]> git.proxmox.com Git - qemu.git/blob - bswap.h
Revert "Merge remote-tracking branch 'qemu-kvm/memory/batch' into staging"
[qemu.git] / bswap.h
1 #ifndef BSWAP_H
2 #define BSWAP_H
3
4 #include "config-host.h"
5
6 #include <inttypes.h>
7
8 #ifdef CONFIG_MACHINE_BSWAP_H
9 #include <sys/endian.h>
10 #include <sys/types.h>
11 #include <machine/bswap.h>
12 #else
13
14 #include "softfloat.h"
15
16 #ifdef CONFIG_BYTESWAP_H
17 #include <byteswap.h>
18 #else
19
20 #define bswap_16(x) \
21 ({ \
22 uint16_t __x = (x); \
23 ((uint16_t)( \
24 (((uint16_t)(__x) & (uint16_t)0x00ffU) << 8) | \
25 (((uint16_t)(__x) & (uint16_t)0xff00U) >> 8) )); \
26 })
27
28 #define bswap_32(x) \
29 ({ \
30 uint32_t __x = (x); \
31 ((uint32_t)( \
32 (((uint32_t)(__x) & (uint32_t)0x000000ffUL) << 24) | \
33 (((uint32_t)(__x) & (uint32_t)0x0000ff00UL) << 8) | \
34 (((uint32_t)(__x) & (uint32_t)0x00ff0000UL) >> 8) | \
35 (((uint32_t)(__x) & (uint32_t)0xff000000UL) >> 24) )); \
36 })
37
38 #define bswap_64(x) \
39 ({ \
40 uint64_t __x = (x); \
41 ((uint64_t)( \
42 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00000000000000ffULL) << 56) | \
43 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x000000000000ff00ULL) << 40) | \
44 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x0000000000ff0000ULL) << 24) | \
45 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00000000ff000000ULL) << 8) | \
46 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x000000ff00000000ULL) >> 8) | \
47 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x0000ff0000000000ULL) >> 24) | \
48 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00ff000000000000ULL) >> 40) | \
49 (uint64_t)(((uint64_t)(__x) & (uint64_t)0xff00000000000000ULL) >> 56) )); \
50 })
51
52 #endif /* !CONFIG_BYTESWAP_H */
53
54 static inline uint16_t bswap16(uint16_t x)
55 {
56 return bswap_16(x);
57 }
58
59 static inline uint32_t bswap32(uint32_t x)
60 {
61 return bswap_32(x);
62 }
63
64 static inline uint64_t bswap64(uint64_t x)
65 {
66 return bswap_64(x);
67 }
68
69 #endif /* ! CONFIG_MACHINE_BSWAP_H */
70
71 static inline void bswap16s(uint16_t *s)
72 {
73 *s = bswap16(*s);
74 }
75
76 static inline void bswap32s(uint32_t *s)
77 {
78 *s = bswap32(*s);
79 }
80
81 static inline void bswap64s(uint64_t *s)
82 {
83 *s = bswap64(*s);
84 }
85
86 #if defined(HOST_WORDS_BIGENDIAN)
87 #define be_bswap(v, size) (v)
88 #define le_bswap(v, size) bswap ## size(v)
89 #define be_bswaps(v, size)
90 #define le_bswaps(p, size) *p = bswap ## size(*p);
91 #else
92 #define le_bswap(v, size) (v)
93 #define be_bswap(v, size) bswap ## size(v)
94 #define le_bswaps(v, size)
95 #define be_bswaps(p, size) *p = bswap ## size(*p);
96 #endif
97
98 #define CPU_CONVERT(endian, size, type)\
99 static inline type endian ## size ## _to_cpu(type v)\
100 {\
101 return endian ## _bswap(v, size);\
102 }\
103 \
104 static inline type cpu_to_ ## endian ## size(type v)\
105 {\
106 return endian ## _bswap(v, size);\
107 }\
108 \
109 static inline void endian ## size ## _to_cpus(type *p)\
110 {\
111 endian ## _bswaps(p, size)\
112 }\
113 \
114 static inline void cpu_to_ ## endian ## size ## s(type *p)\
115 {\
116 endian ## _bswaps(p, size)\
117 }\
118 \
119 static inline type endian ## size ## _to_cpup(const type *p)\
120 {\
121 return endian ## size ## _to_cpu(*p);\
122 }\
123 \
124 static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
125 {\
126 *p = cpu_to_ ## endian ## size(v);\
127 }
128
129 CPU_CONVERT(be, 16, uint16_t)
130 CPU_CONVERT(be, 32, uint32_t)
131 CPU_CONVERT(be, 64, uint64_t)
132
133 CPU_CONVERT(le, 16, uint16_t)
134 CPU_CONVERT(le, 32, uint32_t)
135 CPU_CONVERT(le, 64, uint64_t)
136
137 /* unaligned versions (optimized for frequent unaligned accesses)*/
138
139 #if defined(__i386__) || defined(_ARCH_PPC)
140
141 #define cpu_to_le16wu(p, v) cpu_to_le16w(p, v)
142 #define cpu_to_le32wu(p, v) cpu_to_le32w(p, v)
143 #define le16_to_cpupu(p) le16_to_cpup(p)
144 #define le32_to_cpupu(p) le32_to_cpup(p)
145 #define be32_to_cpupu(p) be32_to_cpup(p)
146
147 #define cpu_to_be16wu(p, v) cpu_to_be16w(p, v)
148 #define cpu_to_be32wu(p, v) cpu_to_be32w(p, v)
149 #define cpu_to_be64wu(p, v) cpu_to_be64w(p, v)
150
151 #else
152
153 static inline void cpu_to_le16wu(uint16_t *p, uint16_t v)
154 {
155 uint8_t *p1 = (uint8_t *)p;
156
157 p1[0] = v & 0xff;
158 p1[1] = v >> 8;
159 }
160
161 static inline void cpu_to_le32wu(uint32_t *p, uint32_t v)
162 {
163 uint8_t *p1 = (uint8_t *)p;
164
165 p1[0] = v & 0xff;
166 p1[1] = v >> 8;
167 p1[2] = v >> 16;
168 p1[3] = v >> 24;
169 }
170
171 static inline uint16_t le16_to_cpupu(const uint16_t *p)
172 {
173 const uint8_t *p1 = (const uint8_t *)p;
174 return p1[0] | (p1[1] << 8);
175 }
176
177 static inline uint32_t le32_to_cpupu(const uint32_t *p)
178 {
179 const uint8_t *p1 = (const uint8_t *)p;
180 return p1[0] | (p1[1] << 8) | (p1[2] << 16) | (p1[3] << 24);
181 }
182
183 static inline uint32_t be32_to_cpupu(const uint32_t *p)
184 {
185 const uint8_t *p1 = (const uint8_t *)p;
186 return p1[3] | (p1[2] << 8) | (p1[1] << 16) | (p1[0] << 24);
187 }
188
189 static inline void cpu_to_be16wu(uint16_t *p, uint16_t v)
190 {
191 uint8_t *p1 = (uint8_t *)p;
192
193 p1[0] = v >> 8;
194 p1[1] = v & 0xff;
195 }
196
197 static inline void cpu_to_be32wu(uint32_t *p, uint32_t v)
198 {
199 uint8_t *p1 = (uint8_t *)p;
200
201 p1[0] = v >> 24;
202 p1[1] = v >> 16;
203 p1[2] = v >> 8;
204 p1[3] = v & 0xff;
205 }
206
207 static inline void cpu_to_be64wu(uint64_t *p, uint64_t v)
208 {
209 uint8_t *p1 = (uint8_t *)p;
210
211 p1[0] = v >> 56;
212 p1[1] = v >> 48;
213 p1[2] = v >> 40;
214 p1[3] = v >> 32;
215 p1[4] = v >> 24;
216 p1[5] = v >> 16;
217 p1[6] = v >> 8;
218 p1[7] = v & 0xff;
219 }
220
221 #endif
222
223 #ifdef HOST_WORDS_BIGENDIAN
224 #define cpu_to_32wu cpu_to_be32wu
225 #define leul_to_cpu(v) glue(glue(le,HOST_LONG_BITS),_to_cpu)(v)
226 #else
227 #define cpu_to_32wu cpu_to_le32wu
228 #define leul_to_cpu(v) (v)
229 #endif
230
231 #undef le_bswap
232 #undef be_bswap
233 #undef le_bswaps
234 #undef be_bswaps
235
236 /* len must be one of 1, 2, 4 */
237 static inline uint32_t qemu_bswap_len(uint32_t value, int len)
238 {
239 return bswap32(value) >> (32 - 8 * len);
240 }
241
242 typedef union {
243 float32 f;
244 uint32_t l;
245 } CPU_FloatU;
246
247 typedef union {
248 float64 d;
249 #if defined(HOST_WORDS_BIGENDIAN)
250 struct {
251 uint32_t upper;
252 uint32_t lower;
253 } l;
254 #else
255 struct {
256 uint32_t lower;
257 uint32_t upper;
258 } l;
259 #endif
260 uint64_t ll;
261 } CPU_DoubleU;
262
263 typedef union {
264 floatx80 d;
265 struct {
266 uint64_t lower;
267 uint16_t upper;
268 } l;
269 } CPU_LDoubleU;
270
271 typedef union {
272 float128 q;
273 #if defined(HOST_WORDS_BIGENDIAN)
274 struct {
275 uint32_t upmost;
276 uint32_t upper;
277 uint32_t lower;
278 uint32_t lowest;
279 } l;
280 struct {
281 uint64_t upper;
282 uint64_t lower;
283 } ll;
284 #else
285 struct {
286 uint32_t lowest;
287 uint32_t lower;
288 uint32_t upper;
289 uint32_t upmost;
290 } l;
291 struct {
292 uint64_t lower;
293 uint64_t upper;
294 } ll;
295 #endif
296 } CPU_QuadU;
297
298 /* unaligned/endian-independent pointer access */
299
300 /*
301 * the generic syntax is:
302 *
303 * load: ld{type}{sign}{size}{endian}_p(ptr)
304 *
305 * store: st{type}{size}{endian}_p(ptr, val)
306 *
307 * Note there are small differences with the softmmu access API!
308 *
309 * type is:
310 * (empty): integer access
311 * f : float access
312 *
313 * sign is:
314 * (empty): for floats or 32 bit size
315 * u : unsigned
316 * s : signed
317 *
318 * size is:
319 * b: 8 bits
320 * w: 16 bits
321 * l: 32 bits
322 * q: 64 bits
323 *
324 * endian is:
325 * (empty): 8 bit access
326 * be : big endian
327 * le : little endian
328 */
329 static inline int ldub_p(const void *ptr)
330 {
331 return *(uint8_t *)ptr;
332 }
333
334 static inline int ldsb_p(const void *ptr)
335 {
336 return *(int8_t *)ptr;
337 }
338
339 static inline void stb_p(void *ptr, int v)
340 {
341 *(uint8_t *)ptr = v;
342 }
343
344 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
345 kernel handles unaligned load/stores may give better results, but
346 it is a system wide setting : bad */
347 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
348
349 /* conservative code for little endian unaligned accesses */
350 static inline int lduw_le_p(const void *ptr)
351 {
352 #ifdef _ARCH_PPC
353 int val;
354 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
355 return val;
356 #else
357 const uint8_t *p = ptr;
358 return p[0] | (p[1] << 8);
359 #endif
360 }
361
362 static inline int ldsw_le_p(const void *ptr)
363 {
364 #ifdef _ARCH_PPC
365 int val;
366 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
367 return (int16_t)val;
368 #else
369 const uint8_t *p = ptr;
370 return (int16_t)(p[0] | (p[1] << 8));
371 #endif
372 }
373
374 static inline int ldl_le_p(const void *ptr)
375 {
376 #ifdef _ARCH_PPC
377 int val;
378 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
379 return val;
380 #else
381 const uint8_t *p = ptr;
382 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
383 #endif
384 }
385
386 static inline uint64_t ldq_le_p(const void *ptr)
387 {
388 const uint8_t *p = ptr;
389 uint32_t v1, v2;
390 v1 = ldl_le_p(p);
391 v2 = ldl_le_p(p + 4);
392 return v1 | ((uint64_t)v2 << 32);
393 }
394
395 static inline void stw_le_p(void *ptr, int v)
396 {
397 #ifdef _ARCH_PPC
398 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
399 #else
400 uint8_t *p = ptr;
401 p[0] = v;
402 p[1] = v >> 8;
403 #endif
404 }
405
406 static inline void stl_le_p(void *ptr, int v)
407 {
408 #ifdef _ARCH_PPC
409 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
410 #else
411 uint8_t *p = ptr;
412 p[0] = v;
413 p[1] = v >> 8;
414 p[2] = v >> 16;
415 p[3] = v >> 24;
416 #endif
417 }
418
419 static inline void stq_le_p(void *ptr, uint64_t v)
420 {
421 uint8_t *p = ptr;
422 stl_le_p(p, (uint32_t)v);
423 stl_le_p(p + 4, v >> 32);
424 }
425
426 /* float access */
427
428 static inline float32 ldfl_le_p(const void *ptr)
429 {
430 union {
431 float32 f;
432 uint32_t i;
433 } u;
434 u.i = ldl_le_p(ptr);
435 return u.f;
436 }
437
438 static inline void stfl_le_p(void *ptr, float32 v)
439 {
440 union {
441 float32 f;
442 uint32_t i;
443 } u;
444 u.f = v;
445 stl_le_p(ptr, u.i);
446 }
447
448 static inline float64 ldfq_le_p(const void *ptr)
449 {
450 CPU_DoubleU u;
451 u.l.lower = ldl_le_p(ptr);
452 u.l.upper = ldl_le_p(ptr + 4);
453 return u.d;
454 }
455
456 static inline void stfq_le_p(void *ptr, float64 v)
457 {
458 CPU_DoubleU u;
459 u.d = v;
460 stl_le_p(ptr, u.l.lower);
461 stl_le_p(ptr + 4, u.l.upper);
462 }
463
464 #else
465
466 static inline int lduw_le_p(const void *ptr)
467 {
468 return *(uint16_t *)ptr;
469 }
470
471 static inline int ldsw_le_p(const void *ptr)
472 {
473 return *(int16_t *)ptr;
474 }
475
476 static inline int ldl_le_p(const void *ptr)
477 {
478 return *(uint32_t *)ptr;
479 }
480
481 static inline uint64_t ldq_le_p(const void *ptr)
482 {
483 return *(uint64_t *)ptr;
484 }
485
486 static inline void stw_le_p(void *ptr, int v)
487 {
488 *(uint16_t *)ptr = v;
489 }
490
491 static inline void stl_le_p(void *ptr, int v)
492 {
493 *(uint32_t *)ptr = v;
494 }
495
496 static inline void stq_le_p(void *ptr, uint64_t v)
497 {
498 *(uint64_t *)ptr = v;
499 }
500
501 /* float access */
502
503 static inline float32 ldfl_le_p(const void *ptr)
504 {
505 return *(float32 *)ptr;
506 }
507
508 static inline float64 ldfq_le_p(const void *ptr)
509 {
510 return *(float64 *)ptr;
511 }
512
513 static inline void stfl_le_p(void *ptr, float32 v)
514 {
515 *(float32 *)ptr = v;
516 }
517
518 static inline void stfq_le_p(void *ptr, float64 v)
519 {
520 *(float64 *)ptr = v;
521 }
522 #endif
523
524 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
525
526 static inline int lduw_be_p(const void *ptr)
527 {
528 #if defined(__i386__)
529 int val;
530 asm volatile ("movzwl %1, %0\n"
531 "xchgb %b0, %h0\n"
532 : "=q" (val)
533 : "m" (*(uint16_t *)ptr));
534 return val;
535 #else
536 const uint8_t *b = ptr;
537 return ((b[0] << 8) | b[1]);
538 #endif
539 }
540
541 static inline int ldsw_be_p(const void *ptr)
542 {
543 #if defined(__i386__)
544 int val;
545 asm volatile ("movzwl %1, %0\n"
546 "xchgb %b0, %h0\n"
547 : "=q" (val)
548 : "m" (*(uint16_t *)ptr));
549 return (int16_t)val;
550 #else
551 const uint8_t *b = ptr;
552 return (int16_t)((b[0] << 8) | b[1]);
553 #endif
554 }
555
556 static inline int ldl_be_p(const void *ptr)
557 {
558 #if defined(__i386__) || defined(__x86_64__)
559 int val;
560 asm volatile ("movl %1, %0\n"
561 "bswap %0\n"
562 : "=r" (val)
563 : "m" (*(uint32_t *)ptr));
564 return val;
565 #else
566 const uint8_t *b = ptr;
567 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
568 #endif
569 }
570
571 static inline uint64_t ldq_be_p(const void *ptr)
572 {
573 uint32_t a,b;
574 a = ldl_be_p(ptr);
575 b = ldl_be_p((uint8_t *)ptr + 4);
576 return (((uint64_t)a<<32)|b);
577 }
578
579 static inline void stw_be_p(void *ptr, int v)
580 {
581 #if defined(__i386__)
582 asm volatile ("xchgb %b0, %h0\n"
583 "movw %w0, %1\n"
584 : "=q" (v)
585 : "m" (*(uint16_t *)ptr), "0" (v));
586 #else
587 uint8_t *d = (uint8_t *) ptr;
588 d[0] = v >> 8;
589 d[1] = v;
590 #endif
591 }
592
593 static inline void stl_be_p(void *ptr, int v)
594 {
595 #if defined(__i386__) || defined(__x86_64__)
596 asm volatile ("bswap %0\n"
597 "movl %0, %1\n"
598 : "=r" (v)
599 : "m" (*(uint32_t *)ptr), "0" (v));
600 #else
601 uint8_t *d = (uint8_t *) ptr;
602 d[0] = v >> 24;
603 d[1] = v >> 16;
604 d[2] = v >> 8;
605 d[3] = v;
606 #endif
607 }
608
609 static inline void stq_be_p(void *ptr, uint64_t v)
610 {
611 stl_be_p(ptr, v >> 32);
612 stl_be_p((uint8_t *)ptr + 4, v);
613 }
614
615 /* float access */
616
617 static inline float32 ldfl_be_p(const void *ptr)
618 {
619 union {
620 float32 f;
621 uint32_t i;
622 } u;
623 u.i = ldl_be_p(ptr);
624 return u.f;
625 }
626
627 static inline void stfl_be_p(void *ptr, float32 v)
628 {
629 union {
630 float32 f;
631 uint32_t i;
632 } u;
633 u.f = v;
634 stl_be_p(ptr, u.i);
635 }
636
637 static inline float64 ldfq_be_p(const void *ptr)
638 {
639 CPU_DoubleU u;
640 u.l.upper = ldl_be_p(ptr);
641 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
642 return u.d;
643 }
644
645 static inline void stfq_be_p(void *ptr, float64 v)
646 {
647 CPU_DoubleU u;
648 u.d = v;
649 stl_be_p(ptr, u.l.upper);
650 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
651 }
652
653 #else
654
655 static inline int lduw_be_p(const void *ptr)
656 {
657 return *(uint16_t *)ptr;
658 }
659
660 static inline int ldsw_be_p(const void *ptr)
661 {
662 return *(int16_t *)ptr;
663 }
664
665 static inline int ldl_be_p(const void *ptr)
666 {
667 return *(uint32_t *)ptr;
668 }
669
670 static inline uint64_t ldq_be_p(const void *ptr)
671 {
672 return *(uint64_t *)ptr;
673 }
674
675 static inline void stw_be_p(void *ptr, int v)
676 {
677 *(uint16_t *)ptr = v;
678 }
679
680 static inline void stl_be_p(void *ptr, int v)
681 {
682 *(uint32_t *)ptr = v;
683 }
684
685 static inline void stq_be_p(void *ptr, uint64_t v)
686 {
687 *(uint64_t *)ptr = v;
688 }
689
690 /* float access */
691
692 static inline float32 ldfl_be_p(const void *ptr)
693 {
694 return *(float32 *)ptr;
695 }
696
697 static inline float64 ldfq_be_p(const void *ptr)
698 {
699 return *(float64 *)ptr;
700 }
701
702 static inline void stfl_be_p(void *ptr, float32 v)
703 {
704 *(float32 *)ptr = v;
705 }
706
707 static inline void stfq_be_p(void *ptr, float64 v)
708 {
709 *(float64 *)ptr = v;
710 }
711
712 #endif
713
714 #endif /* BSWAP_H */