;
147
148 qemu_co_queue_next(&bs->throttled_reqs);
149 }
150
151 void bdrv_io_limits_enable(BlockDriverState *bs)
152 {
153 qemu_co_queue_init(&bs->throttled_reqs);
154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
156 bs->slice_start = qemu_get_clock_ns(vm_clock);
157 bs->slice_end = bs->slice_start + bs->slice_time;
158 memset(&bs->io_base, 0, sizeof(bs->io_base));
159 bs->io_limits_enabled = true;
160 }
161
162 bool bdrv_io_limits_enabled(BlockDriverState *bs)
163 {
164 BlockIOLimit *io_limits = &bs->io_limits;
165 return io_limits->bps[BLOCK_IO_LIMIT_READ]
166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
168 || io_limits->iops[BLOCK_IO_LIMIT_READ]
169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
171 }
172
173 static void bdrv_io_limits_intercept(BlockDriverState *bs,
174 bool is_write, int nb_sectors)
175 {
176 int64_t wait_time = -1;
177
178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
179 qemu_co_queue_wait(&bs->throttled_reqs);
180 }
181
182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
183 * throttled requests will not be dequeued until the current request is
184 * allowed to be serviced. So if the current request still exceeds the
185 * limits, it will be inserted to the head. All requests followed it will
186 * be still in throttled_reqs queue.
187 */
188
189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
190 qemu_mod_timer(bs->block_timer,
191 wait_time + qemu_get_clock_ns(vm_clock));
192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
193 }
194
195 qemu_co_queue_next(&bs->throttled_reqs);
196 }
197
198 /* check if the path starts with "<protocol>:" */
199 static int path_has_protocol(const char *path)
200 {
201 const char *p;
202
203 #ifdef _WIN32
204 if (is_windows_drive(path) ||
205 is_windows_drive_prefix(path)) {
206 return 0;
207 }
208 p = path + strcspn(path, ":/\\");
209 #else
210 p = path + strcspn(path, ":/");
211 #endif
212
213 return *p == ':';
214 }
215
216 int path_is_absolute(const char *path)
217 {
218 #ifdef _WIN32
219 /* specific case for names like: "\\.\d:" */
220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
221 return 1;
222 }
223 return (*path == '/' || *path == '\\');
224 #else
225 return (*path == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
274 {
275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
276 pstrcpy(dest, sz, bs->backing_file);
277 } else {
278 path_combine(dest, sz, bs->filename, bs->backing_file);
279 }
280 }
281
282 void bdrv_register(BlockDriver *bdrv)
283 {
284 /* Block drivers without coroutine functions need emulation */
285 if (!bdrv->bdrv_co_readv) {
286 bdrv->bdrv_co_readv = bdrv_co_readv_em;
287 bdrv->bdrv_co_writev = bdrv_co_writev_em;
288
289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
290 * the block driver lacks aio we need to emulate that too.
291 */
292 if (!bdrv->bdrv_aio_readv) {
293 /* add AIO emulation layer */
294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
296 }
297 }
298
299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
300 }
301
302 /* create a new block device (by default it is empty) */
303 BlockDriverState *bdrv_new(const char *device_name)
304 {
305 BlockDriverState *bs;
306
307 bs = g_malloc0(sizeof(BlockDriverState));
308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
309 if (device_name[0] != '\0') {
310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
311 }
312 bdrv_iostatus_disable(bs);
313 return bs;
314 }
315
316 BlockDriver *bdrv_find_format(const char *format_name)
317 {
318 BlockDriver *drv1;
319 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
320 if (!strcmp(drv1->format_name, format_name)) {
321 return drv1;
322 }
323 }
324 return NULL;
325 }
326
327 static int bdrv_is_whitelisted(BlockDriver *drv)
328 {
329 static const char *whitelist[] = {
330 CONFIG_BDRV_WHITELIST
331 };
332 const char **p;
333
334 if (!whitelist[0])
335 return 1; /* no whitelist, anything goes */
336
337 for (p = whitelist; *p; p++) {
338 if (!strcmp(drv->format_name, *p)) {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
346 {
347 BlockDriver *drv = bdrv_find_format(format_name);
348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
349 }
350
351 typedef struct CreateCo {
352 BlockDriver *drv;
353 char *filename;
354 QEMUOptionParameter *options;
355 int ret;
356 } CreateCo;
357
358 static void coroutine_fn bdrv_create_co_entry(void *opaque)
359 {
360 CreateCo *cco = opaque;
361 assert(cco->drv);
362
363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
364 }
365
366 int bdrv_create(BlockDriver *drv, const char* filename,
367 QEMUOptionParameter *options)
368 {
369 int ret;
370
371 Coroutine *co;
372 CreateCo cco = {
373 .drv = drv,
374 .filename = g_strdup(filename),
375 .options = options,
376 .ret = NOT_DONE,
377 };
378
379 if (!drv->bdrv_create) {
380 return -ENOTSUP;
381 }
382
383 if (qemu_in_coroutine()) {
384 /* Fast-path if already in coroutine context */
385 bdrv_create_co_entry(&cco);
386 } else {
387 co = qemu_coroutine_create(bdrv_create_co_entry);
388 qemu_coroutine_enter(co, &cco);
389 while (cco.ret == NOT_DONE) {
390 qemu_aio_wait();
391 }
392 }
393
394 ret = cco.ret;
395 g_free(cco.filename);
396
397 return ret;
398 }
399
400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
401 {
402 BlockDriver *drv;
403
404 drv = bdrv_find_protocol(filename);
405 if (drv == NULL) {
406 return -ENOENT;
407 }
408
409 return bdrv_create(drv, filename, options);
410 }
411
412 /*
413 * Create a uniquely-named empty temporary file.
414 * Return 0 upon success, otherwise a negative errno value.
415 */
416 int get_tmp_filename(char *filename, int size)
417 {
418 #ifdef _WIN32
419 char temp_dir[MAX_PATH];
420 /* GetTempFileName requires that its output buffer (4th param)
421 have length MAX_PATH or greater. */
422 assert(size >= MAX_PATH);
423 return (GetTempPath(MAX_PATH, temp_dir)
424 && GetTempFileName(temp_dir, "qem", 0, filename)
425 ? 0 : -GetLastError());
426 #else
427 int fd;
428 const char *tmpdir;
429 tmpdir = getenv("TMPDIR");
430 if (!tmpdir)
431 tmpdir = "/tmp";
432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
433 return -EOVERFLOW;
434 }
435 fd = mkstemp(filename);
436 if (fd < 0) {
437 return -errno;
438 }
439 if (close(fd) != 0) {
440 unlink(filename);
441 return -errno;
442 }
443 return 0;
444 #endif
445 }
446
447 /*
448 * Detect host devices. By convention, /dev/cdrom[N] is always
449 * recognized as a host CDROM.
450 */
451 static BlockDriver *find_hdev_driver(const char *filename)
452 {
453 int score_max = 0, score;
454 BlockDriver *drv = NULL, *d;
455
456 QLIST_FOREACH(d, &bdrv_drivers, list) {
457 if (d->bdrv_probe_device) {
458 score = d->bdrv_probe_device(filename);
459 if (score > score_max) {
460 score_max = score;
461 drv = d;
462 }
463 }
464 }
465
466 return drv;
467 }
468
469 BlockDriver *bdrv_find_protocol(const char *filename)
470 {
471 BlockDriver *drv1;
472 char protocol[128];
473 int len;
474 const char *p;
475
476 /* TODO Drivers without bdrv_file_open must be specified explicitly */
477
478 /*
479 * XXX(hch): we really should not let host device detection
480 * override an explicit protocol specification, but moving this
481 * later breaks access to device names with colons in them.
482 * Thanks to the brain-dead persistent naming schemes on udev-
483 * based Linux systems those actually are quite common.
484 */
485 drv1 = find_hdev_driver(filename);
486 if (drv1) {
487 return drv1;
488 }
489
490 if (!path_has_protocol(filename)) {
491 return bdrv_find_format("file");
492 }
493 p = strchr(filename, ':');
494 assert(p != NULL);
495 len = p - filename;
496 if (len > sizeof(protocol) - 1)
497 len = sizeof(protocol) - 1;
498 memcpy(protocol, filename, len);
499 protocol[len] = '\0';
500 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
501 if (drv1->protocol_name &&
502 !strcmp(drv1->protocol_name, protocol)) {
503 return drv1;
504 }
505 }
506 return NULL;
507 }
508
509 static int find_image_format(const char *filename, BlockDriver **pdrv)
510 {
511 int ret, score, score_max;
512 BlockDriver *drv1, *drv;
513 uint8_t buf[2048];
514 BlockDriverState *bs;
515
516 ret = bdrv_file_open(&bs, filename, 0);
517 if (ret < 0) {
518 *pdrv = NULL;
519 return ret;
520 }
521
522 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
523 if (bs->sg || !bdrv_is_inserted(bs)) {
524 bdrv_delete(bs);
525 drv = bdrv_find_format("raw");
526 if (!drv) {
527 ret = -ENOENT;
528 }
529 *pdrv = drv;
530 return ret;
531 }
532
533 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
534 bdrv_delete(bs);
535 if (ret < 0) {
536 *pdrv = NULL;
537 return ret;
538 }
539
540 score_max = 0;
541 drv = NULL;
542 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
543 if (drv1->bdrv_probe) {
544 score = drv1->bdrv_probe(buf, ret, filename);
545 if (score > score_max) {
546 score_max = score;
547 drv = drv1;
548 }
549 }
550 }
551 if (!drv) {
552 ret = -ENOENT;
553 }
554 *pdrv = drv;
555 return ret;
556 }
557
558 /**
559 * Set the current 'total_sectors' value
560 */
561 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
562 {
563 BlockDriver *drv = bs->drv;
564
565 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
566 if (bs->sg)
567 return 0;
568
569 /* query actual device if possible, otherwise just trust the hint */
570 if (drv->bdrv_getlength) {
571 int64_t length = drv->bdrv_getlength(bs);
572 if (length < 0) {
573 return length;
574 }
575 hint = length >> BDRV_SECTOR_BITS;
576 }
577
578 bs->total_sectors = hint;
579 return 0;
580 }
581
582 /**
583 * Set open flags for a given cache mode
584 *
585 * Return 0 on success, -1 if the cache mode was invalid.
586 */
587 int bdrv_parse_cache_flags(const char *mode, int *flags)
588 {
589 *flags &= ~BDRV_O_CACHE_MASK;
590
591 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
592 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
593 } else if (!strcmp(mode, "directsync")) {
594 *flags |= BDRV_O_NOCACHE;
595 } else if (!strcmp(mode, "writeback")) {
596 *flags |= BDRV_O_CACHE_WB;
597 } else if (!strcmp(mode, "unsafe")) {
598 *flags |= BDRV_O_CACHE_WB;
599 *flags |= BDRV_O_NO_FLUSH;
600 } else if (!strcmp(mode, "writethrough")) {
601 /* this is the default */
602 } else {
603 return -1;
604 }
605
606 return 0;
607 }
608
609 /**
610 * The copy-on-read flag is actually a reference count so multiple users may
611 * use the feature without worrying about clobbering its previous state.
612 * Copy-on-read stays enabled until all users have called to disable it.
613 */
614 void bdrv_enable_copy_on_read(BlockDriverState *bs)
615 {
616 bs->copy_on_read++;
617 }
618
619 void bdrv_disable_copy_on_read(BlockDriverState *bs)
620 {
621 assert(bs->copy_on_read > 0);
622 bs->copy_on_read--;
623 }
624
625 /*
626 * Common part for opening disk images and files
627 */
628 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
629 int flags, BlockDriver *drv)
630 {
631 int ret, open_flags;
632
633 assert(drv != NULL);
634 assert(bs->file == NULL);
635
636 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
637
638 bs->open_flags = flags;
639 bs->buffer_alignment = 512;
640
641 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
642 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
643 bdrv_enable_copy_on_read(bs);
644 }
645
646 pstrcpy(bs->filename, sizeof(bs->filename), filename);
647
648 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
649 return -ENOTSUP;
650 }
651
652 bs->drv = drv;
653 bs->opaque = g_malloc0(drv->instance_size);
654
655 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
656 open_flags = flags | BDRV_O_CACHE_WB;
657
658 /*
659 * Clear flags that are internal to the block layer before opening the
660 * image.
661 */
662 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
663
664 /*
665 * Snapshots should be writable.
666 */
667 if (bs->is_temporary) {
668 open_flags |= BDRV_O_RDWR;
669 }
670
671 bs->read_only = !(open_flags & BDRV_O_RDWR);
672
673 /* Open the image, either directly or using a protocol */
674 if (drv->bdrv_file_open) {
675 ret = drv->bdrv_file_open(bs, filename, open_flags);
676 } else {
677 ret = bdrv_file_open(&bs->file, filename, open_flags);
678 if (ret >= 0) {
679 ret = drv->bdrv_open(bs, open_flags);
680 }
681 }
682
683 if (ret < 0) {
684 goto free_and_fail;
685 }
686
687 ret = refresh_total_sectors(bs, bs->total_sectors);
688 if (ret < 0) {
689 goto free_and_fail;
690 }
691
692 #ifndef _WIN32
693 if (bs->is_temporary) {
694 unlink(filename);
695 }
696 #endif
697 return 0;
698
699 free_and_fail:
700 if (bs->file) {
701 bdrv_delete(bs->file);
702 bs->file = NULL;
703 }
704 g_free(bs->opaque);
705 bs->opaque = NULL;
706 bs->drv = NULL;
707 return ret;
708 }
709
710 /*
711 * Opens a file using a protocol (file, host_device, nbd, ...)
712 */
713 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
714 {
715 BlockDriverState *bs;
716 BlockDriver *drv;
717 int ret;
718
719 drv = bdrv_find_protocol(filename);
720 if (!drv) {
721 return -ENOENT;
722 }
723
724 bs = bdrv_new("");
725 ret = bdrv_open_common(bs, filename, flags, drv);
726 if (ret < 0) {
727 bdrv_delete(bs);
728 return ret;
729 }
730 bs->growable = 1;
731 *pbs = bs;
732 return 0;
733 }
734
735 /*
736 * Opens a disk image (raw, qcow2, vmdk, ...)
737 */
738 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
739 BlockDriver *drv)
740 {
741 int ret;
742 char tmp_filename[PATH_MAX];
743
744 if (flags & BDRV_O_SNAPSHOT) {
745 BlockDriverState *bs1;
746 int64_t total_size;
747 int is_protocol = 0;
748 BlockDriver *bdrv_qcow2;
749 QEMUOptionParameter *options;
750 char backing_filename[PATH_MAX];
751
752 /* if snapshot, we create a temporary backing file and open it
753 instead of opening 'filename' directly */
754
755 /* if there is a backing file, use it */
756 bs1 = bdrv_new("");
757 ret = bdrv_open(bs1, filename, 0, drv);
758 if (ret < 0) {
759 bdrv_delete(bs1);
760 return ret;
761 }
762 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
763
764 if (bs1->drv && bs1->drv->protocol_name)
765 is_protocol = 1;
766
767 bdrv_delete(bs1);
768
769 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
770 if (ret < 0) {
771 return ret;
772 }
773
774 /* Real path is meaningless for protocols */
775 if (is_protocol)
776 snprintf(backing_filename, sizeof(backing_filename),
777 "%s", filename);
778 else if (!realpath(filename, backing_filename))
779 return -errno;
780
781 bdrv_qcow2 = bdrv_find_format("qcow2");
782 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
783
784 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
785 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
786 if (drv) {
787 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
788 drv->format_name);
789 }
790
791 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
792 free_option_parameters(options);
793 if (ret < 0) {
794 return ret;
795 }
796
797 filename = tmp_filename;
798 drv = bdrv_qcow2;
799 bs->is_temporary = 1;
800 }
801
802 /* Find the right image format driver */
803 if (!drv) {
804 ret = find_image_format(filename, &drv);
805 }
806
807 if (!drv) {
808 goto unlink_and_fail;
809 }
810
811 if (flags & BDRV_O_RDWR) {
812 flags |= BDRV_O_ALLOW_RDWR;
813 }
814
815 /* Open the image */
816 ret = bdrv_open_common(bs, filename, flags, drv);
817 if (ret < 0) {
818 goto unlink_and_fail;
819 }
820
821 /* If there is a backing file, use it */
822 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
823 char backing_filename[PATH_MAX];
824 int back_flags;
825 BlockDriver *back_drv = NULL;
826
827 bs->backing_hd = bdrv_new("");
828 bdrv_get_full_backing_filename(bs, backing_filename,
829 sizeof(backing_filename));
830
831 if (bs->backing_format[0] != '\0') {
832 back_drv = bdrv_find_format(bs->backing_format);
833 }
834
835 /* backing files always opened read-only */
836 back_flags =
837 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
838
839 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
840 if (ret < 0) {
841 bdrv_close(bs);
842 return ret;
843 }
844 }
845
846 if (!bdrv_key_required(bs)) {
847 bdrv_dev_change_media_cb(bs, true);
848 }
849
850 /* throttling disk I/O limits */
851 if (bs->io_limits_enabled) {
852 bdrv_io_limits_enable(bs);
853 }
854
855 return 0;
856
857 unlink_and_fail:
858 if (bs->is_temporary) {
859 unlink(filename);
860 }
861 return ret;
862 }
863
864 typedef struct BlockReopenQueueEntry {
865 bool prepared;
866 BDRVReopenState state;
867 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
868 } BlockReopenQueueEntry;
869
870 /*
871 * Adds a BlockDriverState to a simple queue for an atomic, transactional
872 * reopen of multiple devices.
873 *
874 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
875 * already performed, or alternatively may be NULL a new BlockReopenQueue will
876 * be created and initialized. This newly created BlockReopenQueue should be
877 * passed back in for subsequent calls that are intended to be of the same
878 * atomic 'set'.
879 *
880 * bs is the BlockDriverState to add to the reopen queue.
881 *
882 * flags contains the open flags for the associated bs
883 *
884 * returns a pointer to bs_queue, which is either the newly allocated
885 * bs_queue, or the existing bs_queue being used.
886 *
887 */
888 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
889 BlockDriverState *bs, int flags)
890 {
891 assert(bs != NULL);
892
893 BlockReopenQueueEntry *bs_entry;
894 if (bs_queue == NULL) {
895 bs_queue = g_new0(BlockReopenQueue, 1);
896 QSIMPLEQ_INIT(bs_queue);
897 }
898
899 if (bs->file) {
900 bdrv_reopen_queue(bs_queue, bs->file, flags);
901 }
902
903 bs_entry = g_new0(BlockReopenQueueEntry, 1);
904 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
905
906 bs_entry->state.bs = bs;
907 bs_entry->state.flags = flags;
908
909 return bs_queue;
910 }
911
912 /*
913 * Reopen multiple BlockDriverStates atomically & transactionally.
914 *
915 * The queue passed in (bs_queue) must have been built up previous
916 * via bdrv_reopen_queue().
917 *
918 * Reopens all BDS specified in the queue, with the appropriate
919 * flags. All devices are prepared for reopen, and failure of any
920 * device will cause all device changes to be abandonded, and intermediate
921 * data cleaned up.
922 *
923 * If all devices prepare successfully, then the changes are committed
924 * to all devices.
925 *
926 */
927 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
928 {
929 int ret = -1;
930 BlockReopenQueueEntry *bs_entry, *next;
931 Error *local_err = NULL;
932
933 assert(bs_queue != NULL);
934
935 bdrv_drain_all();
936
937 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
938 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
939 error_propagate(errp, local_err);
940 goto cleanup;
941 }
942 bs_entry->prepared = true;
943 }
944
945 /* If we reach this point, we have success and just need to apply the
946 * changes
947 */
948 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
949 bdrv_reopen_commit(&bs_entry->state);
950 }
951
952 ret = 0;
953
954 cleanup:
955 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
956 if (ret && bs_entry->prepared) {
957 bdrv_reopen_abort(&bs_entry->state);
958 }
959 g_free(bs_entry);
960 }
961 g_free(bs_queue);
962 return ret;
963 }
964
965
966 /* Reopen a single BlockDriverState with the specified flags. */
967 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
968 {
969 int ret = -1;
970 Error *local_err = NULL;
971 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
972
973 ret = bdrv_reopen_multiple(queue, &local_err);
974 if (local_err != NULL) {
975 error_propagate(errp, local_err);
976 }
977 return ret;
978 }
979
980
981 /*
982 * Prepares a BlockDriverState for reopen. All changes are staged in the
983 * 'opaque' field of the BDRVReopenState, which is used and allocated by
984 * the block driver layer .bdrv_reopen_prepare()
985 *
986 * bs is the BlockDriverState to reopen
987 * flags are the new open flags
988 * queue is the reopen queue
989 *
990 * Returns 0 on success, non-zero on error. On error errp will be set
991 * as well.
992 *
993 * On failure, bdrv_reopen_abort() will be called to clean up any data.
994 * It is the responsibility of the caller to then call the abort() or
995 * commit() for any other BDS that have been left in a prepare() state
996 *
997 */
998 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
999 Error **errp)
1000 {
1001 int ret = -1;
1002 Error *local_err = NULL;
1003 BlockDriver *drv;
1004
1005 assert(reopen_state != NULL);
1006 assert(reopen_state->bs->drv != NULL);
1007 drv = reopen_state->bs->drv;
1008
1009 /* if we are to stay read-only, do not allow permission change
1010 * to r/w */
1011 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1012 reopen_state->flags & BDRV_O_RDWR) {
1013 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1014 reopen_state->bs->device_name);
1015 goto error;
1016 }
1017
1018
1019 ret = bdrv_flush(reopen_state->bs);
1020 if (ret) {
1021 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1022 strerror(-ret));
1023 goto error;
1024 }
1025
1026 if (drv->bdrv_reopen_prepare) {
1027 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1028 if (ret) {
1029 if (local_err != NULL) {
1030 error_propagate(errp, local_err);
1031 } else {
1032 error_set(errp, QERR_OPEN_FILE_FAILED,
1033 reopen_state->bs->filename);
1034 }
1035 goto error;
1036 }
1037 } else {
1038 /* It is currently mandatory to have a bdrv_reopen_prepare()
1039 * handler for each supported drv. */
1040 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1041 drv->format_name, reopen_state->bs->device_name,
1042 "reopening of file");
1043 ret = -1;
1044 goto error;
1045 }
1046
1047 ret = 0;
1048
1049 error:
1050 return ret;
1051 }
1052
1053 /*
1054 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1055 * makes them final by swapping the staging BlockDriverState contents into
1056 * the active BlockDriverState contents.
1057 */
1058 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1059 {
1060 BlockDriver *drv;
1061
1062 assert(reopen_state != NULL);
1063 drv = reopen_state->bs->drv;
1064 assert(drv != NULL);
1065
1066 /* If there are any driver level actions to take */
1067 if (drv->bdrv_reopen_commit) {
1068 drv->bdrv_reopen_commit(reopen_state);
1069 }
1070
1071 /* set BDS specific flags now */
1072 reopen_state->bs->open_flags = reopen_state->flags;
1073 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1074 BDRV_O_CACHE_WB);
1075 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1076 }
1077
1078 /*
1079 * Abort the reopen, and delete and free the staged changes in
1080 * reopen_state
1081 */
1082 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1083 {
1084 BlockDriver *drv;
1085
1086 assert(reopen_state != NULL);
1087 drv = reopen_state->bs->drv;
1088 assert(drv != NULL);
1089
1090 if (drv->bdrv_reopen_abort) {
1091 drv->bdrv_reopen_abort(reopen_state);
1092 }
1093 }
1094
1095
1096 void bdrv_close(BlockDriverState *bs)
1097 {
1098 bdrv_flush(bs);
1099 if (bs->drv) {
1100 if (bs->job) {
1101 block_job_cancel_sync(bs->job);
1102 }
1103 bdrv_drain_all();
1104
1105 if (bs == bs_snapshots) {
1106 bs_snapshots = NULL;
1107 }
1108 if (bs->backing_hd) {
1109 bdrv_delete(bs->backing_hd);
1110 bs->backing_hd = NULL;
1111 }
1112 bs->drv->bdrv_close(bs);
1113 g_free(bs->opaque);
1114 #ifdef _WIN32
1115 if (bs->is_temporary) {
1116 unlink(bs->filename);
1117 }
1118 #endif
1119 bs->opaque = NULL;
1120 bs->drv = NULL;
1121 bs->copy_on_read = 0;
1122 bs->backing_file[0] = '\0';
1123 bs->backing_format[0] = '\0';
1124 bs->total_sectors = 0;
1125 bs->encrypted = 0;
1126 bs->valid_key = 0;
1127 bs->sg = 0;
1128 bs->growable = 0;
1129
1130 if (bs->file != NULL) {
1131 bdrv_delete(bs->file);
1132 bs->file = NULL;
1133 }
1134 }
1135
1136 bdrv_dev_change_media_cb(bs, false);
1137
1138 /*throttling disk I/O limits*/
1139 if (bs->io_limits_enabled) {
1140 bdrv_io_limits_disable(bs);
1141 }
1142 }
1143
1144 void bdrv_close_all(void)
1145 {
1146 BlockDriverState *bs;
1147
1148 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1149 bdrv_close(bs);
1150 }
1151 }
1152
1153 /*
1154 * Wait for pending requests to complete across all BlockDriverStates
1155 *
1156 * This function does not flush data to disk, use bdrv_flush_all() for that
1157 * after calling this function.
1158 *
1159 * Note that completion of an asynchronous I/O operation can trigger any
1160 * number of other I/O operations on other devices---for example a coroutine
1161 * can be arbitrarily complex and a constant flow of I/O can come until the
1162 * coroutine is complete. Because of this, it is not possible to have a
1163 * function to drain a single device's I/O queue.
1164 */
1165 void bdrv_drain_all(void)
1166 {
1167 BlockDriverState *bs;
1168 bool busy;
1169
1170 do {
1171 busy = qemu_aio_wait();
1172
1173 /* FIXME: We do not have timer support here, so this is effectively
1174 * a busy wait.
1175 */
1176 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1177 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1178 qemu_co_queue_restart_all(&bs->throttled_reqs);
1179 busy = true;
1180 }
1181 }
1182 } while (busy);
1183
1184 /* If requests are still pending there is a bug somewhere */
1185 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1186 assert(QLIST_EMPTY(&bs->tracked_requests));
1187 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1188 }
1189 }
1190
1191 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1192 Also, NULL terminate the device_name to prevent double remove */
1193 void bdrv_make_anon(BlockDriverState *bs)
1194 {
1195 if (bs->device_name[0] != '\0') {
1196 QTAILQ_REMOVE(&bdrv_states, bs, list);
1197 }
1198 bs->device_name[0] = '\0';
1199 }
1200
1201 static void bdrv_rebind(BlockDriverState *bs)
1202 {
1203 if (bs->drv && bs->drv->bdrv_rebind) {
1204 bs->drv->bdrv_rebind(bs);
1205 }
1206 }
1207
1208 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1209 BlockDriverState *bs_src)
1210 {
1211 /* move some fields that need to stay attached to the device */
1212 bs_dest->open_flags = bs_src->open_flags;
1213
1214 /* dev info */
1215 bs_dest->dev_ops = bs_src->dev_ops;
1216 bs_dest->dev_opaque = bs_src->dev_opaque;
1217 bs_dest->dev = bs_src->dev;
1218 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1219 bs_dest->copy_on_read = bs_src->copy_on_read;
1220
1221 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1222
1223 /* i/o timing parameters */
1224 bs_dest->slice_time = bs_src->slice_time;
1225 bs_dest->slice_start = bs_src->slice_start;
1226 bs_dest->slice_end = bs_src->slice_end;
1227 bs_dest->io_limits = bs_src->io_limits;
1228 bs_dest->io_base = bs_src->io_base;
1229 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1230 bs_dest->block_timer = bs_src->block_timer;
1231 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1232
1233 /* r/w error */
1234 bs_dest->on_read_error = bs_src->on_read_error;
1235 bs_dest->on_write_error = bs_src->on_write_error;
1236
1237 /* i/o status */
1238 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1239 bs_dest->iostatus = bs_src->iostatus;
1240
1241 /* dirty bitmap */
1242 bs_dest->dirty_count = bs_src->dirty_count;
1243 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1244
1245 /* job */
1246 bs_dest->in_use = bs_src->in_use;
1247 bs_dest->job = bs_src->job;
1248
1249 /* keep the same entry in bdrv_states */
1250 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1251 bs_src->device_name);
1252 bs_dest->list = bs_src->list;
1253 }
1254
1255 /*
1256 * Swap bs contents for two image chains while they are live,
1257 * while keeping required fields on the BlockDriverState that is
1258 * actually attached to a device.
1259 *
1260 * This will modify the BlockDriverState fields, and swap contents
1261 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1262 *
1263 * bs_new is required to be anonymous.
1264 *
1265 * This function does not create any image files.
1266 */
1267 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1268 {
1269 BlockDriverState tmp;
1270
1271 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1272 assert(bs_new->device_name[0] == '\0');
1273 assert(bs_new->dirty_bitmap == NULL);
1274 assert(bs_new->job == NULL);
1275 assert(bs_new->dev == NULL);
1276 assert(bs_new->in_use == 0);
1277 assert(bs_new->io_limits_enabled == false);
1278 assert(bs_new->block_timer == NULL);
1279
1280 tmp = *bs_new;
1281 *bs_new = *bs_old;
1282 *bs_old = tmp;
1283
1284 /* there are some fields that should not be swapped, move them back */
1285 bdrv_move_feature_fields(&tmp, bs_old);
1286 bdrv_move_feature_fields(bs_old, bs_new);
1287 bdrv_move_feature_fields(bs_new, &tmp);
1288
1289 /* bs_new shouldn't be in bdrv_states even after the swap! */
1290 assert(bs_new->device_name[0] == '\0');
1291
1292 /* Check a few fields that should remain attached to the device */
1293 assert(bs_new->dev == NULL);
1294 assert(bs_new->job == NULL);
1295 assert(bs_new->in_use == 0);
1296 assert(bs_new->io_limits_enabled == false);
1297 assert(bs_new->block_timer == NULL);
1298
1299 bdrv_rebind(bs_new);
1300 bdrv_rebind(bs_old);
1301 }
1302
1303 /*
1304 * Add new bs contents at the top of an image chain while the chain is
1305 * live, while keeping required fields on the top layer.
1306 *
1307 * This will modify the BlockDriverState fields, and swap contents
1308 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1309 *
1310 * bs_new is required to be anonymous.
1311 *
1312 * This function does not create any image files.
1313 */
1314 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1315 {
1316 bdrv_swap(bs_new, bs_top);
1317
1318 /* The contents of 'tmp' will become bs_top, as we are
1319 * swapping bs_new and bs_top contents. */
1320 bs_top->backing_hd = bs_new;
1321 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1322 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1323 bs_new->filename);
1324 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1325 bs_new->drv ? bs_new->drv->format_name : "");
1326 }
1327
1328 void bdrv_delete(BlockDriverState *bs)
1329 {
1330 assert(!bs->dev);
1331 assert(!bs->job);
1332 assert(!bs->in_use);
1333
1334 /* remove from list, if necessary */
1335 bdrv_make_anon(bs);
1336
1337 bdrv_close(bs);
1338
1339 assert(bs != bs_snapshots);
1340 g_free(bs);
1341 }
1342
1343 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1344 /* TODO change to DeviceState *dev when all users are qdevified */
1345 {
1346 if (bs->dev) {
1347 return -EBUSY;
1348 }
1349 bs->dev = dev;
1350 bdrv_iostatus_reset(bs);
1351 return 0;
1352 }
1353
1354 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1355 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1356 {
1357 if (bdrv_attach_dev(bs, dev) < 0) {
1358 abort();
1359 }
1360 }
1361
1362 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1363 /* TODO change to DeviceState *dev when all users are qdevified */
1364 {
1365 assert(bs->dev == dev);
1366 bs->dev = NULL;
1367 bs->dev_ops = NULL;
1368 bs->dev_opaque = NULL;
1369 bs->buffer_alignment = 512;
1370 }
1371
1372 /* TODO change to return DeviceState * when all users are qdevified */
1373 void *bdrv_get_attached_dev(BlockDriverState *bs)
1374 {
1375 return bs->dev;
1376 }
1377
1378 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1379 void *opaque)
1380 {
1381 bs->dev_ops = ops;
1382 bs->dev_opaque = opaque;
1383 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1384 bs_snapshots = NULL;
1385 }
1386 }
1387
1388 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1389 BlockQMPEventAction action, int is_read)
1390 {
1391 QObject *data;
1392 const char *action_str;
1393
1394 switch (action) {
1395 case BDRV_ACTION_REPORT:
1396 action_str = "report";
1397 break;
1398 case BDRV_ACTION_IGNORE:
1399 action_str = "ignore";
1400 break;
1401 case BDRV_ACTION_STOP:
1402 action_str = "stop";
1403 break;
1404 default:
1405 abort();
1406 }
1407
1408 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1409 bdrv->device_name,
1410 action_str,
1411 is_read ? "read" : "write");
1412 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1413
1414 qobject_decref(data);
1415 }
1416
1417 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1418 {
1419 QObject *data;
1420
1421 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1422 bdrv_get_device_name(bs), ejected);
1423 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1424
1425 qobject_decref(data);
1426 }
1427
1428 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1429 {
1430 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1431 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1432 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1433 if (tray_was_closed) {
1434 /* tray open */
1435 bdrv_emit_qmp_eject_event(bs, true);
1436 }
1437 if (load) {
1438 /* tray close */
1439 bdrv_emit_qmp_eject_event(bs, false);
1440 }
1441 }
1442 }
1443
1444 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1445 {
1446 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1447 }
1448
1449 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1450 {
1451 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1452 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1453 }
1454 }
1455
1456 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1457 {
1458 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1459 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1460 }
1461 return false;
1462 }
1463
1464 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1465 {
1466 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1467 bs->dev_ops->resize_cb(bs->dev_opaque);
1468 }
1469 }
1470
1471 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1472 {
1473 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1474 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1475 }
1476 return false;
1477 }
1478
1479 /*
1480 * Run consistency checks on an image
1481 *
1482 * Returns 0 if the check could be completed (it doesn't mean that the image is
1483 * free of errors) or -errno when an internal error occurred. The results of the
1484 * check are stored in res.
1485 */
1486 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1487 {
1488 if (bs->drv->bdrv_check == NULL) {
1489 return -ENOTSUP;
1490 }
1491
1492 memset(res, 0, sizeof(*res));
1493 return bs->drv->bdrv_check(bs, res, fix);
1494 }
1495
1496 #define COMMIT_BUF_SECTORS 2048
1497
1498 /* commit COW file into the raw image */
1499 int bdrv_commit(BlockDriverState *bs)
1500 {
1501 BlockDriver *drv = bs->drv;
1502 int64_t sector, total_sectors;
1503 int n, ro, open_flags;
1504 int ret = 0;
1505 uint8_t *buf;
1506 char filename[1024];
1507
1508 if (!drv)
1509 return -ENOMEDIUM;
1510
1511 if (!bs->backing_hd) {
1512 return -ENOTSUP;
1513 }
1514
1515 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1516 return -EBUSY;
1517 }
1518
1519 ro = bs->backing_hd->read_only;
1520 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1521 open_flags = bs->backing_hd->open_flags;
1522
1523 if (ro) {
1524 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1525 return -EACCES;
1526 }
1527 }
1528
1529 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1530 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1531
1532 for (sector = 0; sector < total_sectors; sector += n) {
1533 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1534
1535 if (bdrv_read(bs, sector, buf, n) != 0) {
1536 ret = -EIO;
1537 goto ro_cleanup;
1538 }
1539
1540 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1541 ret = -EIO;
1542 goto ro_cleanup;
1543 }
1544 }
1545 }
1546
1547 if (drv->bdrv_make_empty) {
1548 ret = drv->bdrv_make_empty(bs);
1549 bdrv_flush(bs);
1550 }
1551
1552 /*
1553 * Make sure all data we wrote to the backing device is actually
1554 * stable on disk.
1555 */
1556 if (bs->backing_hd)
1557 bdrv_flush(bs->backing_hd);
1558
1559 ro_cleanup:
1560 g_free(buf);
1561
1562 if (ro) {
1563 /* ignoring error return here */
1564 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1565 }
1566
1567 return ret;
1568 }
1569
1570 int bdrv_commit_all(void)
1571 {
1572 BlockDriverState *bs;
1573
1574 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1575 int ret = bdrv_commit(bs);
1576 if (ret < 0) {
1577 return ret;
1578 }
1579 }
1580 return 0;
1581 }
1582
1583 struct BdrvTrackedRequest {
1584 BlockDriverState *bs;
1585 int64_t sector_num;
1586 int nb_sectors;
1587 bool is_write;
1588 QLIST_ENTRY(BdrvTrackedRequest) list;
1589 Coroutine *co; /* owner, used for deadlock detection */
1590 CoQueue wait_queue; /* coroutines blocked on this request */
1591 };
1592
1593 /**
1594 * Remove an active request from the tracked requests list
1595 *
1596 * This function should be called when a tracked request is completing.
1597 */
1598 static void tracked_request_end(BdrvTrackedRequest *req)
1599 {
1600 QLIST_REMOVE(req, list);
1601 qemu_co_queue_restart_all(&req->wait_queue);
1602 }
1603
1604 /**
1605 * Add an active request to the tracked requests list
1606 */
1607 static void tracked_request_begin(BdrvTrackedRequest *req,
1608 BlockDriverState *bs,
1609 int64_t sector_num,
1610 int nb_sectors, bool is_write)
1611 {
1612 *req = (BdrvTrackedRequest){
1613 .bs = bs,
1614 .sector_num = sector_num,
1615 .nb_sectors = nb_sectors,
1616 .is_write = is_write,
1617 .co = qemu_coroutine_self(),
1618 };
1619
1620 qemu_co_queue_init(&req->wait_queue);
1621
1622 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1623 }
1624
1625 /**
1626 * Round a region to cluster boundaries
1627 */
1628 static void round_to_clusters(BlockDriverState *bs,
1629 int64_t sector_num, int nb_sectors,
1630 int64_t *cluster_sector_num,
1631 int *cluster_nb_sectors)
1632 {
1633 BlockDriverInfo bdi;
1634
1635 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1636 *cluster_sector_num = sector_num;
1637 *cluster_nb_sectors = nb_sectors;
1638 } else {
1639 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1640 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1641 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1642 nb_sectors, c);
1643 }
1644 }
1645
1646 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1647 int64_t sector_num, int nb_sectors) {
1648 /* aaaa bbbb */
1649 if (sector_num >= req->sector_num + req->nb_sectors) {
1650 return false;
1651 }
1652 /* bbbb aaaa */
1653 if (req->sector_num >= sector_num + nb_sectors) {
1654 return false;
1655 }
1656 return true;
1657 }
1658
1659 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1660 int64_t sector_num, int nb_sectors)
1661 {
1662 BdrvTrackedRequest *req;
1663 int64_t cluster_sector_num;
1664 int cluster_nb_sectors;
1665 bool retry;
1666
1667 /* If we touch the same cluster it counts as an overlap. This guarantees
1668 * that allocating writes will be serialized and not race with each other
1669 * for the same cluster. For example, in copy-on-read it ensures that the
1670 * CoR read and write operations are atomic and guest writes cannot
1671 * interleave between them.
1672 */
1673 round_to_clusters(bs, sector_num, nb_sectors,
1674 &cluster_sector_num, &cluster_nb_sectors);
1675
1676 do {
1677 retry = false;
1678 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1679 if (tracked_request_overlaps(req, cluster_sector_num,
1680 cluster_nb_sectors)) {
1681 /* Hitting this means there was a reentrant request, for
1682 * example, a block driver issuing nested requests. This must
1683 * never happen since it means deadlock.
1684 */
1685 assert(qemu_coroutine_self() != req->co);
1686
1687 qemu_co_queue_wait(&req->wait_queue);
1688 retry = true;
1689 break;
1690 }
1691 }
1692 } while (retry);
1693 }
1694
1695 /*
1696 * Return values:
1697 * 0 - success
1698 * -EINVAL - backing format specified, but no file
1699 * -ENOSPC - can't update the backing file because no space is left in the
1700 * image file header
1701 * -ENOTSUP - format driver doesn't support changing the backing file
1702 */
1703 int bdrv_change_backing_file(BlockDriverState *bs,
1704 const char *backing_file, const char *backing_fmt)
1705 {
1706 BlockDriver *drv = bs->drv;
1707 int ret;
1708
1709 /* Backing file format doesn't make sense without a backing file */
1710 if (backing_fmt && !backing_file) {
1711 return -EINVAL;
1712 }
1713
1714 if (drv->bdrv_change_backing_file != NULL) {
1715 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1716 } else {
1717 ret = -ENOTSUP;
1718 }
1719
1720 if (ret == 0) {
1721 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1722 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1723 }
1724 return ret;
1725 }
1726
1727 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1728 size_t size)
1729 {
1730 int64_t len;
1731
1732 if (!bdrv_is_inserted(bs))
1733 return -ENOMEDIUM;
1734
1735 if (bs->growable)
1736 return 0;
1737
1738 len = bdrv_getlength(bs);
1739
1740 if (offset < 0)
1741 return -EIO;
1742
1743 if ((offset > len) || (len - offset < size))
1744 return -EIO;
1745
1746 return 0;
1747 }
1748
1749 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1750 int nb_sectors)
1751 {
1752 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1753 nb_sectors * BDRV_SECTOR_SIZE);
1754 }
1755
1756 typedef struct RwCo {
1757 BlockDriverState *bs;
1758 int64_t sector_num;
1759 int nb_sectors;
1760 QEMUIOVector *qiov;
1761 bool is_write;
1762 int ret;
1763 } RwCo;
1764
1765 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1766 {
1767 RwCo *rwco = opaque;
1768
1769 if (!rwco->is_write) {
1770 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1771 rwco->nb_sectors, rwco->qiov, 0);
1772 } else {
1773 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1774 rwco->nb_sectors, rwco->qiov, 0);
1775 }
1776 }
1777
1778 /*
1779 * Process a synchronous request using coroutines
1780 */
1781 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1782 int nb_sectors, bool is_write)
1783 {
1784 QEMUIOVector qiov;
1785 struct iovec iov = {
1786 .iov_base = (void *)buf,
1787 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1788 };
1789 Coroutine *co;
1790 RwCo rwco = {
1791 .bs = bs,
1792 .sector_num = sector_num,
1793 .nb_sectors = nb_sectors,
1794 .qiov = &qiov,
1795 .is_write = is_write,
1796 .ret = NOT_DONE,
1797 };
1798
1799 qemu_iovec_init_external(&qiov, &iov, 1);
1800
1801 /**
1802 * In sync call context, when the vcpu is blocked, this throttling timer
1803 * will not fire; so the I/O throttling function has to be disabled here
1804 * if it has been enabled.
1805 */
1806 if (bs->io_limits_enabled) {
1807 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1808 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1809 bdrv_io_limits_disable(bs);
1810 }
1811
1812 if (qemu_in_coroutine()) {
1813 /* Fast-path if already in coroutine context */
1814 bdrv_rw_co_entry(&rwco);
1815 } else {
1816 co = qemu_coroutine_create(bdrv_rw_co_entry);
1817 qemu_coroutine_enter(co, &rwco);
1818 while (rwco.ret == NOT_DONE) {
1819 qemu_aio_wait();
1820 }
1821 }
1822 return rwco.ret;
1823 }
1824
1825 /* return < 0 if error. See bdrv_write() for the return codes */
1826 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1827 uint8_t *buf, int nb_sectors)
1828 {
1829 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1830 }
1831
1832 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1833 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1834 uint8_t *buf, int nb_sectors)
1835 {
1836 bool enabled;
1837 int ret;
1838
1839 enabled = bs->io_limits_enabled;
1840 bs->io_limits_enabled = false;
1841 ret = bdrv_read(bs, 0, buf, 1);
1842 bs->io_limits_enabled = enabled;
1843 return ret;
1844 }
1845
1846 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1847
1848 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1849 int nb_sectors, int dirty)
1850 {
1851 int64_t start, end;
1852 unsigned long val, idx, bit;
1853
1854 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1855 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1856
1857 for (; start <= end; start++) {
1858 idx = start / BITS_PER_LONG;
1859 bit = start % BITS_PER_LONG;
1860 val = bs->dirty_bitmap[idx];
1861 if (dirty) {
1862 if (!(val & (1UL << bit))) {
1863 bs->dirty_count++;
1864 val |= 1UL << bit;
1865 }
1866 } else {
1867 if (val & (1UL << bit)) {
1868 bs->dirty_count--;
1869 val &= ~(1UL << bit);
1870 }
1871 }
1872 bs->dirty_bitmap[idx] = val;
1873 }
1874 }
1875
1876 /* Return < 0 if error. Important errors are:
1877 -EIO generic I/O error (may happen for all errors)
1878 -ENOMEDIUM No media inserted.
1879 -EINVAL Invalid sector number or nb_sectors
1880 -EACCES Trying to write a read-only device
1881 */
1882 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1883 const uint8_t *buf, int nb_sectors)
1884 {
1885 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1886 }
1887
1888 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1889 void *buf, int count1)
1890 {
1891 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1892 int len, nb_sectors, count;
1893 int64_t sector_num;
1894 int ret;
1895
1896 count = count1;
1897 /* first read to align to sector start */
1898 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1899 if (len > count)
1900 len = count;
1901 sector_num = offset >> BDRV_SECTOR_BITS;
1902 if (len > 0) {
1903 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1904 return ret;
1905 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1906 count -= len;
1907 if (count == 0)
1908 return count1;
1909 sector_num++;
1910 buf += len;
1911 }
1912
1913 /* read the sectors "in place" */
1914 nb_sectors = count >> BDRV_SECTOR_BITS;
1915 if (nb_sectors > 0) {
1916 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1917 return ret;
1918 sector_num += nb_sectors;
1919 len = nb_sectors << BDRV_SECTOR_BITS;
1920 buf += len;
1921 count -= len;
1922 }
1923
1924 /* add data from the last sector */
1925 if (count > 0) {
1926 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1927 return ret;
1928 memcpy(buf, tmp_buf, count);
1929 }
1930 return count1;
1931 }
1932
1933 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1934 const void *buf, int count1)
1935 {
1936 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1937 int len, nb_sectors, count;
1938 int64_t sector_num;
1939 int ret;
1940
1941 count = count1;
1942 /* first write to align to sector start */
1943 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1944 if (len > count)
1945 len = count;
1946 sector_num = offset >> BDRV_SECTOR_BITS;
1947 if (len > 0) {
1948 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1949 return ret;
1950 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1951 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1952 return ret;
1953 count -= len;
1954 if (count == 0)
1955 return count1;
1956 sector_num++;
1957 buf += len;
1958 }
1959
1960 /* write the sectors "in place" */
1961 nb_sectors = count >> BDRV_SECTOR_BITS;
1962 if (nb_sectors > 0) {
1963 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1964 return ret;
1965 sector_num += nb_sectors;
1966 len = nb_sectors << BDRV_SECTOR_BITS;
1967 buf += len;
1968 count -= len;
1969 }
1970
1971 /* add data from the last sector */
1972 if (count > 0) {
1973 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1974 return ret;
1975 memcpy(tmp_buf, buf, count);
1976 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1977 return ret;
1978 }
1979 return count1;
1980 }
1981
1982 /*
1983 * Writes to the file and ensures that no writes are reordered across this
1984 * request (acts as a barrier)
1985 *
1986 * Returns 0 on success, -errno in error cases.
1987 */
1988 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1989 const void *buf, int count)
1990 {
1991 int ret;
1992
1993 ret = bdrv_pwrite(bs, offset, buf, count);
1994 if (ret < 0) {
1995 return ret;
1996 }
1997
1998 /* No flush needed for cache modes that already do it */
1999 if (bs->enable_write_cache) {
2000 bdrv_flush(bs);
2001 }
2002
2003 return 0;
2004 }
2005
2006 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2007 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2008 {
2009 /* Perform I/O through a temporary buffer so that users who scribble over
2010 * their read buffer while the operation is in progress do not end up
2011 * modifying the image file. This is critical for zero-copy guest I/O
2012 * where anything might happen inside guest memory.
2013 */
2014 void *bounce_buffer;
2015
2016 BlockDriver *drv = bs->drv;
2017 struct iovec iov;
2018 QEMUIOVector bounce_qiov;
2019 int64_t cluster_sector_num;
2020 int cluster_nb_sectors;
2021 size_t skip_bytes;
2022 int ret;
2023
2024 /* Cover entire cluster so no additional backing file I/O is required when
2025 * allocating cluster in the image file.
2026 */
2027 round_to_clusters(bs, sector_num, nb_sectors,
2028 &cluster_sector_num, &cluster_nb_sectors);
2029
2030 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2031 cluster_sector_num, cluster_nb_sectors);
2032
2033 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2034 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2035 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2036
2037 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2038 &bounce_qiov);
2039 if (ret < 0) {
2040 goto err;
2041 }
2042
2043 if (drv->bdrv_co_write_zeroes &&
2044 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2045 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2046 cluster_nb_sectors);
2047 } else {
2048 /* This does not change the data on the disk, it is not necessary
2049 * to flush even in cache=writethrough mode.
2050 */
2051 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2052 &bounce_qiov);
2053 }
2054
2055 if (ret < 0) {
2056 /* It might be okay to ignore write errors for guest requests. If this
2057 * is a deliberate copy-on-read then we don't want to ignore the error.
2058 * Simply report it in all cases.
2059 */
2060 goto err;
2061 }
2062
2063 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2064 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2065 nb_sectors * BDRV_SECTOR_SIZE);
2066
2067 err:
2068 qemu_vfree(bounce_buffer);
2069 return ret;
2070 }
2071
2072 /*
2073 * Handle a read request in coroutine context
2074 */
2075 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2076 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2077 BdrvRequestFlags flags)
2078 {
2079 BlockDriver *drv = bs->drv;
2080 BdrvTrackedRequest req;
2081 int ret;
2082
2083 if (!drv) {
2084 return -ENOMEDIUM;
2085 }
2086 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2087 return -EIO;
2088 }
2089
2090 /* throttling disk read I/O */
2091 if (bs->io_limits_enabled) {
2092 bdrv_io_limits_intercept(bs, false, nb_sectors);
2093 }
2094
2095 if (bs->copy_on_read) {
2096 flags |= BDRV_REQ_COPY_ON_READ;
2097 }
2098 if (flags & BDRV_REQ_COPY_ON_READ) {
2099 bs->copy_on_read_in_flight++;
2100 }
2101
2102 if (bs->copy_on_read_in_flight) {
2103 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2104 }
2105
2106 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2107
2108 if (flags & BDRV_REQ_COPY_ON_READ) {
2109 int pnum;
2110
2111 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2112 if (ret < 0) {
2113 goto out;
2114 }
2115
2116 if (!ret || pnum != nb_sectors) {
2117 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2118 goto out;
2119 }
2120 }
2121
2122 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2123
2124 out:
2125 tracked_request_end(&req);
2126
2127 if (flags & BDRV_REQ_COPY_ON_READ) {
2128 bs->copy_on_read_in_flight--;
2129 }
2130
2131 return ret;
2132 }
2133
2134 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2135 int nb_sectors, QEMUIOVector *qiov)
2136 {
2137 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2138
2139 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2140 }
2141
2142 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2143 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2144 {
2145 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2146
2147 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2148 BDRV_REQ_COPY_ON_READ);
2149 }
2150
2151 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2152 int64_t sector_num, int nb_sectors)
2153 {
2154 BlockDriver *drv = bs->drv;
2155 QEMUIOVector qiov;
2156 struct iovec iov;
2157 int ret;
2158
2159 /* TODO Emulate only part of misaligned requests instead of letting block
2160 * drivers return -ENOTSUP and emulate everything */
2161
2162 /* First try the efficient write zeroes operation */
2163 if (drv->bdrv_co_write_zeroes) {
2164 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2165 if (ret != -ENOTSUP) {
2166 return ret;
2167 }
2168 }
2169
2170 /* Fall back to bounce buffer if write zeroes is unsupported */
2171 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2172 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2173 memset(iov.iov_base, 0, iov.iov_len);
2174 qemu_iovec_init_external(&qiov, &iov, 1);
2175
2176 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2177
2178 qemu_vfree(iov.iov_base);
2179 return ret;
2180 }
2181
2182 /*
2183 * Handle a write request in coroutine context
2184 */
2185 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2186 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2187 BdrvRequestFlags flags)
2188 {
2189 BlockDriver *drv = bs->drv;
2190 BdrvTrackedRequest req;
2191 int ret;
2192
2193 if (!bs->drv) {
2194 return -ENOMEDIUM;
2195 }
2196 if (bs->read_only) {
2197 return -EACCES;
2198 }
2199 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2200 return -EIO;
2201 }
2202
2203 /* throttling disk write I/O */
2204 if (bs->io_limits_enabled) {
2205 bdrv_io_limits_intercept(bs, true, nb_sectors);
2206 }
2207
2208 if (bs->copy_on_read_in_flight) {
2209 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2210 }
2211
2212 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2213
2214 if (flags & BDRV_REQ_ZERO_WRITE) {
2215 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2216 } else {
2217 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2218 }
2219
2220 if (ret == 0 && !bs->enable_write_cache) {
2221 ret = bdrv_co_flush(bs);
2222 }
2223
2224 if (bs->dirty_bitmap) {
2225 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2226 }
2227
2228 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2229 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2230 }
2231
2232 tracked_request_end(&req);
2233
2234 return ret;
2235 }
2236
2237 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2238 int nb_sectors, QEMUIOVector *qiov)
2239 {
2240 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2241
2242 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2243 }
2244
2245 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2246 int64_t sector_num, int nb_sectors)
2247 {
2248 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2249
2250 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2251 BDRV_REQ_ZERO_WRITE);
2252 }
2253
2254 /**
2255 * Truncate file to 'offset' bytes (needed only for file protocols)
2256 */
2257 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2258 {
2259 BlockDriver *drv = bs->drv;
2260 int ret;
2261 if (!drv)
2262 return -ENOMEDIUM;
2263 if (!drv->bdrv_truncate)
2264 return -ENOTSUP;
2265 if (bs->read_only)
2266 return -EACCES;
2267 if (bdrv_in_use(bs))
2268 return -EBUSY;
2269 ret = drv->bdrv_truncate(bs, offset);
2270 if (ret == 0) {
2271 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2272 bdrv_dev_resize_cb(bs);
2273 }
2274 return ret;
2275 }
2276
2277 /**
2278 * Length of a allocated file in bytes. Sparse files are counted by actual
2279 * allocated space. Return < 0 if error or unknown.
2280 */
2281 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2282 {
2283 BlockDriver *drv = bs->drv;
2284 if (!drv) {
2285 return -ENOMEDIUM;
2286 }
2287 if (drv->bdrv_get_allocated_file_size) {
2288 return drv->bdrv_get_allocated_file_size(bs);
2289 }
2290 if (bs->file) {
2291 return bdrv_get_allocated_file_size(bs->file);
2292 }
2293 return -ENOTSUP;
2294 }
2295
2296 /**
2297 * Length of a file in bytes. Return < 0 if error or unknown.
2298 */
2299 int64_t bdrv_getlength(BlockDriverState *bs)
2300 {
2301 BlockDriver *drv = bs->drv;
2302 if (!drv)
2303 return -ENOMEDIUM;
2304
2305 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2306 if (drv->bdrv_getlength) {
2307 return drv->bdrv_getlength(bs);
2308 }
2309 }
2310 return bs->total_sectors * BDRV_SECTOR_SIZE;
2311 }
2312
2313 /* return 0 as number of sectors if no device present or error */
2314 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2315 {
2316 int64_t length;
2317 length = bdrv_getlength(bs);
2318 if (length < 0)
2319 length = 0;
2320 else
2321 length = length >> BDRV_SECTOR_BITS;
2322 *nb_sectors_ptr = length;
2323 }
2324
2325 /* throttling disk io limits */
2326 void bdrv_set_io_limits(BlockDriverState *bs,
2327 BlockIOLimit *io_limits)
2328 {
2329 bs->io_limits = *io_limits;
2330 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2331 }
2332
2333 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2334 BlockErrorAction on_write_error)
2335 {
2336 bs->on_read_error = on_read_error;
2337 bs->on_write_error = on_write_error;
2338 }
2339
2340 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2341 {
2342 return is_read ? bs->on_read_error : bs->on_write_error;
2343 }
2344
2345 int bdrv_is_read_only(BlockDriverState *bs)
2346 {
2347 return bs->read_only;
2348 }
2349
2350 int bdrv_is_sg(BlockDriverState *bs)
2351 {
2352 return bs->sg;
2353 }
2354
2355 int bdrv_enable_write_cache(BlockDriverState *bs)
2356 {
2357 return bs->enable_write_cache;
2358 }
2359
2360 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2361 {
2362 bs->enable_write_cache = wce;
2363
2364 /* so a reopen() will preserve wce */
2365 if (wce) {
2366 bs->open_flags |= BDRV_O_CACHE_WB;
2367 } else {
2368 bs->open_flags &= ~BDRV_O_CACHE_WB;
2369 }
2370 }
2371
2372 int bdrv_is_encrypted(BlockDriverState *bs)
2373 {
2374 if (bs->backing_hd && bs->backing_hd->encrypted)
2375 return 1;
2376 return bs->encrypted;
2377 }
2378
2379 int bdrv_key_required(BlockDriverState *bs)
2380 {
2381 BlockDriverState *backing_hd = bs->backing_hd;
2382
2383 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2384 return 1;
2385 return (bs->encrypted && !bs->valid_key);
2386 }
2387
2388 int bdrv_set_key(BlockDriverState *bs, const char *key)
2389 {
2390 int ret;
2391 if (bs->backing_hd && bs->backing_hd->encrypted) {
2392 ret = bdrv_set_key(bs->backing_hd, key);
2393 if (ret < 0)
2394 return ret;
2395 if (!bs->encrypted)
2396 return 0;
2397 }
2398 if (!bs->encrypted) {
2399 return -EINVAL;
2400 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2401 return -ENOMEDIUM;
2402 }
2403 ret = bs->drv->bdrv_set_key(bs, key);
2404 if (ret < 0) {
2405 bs->valid_key = 0;
2406 } else if (!bs->valid_key) {
2407 bs->valid_key = 1;
2408 /* call the change callback now, we skipped it on open */
2409 bdrv_dev_change_media_cb(bs, true);
2410 }
2411 return ret;
2412 }
2413
2414 const char *bdrv_get_format_name(BlockDriverState *bs)
2415 {
2416 return bs->drv ? bs->drv->format_name : NULL;
2417 }
2418
2419 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2420 void *opaque)
2421 {
2422 BlockDriver *drv;
2423
2424 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2425 it(opaque, drv->format_name);
2426 }
2427 }
2428
2429 BlockDriverState *bdrv_find(const char *name)
2430 {
2431 BlockDriverState *bs;
2432
2433 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2434 if (!strcmp(name, bs->device_name)) {
2435 return bs;
2436 }
2437 }
2438 return NULL;
2439 }
2440
2441 BlockDriverState *bdrv_next(BlockDriverState *bs)
2442 {
2443 if (!bs) {
2444 return QTAILQ_FIRST(&bdrv_states);
2445 }
2446 return QTAILQ_NEXT(bs, list);
2447 }
2448
2449 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2450 {
2451 BlockDriverState *bs;
2452
2453 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2454 it(opaque, bs);
2455 }
2456 }
2457
2458 const char *bdrv_get_device_name(BlockDriverState *bs)
2459 {
2460 return bs->device_name;
2461 }
2462
2463 int bdrv_get_flags(BlockDriverState *bs)
2464 {
2465 return bs->open_flags;
2466 }
2467
2468 void bdrv_flush_all(void)
2469 {
2470 BlockDriverState *bs;
2471
2472 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2473 bdrv_flush(bs);
2474 }
2475 }
2476
2477 int bdrv_has_zero_init(BlockDriverState *bs)
2478 {
2479 assert(bs->drv);
2480
2481 if (bs->drv->bdrv_has_zero_init) {
2482 return bs->drv->bdrv_has_zero_init(bs);
2483 }
2484
2485 return 1;
2486 }
2487
2488 typedef struct BdrvCoIsAllocatedData {
2489 BlockDriverState *bs;
2490 int64_t sector_num;
2491 int nb_sectors;
2492 int *pnum;
2493 int ret;
2494 bool done;
2495 } BdrvCoIsAllocatedData;
2496
2497 /*
2498 * Returns true iff the specified sector is present in the disk image. Drivers
2499 * not implementing the functionality are assumed to not support backing files,
2500 * hence all their sectors are reported as allocated.
2501 *
2502 * If 'sector_num' is beyond the end of the disk image the return value is 0
2503 * and 'pnum' is set to 0.
2504 *
2505 * 'pnum' is set to the number of sectors (including and immediately following
2506 * the specified sector) that are known to be in the same
2507 * allocated/unallocated state.
2508 *
2509 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2510 * beyond the end of the disk image it will be clamped.
2511 */
2512 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2513 int nb_sectors, int *pnum)
2514 {
2515 int64_t n;
2516
2517 if (sector_num >= bs->total_sectors) {
2518 *pnum = 0;
2519 return 0;
2520 }
2521
2522 n = bs->total_sectors - sector_num;
2523 if (n < nb_sectors) {
2524 nb_sectors = n;
2525 }
2526
2527 if (!bs->drv->bdrv_co_is_allocated) {
2528 *pnum = nb_sectors;
2529 return 1;
2530 }
2531
2532 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2533 }
2534
2535 /* Coroutine wrapper for bdrv_is_allocated() */
2536 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2537 {
2538 BdrvCoIsAllocatedData *data = opaque;
2539 BlockDriverState *bs = data->bs;
2540
2541 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2542 data->pnum);
2543 data->done = true;
2544 }
2545
2546 /*
2547 * Synchronous wrapper around bdrv_co_is_allocated().
2548 *
2549 * See bdrv_co_is_allocated() for details.
2550 */
2551 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2552 int *pnum)
2553 {
2554 Coroutine *co;
2555 BdrvCoIsAllocatedData data = {
2556 .bs = bs,
2557 .sector_num = sector_num,
2558 .nb_sectors = nb_sectors,
2559 .pnum = pnum,
2560 .done = false,
2561 };
2562
2563 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2564 qemu_coroutine_enter(co, &data);
2565 while (!data.done) {
2566 qemu_aio_wait();
2567 }
2568 return data.ret;
2569 }
2570
2571 /*
2572 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2573 *
2574 * Return true if the given sector is allocated in any image between
2575 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2576 * sector is allocated in any image of the chain. Return false otherwise.
2577 *
2578 * 'pnum' is set to the number of sectors (including and immediately following
2579 * the specified sector) that are known to be in the same
2580 * allocated/unallocated state.
2581 *
2582 */
2583 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2584 BlockDriverState *base,
2585 int64_t sector_num,
2586 int nb_sectors, int *pnum)
2587 {
2588 BlockDriverState *intermediate;
2589 int ret, n = nb_sectors;
2590
2591 intermediate = top;
2592 while (intermediate && intermediate != base) {
2593 int pnum_inter;
2594 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2595 &pnum_inter);
2596 if (ret < 0) {
2597 return ret;
2598 } else if (ret) {
2599 *pnum = pnum_inter;
2600 return 1;
2601 }
2602
2603 /*
2604 * [sector_num, nb_sectors] is unallocated on top but intermediate
2605 * might have
2606 *
2607 * [sector_num+x, nr_sectors] allocated.
2608 */
2609 if (n > pnum_inter) {
2610 n = pnum_inter;
2611 }
2612
2613 intermediate = intermediate->backing_hd;
2614 }
2615
2616 *pnum = n;
2617 return 0;
2618 }
2619
2620 BlockInfoList *qmp_query_block(Error **errp)
2621 {
2622 BlockInfoList *head = NULL, *cur_item = NULL;
2623 BlockDriverState *bs;
2624
2625 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2626 BlockInfoList *info = g_malloc0(sizeof(*info));
2627
2628 info->value = g_malloc0(sizeof(*info->value));
2629 info->value->device = g_strdup(bs->device_name);
2630 info->value->type = g_strdup("unknown");
2631 info->value->locked = bdrv_dev_is_medium_locked(bs);
2632 info->value->removable = bdrv_dev_has_removable_media(bs);
2633
2634 if (bdrv_dev_has_removable_media(bs)) {
2635 info->value->has_tray_open = true;
2636 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2637 }
2638
2639 if (bdrv_iostatus_is_enabled(bs)) {
2640 info->value->has_io_status = true;
2641 info->value->io_status = bs->iostatus;
2642 }
2643
2644 if (bs->drv) {
2645 info->value->has_inserted = true;
2646 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2647 info->value->inserted->file = g_strdup(bs->filename);
2648 info->value->inserted->ro = bs->read_only;
2649 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2650 info->value->inserted->encrypted = bs->encrypted;
2651 info->value->inserted->encryption_key_missing = bdrv_key_required(bs);
2652 if (bs->backing_file[0]) {
2653 info->value->inserted->has_backing_file = true;
2654 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2655 }
2656
2657 info->value->inserted->backing_file_depth =
2658 bdrv_get_backing_file_depth(bs);
2659
2660 if (bs->io_limits_enabled) {
2661 info->value->inserted->bps =
2662 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2663 info->value->inserted->bps_rd =
2664 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2665 info->value->inserted->bps_wr =
2666 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2667 info->value->inserted->iops =
2668 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2669 info->value->inserted->iops_rd =
2670 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2671 info->value->inserted->iops_wr =
2672 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2673 }
2674 }
2675
2676 /* XXX: waiting for the qapi to support GSList */
2677 if (!cur_item) {
2678 head = cur_item = info;
2679 } else {
2680 cur_item->next = info;
2681 cur_item = info;
2682 }
2683 }
2684
2685 return head;
2686 }
2687
2688 /* Consider exposing this as a full fledged QMP command */
2689 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2690 {
2691 BlockStats *s;
2692
2693 s = g_malloc0(sizeof(*s));
2694
2695 if (bs->device_name[0]) {
2696 s->has_device = true;
2697 s->device = g_strdup(bs->device_name);
2698 }
2699
2700 s->stats = g_malloc0(sizeof(*s->stats));
2701 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2702 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2703 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2704 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2705 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2706 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2707 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2708 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2709 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2710
2711 if (bs->file) {
2712 s->has_parent = true;
2713 s->parent = qmp_query_blockstat(bs->file, NULL);
2714 }
2715
2716 return s;
2717 }
2718
2719 BlockStatsList *qmp_query_blockstats(Error **errp)
2720 {
2721 BlockStatsList *head = NULL, *cur_item = NULL;
2722 BlockDriverState *bs;
2723
2724 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2725 BlockStatsList *info = g_malloc0(sizeof(*info));
2726 info->value = qmp_query_blockstat(bs, NULL);
2727
2728 /* XXX: waiting for the qapi to support GSList */
2729 if (!cur_item) {
2730 head = cur_item = info;
2731 } else {
2732 cur_item->next = info;
2733 cur_item = info;
2734 }
2735 }
2736
2737 return head;
2738 }
2739
2740 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2741 {
2742 if (bs->backing_hd && bs->backing_hd->encrypted)
2743 return bs->backing_file;
2744 else if (bs->encrypted)
2745 return bs->filename;
2746 else
2747 return NULL;
2748 }
2749
2750 void bdrv_get_backing_filename(BlockDriverState *bs,
2751 char *filename, int filename_size)
2752 {
2753 pstrcpy(filename, filename_size, bs->backing_file);
2754 }
2755
2756 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2757 const uint8_t *buf, int nb_sectors)
2758 {
2759 BlockDriver *drv = bs->drv;
2760 if (!drv)
2761 return -ENOMEDIUM;
2762 if (!drv->bdrv_write_compressed)
2763 return -ENOTSUP;
2764 if (bdrv_check_request(bs, sector_num, nb_sectors))
2765 return -EIO;
2766
2767 if (bs->dirty_bitmap) {
2768 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2769 }
2770
2771 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2772 }
2773
2774 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2775 {
2776 BlockDriver *drv = bs->drv;
2777 if (!drv)
2778 return -ENOMEDIUM;
2779 if (!drv->bdrv_get_info)
2780 return -ENOTSUP;
2781 memset(bdi, 0, sizeof(*bdi));
2782 return drv->bdrv_get_info(bs, bdi);
2783 }
2784
2785 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2786 int64_t pos, int size)
2787 {
2788 BlockDriver *drv = bs->drv;
2789 if (!drv)
2790 return -ENOMEDIUM;
2791 if (drv->bdrv_save_vmstate)
2792 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2793 if (bs->file)
2794 return bdrv_save_vmstate(bs->file, buf, pos, size);
2795 return -ENOTSUP;
2796 }
2797
2798 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2799 int64_t pos, int size)
2800 {
2801 BlockDriver *drv = bs->drv;
2802 if (!drv)
2803 return -ENOMEDIUM;
2804 if (drv->bdrv_load_vmstate)
2805 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2806 if (bs->file)
2807 return bdrv_load_vmstate(bs->file, buf, pos, size);
2808 return -ENOTSUP;
2809 }
2810
2811 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2812 {
2813 BlockDriver *drv = bs->drv;
2814
2815 if (!drv || !drv->bdrv_debug_event) {
2816 return;
2817 }
2818
2819 drv->bdrv_debug_event(bs, event);
2820
2821 }
2822
2823 /**************************************************************/
2824 /* handling of snapshots */
2825
2826 int bdrv_can_snapshot(BlockDriverState *bs)
2827 {
2828 BlockDriver *drv = bs->drv;
2829 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2830 return 0;
2831 }
2832
2833 if (!drv->bdrv_snapshot_create) {
2834 if (bs->file != NULL) {
2835 return bdrv_can_snapshot(bs->file);
2836 }
2837 return 0;
2838 }
2839
2840 return 1;
2841 }
2842
2843 int bdrv_is_snapshot(BlockDriverState *bs)
2844 {
2845 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2846 }
2847
2848 BlockDriverState *bdrv_snapshots(void)
2849 {
2850 BlockDriverState *bs;
2851
2852 if (bs_snapshots) {
2853 return bs_snapshots;
2854 }
2855
2856 bs = NULL;
2857 while ((bs = bdrv_next(bs))) {
2858 if (bdrv_can_snapshot(bs)) {
2859 bs_snapshots = bs;
2860 return bs;
2861 }
2862 }
2863 return NULL;
2864 }
2865
2866 int bdrv_snapshot_create(BlockDriverState *bs,
2867 QEMUSnapshotInfo *sn_info)
2868 {
2869 BlockDriver *drv = bs->drv;
2870 if (!drv)
2871 return -ENOMEDIUM;
2872 if (drv->bdrv_snapshot_create)
2873 return drv->bdrv_snapshot_create(bs, sn_info);
2874 if (bs->file)
2875 return bdrv_snapshot_create(bs->file, sn_info);
2876 return -ENOTSUP;
2877 }
2878
2879 int bdrv_snapshot_goto(BlockDriverState *bs,
2880 const char *snapshot_id)
2881 {
2882 BlockDriver *drv = bs->drv;
2883 int ret, open_ret;
2884
2885 if (!drv)
2886 return -ENOMEDIUM;
2887 if (drv->bdrv_snapshot_goto)
2888 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2889
2890 if (bs->file) {
2891 drv->bdrv_close(bs);
2892 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2893 open_ret = drv->bdrv_open(bs, bs->open_flags);
2894 if (open_ret < 0) {
2895 bdrv_delete(bs->file);
2896 bs->drv = NULL;
2897 return open_ret;
2898 }
2899 return ret;
2900 }
2901
2902 return -ENOTSUP;
2903 }
2904
2905 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2906 {
2907 BlockDriver *drv = bs->drv;
2908 if (!drv)
2909 return -ENOMEDIUM;
2910 if (drv->bdrv_snapshot_delete)
2911 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2912 if (bs->file)
2913 return bdrv_snapshot_delete(bs->file, snapshot_id);
2914 return -ENOTSUP;
2915 }
2916
2917 int bdrv_snapshot_list(BlockDriverState *bs,
2918 QEMUSnapshotInfo **psn_info)
2919 {
2920 BlockDriver *drv = bs->drv;
2921 if (!drv)
2922 return -ENOMEDIUM;
2923 if (drv->bdrv_snapshot_list)
2924 return drv->bdrv_snapshot_list(bs, psn_info);
2925 if (bs->file)
2926 return bdrv_snapshot_list(bs->file, psn_info);
2927 return -ENOTSUP;
2928 }
2929
2930 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2931 const char *snapshot_name)
2932 {
2933 BlockDriver *drv = bs->drv;
2934 if (!drv) {
2935 return -ENOMEDIUM;
2936 }
2937 if (!bs->read_only) {
2938 return -EINVAL;
2939 }
2940 if (drv->bdrv_snapshot_load_tmp) {
2941 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2942 }
2943 return -ENOTSUP;
2944 }
2945
2946 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2947 const char *backing_file)
2948 {
2949 if (!bs->drv) {
2950 return NULL;
2951 }
2952
2953 if (bs->backing_hd) {
2954 if (strcmp(bs->backing_file, backing_file) == 0) {
2955 return bs->backing_hd;
2956 } else {
2957 return bdrv_find_backing_image(bs->backing_hd, backing_file);
2958 }
2959 }
2960
2961 return NULL;
2962 }
2963
2964 int bdrv_get_backing_file_depth(BlockDriverState *bs)
2965 {
2966 if (!bs->drv) {
2967 return 0;
2968 }
2969
2970 if (!bs->backing_hd) {
2971 return 0;
2972 }
2973
2974 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
2975 }
2976
2977 #define NB_SUFFIXES 4
2978
2979 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2980 {
2981 static const char suffixes[NB_SUFFIXES] = "KMGT";
2982 int64_t base;
2983 int i;
2984
2985 if (size <= 999) {
2986 snprintf(buf, buf_size, "%" PRId64, size);
2987 } else {
2988 base = 1024;
2989 for(i = 0; i < NB_SUFFIXES; i++) {
2990 if (size < (10 * base)) {
2991 snprintf(buf, buf_size, "%0.1f%c",
2992 (double)size / base,
2993 suffixes[i]);
2994 break;
2995 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2996 snprintf(buf, buf_size, "%" PRId64 "%c",
2997 ((size + (base >> 1)) / base),
2998 suffixes[i]);
2999 break;
3000 }
3001 base = base * 1024;
3002 }
3003 }
3004 return buf;
3005 }
3006
3007 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3008 {
3009 char buf1[128], date_buf[128], clock_buf[128];
3010 #ifdef _WIN32
3011 struct tm *ptm;
3012 #else
3013 struct tm tm;
3014 #endif
3015 time_t ti;
3016 int64_t secs;
3017
3018 if (!sn) {
3019 snprintf(buf, buf_size,
3020 "%-10s%-20s%7s%20s%15s",
3021 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3022 } else {
3023 ti = sn->date_sec;
3024 #ifdef _WIN32
3025 ptm = localtime(&ti);
3026 strftime(date_buf, sizeof(date_buf),
3027 "%Y-%m-%d %H:%M:%S", ptm);
3028 #else
3029 localtime_r(&ti, &tm);
3030 strftime(date_buf, sizeof(date_buf),
3031 "%Y-%m-%d %H:%M:%S", &tm);
3032 #endif
3033 secs = sn->vm_clock_nsec / 1000000000;
3034 snprintf(clock_buf, sizeof(clock_buf),
3035 "%02d:%02d:%02d.%03d",
3036 (int)(secs / 3600),
3037 (int)((secs / 60) % 60),
3038 (int)(secs % 60),
3039 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3040 snprintf(buf, buf_size,
3041 "%-10s%-20s%7s%20s%15s",
3042 sn->id_str, sn->name,
3043 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3044 date_buf,
3045 clock_buf);
3046 }
3047 return buf;
3048 }
3049
3050 /**************************************************************/
3051 /* async I/Os */
3052
3053 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3054 QEMUIOVector *qiov, int nb_sectors,
3055 BlockDriverCompletionFunc *cb, void *opaque)
3056 {
3057 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3058
3059 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3060 cb, opaque, false);
3061 }
3062
3063 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3064 QEMUIOVector *qiov, int nb_sectors,
3065 BlockDriverCompletionFunc *cb, void *opaque)
3066 {
3067 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3068
3069 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3070 cb, opaque, true);
3071 }
3072
3073
3074 typedef struct MultiwriteCB {
3075 int error;
3076 int num_requests;
3077 int num_callbacks;
3078 struct {
3079 BlockDriverCompletionFunc *cb;
3080 void *opaque;
3081 QEMUIOVector *free_qiov;
3082 } callbacks[];
3083 } MultiwriteCB;
3084
3085 static void multiwrite_user_cb(MultiwriteCB *mcb)
3086 {
3087 int i;
3088
3089 for (i = 0; i < mcb->num_callbacks; i++) {
3090 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3091 if (mcb->callbacks[i].free_qiov) {
3092 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3093 }
3094 g_free(mcb->callbacks[i].free_qiov);
3095 }
3096 }
3097
3098 static void multiwrite_cb(void *opaque, int ret)
3099 {
3100 MultiwriteCB *mcb = opaque;
3101
3102 trace_multiwrite_cb(mcb, ret);
3103
3104 if (ret < 0 && !mcb->error) {
3105 mcb->error = ret;
3106 }
3107
3108 mcb->num_requests--;
3109 if (mcb->num_requests == 0) {
3110 multiwrite_user_cb(mcb);
3111 g_free(mcb);
3112 }
3113 }
3114
3115 static int multiwrite_req_compare(const void *a, const void *b)
3116 {
3117 const BlockRequest *req1 = a, *req2 = b;
3118
3119 /*
3120 * Note that we can't simply subtract req2->sector from req1->sector
3121 * here as that could overflow the return value.
3122 */
3123 if (req1->sector > req2->sector) {
3124 return 1;
3125 } else if (req1->sector < req2->sector) {
3126 return -1;
3127 } else {
3128 return 0;
3129 }
3130 }
3131
3132 /*
3133 * Takes a bunch of requests and tries to merge them. Returns the number of
3134 * requests that remain after merging.
3135 */
3136 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3137 int num_reqs, MultiwriteCB *mcb)
3138 {
3139 int i, outidx;
3140
3141 // Sort requests by start sector
3142 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3143
3144 // Check if adjacent requests touch the same clusters. If so, combine them,
3145 // filling up gaps with zero sectors.
3146 outidx = 0;
3147 for (i = 1; i < num_reqs; i++) {
3148 int merge = 0;
3149 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3150
3151 // Handle exactly sequential writes and overlapping writes.
3152 if (reqs[i].sector <= oldreq_last) {
3153 merge = 1;
3154 }
3155
3156 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3157 merge = 0;
3158 }
3159
3160 if (merge) {
3161 size_t size;
3162 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3163 qemu_iovec_init(qiov,
3164 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3165
3166 // Add the first request to the merged one. If the requests are
3167 // overlapping, drop the last sectors of the first request.
3168 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3169 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3170
3171 // We should need to add any zeros between the two requests
3172 assert (reqs[i].sector <= oldreq_last);
3173
3174 // Add the second request
3175 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3176
3177 reqs[outidx].nb_sectors = qiov->size >> 9;
3178 reqs[outidx].qiov = qiov;
3179
3180 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3181 } else {
3182 outidx++;
3183 reqs[outidx].sector = reqs[i].sector;
3184 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3185 reqs[outidx].qiov = reqs[i].qiov;
3186 }
3187 }
3188
3189 return outidx + 1;
3190 }
3191
3192 /*
3193 * Submit multiple AIO write requests at once.
3194 *
3195 * On success, the function returns 0 and all requests in the reqs array have
3196 * been submitted. In error case this function returns -1, and any of the
3197 * requests may or may not be submitted yet. In particular, this means that the
3198 * callback will be called for some of the requests, for others it won't. The
3199 * caller must check the error field of the BlockRequest to wait for the right
3200 * callbacks (if error != 0, no callback will be called).
3201 *
3202 * The implementation may modify the contents of the reqs array, e.g. to merge
3203 * requests. However, the fields opaque and error are left unmodified as they
3204 * are used to signal failure for a single request to the caller.
3205 */
3206 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3207 {
3208 MultiwriteCB *mcb;
3209 int i;
3210
3211 /* don't submit writes if we don't have a medium */
3212 if (bs->drv == NULL) {
3213 for (i = 0; i < num_reqs; i++) {
3214 reqs[i].error = -ENOMEDIUM;
3215 }
3216 return -1;
3217 }
3218
3219 if (num_reqs == 0) {
3220 return 0;
3221 }
3222
3223 // Create MultiwriteCB structure
3224 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3225 mcb->num_requests = 0;
3226 mcb->num_callbacks = num_reqs;
3227
3228 for (i = 0; i < num_reqs; i++) {
3229 mcb->callbacks[i].cb = reqs[i].cb;
3230 mcb->callbacks[i].opaque = reqs[i].opaque;
3231 }
3232
3233 // Check for mergable requests
3234 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3235
3236 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3237
3238 /* Run the aio requests. */
3239 mcb->num_requests = num_reqs;
3240 for (i = 0; i < num_reqs; i++) {
3241 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3242 reqs[i].nb_sectors, multiwrite_cb, mcb);
3243 }
3244
3245 return 0;
3246 }
3247
3248 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3249 {
3250 acb->pool->cancel(acb);
3251 }
3252
3253 /* block I/O throttling */
3254 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3255 bool is_write, double elapsed_time, uint64_t *wait)
3256 {
3257 uint64_t bps_limit = 0;
3258 double bytes_limit, bytes_base, bytes_res;
3259 double slice_time, wait_time;
3260
3261 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3262 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3263 } else if (bs->io_limits.bps[is_write]) {
3264 bps_limit = bs->io_limits.bps[is_write];
3265 } else {
3266 if (wait) {
3267 *wait = 0;
3268 }
3269
3270 return false;
3271 }
3272
3273 slice_time = bs->slice_end - bs->slice_start;
3274 slice_time /= (NANOSECONDS_PER_SECOND);
3275 bytes_limit = bps_limit * slice_time;
3276 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3277 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3278 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3279 }
3280
3281 /* bytes_base: the bytes of data which have been read/written; and
3282 * it is obtained from the history statistic info.
3283 * bytes_res: the remaining bytes of data which need to be read/written.
3284 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3285 * the total time for completing reading/writting all data.
3286 */
3287 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3288
3289 if (bytes_base + bytes_res <= bytes_limit) {
3290 if (wait) {
3291 *wait = 0;
3292 }
3293
3294 return false;
3295 }
3296
3297 /* Calc approx time to dispatch */
3298 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3299
3300 /* When the I/O rate at runtime exceeds the limits,
3301 * bs->slice_end need to be extended in order that the current statistic
3302 * info can be kept until the timer fire, so it is increased and tuned
3303 * based on the result of experiment.
3304 */
3305 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3306 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3307 if (wait) {
3308 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3309 }
3310
3311 return true;
3312 }
3313
3314 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3315 double elapsed_time, uint64_t *wait)
3316 {
3317 uint64_t iops_limit = 0;
3318 double ios_limit, ios_base;
3319 double slice_time, wait_time;
3320
3321 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3322 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3323 } else if (bs->io_limits.iops[is_write]) {
3324 iops_limit = bs->io_limits.iops[is_write];
3325 } else {
3326 if (wait) {
3327 *wait = 0;
3328 }
3329
3330 return false;
3331 }
3332
3333 slice_time = bs->slice_end - bs->slice_start;
3334 slice_time /= (NANOSECONDS_PER_SECOND);
3335 ios_limit = iops_limit * slice_time;
3336 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3337 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3338 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3339 }
3340
3341 if (ios_base + 1 <= ios_limit) {
3342 if (wait) {
3343 *wait = 0;
3344 }
3345
3346 return false;
3347 }
3348
3349 /* Calc approx time to dispatch */
3350 wait_time = (ios_base + 1) / iops_limit;
3351 if (wait_time > elapsed_time) {
3352 wait_time = wait_time - elapsed_time;
3353 } else {
3354 wait_time = 0;
3355 }
3356
3357 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3358 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3359 if (wait) {
3360 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3361 }
3362
3363 return true;
3364 }
3365
3366 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3367 bool is_write, int64_t *wait)
3368 {
3369 int64_t now, max_wait;
3370 uint64_t bps_wait = 0, iops_wait = 0;
3371 double elapsed_time;
3372 int bps_ret, iops_ret;
3373
3374 now = qemu_get_clock_ns(vm_clock);
3375 if ((bs->slice_start < now)
3376 && (bs->slice_end > now)) {
3377 bs->slice_end = now + bs->slice_time;
3378 } else {
3379 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3380 bs->slice_start = now;
3381 bs->slice_end = now + bs->slice_time;
3382
3383 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3384 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3385
3386 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3387 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3388 }
3389
3390 elapsed_time = now - bs->slice_start;
3391 elapsed_time /= (NANOSECONDS_PER_SECOND);
3392
3393 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3394 is_write, elapsed_time, &bps_wait);
3395 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3396 elapsed_time, &iops_wait);
3397 if (bps_ret || iops_ret) {
3398 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3399 if (wait) {
3400 *wait = max_wait;
3401 }
3402
3403 now = qemu_get_clock_ns(vm_clock);
3404 if (bs->slice_end < now + max_wait) {
3405 bs->slice_end = now + max_wait;
3406 }
3407
3408 return true;
3409 }
3410
3411 if (wait) {
3412 *wait = 0;
3413 }
3414
3415 return false;
3416 }
3417
3418 /**************************************************************/
3419 /* async block device emulation */
3420
3421 typedef struct BlockDriverAIOCBSync {
3422 BlockDriverAIOCB common;
3423 QEMUBH *bh;
3424 int ret;
3425 /* vector translation state */
3426 QEMUIOVector *qiov;
3427 uint8_t *bounce;
3428 int is_write;
3429 } BlockDriverAIOCBSync;
3430
3431 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3432 {
3433 BlockDriverAIOCBSync *acb =
3434 container_of(blockacb, BlockDriverAIOCBSync, common);
3435 qemu_bh_delete(acb->bh);
3436 acb->bh = NULL;
3437 qemu_aio_release(acb);
3438 }
3439
3440 static AIOPool bdrv_em_aio_pool = {
3441 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3442 .cancel = bdrv_aio_cancel_em,
3443 };
3444
3445 static void bdrv_aio_bh_cb(void *opaque)
3446 {
3447 BlockDriverAIOCBSync *acb = opaque;
3448
3449 if (!acb->is_write)
3450 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3451 qemu_vfree(acb->bounce);
3452 acb->common.cb(acb->common.opaque, acb->ret);
3453 qemu_bh_delete(acb->bh);
3454 acb->bh = NULL;
3455 qemu_aio_release(acb);
3456 }
3457
3458 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3459 int64_t sector_num,
3460 QEMUIOVector *qiov,
3461 int nb_sectors,
3462 BlockDriverCompletionFunc *cb,
3463 void *opaque,
3464 int is_write)
3465
3466 {
3467 BlockDriverAIOCBSync *acb;
3468
3469 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3470 acb->is_write = is_write;
3471 acb->qiov = qiov;
3472 acb->bounce = qemu_blockalign(bs, qiov->size);
3473 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3474
3475 if (is_write) {
3476 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3477 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3478 } else {
3479 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3480 }
3481
3482 qemu_bh_schedule(acb->bh);
3483
3484 return &acb->common;
3485 }
3486
3487 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3488 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3489 BlockDriverCompletionFunc *cb, void *opaque)
3490 {
3491 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3492 }
3493
3494 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3495 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3496 BlockDriverCompletionFunc *cb, void *opaque)
3497 {
3498 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3499 }
3500
3501
3502 typedef struct BlockDriverAIOCBCoroutine {
3503 BlockDriverAIOCB common;
3504 BlockRequest req;
3505 bool is_write;
3506 QEMUBH* bh;
3507 } BlockDriverAIOCBCoroutine;
3508
3509 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3510 {
3511 qemu_aio_flush();
3512 }
3513
3514 static AIOPool bdrv_em_co_aio_pool = {
3515 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3516 .cancel = bdrv_aio_co_cancel_em,
3517 };
3518
3519 static void bdrv_co_em_bh(void *opaque)
3520 {
3521 BlockDriverAIOCBCoroutine *acb = opaque;
3522
3523 acb->common.cb(acb->common.opaque, acb->req.error);
3524 qemu_bh_delete(acb->bh);
3525 qemu_aio_release(acb);
3526 }
3527
3528 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3529 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3530 {
3531 BlockDriverAIOCBCoroutine *acb = opaque;
3532 BlockDriverState *bs = acb->common.bs;
3533
3534 if (!acb->is_write) {
3535 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3536 acb->req.nb_sectors, acb->req.qiov, 0);
3537 } else {
3538 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3539 acb->req.nb_sectors, acb->req.qiov, 0);
3540 }
3541
3542 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3543 qemu_bh_schedule(acb->bh);
3544 }
3545
3546 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3547 int64_t sector_num,
3548 QEMUIOVector *qiov,
3549 int nb_sectors,
3550 BlockDriverCompletionFunc *cb,
3551 void *opaque,
3552 bool is_write)
3553 {
3554 Coroutine *co;
3555 BlockDriverAIOCBCoroutine *acb;
3556
3557 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3558 acb->req.sector = sector_num;
3559 acb->req.nb_sectors = nb_sectors;
3560 acb->req.qiov = qiov;
3561 acb->is_write = is_write;
3562
3563 co = qemu_coroutine_create(bdrv_co_do_rw);
3564 qemu_coroutine_enter(co, acb);
3565
3566 return &acb->common;
3567 }
3568
3569 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3570 {
3571 BlockDriverAIOCBCoroutine *acb = opaque;
3572 BlockDriverState *bs = acb->common.bs;
3573
3574 acb->req.error = bdrv_co_flush(bs);
3575 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3576 qemu_bh_schedule(acb->bh);
3577 }
3578
3579 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3580 BlockDriverCompletionFunc *cb, void *opaque)
3581 {
3582 trace_bdrv_aio_flush(bs, opaque);
3583
3584 Coroutine *co;
3585 BlockDriverAIOCBCoroutine *acb;
3586
3587 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3588 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3589 qemu_coroutine_enter(co, acb);
3590
3591 return &acb->common;
3592 }
3593
3594 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3595 {
3596 BlockDriverAIOCBCoroutine *acb = opaque;
3597 BlockDriverState *bs = acb->common.bs;
3598
3599 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3600 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3601 qemu_bh_schedule(acb->bh);
3602 }
3603
3604 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3605 int64_t sector_num, int nb_sectors,
3606 BlockDriverCompletionFunc *cb, void *opaque)
3607 {
3608 Coroutine *co;
3609 BlockDriverAIOCBCoroutine *acb;
3610
3611 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3612
3613 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3614 acb->req.sector = sector_num;
3615 acb->req.nb_sectors = nb_sectors;
3616 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3617 qemu_coroutine_enter(co, acb);
3618
3619 return &acb->common;
3620 }
3621
3622 void bdrv_init(void)
3623 {
3624 module_call_init(MODULE_INIT_BLOCK);
3625 }
3626
3627 void bdrv_init_with_whitelist(void)
3628 {
3629 use_bdrv_whitelist = 1;
3630 bdrv_init();
3631 }
3632
3633 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3634 BlockDriverCompletionFunc *cb, void *opaque)
3635 {
3636 BlockDriverAIOCB *acb;
3637
3638 if (pool->free_aiocb) {
3639 acb = pool->free_aiocb;
3640 pool->free_aiocb = acb->next;
3641 } else {
3642 acb = g_malloc0(pool->aiocb_size);
3643 acb->pool = pool;
3644 }
3645 acb->bs = bs;
3646 acb->cb = cb;
3647 acb->opaque = opaque;
3648 return acb;
3649 }
3650
3651 void qemu_aio_release(void *p)
3652 {
3653 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3654 AIOPool *pool = acb->pool;
3655 acb->next = pool->free_aiocb;
3656 pool->free_aiocb = acb;
3657 }
3658
3659 /**************************************************************/
3660 /* Coroutine block device emulation */
3661
3662 typedef struct CoroutineIOCompletion {
3663 Coroutine *coroutine;
3664 int ret;
3665 } CoroutineIOCompletion;
3666
3667 static void bdrv_co_io_em_complete(void *opaque, int ret)
3668 {
3669 CoroutineIOCompletion *co = opaque;
3670
3671 co->ret = ret;
3672 qemu_coroutine_enter(co->coroutine, NULL);
3673 }
3674
3675 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3676 int nb_sectors, QEMUIOVector *iov,
3677 bool is_write)
3678 {
3679 CoroutineIOCompletion co = {
3680 .coroutine = qemu_coroutine_self(),
3681 };
3682 BlockDriverAIOCB *acb;
3683
3684 if (is_write) {
3685 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3686 bdrv_co_io_em_complete, &co);
3687 } else {
3688 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3689 bdrv_co_io_em_complete, &co);
3690 }
3691
3692 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3693 if (!acb) {
3694 return -EIO;
3695 }
3696 qemu_coroutine_yield();
3697
3698 return co.ret;
3699 }
3700
3701 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3702 int64_t sector_num, int nb_sectors,
3703 QEMUIOVector *iov)
3704 {
3705 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3706 }
3707
3708 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3709 int64_t sector_num, int nb_sectors,
3710 QEMUIOVector *iov)
3711 {
3712 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3713 }
3714
3715 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3716 {
3717 RwCo *rwco = opaque;
3718
3719 rwco->ret = bdrv_co_flush(rwco->bs);
3720 }
3721
3722 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3723 {
3724 int ret;
3725
3726 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3727 return 0;
3728 }
3729
3730 /* Write back cached data to the OS even with cache=unsafe */
3731 if (bs->drv->bdrv_co_flush_to_os) {
3732 ret = bs->drv->bdrv_co_flush_to_os(bs);
3733 if (ret < 0) {
3734 return ret;
3735 }
3736 }
3737
3738 /* But don't actually force it to the disk with cache=unsafe */
3739 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3740 goto flush_parent;
3741 }
3742
3743 if (bs->drv->bdrv_co_flush_to_disk) {
3744 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3745 } else if (bs->drv->bdrv_aio_flush) {
3746 BlockDriverAIOCB *acb;
3747 CoroutineIOCompletion co = {
3748 .coroutine = qemu_coroutine_self(),
3749 };
3750
3751 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3752 if (acb == NULL) {
3753 ret = -EIO;
3754 } else {
3755 qemu_coroutine_yield();
3756 ret = co.ret;
3757 }
3758 } else {
3759 /*
3760 * Some block drivers always operate in either writethrough or unsafe
3761 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3762 * know how the server works (because the behaviour is hardcoded or
3763 * depends on server-side configuration), so we can't ensure that
3764 * everything is safe on disk. Returning an error doesn't work because
3765 * that would break guests even if the server operates in writethrough
3766 * mode.
3767 *
3768 * Let's hope the user knows what he's doing.
3769 */
3770 ret = 0;
3771 }
3772 if (ret < 0) {
3773 return ret;
3774 }
3775
3776 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3777 * in the case of cache=unsafe, so there are no useless flushes.
3778 */
3779 flush_parent:
3780 return bdrv_co_flush(bs->file);
3781 }
3782
3783 void bdrv_invalidate_cache(BlockDriverState *bs)
3784 {
3785 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3786 bs->drv->bdrv_invalidate_cache(bs);
3787 }
3788 }
3789
3790 void bdrv_invalidate_cache_all(void)
3791 {
3792 BlockDriverState *bs;
3793
3794 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3795 bdrv_invalidate_cache(bs);
3796 }
3797 }
3798
3799 void bdrv_clear_incoming_migration_all(void)
3800 {
3801 BlockDriverState *bs;
3802
3803 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3804 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3805 }
3806 }
3807
3808 int bdrv_flush(BlockDriverState *bs)
3809 {
3810 Coroutine *co;
3811 RwCo rwco = {
3812 .bs = bs,
3813 .ret = NOT_DONE,
3814 };
3815
3816 if (qemu_in_coroutine()) {
3817 /* Fast-path if already in coroutine context */
3818 bdrv_flush_co_entry(&rwco);
3819 } else {
3820 co = qemu_coroutine_create(bdrv_flush_co_entry);
3821 qemu_coroutine_enter(co, &rwco);
3822 while (rwco.ret == NOT_DONE) {
3823 qemu_aio_wait();
3824 }
3825 }
3826
3827 return rwco.ret;
3828 }
3829
3830 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3831 {
3832 RwCo *rwco = opaque;
3833
3834 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3835 }
3836
3837 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3838 int nb_sectors)
3839 {
3840 if (!bs->drv) {
3841 return -ENOMEDIUM;
3842 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3843 return -EIO;
3844 } else if (bs->read_only) {
3845 return -EROFS;
3846 } else if (bs->drv->bdrv_co_discard) {
3847 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3848 } else if (bs->drv->bdrv_aio_discard) {
3849 BlockDriverAIOCB *acb;
3850 CoroutineIOCompletion co = {
3851 .coroutine = qemu_coroutine_self(),
3852 };
3853
3854 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3855 bdrv_co_io_em_complete, &co);
3856 if (acb == NULL) {
3857 return -EIO;
3858 } else {
3859 qemu_coroutine_yield();
3860 return co.ret;
3861 }
3862 } else {
3863 return 0;
3864 }
3865 }
3866
3867 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3868 {
3869 Coroutine *co;
3870 RwCo rwco = {
3871 .bs = bs,
3872 .sector_num = sector_num,
3873 .nb_sectors = nb_sectors,
3874 .ret = NOT_DONE,
3875 };
3876
3877 if (qemu_in_coroutine()) {
3878 /* Fast-path if already in coroutine context */
3879 bdrv_discard_co_entry(&rwco);
3880 } else {
3881 co = qemu_coroutine_create(bdrv_discard_co_entry);
3882 qemu_coroutine_enter(co, &rwco);
3883 while (rwco.ret == NOT_DONE) {
3884 qemu_aio_wait();
3885 }
3886 }
3887
3888 return rwco.ret;
3889 }
3890
3891 /**************************************************************/
3892 /* removable device support */
3893
3894 /**
3895 * Return TRUE if the media is present
3896 */
3897 int bdrv_is_inserted(BlockDriverState *bs)
3898 {
3899 BlockDriver *drv = bs->drv;
3900
3901 if (!drv)
3902 return 0;
3903 if (!drv->bdrv_is_inserted)
3904 return 1;
3905 return drv->bdrv_is_inserted(bs);
3906 }
3907
3908 /**
3909 * Return whether the media changed since the last call to this
3910 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3911 */
3912 int bdrv_media_changed(BlockDriverState *bs)
3913 {
3914 BlockDriver *drv = bs->drv;
3915
3916 if (drv && drv->bdrv_media_changed) {
3917 return drv->bdrv_media_changed(bs);
3918 }
3919 return -ENOTSUP;
3920 }
3921
3922 /**
3923 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3924 */
3925 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3926 {
3927 BlockDriver *drv = bs->drv;
3928
3929 if (drv && drv->bdrv_eject) {
3930 drv->bdrv_eject(bs, eject_flag);
3931 }
3932
3933 if (bs->device_name[0] != '\0') {
3934 bdrv_emit_qmp_eject_event(bs, eject_flag);
3935 }
3936 }
3937
3938 /**
3939 * Lock or unlock the media (if it is locked, the user won't be able
3940 * to eject it manually).
3941 */
3942 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3943 {
3944 BlockDriver *drv = bs->drv;
3945
3946 trace_bdrv_lock_medium(bs, locked);
3947
3948 if (drv && drv->bdrv_lock_medium) {
3949 drv->bdrv_lock_medium(bs, locked);
3950 }
3951 }
3952
3953 /* needed for generic scsi interface */
3954
3955 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3956 {
3957 BlockDriver *drv = bs->drv;
3958
3959 if (drv && drv->bdrv_ioctl)
3960 return drv->bdrv_ioctl(bs, req, buf);
3961 return -ENOTSUP;
3962 }
3963
3964 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3965 unsigned long int req, void *buf,
3966 BlockDriverCompletionFunc *cb, void *opaque)
3967 {
3968 BlockDriver *drv = bs->drv;
3969
3970 if (drv && drv->bdrv_aio_ioctl)
3971 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3972 return NULL;
3973 }
3974
3975 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3976 {
3977 bs->buffer_alignment = align;
3978 }
3979
3980 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3981 {
3982 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3983 }
3984
3985 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3986 {
3987 int64_t bitmap_size;
3988
3989 bs->dirty_count = 0;
3990 if (enable) {
3991 if (!bs->dirty_bitmap) {
3992 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3993 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
3994 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
3995
3996 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
3997 }
3998 } else {
3999 if (bs->dirty_bitmap) {
4000 g_free(bs->dirty_bitmap);
4001 bs->dirty_bitmap = NULL;
4002 }
4003 }
4004 }
4005
4006 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4007 {
4008 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4009
4010 if (bs->dirty_bitmap &&
4011 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4012 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4013 (1UL << (chunk % (sizeof(unsigned long) * 8))));
4014 } else {
4015 return 0;
4016 }
4017 }
4018
4019 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4020 int nr_sectors)
4021 {
4022 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4023 }
4024
4025 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4026 {
4027 return bs->dirty_count;
4028 }
4029
4030 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4031 {
4032 assert(bs->in_use != in_use);
4033 bs->in_use = in_use;
4034 }
4035
4036 int bdrv_in_use(BlockDriverState *bs)
4037 {
4038 return bs->in_use;
4039 }
4040
4041 void bdrv_iostatus_enable(BlockDriverState *bs)
4042 {
4043 bs->iostatus_enabled = true;
4044 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4045 }
4046
4047 /* The I/O status is only enabled if the drive explicitly
4048 * enables it _and_ the VM is configured to stop on errors */
4049 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4050 {
4051 return (bs->iostatus_enabled &&
4052 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
4053 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
4054 bs->on_read_error == BLOCK_ERR_STOP_ANY));
4055 }
4056
4057 void bdrv_iostatus_disable(BlockDriverState *bs)
4058 {
4059 bs->iostatus_enabled = false;
4060 }
4061
4062 void bdrv_iostatus_reset(BlockDriverState *bs)
4063 {
4064 if (bdrv_iostatus_is_enabled(bs)) {
4065 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4066 }
4067 }
4068
4069 /* XXX: Today this is set by device models because it makes the implementation
4070 quite simple. However, the block layer knows about the error, so it's
4071 possible to implement this without device models being involved */
4072 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4073 {
4074 if (bdrv_iostatus_is_enabled(bs) &&
4075 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4076 assert(error >= 0);
4077 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4078 BLOCK_DEVICE_IO_STATUS_FAILED;
4079 }
4080 }
4081
4082 void
4083 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4084 enum BlockAcctType type)
4085 {
4086 assert(type < BDRV_MAX_IOTYPE);
4087
4088 cookie->bytes = bytes;
4089 cookie->start_time_ns = get_clock();
4090 cookie->type = type;
4091 }
4092
4093 void
4094 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4095 {
4096 assert(cookie->type < BDRV_MAX_IOTYPE);
4097
4098 bs->nr_bytes[cookie->type] += cookie->bytes;
4099 bs->nr_ops[cookie->type]++;
4100 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4101 }
4102
4103 int bdrv_img_create(const char *filename, const char *fmt,
4104 const char *base_filename, const char *base_fmt,
4105 char *options, uint64_t img_size, int flags)
4106 {
4107 QEMUOptionParameter *param = NULL, *create_options = NULL;
4108 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4109 BlockDriverState *bs = NULL;
4110 BlockDriver *drv, *proto_drv;
4111 BlockDriver *backing_drv = NULL;
4112 int ret = 0;
4113
4114 /* Find driver and parse its options */
4115 drv = bdrv_find_format(fmt);
4116 if (!drv) {
4117 error_report("Unknown file format '%s'", fmt);
4118 ret = -EINVAL;
4119 goto out;
4120 }
4121
4122 proto_drv = bdrv_find_protocol(filename);
4123 if (!proto_drv) {
4124 error_report("Unknown protocol '%s'", filename);
4125 ret = -EINVAL;
4126 goto out;
4127 }
4128
4129 create_options = append_option_parameters(create_options,
4130 drv->create_options);
4131 create_options = append_option_parameters(create_options,
4132 proto_drv->create_options);
4133
4134 /* Create parameter list with default values */
4135 param = parse_option_parameters("", create_options, param);
4136
4137 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4138
4139 /* Parse -o options */
4140 if (options) {
4141 param = parse_option_parameters(options, create_options, param);
4142 if (param == NULL) {
4143 error_report("Invalid options for file format '%s'.", fmt);
4144 ret = -EINVAL;
4145 goto out;
4146 }
4147 }
4148
4149 if (base_filename) {
4150 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4151 base_filename)) {
4152 error_report("Backing file not supported for file format '%s'",
4153 fmt);
4154 ret = -EINVAL;
4155 goto out;
4156 }
4157 }
4158
4159 if (base_fmt) {
4160 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4161 error_report("Backing file format not supported for file "
4162 "format '%s'", fmt);
4163 ret = -EINVAL;
4164 goto out;
4165 }
4166 }
4167
4168 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4169 if (backing_file && backing_file->value.s) {
4170 if (!strcmp(filename, backing_file->value.s)) {
4171 error_report("Error: Trying to create an image with the "
4172 "same filename as the backing file");
4173 ret = -EINVAL;
4174 goto out;
4175 }
4176 }
4177
4178 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4179 if (backing_fmt && backing_fmt->value.s) {
4180 backing_drv = bdrv_find_format(backing_fmt->value.s);
4181 if (!backing_drv) {
4182 error_report("Unknown backing file format '%s'",
4183 backing_fmt->value.s);
4184 ret = -EINVAL;
4185 goto out;
4186 }
4187 }
4188
4189 // The size for the image must always be specified, with one exception:
4190 // If we are using a backing file, we can obtain the size from there
4191 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4192 if (size && size->value.n == -1) {
4193 if (backing_file && backing_file->value.s) {
4194 uint64_t size;
4195 char buf[32];
4196 int back_flags;
4197
4198 /* backing files always opened read-only */
4199 back_flags =
4200 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4201
4202 bs = bdrv_new("");
4203
4204 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4205 if (ret < 0) {
4206 error_report("Could not open '%s'", backing_file->value.s);
4207 goto out;
4208 }
4209 bdrv_get_geometry(bs, &size);
4210 size *= 512;
4211
4212 snprintf(buf, sizeof(buf), "%" PRId64, size);
4213 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4214 } else {
4215 error_report("Image creation needs a size parameter");
4216 ret = -EINVAL;
4217 goto out;
4218 }
4219 }
4220
4221 printf("Formatting '%s', fmt=%s ", filename, fmt);
4222 print_option_parameters(param);
4223 puts("");
4224
4225 ret = bdrv_create(drv, filename, param);
4226
4227 if (ret < 0) {
4228 if (ret == -ENOTSUP) {
4229 error_report("Formatting or formatting option not supported for "
4230 "file format '%s'", fmt);
4231 } else if (ret == -EFBIG) {
4232 error_report("The image size is too large for file format '%s'",
4233 fmt);
4234 } else {
4235 error_report("%s: error while creating %s: %s", filename, fmt,
4236 strerror(-ret));
4237 }
4238 }
4239
4240 out:
4241 free_option_parameters(create_options);
4242 free_option_parameters(param);
4243
4244 if (bs) {
4245 bdrv_delete(bs);
4246 }
4247
4248 return ret;
4249 }
4250
4251 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4252 int64_t speed, BlockDriverCompletionFunc *cb,
4253 void *opaque, Error **errp)
4254 {
4255 BlockJob *job;
4256
4257 if (bs->job || bdrv_in_use(bs)) {
4258 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs));
4259 return NULL;
4260 }
4261 bdrv_set_in_use(bs, 1);
4262
4263 job = g_malloc0(job_type->instance_size);
4264 job->job_type = job_type;
4265 job->bs = bs;
4266 job->cb = cb;
4267 job->opaque = opaque;
4268 job->busy = true;
4269 bs->job = job;
4270
4271 /* Only set speed when necessary to avoid NotSupported error */
4272 if (speed != 0) {
4273 Error *local_err = NULL;
4274
4275 block_job_set_speed(job, speed, &local_err);
4276 if (error_is_set(&local_err)) {
4277 bs->job = NULL;
4278 g_free(job);
4279 bdrv_set_in_use(bs, 0);
4280 error_propagate(errp, local_err);
4281 return NULL;
4282 }
4283 }
4284 return job;
4285 }
4286
4287 void block_job_complete(BlockJob *job, int ret)
4288 {
4289 BlockDriverState *bs = job->bs;
4290
4291 assert(bs->job == job);
4292 job->cb(job->opaque, ret);
4293 bs->job = NULL;
4294 g_free(job);
4295 bdrv_set_in_use(bs, 0);
4296 }
4297
4298 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp)
4299 {
4300 Error *local_err = NULL;
4301
4302 if (!job->job_type->set_speed) {
4303 error_set(errp, QERR_NOT_SUPPORTED);
4304 return;
4305 }
4306 job->job_type->set_speed(job, speed, &local_err);
4307 if (error_is_set(&local_err)) {
4308 error_propagate(errp, local_err);
4309 return;
4310 }
4311
4312 job->speed = speed;
4313 }
4314
4315 void block_job_cancel(BlockJob *job)
4316 {
4317 job->cancelled = true;
4318 if (job->co && !job->busy) {
4319 qemu_coroutine_enter(job->co, NULL);
4320 }
4321 }
4322
4323 bool block_job_is_cancelled(BlockJob *job)
4324 {
4325 return job->cancelled;
4326 }
4327
4328 struct BlockCancelData {
4329 BlockJob *job;
4330 BlockDriverCompletionFunc *cb;
4331 void *opaque;
4332 bool cancelled;
4333 int ret;
4334 };
4335
4336 static void block_job_cancel_cb(void *opaque, int ret)
4337 {
4338 struct BlockCancelData *data = opaque;
4339
4340 data->cancelled = block_job_is_cancelled(data->job);
4341 data->ret = ret;
4342 data->cb(data->opaque, ret);
4343 }
4344
4345 int block_job_cancel_sync(BlockJob *job)
4346 {
4347 struct BlockCancelData data;
4348 BlockDriverState *bs = job->bs;
4349
4350 assert(bs->job == job);
4351
4352 /* Set up our own callback to store the result and chain to
4353 * the original callback.
4354 */
4355 data.job = job;
4356 data.cb = job->cb;
4357 data.opaque = job->opaque;
4358 data.ret = -EINPROGRESS;
4359 job->cb = block_job_cancel_cb;
4360 job->opaque = &data;
4361 block_job_cancel(job);
4362 while (data.ret == -EINPROGRESS) {
4363 qemu_aio_wait();
4364 }
4365 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret;
4366 }
4367
4368 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns)
4369 {
4370 /* Check cancellation *before* setting busy = false, too! */
4371 if (!block_job_is_cancelled(job)) {
4372 job->busy = false;
4373 co_sleep_ns(clock, ns);
4374 job->busy = true;
4375 }
4376 }