]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/container/vector.hpp
import quincy beta 17.1.0
[ceph.git] / ceph / src / boost / boost / container / vector.hpp
1 //////////////////////////////////////////////////////////////////////////////
2 //
3 // (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost
4 // Software License, Version 1.0. (See accompanying file
5 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 //
7 // See http://www.boost.org/libs/container for documentation.
8 //
9 //////////////////////////////////////////////////////////////////////////////
10
11 #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP
12 #define BOOST_CONTAINER_CONTAINER_VECTOR_HPP
13
14 #ifndef BOOST_CONFIG_HPP
15 # include <boost/config.hpp>
16 #endif
17
18 #if defined(BOOST_HAS_PRAGMA_ONCE)
19 # pragma once
20 #endif
21
22 #include <boost/container/detail/config_begin.hpp>
23 #include <boost/container/detail/workaround.hpp>
24
25 // container
26 #include <boost/container/container_fwd.hpp>
27 #include <boost/container/allocator_traits.hpp>
28 #include <boost/container/new_allocator.hpp> //new_allocator
29 #include <boost/container/throw_exception.hpp>
30 #include <boost/container/options.hpp>
31 // container detail
32 #include <boost/container/detail/advanced_insert_int.hpp>
33 #include <boost/container/detail/algorithm.hpp> //equal()
34 #include <boost/container/detail/alloc_helpers.hpp>
35 #include <boost/container/detail/allocation_type.hpp>
36 #include <boost/container/detail/copy_move_algo.hpp>
37 #include <boost/container/detail/destroyers.hpp>
38 #include <boost/container/detail/iterator.hpp>
39 #include <boost/container/detail/iterators.hpp>
40 #include <boost/move/detail/iterator_to_raw_pointer.hpp>
41 #include <boost/container/detail/mpl.hpp>
42 #include <boost/container/detail/next_capacity.hpp>
43 #include <boost/container/detail/value_functors.hpp>
44 #include <boost/move/detail/to_raw_pointer.hpp>
45 #include <boost/container/detail/type_traits.hpp>
46 #include <boost/container/detail/version_type.hpp>
47 // intrusive
48 #include <boost/intrusive/pointer_traits.hpp>
49 // move
50 #include <boost/move/adl_move_swap.hpp>
51 #include <boost/move/iterator.hpp>
52 #include <boost/move/traits.hpp>
53 #include <boost/move/utility_core.hpp>
54 // move/detail
55 #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
56 #include <boost/move/detail/fwd_macros.hpp>
57 #endif
58 #include <boost/move/detail/move_helpers.hpp>
59 // move/algo
60 #include <boost/move/algo/adaptive_merge.hpp>
61 #include <boost/move/algo/unique.hpp>
62 #include <boost/move/algo/predicate.hpp>
63 #include <boost/move/algo/detail/set_difference.hpp>
64 // other
65 #include <boost/core/no_exceptions_support.hpp>
66 #include <boost/assert.hpp>
67 #include <boost/cstdint.hpp>
68
69 //std
70 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
71 #include <initializer_list> //for std::initializer_list
72 #endif
73
74 namespace boost {
75 namespace container {
76
77 #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
78
79
80 template <class Pointer, bool IsConst>
81 class vec_iterator
82 {
83 public:
84 typedef std::random_access_iterator_tag iterator_category;
85 typedef typename boost::intrusive::pointer_traits<Pointer>::element_type value_type;
86 typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type difference_type;
87 typedef typename dtl::if_c
88 < IsConst
89 , typename boost::intrusive::pointer_traits<Pointer>::template
90 rebind_pointer<const value_type>::type
91 , Pointer
92 >::type pointer;
93 typedef typename boost::intrusive::pointer_traits<pointer> ptr_traits;
94 typedef typename ptr_traits::reference reference;
95
96 #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
97 private:
98 Pointer m_ptr;
99
100 class nat
101 {
102 public:
103 Pointer get_ptr() const
104 { return Pointer(); }
105 };
106 typedef typename dtl::if_c< IsConst
107 , vec_iterator<Pointer, false>
108 , nat>::type nonconst_iterator;
109
110 public:
111 BOOST_CONTAINER_FORCEINLINE const Pointer &get_ptr() const BOOST_NOEXCEPT_OR_NOTHROW
112 { return m_ptr; }
113
114 BOOST_CONTAINER_FORCEINLINE Pointer &get_ptr() BOOST_NOEXCEPT_OR_NOTHROW
115 { return m_ptr; }
116
117 BOOST_CONTAINER_FORCEINLINE explicit vec_iterator(Pointer ptr) BOOST_NOEXCEPT_OR_NOTHROW
118 : m_ptr(ptr)
119 {}
120 #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
121
122 public:
123
124 //Constructors
125 BOOST_CONTAINER_FORCEINLINE vec_iterator() BOOST_NOEXCEPT_OR_NOTHROW
126 : m_ptr() //Value initialization to achieve "null iterators" (N3644)
127 {}
128
129 BOOST_CONTAINER_FORCEINLINE vec_iterator(const vec_iterator& other) BOOST_NOEXCEPT_OR_NOTHROW
130 : m_ptr(other.get_ptr())
131 {}
132
133 BOOST_CONTAINER_FORCEINLINE vec_iterator(const nonconst_iterator &other) BOOST_NOEXCEPT_OR_NOTHROW
134 : m_ptr(other.get_ptr())
135 {}
136
137 BOOST_CONTAINER_FORCEINLINE vec_iterator & operator=(const vec_iterator& other) BOOST_NOEXCEPT_OR_NOTHROW
138 { m_ptr = other.get_ptr(); return *this; }
139
140 //Pointer like operators
141 BOOST_CONTAINER_FORCEINLINE reference operator*() const BOOST_NOEXCEPT_OR_NOTHROW
142 { BOOST_ASSERT(!!m_ptr); return *m_ptr; }
143
144 BOOST_CONTAINER_FORCEINLINE pointer operator->() const BOOST_NOEXCEPT_OR_NOTHROW
145 { return m_ptr; }
146
147 BOOST_CONTAINER_FORCEINLINE reference operator[](difference_type off) const BOOST_NOEXCEPT_OR_NOTHROW
148 { BOOST_ASSERT(!!m_ptr); return m_ptr[off]; }
149
150 //Increment / Decrement
151 BOOST_CONTAINER_FORCEINLINE vec_iterator& operator++() BOOST_NOEXCEPT_OR_NOTHROW
152 { BOOST_ASSERT(!!m_ptr); ++m_ptr; return *this; }
153
154 BOOST_CONTAINER_FORCEINLINE vec_iterator operator++(int) BOOST_NOEXCEPT_OR_NOTHROW
155 { BOOST_ASSERT(!!m_ptr); return vec_iterator(m_ptr++); }
156
157 BOOST_CONTAINER_FORCEINLINE vec_iterator& operator--() BOOST_NOEXCEPT_OR_NOTHROW
158 { BOOST_ASSERT(!!m_ptr); --m_ptr; return *this; }
159
160 BOOST_CONTAINER_FORCEINLINE vec_iterator operator--(int) BOOST_NOEXCEPT_OR_NOTHROW
161 { BOOST_ASSERT(!!m_ptr); return vec_iterator(m_ptr--); }
162
163 //Arithmetic
164 BOOST_CONTAINER_FORCEINLINE vec_iterator& operator+=(difference_type off) BOOST_NOEXCEPT_OR_NOTHROW
165 { BOOST_ASSERT(m_ptr || !off); m_ptr += off; return *this; }
166
167 BOOST_CONTAINER_FORCEINLINE vec_iterator& operator-=(difference_type off) BOOST_NOEXCEPT_OR_NOTHROW
168 { BOOST_ASSERT(m_ptr || !off); m_ptr -= off; return *this; }
169
170 BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator+(const vec_iterator &x, difference_type off) BOOST_NOEXCEPT_OR_NOTHROW
171 { BOOST_ASSERT(x.m_ptr || !off); return vec_iterator(x.m_ptr+off); }
172
173 BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator+(difference_type off, vec_iterator right) BOOST_NOEXCEPT_OR_NOTHROW
174 { BOOST_ASSERT(right.m_ptr || !off); right.m_ptr += off; return right; }
175
176 BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator-(vec_iterator left, difference_type off) BOOST_NOEXCEPT_OR_NOTHROW
177 { BOOST_ASSERT(left.m_ptr || !off); left.m_ptr -= off; return left; }
178
179 BOOST_CONTAINER_FORCEINLINE friend difference_type operator-(const vec_iterator &left, const vec_iterator& right) BOOST_NOEXCEPT_OR_NOTHROW
180 { return left.m_ptr - right.m_ptr; }
181
182 //Comparison operators
183 BOOST_CONTAINER_FORCEINLINE friend bool operator== (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
184 { return l.m_ptr == r.m_ptr; }
185
186 BOOST_CONTAINER_FORCEINLINE friend bool operator!= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
187 { return l.m_ptr != r.m_ptr; }
188
189 BOOST_CONTAINER_FORCEINLINE friend bool operator< (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
190 { return l.m_ptr < r.m_ptr; }
191
192 BOOST_CONTAINER_FORCEINLINE friend bool operator<= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
193 { return l.m_ptr <= r.m_ptr; }
194
195 BOOST_CONTAINER_FORCEINLINE friend bool operator> (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
196 { return l.m_ptr > r.m_ptr; }
197
198 BOOST_CONTAINER_FORCEINLINE friend bool operator>= (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
199 { return l.m_ptr >= r.m_ptr; }
200 };
201
202 template<class BiDirPosConstIt, class BiDirValueIt>
203 struct vector_insert_ordered_cursor
204 {
205 typedef typename iterator_traits<BiDirPosConstIt>::value_type size_type;
206 typedef typename iterator_traits<BiDirValueIt>::reference reference;
207
208 BOOST_CONTAINER_FORCEINLINE vector_insert_ordered_cursor(BiDirPosConstIt posit, BiDirValueIt valueit)
209 : last_position_it(posit), last_value_it(valueit)
210 {}
211
212 void operator --()
213 {
214 --last_value_it;
215 --last_position_it;
216 while(this->get_pos() == size_type(-1)){
217 --last_value_it;
218 --last_position_it;
219 }
220 }
221
222 BOOST_CONTAINER_FORCEINLINE size_type get_pos() const
223 { return *last_position_it; }
224
225 BOOST_CONTAINER_FORCEINLINE reference get_val()
226 { return *last_value_it; }
227
228 BiDirPosConstIt last_position_it;
229 BiDirValueIt last_value_it;
230 };
231
232 struct initial_capacity_t{};
233
234 template<class Pointer, bool IsConst>
235 BOOST_CONTAINER_FORCEINLINE const Pointer &vector_iterator_get_ptr(const vec_iterator<Pointer, IsConst> &it) BOOST_NOEXCEPT_OR_NOTHROW
236 { return it.get_ptr(); }
237
238 template<class Pointer, bool IsConst>
239 BOOST_CONTAINER_FORCEINLINE Pointer &get_ptr(vec_iterator<Pointer, IsConst> &it) BOOST_NOEXCEPT_OR_NOTHROW
240 { return it.get_ptr(); }
241
242 struct vector_uninitialized_size_t {};
243 static const vector_uninitialized_size_t vector_uninitialized_size = vector_uninitialized_size_t();
244
245 template <class T>
246 struct vector_value_traits_base
247 {
248 static const bool trivial_dctr = dtl::is_trivially_destructible<T>::value;
249 static const bool trivial_dctr_after_move = has_trivial_destructor_after_move<T>::value;
250 };
251
252 template <class Allocator>
253 struct vector_value_traits
254 : public vector_value_traits_base<typename Allocator::value_type>
255 {
256 typedef vector_value_traits_base<typename Allocator::value_type> base_t;
257 //This is the anti-exception array destructor
258 //to deallocate values already constructed
259 typedef typename dtl::if_c
260 <base_t::trivial_dctr
261 ,dtl::null_scoped_destructor_n<Allocator>
262 ,dtl::scoped_destructor_n<Allocator>
263 >::type ArrayDestructor;
264 //This is the anti-exception array deallocator
265 typedef dtl::scoped_array_deallocator<Allocator> ArrayDeallocator;
266 };
267
268 //!This struct deallocates and allocated memory
269 template < class Allocator
270 , class StoredSizeType
271 , class AllocatorVersion = typename dtl::version<Allocator>::type
272 >
273 struct vector_alloc_holder
274 : public Allocator
275 {
276 private:
277 BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)
278
279 public:
280 typedef Allocator allocator_type;
281 typedef StoredSizeType stored_size_type;
282 typedef boost::container::allocator_traits<allocator_type> allocator_traits_type;
283 typedef typename allocator_traits_type::pointer pointer;
284 typedef typename allocator_traits_type::size_type size_type;
285 typedef typename allocator_traits_type::value_type value_type;
286
287 BOOST_CONTAINER_FORCEINLINE static bool is_propagable_from(const allocator_type &from_alloc, pointer p, const allocator_type &to_alloc, bool const propagate_allocator)
288 {
289 (void)propagate_allocator; (void)p; (void)to_alloc; (void)from_alloc;
290 const bool all_storage_propagable = !allocator_traits_type::is_partially_propagable::value ||
291 !allocator_traits_type::storage_is_unpropagable(from_alloc, p);
292 return all_storage_propagable && (propagate_allocator || allocator_traits_type::equal(from_alloc, to_alloc));
293 }
294
295 BOOST_CONTAINER_FORCEINLINE static bool are_swap_propagable(const allocator_type &l_a, pointer l_p, const allocator_type &r_a, pointer r_p, bool const propagate_allocator)
296 {
297 (void)propagate_allocator; (void)l_p; (void)r_p; (void)l_a; (void)r_a;
298 const bool all_storage_propagable = !allocator_traits_type::is_partially_propagable::value ||
299 !(allocator_traits_type::storage_is_unpropagable(l_a, l_p) || allocator_traits_type::storage_is_unpropagable(r_a, r_p));
300 return all_storage_propagable && (propagate_allocator || allocator_traits_type::equal(l_a, r_a));
301 }
302
303 //Constructor, does not throw
304 vector_alloc_holder()
305 BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible<allocator_type>::value)
306 : allocator_type(), m_start(), m_size(), m_capacity()
307 {}
308
309 //Constructor, does not throw
310 template<class AllocConvertible>
311 explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_NOEXCEPT_OR_NOTHROW
312 : allocator_type(boost::forward<AllocConvertible>(a)), m_start(), m_size(), m_capacity()
313 {}
314
315 //Constructor, does not throw
316 template<class AllocConvertible, class SizeType>
317 vector_alloc_holder(vector_uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, SizeType initial_size)
318 : allocator_type(boost::forward<AllocConvertible>(a))
319 , m_start()
320 //Size is initialized here so vector should only call uninitialized_xxx after this
321 , m_size(static_cast<stored_size_type>(initial_size))
322 , m_capacity()
323 {
324 if (initial_size > size_type(-1)){
325 boost::container::throw_length_error("get_next_capacity, allocator's max size reached");
326 }
327 else if(initial_size){
328 pointer reuse = pointer();
329 size_type final_cap = static_cast<size_type>(initial_size);
330 m_start = this->allocation_command(allocate_new, final_cap, final_cap, reuse);
331 this->set_stored_capacity(final_cap);
332 }
333 }
334
335 //Constructor, does not throw
336 template<class SizeType>
337 vector_alloc_holder(vector_uninitialized_size_t, SizeType initial_size)
338 : allocator_type()
339 , m_start()
340 //Size is initialized here so vector should only call uninitialized_xxx after this
341 , m_size(static_cast<stored_size_type>(initial_size))
342 , m_capacity()
343 {
344 if (initial_size > size_type(-1)){
345 boost::container::throw_length_error("get_next_capacity, allocator's max size reached");
346 }
347 else if(initial_size){
348 pointer reuse = pointer();
349 size_type final_cap = initial_size;
350 m_start = this->allocation_command(allocate_new, final_cap, final_cap, reuse);
351 this->set_stored_capacity(final_cap);
352 }
353 }
354
355 vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder) BOOST_NOEXCEPT_OR_NOTHROW
356 : allocator_type(BOOST_MOVE_BASE(allocator_type, holder))
357 , m_start(holder.m_start)
358 , m_size(holder.m_size)
359 , m_capacity(holder.m_capacity)
360 {
361 holder.m_start = pointer();
362 holder.m_size = holder.m_capacity = 0;
363 }
364
365 vector_alloc_holder(initial_capacity_t, pointer p, size_type n)
366 BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible<allocator_type>::value)
367 : allocator_type()
368 , m_start(p)
369 , m_size()
370 //n is guaranteed to fit into stored_size_type
371 , m_capacity(static_cast<stored_size_type>(n))
372 {}
373
374 template<class AllocFwd>
375 vector_alloc_holder(initial_capacity_t, pointer p, size_type n, BOOST_FWD_REF(AllocFwd) a)
376 : allocator_type(::boost::forward<AllocFwd>(a))
377 , m_start(p)
378 , m_size()
379 , m_capacity(n)
380 {}
381
382 BOOST_CONTAINER_FORCEINLINE ~vector_alloc_holder() BOOST_NOEXCEPT_OR_NOTHROW
383 {
384 if(this->m_capacity){
385 this->deallocate(this->m_start, this->m_capacity);
386 }
387 }
388
389 BOOST_CONTAINER_FORCEINLINE void set_stored_size(size_type s) BOOST_NOEXCEPT_OR_NOTHROW
390 { this->m_size = static_cast<stored_size_type>(s); }
391
392 BOOST_CONTAINER_FORCEINLINE void dec_stored_size(size_type s) BOOST_NOEXCEPT_OR_NOTHROW
393 { this->m_size -= static_cast<stored_size_type>(s); }
394
395 BOOST_CONTAINER_FORCEINLINE void inc_stored_size(size_type s) BOOST_NOEXCEPT_OR_NOTHROW
396 { this->m_size += static_cast<stored_size_type>(s); }
397
398 BOOST_CONTAINER_FORCEINLINE void set_stored_capacity(size_type c) BOOST_NOEXCEPT_OR_NOTHROW
399 { this->m_capacity = static_cast<stored_size_type>(c); }
400
401 BOOST_CONTAINER_FORCEINLINE pointer allocation_command(boost::container::allocation_type command,
402 size_type limit_size, size_type &prefer_in_recvd_out_size, pointer &reuse)
403 {
404 typedef typename dtl::version<allocator_type>::type alloc_version;
405 return this->priv_allocation_command(alloc_version(), command, limit_size, prefer_in_recvd_out_size, reuse);
406 }
407
408 BOOST_CONTAINER_FORCEINLINE pointer allocate(size_type n)
409 {
410 const size_type max_alloc = allocator_traits_type::max_size(this->alloc());
411 const size_type max = max_alloc <= stored_size_type(-1) ? max_alloc : stored_size_type(-1);
412 if ( max < n )
413 boost::container::throw_length_error("get_next_capacity, allocator's max size reached");
414
415 return allocator_traits_type::allocate(this->alloc(), n);
416 }
417
418 BOOST_CONTAINER_FORCEINLINE void deallocate(const pointer &p, size_type n)
419 {
420 allocator_traits_type::deallocate(this->alloc(), p, n);
421 }
422
423 bool try_expand_fwd(size_type at_least)
424 {
425 //There is not enough memory, try to expand the old one
426 const size_type new_cap = this->capacity() + at_least;
427 size_type real_cap = new_cap;
428 pointer reuse = this->start();
429 bool const success = !!this->allocation_command(expand_fwd, new_cap, real_cap, reuse);
430 //Check for forward expansion
431 if(success){
432 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
433 ++this->num_expand_fwd;
434 #endif
435 this->capacity(real_cap);
436 }
437 return success;
438 }
439
440 template<class GrowthFactorType>
441 size_type next_capacity(size_type additional_objects) const
442 {
443 BOOST_ASSERT(additional_objects > size_type(this->m_capacity - this->m_size));
444 size_type max = allocator_traits_type::max_size(this->alloc());
445 (clamp_by_stored_size_type<size_type>)(max, stored_size_type());
446 const size_type remaining_cap = max - size_type(this->m_capacity);
447 const size_type min_additional_cap = additional_objects - size_type(this->m_capacity - this->m_size);
448
449 if ( remaining_cap < min_additional_cap )
450 boost::container::throw_length_error("get_next_capacity, allocator's max size reached");
451
452 return GrowthFactorType()( size_type(this->m_capacity), min_additional_cap, max);
453 }
454
455 pointer m_start;
456 stored_size_type m_size;
457 stored_size_type m_capacity;
458
459 void swap_resources(vector_alloc_holder &x) BOOST_NOEXCEPT_OR_NOTHROW
460 {
461 boost::adl_move_swap(this->m_start, x.m_start);
462 boost::adl_move_swap(this->m_size, x.m_size);
463 boost::adl_move_swap(this->m_capacity, x.m_capacity);
464 }
465
466 void steal_resources(vector_alloc_holder &x) BOOST_NOEXCEPT_OR_NOTHROW
467 {
468 this->m_start = x.m_start;
469 this->m_size = x.m_size;
470 this->m_capacity = x.m_capacity;
471 x.m_start = pointer();
472 x.m_size = x.m_capacity = 0;
473 }
474
475 BOOST_CONTAINER_FORCEINLINE allocator_type &alloc() BOOST_NOEXCEPT_OR_NOTHROW
476 { return *this; }
477
478 BOOST_CONTAINER_FORCEINLINE const allocator_type &alloc() const BOOST_NOEXCEPT_OR_NOTHROW
479 { return *this; }
480
481 BOOST_CONTAINER_FORCEINLINE const pointer &start() const BOOST_NOEXCEPT_OR_NOTHROW
482 { return m_start; }
483 BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW
484 { return m_capacity; }
485 BOOST_CONTAINER_FORCEINLINE void start(const pointer &p) BOOST_NOEXCEPT_OR_NOTHROW
486 { m_start = p; }
487 BOOST_CONTAINER_FORCEINLINE void capacity(const size_type &c) BOOST_NOEXCEPT_OR_NOTHROW
488 { BOOST_ASSERT( c <= stored_size_type(-1)); this->set_stored_capacity(c); }
489
490 static BOOST_CONTAINER_FORCEINLINE void on_capacity_overflow()
491 { }
492
493 private:
494 void priv_first_allocation(size_type cap)
495 {
496 if(cap){
497 pointer reuse = pointer();
498 m_start = this->allocation_command(allocate_new, cap, cap, reuse);
499 m_capacity = cap;
500 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
501 ++this->num_alloc;
502 #endif
503 }
504 }
505
506 BOOST_CONTAINER_FORCEINLINE pointer priv_allocation_command(version_1, boost::container::allocation_type command,
507 size_type limit_size,
508 size_type &prefer_in_recvd_out_size,
509 pointer &reuse)
510 {
511 (void)command;
512 BOOST_ASSERT( (command & allocate_new));
513 BOOST_ASSERT(!(command & nothrow_allocation));
514 //First detect overflow on smaller stored_size_types
515 if (limit_size > stored_size_type(-1)){
516 boost::container::throw_length_error("get_next_capacity, allocator's max size reached");
517 }
518 (clamp_by_stored_size_type<size_type>)(prefer_in_recvd_out_size, stored_size_type());
519 pointer const p = this->allocate(prefer_in_recvd_out_size);
520 reuse = pointer();
521 return p;
522 }
523
524 pointer priv_allocation_command(version_2, boost::container::allocation_type command,
525 size_type limit_size,
526 size_type &prefer_in_recvd_out_size,
527 pointer &reuse)
528 {
529 //First detect overflow on smaller stored_size_types
530 if (limit_size > stored_size_type(-1)){
531 boost::container::throw_length_error("get_next_capacity, allocator's max size reached");
532 }
533 (clamp_by_stored_size_type<size_type>)(prefer_in_recvd_out_size, stored_size_type());
534 //Allocate memory
535 pointer p = this->alloc().allocation_command(command, limit_size, prefer_in_recvd_out_size, reuse);
536 //If after allocation prefer_in_recvd_out_size is not representable by stored_size_type, truncate it.
537 (clamp_by_stored_size_type<size_type>)(prefer_in_recvd_out_size, stored_size_type());
538 return p;
539 }
540 };
541
542 //!This struct deallocates and allocated memory
543 template <class Allocator, class StoredSizeType>
544 struct vector_alloc_holder<Allocator, StoredSizeType, version_0>
545 : public Allocator
546 {
547 private:
548 BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)
549
550 public:
551 typedef Allocator allocator_type;
552 typedef boost::container::
553 allocator_traits<allocator_type> allocator_traits_type;
554 typedef typename allocator_traits_type::pointer pointer;
555 typedef typename allocator_traits_type::size_type size_type;
556 typedef typename allocator_traits_type::value_type value_type;
557 typedef StoredSizeType stored_size_type;
558
559 template <class OtherAllocator, class OtherStoredSizeType, class OtherAllocatorVersion>
560 friend struct vector_alloc_holder;
561
562 //Constructor, does not throw
563 vector_alloc_holder()
564 BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible<allocator_type>::value)
565 : allocator_type(), m_size()
566 {}
567
568 //Constructor, does not throw
569 template<class AllocConvertible>
570 explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_NOEXCEPT_OR_NOTHROW
571 : allocator_type(boost::forward<AllocConvertible>(a)), m_size()
572 {}
573
574 //Constructor, does not throw
575 template<class AllocConvertible>
576 vector_alloc_holder(vector_uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
577 : allocator_type(boost::forward<AllocConvertible>(a))
578 , m_size(initial_size) //Size is initialized here...
579 {
580 //... and capacity here, so vector, must call uninitialized_xxx in the derived constructor
581 this->priv_first_allocation(initial_size);
582 }
583
584 //Constructor, does not throw
585 vector_alloc_holder(vector_uninitialized_size_t, size_type initial_size)
586 : allocator_type()
587 , m_size(initial_size) //Size is initialized here...
588 {
589 //... and capacity here, so vector, must call uninitialized_xxx in the derived constructor
590 this->priv_first_allocation(initial_size);
591 }
592
593 vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder)
594 : allocator_type(BOOST_MOVE_BASE(allocator_type, holder))
595 , m_size(holder.m_size) //Size is initialized here so vector should only call uninitialized_xxx after this
596 {
597 ::boost::container::uninitialized_move_alloc_n
598 (this->alloc(), boost::movelib::to_raw_pointer(holder.start()), m_size, boost::movelib::to_raw_pointer(this->start()));
599 ::boost::container::destroy_alloc_n
600 (this->alloc(), boost::movelib::to_raw_pointer(holder.start()), m_size);
601 holder.m_size = 0;
602 }
603
604 template<class OtherAllocator, class OtherStoredSizeType, class OtherAllocatorVersion>
605 vector_alloc_holder(BOOST_RV_REF_BEG vector_alloc_holder<OtherAllocator, OtherStoredSizeType, OtherAllocatorVersion> BOOST_RV_REF_END holder)
606 : allocator_type()
607 , m_size(holder.m_size) //Initialize it to m_size as first_allocation can only succeed or abort
608 {
609 //Different allocator type so we must check we have enough storage
610 const size_type n = holder.m_size;
611 this->priv_first_allocation(n);
612 ::boost::container::uninitialized_move_alloc_n
613 (this->alloc(), boost::movelib::to_raw_pointer(holder.start()), n, boost::movelib::to_raw_pointer(this->start()));
614 }
615
616 static BOOST_CONTAINER_FORCEINLINE void on_capacity_overflow()
617 { allocator_type::on_capacity_overflow(); }
618
619 BOOST_CONTAINER_FORCEINLINE void set_stored_size(size_type s) BOOST_NOEXCEPT_OR_NOTHROW
620 { this->m_size = static_cast<stored_size_type>(s); }
621
622 BOOST_CONTAINER_FORCEINLINE void dec_stored_size(size_type s) BOOST_NOEXCEPT_OR_NOTHROW
623 { this->m_size -= static_cast<stored_size_type>(s); }
624
625 BOOST_CONTAINER_FORCEINLINE void inc_stored_size(size_type s) BOOST_NOEXCEPT_OR_NOTHROW
626 { this->m_size += static_cast<stored_size_type>(s); }
627
628 BOOST_CONTAINER_FORCEINLINE void priv_first_allocation(size_type cap)
629 {
630 if(cap > allocator_type::internal_capacity){
631 on_capacity_overflow();
632 }
633 }
634
635 BOOST_CONTAINER_FORCEINLINE void deep_swap(vector_alloc_holder &x)
636 {
637 this->priv_deep_swap(x);
638 }
639
640 template<class OtherAllocator, class OtherStoredSizeType, class OtherAllocatorVersion>
641 void deep_swap(vector_alloc_holder<OtherAllocator, OtherStoredSizeType, OtherAllocatorVersion> &x)
642 {
643 typedef typename real_allocator<value_type, OtherAllocator>::type other_allocator_type;
644 if(this->m_size > other_allocator_type::internal_capacity || x.m_size > allocator_type::internal_capacity){
645 on_capacity_overflow();
646 }
647 this->priv_deep_swap(x);
648 }
649
650 BOOST_CONTAINER_FORCEINLINE void swap_resources(vector_alloc_holder &) BOOST_NOEXCEPT_OR_NOTHROW
651 { //Containers with version 0 allocators can't be moved without moving elements one by one
652 on_capacity_overflow();
653 }
654
655
656 BOOST_CONTAINER_FORCEINLINE void steal_resources(vector_alloc_holder &)
657 { //Containers with version 0 allocators can't be moved without moving elements one by one
658 on_capacity_overflow();
659 }
660
661 BOOST_CONTAINER_FORCEINLINE allocator_type &alloc() BOOST_NOEXCEPT_OR_NOTHROW
662 { return *this; }
663
664 BOOST_CONTAINER_FORCEINLINE const allocator_type &alloc() const BOOST_NOEXCEPT_OR_NOTHROW
665 { return *this; }
666
667 BOOST_CONTAINER_FORCEINLINE bool try_expand_fwd(size_type at_least)
668 { return !at_least; }
669
670 BOOST_CONTAINER_FORCEINLINE pointer start() const BOOST_NOEXCEPT_OR_NOTHROW
671 { return allocator_type::internal_storage(); }
672
673 BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW
674 { return allocator_type::internal_capacity; }
675
676 stored_size_type m_size;
677
678 private:
679
680 template<class OtherAllocator, class OtherStoredSizeType, class OtherAllocatorVersion>
681 void priv_deep_swap(vector_alloc_holder<OtherAllocator, OtherStoredSizeType, OtherAllocatorVersion> &x)
682 {
683 const size_type MaxTmpStorage = sizeof(value_type)*allocator_type::internal_capacity;
684 value_type *const first_this = boost::movelib::to_raw_pointer(this->start());
685 value_type *const first_x = boost::movelib::to_raw_pointer(x.start());
686
687 if(this->m_size < x.m_size){
688 boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_this, this->m_size, first_x, x.m_size);
689 }
690 else{
691 boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_x, x.m_size, first_this, this->m_size);
692 }
693 boost::adl_move_swap(this->m_size, x.m_size);
694 }
695 };
696
697 struct growth_factor_60;
698
699 template<class Options, class AllocatorSizeType>
700 struct get_vector_opt
701 {
702 typedef vector_opt< typename default_if_void<typename Options::growth_factor_type, growth_factor_60>::type
703 , typename default_if_void<typename Options::stored_size_type, AllocatorSizeType>::type
704 > type;
705 };
706
707 template<class AllocatorSizeType>
708 struct get_vector_opt<void, AllocatorSizeType>
709 {
710 typedef vector_opt<growth_factor_60, AllocatorSizeType> type;
711 };
712
713 #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
714
715 //! A vector is a sequence that supports random access to elements, constant
716 //! time insertion and removal of elements at the end, and linear time insertion
717 //! and removal of elements at the beginning or in the middle. The number of
718 //! elements in a vector may vary dynamically; memory management is automatic.
719 //!
720 //! \tparam T The type of object that is stored in the vector
721 //! \tparam A The allocator used for all internal memory management, use void
722 //! for the default allocator
723 //! \tparam Options A type produced from \c boost::container::vector_options.
724 template <class T, class A BOOST_CONTAINER_DOCONLY(= void), class Options BOOST_CONTAINER_DOCONLY(= void) >
725 class vector
726 {
727 public:
728 //////////////////////////////////////////////
729 //
730 // types
731 //
732 //////////////////////////////////////////////
733 typedef T value_type;
734 typedef BOOST_CONTAINER_IMPDEF
735 (typename real_allocator<T BOOST_MOVE_I A>::type) allocator_type;
736 typedef ::boost::container::allocator_traits<allocator_type> allocator_traits_t;
737 typedef typename allocator_traits<allocator_type>::pointer pointer;
738 typedef typename allocator_traits<allocator_type>::const_pointer const_pointer;
739 typedef typename allocator_traits<allocator_type>::reference reference;
740 typedef typename allocator_traits<allocator_type>::const_reference const_reference;
741 typedef typename allocator_traits<allocator_type>::size_type size_type;
742 typedef typename allocator_traits<allocator_type>::difference_type difference_type;
743 typedef allocator_type stored_allocator_type;
744 typedef BOOST_CONTAINER_IMPDEF(vec_iterator<pointer BOOST_MOVE_I false>) iterator;
745 typedef BOOST_CONTAINER_IMPDEF(vec_iterator<pointer BOOST_MOVE_I true >) const_iterator;
746 typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<iterator>) reverse_iterator;
747 typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<const_iterator>) const_reverse_iterator;
748
749 private:
750
751 #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
752 typedef typename boost::container::
753 allocator_traits<allocator_type>::size_type alloc_size_type;
754 typedef typename get_vector_opt<Options, alloc_size_type>::type options_type;
755 typedef typename options_type::growth_factor_type growth_factor_type;
756 typedef typename options_type::stored_size_type stored_size_type;
757 typedef value_less<T> value_less_t;
758
759 //If provided the stored_size option must specify a type that is equal or a type that is smaller.
760 BOOST_STATIC_ASSERT( (sizeof(stored_size_type) < sizeof(alloc_size_type) ||
761 dtl::is_same<stored_size_type, alloc_size_type>::value) );
762
763 typedef typename dtl::version<allocator_type>::type alloc_version;
764 typedef boost::container::vector_alloc_holder
765 <allocator_type, stored_size_type> alloc_holder_t;
766
767 alloc_holder_t m_holder;
768
769 typedef allocator_traits<allocator_type> allocator_traits_type;
770 template <class U, class UA, class UOptions>
771 friend class vector;
772
773
774 protected:
775 BOOST_CONTAINER_FORCEINLINE
776 static bool is_propagable_from(const allocator_type &from_alloc, pointer p, const allocator_type &to_alloc, bool const propagate_allocator)
777 { return alloc_holder_t::is_propagable_from(from_alloc, p, to_alloc, propagate_allocator); }
778
779 BOOST_CONTAINER_FORCEINLINE
780 static bool are_swap_propagable( const allocator_type &l_a, pointer l_p
781 , const allocator_type &r_a, pointer r_p, bool const propagate_allocator)
782 { return alloc_holder_t::are_swap_propagable(l_a, l_p, r_a, r_p, propagate_allocator); }
783
784 #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
785 #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
786 private:
787 BOOST_COPYABLE_AND_MOVABLE(vector)
788 typedef vector_value_traits<allocator_type> value_traits;
789 typedef constant_iterator<T, difference_type> cvalue_iterator;
790
791 protected:
792
793 BOOST_CONTAINER_FORCEINLINE void steal_resources(vector &x)
794 { return this->m_holder.steal_resources(x.m_holder); }
795
796 template<class AllocFwd>
797 BOOST_CONTAINER_FORCEINLINE vector(initial_capacity_t, pointer initial_memory, size_type capacity, BOOST_FWD_REF(AllocFwd) a)
798 : m_holder(initial_capacity_t(), initial_memory, capacity, ::boost::forward<AllocFwd>(a))
799 {}
800
801 BOOST_CONTAINER_FORCEINLINE vector(initial_capacity_t, pointer initial_memory, size_type capacity)
802 : m_holder(initial_capacity_t(), initial_memory, capacity)
803 {}
804
805 #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
806
807 public:
808 //////////////////////////////////////////////
809 //
810 // construct/copy/destroy
811 //
812 //////////////////////////////////////////////
813
814 //! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
815 //!
816 //! <b>Throws</b>: Nothing.
817 //!
818 //! <b>Complexity</b>: Constant.
819 vector() BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible<allocator_type>::value)
820 : m_holder()
821 {}
822
823 //! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
824 //!
825 //! <b>Throws</b>: Nothing
826 //!
827 //! <b>Complexity</b>: Constant.
828 explicit vector(const allocator_type& a) BOOST_NOEXCEPT_OR_NOTHROW
829 : m_holder(a)
830 {}
831
832 //! <b>Effects</b>: Constructs a vector and inserts n value initialized values.
833 //!
834 //! <b>Throws</b>: If allocator_type's allocation
835 //! throws or T's value initialization throws.
836 //!
837 //! <b>Complexity</b>: Linear to n.
838 explicit vector(size_type n)
839 : m_holder(vector_uninitialized_size, n)
840 {
841 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
842 this->num_alloc += n != 0;
843 #endif
844 boost::container::uninitialized_value_init_alloc_n
845 (this->m_holder.alloc(), n, this->priv_raw_begin());
846 }
847
848 //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
849 //! and inserts n value initialized values.
850 //!
851 //! <b>Throws</b>: If allocator_type's allocation
852 //! throws or T's value initialization throws.
853 //!
854 //! <b>Complexity</b>: Linear to n.
855 explicit vector(size_type n, const allocator_type &a)
856 : m_holder(vector_uninitialized_size, a, n)
857 {
858 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
859 this->num_alloc += n != 0;
860 #endif
861 boost::container::uninitialized_value_init_alloc_n
862 (this->m_holder.alloc(), n, this->priv_raw_begin());
863 }
864
865 //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
866 //! and inserts n default initialized values.
867 //!
868 //! <b>Throws</b>: If allocator_type's allocation
869 //! throws or T's default initialization throws.
870 //!
871 //! <b>Complexity</b>: Linear to n.
872 //!
873 //! <b>Note</b>: Non-standard extension
874 vector(size_type n, default_init_t)
875 : m_holder(vector_uninitialized_size, n)
876 {
877 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
878 this->num_alloc += n != 0;
879 #endif
880 boost::container::uninitialized_default_init_alloc_n
881 (this->m_holder.alloc(), n, this->priv_raw_begin());
882 }
883
884 //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
885 //! and inserts n default initialized values.
886 //!
887 //! <b>Throws</b>: If allocator_type's allocation
888 //! throws or T's default initialization throws.
889 //!
890 //! <b>Complexity</b>: Linear to n.
891 //!
892 //! <b>Note</b>: Non-standard extension
893 vector(size_type n, default_init_t, const allocator_type &a)
894 : m_holder(vector_uninitialized_size, a, n)
895 {
896 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
897 this->num_alloc += n != 0;
898 #endif
899 boost::container::uninitialized_default_init_alloc_n
900 (this->m_holder.alloc(), n, this->priv_raw_begin());
901 }
902
903 //! <b>Effects</b>: Constructs a vector
904 //! and inserts n copies of value.
905 //!
906 //! <b>Throws</b>: If allocator_type's allocation
907 //! throws or T's copy constructor throws.
908 //!
909 //! <b>Complexity</b>: Linear to n.
910 vector(size_type n, const T& value)
911 : m_holder(vector_uninitialized_size, n)
912 {
913 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
914 this->num_alloc += n != 0;
915 #endif
916 boost::container::uninitialized_fill_alloc_n
917 (this->m_holder.alloc(), value, n, this->priv_raw_begin());
918 }
919
920 //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
921 //! and inserts n copies of value.
922 //!
923 //! <b>Throws</b>: If allocation
924 //! throws or T's copy constructor throws.
925 //!
926 //! <b>Complexity</b>: Linear to n.
927 vector(size_type n, const T& value, const allocator_type& a)
928 : m_holder(vector_uninitialized_size, a, n)
929 {
930 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
931 this->num_alloc += n != 0;
932 #endif
933 boost::container::uninitialized_fill_alloc_n
934 (this->m_holder.alloc(), value, n, this->priv_raw_begin());
935 }
936
937 //! <b>Effects</b>: Constructs a vector
938 //! and inserts a copy of the range [first, last) in the vector.
939 //!
940 //! <b>Throws</b>: If allocator_type's allocation
941 //! throws or T's constructor taking a dereferenced InIt throws.
942 //!
943 //! <b>Complexity</b>: Linear to the range [first, last).
944 // template <class InIt>
945 // vector(InIt first, InIt last
946 // BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c
947 // < dtl::is_convertible<InIt BOOST_MOVE_I size_type>::value
948 // BOOST_MOVE_I dtl::nat >::type * = 0)
949 // ) -> vector<typename iterator_traits<InIt>::value_type, new_allocator<typename iterator_traits<InIt>::value_type>>;
950 template <class InIt>
951 vector(InIt first, InIt last
952 BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c
953 < dtl::is_convertible<InIt BOOST_MOVE_I size_type>::value
954 BOOST_MOVE_I dtl::nat >::type * = 0)
955 )
956 : m_holder()
957 { this->assign(first, last); }
958
959 //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
960 //! and inserts a copy of the range [first, last) in the vector.
961 //!
962 //! <b>Throws</b>: If allocator_type's allocation
963 //! throws or T's constructor taking a dereferenced InIt throws.
964 //!
965 //! <b>Complexity</b>: Linear to the range [first, last).
966 template <class InIt>
967 vector(InIt first, InIt last, const allocator_type& a
968 BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c
969 < dtl::is_convertible<InIt BOOST_MOVE_I size_type>::value
970 BOOST_MOVE_I dtl::nat >::type * = 0)
971 )
972 : m_holder(a)
973 { this->assign(first, last); }
974
975 //! <b>Effects</b>: Copy constructs a vector.
976 //!
977 //! <b>Postcondition</b>: x == *this.
978 //!
979 //! <b>Throws</b>: If allocator_type's allocation
980 //! throws or T's copy constructor throws.
981 //!
982 //! <b>Complexity</b>: Linear to the elements x contains.
983 vector(const vector &x)
984 : m_holder( vector_uninitialized_size
985 , allocator_traits_type::select_on_container_copy_construction(x.m_holder.alloc())
986 , x.size())
987 {
988 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
989 this->num_alloc += x.size() != 0;
990 #endif
991 ::boost::container::uninitialized_copy_alloc_n
992 ( this->m_holder.alloc(), x.priv_raw_begin()
993 , x.size(), this->priv_raw_begin());
994 }
995
996 //! <b>Effects</b>: Move constructor. Moves x's resources to *this.
997 //!
998 //! <b>Throws</b>: Nothing
999 //!
1000 //! <b>Complexity</b>: Constant.
1001 vector(BOOST_RV_REF(vector) x) BOOST_NOEXCEPT_OR_NOTHROW
1002 : m_holder(boost::move(x.m_holder))
1003 { BOOST_STATIC_ASSERT((!allocator_traits_type::is_partially_propagable::value)); }
1004
1005 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
1006 //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
1007 //! and inserts a copy of the range [il.begin(), il.last()) in the vector
1008 //!
1009 //! <b>Throws</b>: If T's constructor taking a dereferenced initializer_list iterator throws.
1010 //!
1011 //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
1012 vector(std::initializer_list<value_type> il, const allocator_type& a = allocator_type())
1013 : m_holder(vector_uninitialized_size, a, il.size())
1014 {
1015 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
1016 this->num_alloc += il.size() != 0;
1017 #endif
1018 ::boost::container::uninitialized_copy_alloc_n_source
1019 ( this->m_holder.alloc(), il.begin()
1020 , static_cast<size_type>(il.size()), this->priv_raw_begin());
1021 }
1022 #endif
1023
1024 #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
1025
1026 //! <b>Effects</b>: Move constructor. Moves x's resources to *this.
1027 //!
1028 //! <b>Throws</b>: If T's move constructor or allocation throws
1029 //!
1030 //! <b>Complexity</b>: Linear.
1031 //!
1032 //! <b>Note</b>: Non-standard extension to support static_vector
1033 template<class OtherA>
1034 vector(BOOST_RV_REF_BEG vector<T, OtherA, Options> BOOST_RV_REF_END x
1035 , typename dtl::enable_if_c
1036 < dtl::is_version<typename real_allocator<T, OtherA>::type, 0>::value>::type * = 0
1037 )
1038 : m_holder(boost::move(x.m_holder))
1039 {}
1040
1041 #endif //!defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
1042
1043 //! <b>Effects</b>: Copy constructs a vector using the specified allocator.
1044 //!
1045 //! <b>Postcondition</b>: x == *this.
1046 //!
1047 //! <b>Throws</b>: If allocation
1048 //! throws or T's copy constructor throws.
1049 //!
1050 //! <b>Complexity</b>: Linear to the elements x contains.
1051 vector(const vector &x, const allocator_type &a)
1052 : m_holder(vector_uninitialized_size, a, x.size())
1053 {
1054 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
1055 this->num_alloc += x.size() != 0;
1056 #endif
1057 ::boost::container::uninitialized_copy_alloc_n_source
1058 ( this->m_holder.alloc(), x.priv_raw_begin()
1059 , x.size(), this->priv_raw_begin());
1060 }
1061
1062 //! <b>Effects</b>: Move constructor using the specified allocator.
1063 //! Moves x's resources to *this if a == allocator_type().
1064 //! Otherwise copies values from x to *this.
1065 //!
1066 //! <b>Throws</b>: If allocation or T's copy constructor throws.
1067 //!
1068 //! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
1069 vector(BOOST_RV_REF(vector) x, const allocator_type &a)
1070 : m_holder( vector_uninitialized_size, a
1071 //In this allocator move constructor the allocator won't be propagated --v
1072 , is_propagable_from(x.get_stored_allocator(), x.m_holder.start(), a, false) ? 0 : x.size()
1073 )
1074 {
1075 //In this allocator move constructor the allocator won't be propagated ---v
1076 if(is_propagable_from(x.get_stored_allocator(), x.m_holder.start(), a, false)){
1077 this->m_holder.steal_resources(x.m_holder);
1078 }
1079 else{
1080 const size_type n = x.size();
1081 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
1082 this->num_alloc += n != 0;
1083 #endif
1084 ::boost::container::uninitialized_move_alloc_n_source
1085 ( this->m_holder.alloc(), x.priv_raw_begin()
1086 , n, this->priv_raw_begin());
1087 }
1088 }
1089
1090 //! <b>Effects</b>: Destroys the vector. All stored values are destroyed
1091 //! and used memory is deallocated.
1092 //!
1093 //! <b>Throws</b>: Nothing.
1094 //!
1095 //! <b>Complexity</b>: Linear to the number of elements.
1096 ~vector() BOOST_NOEXCEPT_OR_NOTHROW
1097 {
1098 boost::container::destroy_alloc_n
1099 (this->get_stored_allocator(), this->priv_raw_begin(), this->m_holder.m_size);
1100 //vector_alloc_holder deallocates the data
1101 }
1102
1103 //! <b>Effects</b>: Makes *this contain the same elements as x.
1104 //!
1105 //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
1106 //! of each of x's elements.
1107 //!
1108 //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
1109 //!
1110 //! <b>Complexity</b>: Linear to the number of elements in x.
1111 BOOST_CONTAINER_FORCEINLINE vector& operator=(BOOST_COPY_ASSIGN_REF(vector) x)
1112 {
1113 if (BOOST_LIKELY(&x != this)){
1114 this->priv_copy_assign(x);
1115 }
1116 return *this;
1117 }
1118
1119 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
1120 //! <b>Effects</b>: Make *this container contains elements from il.
1121 //!
1122 //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
1123 BOOST_CONTAINER_FORCEINLINE vector& operator=(std::initializer_list<value_type> il)
1124 {
1125 this->assign(il.begin(), il.end());
1126 return *this;
1127 }
1128 #endif
1129
1130 //! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
1131 //!
1132 //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
1133 //! before the function.
1134 //!
1135 //! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment
1136 //! is false and (allocation throws or value_type's move constructor throws)
1137 //!
1138 //! <b>Complexity</b>: Constant if allocator_traits_type::
1139 //! propagate_on_container_move_assignment is true or
1140 //! this->get>allocator() == x.get_allocator(). Linear otherwise.
1141 BOOST_CONTAINER_FORCEINLINE vector& operator=(BOOST_RV_REF(vector) x)
1142 BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value
1143 || allocator_traits_type::is_always_equal::value)
1144 {
1145 if (BOOST_LIKELY(&x != this)){
1146 this->priv_move_assign(boost::move(x));
1147 }
1148 return *this;
1149 }
1150
1151 #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
1152
1153 //! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
1154 //!
1155 //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
1156 //! before the function.
1157 //!
1158 //! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
1159 //!
1160 //! <b>Complexity</b>: Linear.
1161 //!
1162 //! <b>Note</b>: Non-standard extension to support static_vector
1163 template<class OtherA>
1164 BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_and
1165 < vector&
1166 , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>
1167 , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>
1168 >::type
1169 operator=(BOOST_RV_REF_BEG vector<value_type, OtherA, Options> BOOST_RV_REF_END x)
1170 {
1171 this->priv_move_assign(boost::move(x));
1172 return *this;
1173 }
1174
1175 //! <b>Effects</b>: Copy assignment. All x's values are copied to *this.
1176 //!
1177 //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
1178 //! before the function.
1179 //!
1180 //! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
1181 //!
1182 //! <b>Complexity</b>: Linear.
1183 //!
1184 //! <b>Note</b>: Non-standard extension to support static_vector
1185 template<class OtherA>
1186 BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_and
1187 < vector&
1188 , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>
1189 , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>
1190 >::type
1191 operator=(const vector<value_type, OtherA, Options> &x)
1192 {
1193 this->priv_copy_assign(x);
1194 return *this;
1195 }
1196
1197 #endif
1198
1199 //! <b>Effects</b>: Assigns the the range [first, last) to *this.
1200 //!
1201 //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
1202 //! T's constructor/assignment from dereferencing InpIt throws.
1203 //!
1204 //! <b>Complexity</b>: Linear to n.
1205 template <class InIt>
1206 void assign(InIt first, InIt last
1207 //Input iterators or version 0 allocator
1208 BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or
1209 < void
1210 BOOST_MOVE_I dtl::is_convertible<InIt BOOST_MOVE_I size_type>
1211 BOOST_MOVE_I dtl::and_
1212 < dtl::is_different<alloc_version BOOST_MOVE_I version_0>
1213 BOOST_MOVE_I dtl::is_not_input_iterator<InIt>
1214 >
1215 >::type * = 0)
1216 )
1217 {
1218 //Overwrite all elements we can from [first, last)
1219 iterator cur = this->begin();
1220 const iterator end_it = this->end();
1221 for ( ; first != last && cur != end_it; ++cur, ++first){
1222 *cur = *first;
1223 }
1224
1225 if (first == last){
1226 //There are no more elements in the sequence, erase remaining
1227 T* const end_pos = this->priv_raw_end();
1228 const size_type n = static_cast<size_type>(end_pos - boost::movelib::iterator_to_raw_pointer(cur));
1229 this->priv_destroy_last_n(n);
1230 }
1231 else{
1232 //There are more elements in the range, insert the remaining ones
1233 this->insert(this->cend(), first, last);
1234 }
1235 }
1236
1237 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
1238 //! <b>Effects</b>: Assigns the the range [il.begin(), il.end()) to *this.
1239 //!
1240 //! <b>Throws</b>: If memory allocation throws or
1241 //! T's constructor from dereferencing iniializer_list iterator throws.
1242 //!
1243 BOOST_CONTAINER_FORCEINLINE void assign(std::initializer_list<T> il)
1244 {
1245 this->assign(il.begin(), il.end());
1246 }
1247 #endif
1248
1249 //! <b>Effects</b>: Assigns the the range [first, last) to *this.
1250 //!
1251 //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
1252 //! T's constructor/assignment from dereferencing InpIt throws.
1253 //!
1254 //! <b>Complexity</b>: Linear to n.
1255 template <class FwdIt>
1256 void assign(FwdIt first, FwdIt last
1257 //Forward iterators and version > 0 allocator
1258 BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or
1259 < void
1260 BOOST_MOVE_I dtl::is_same<alloc_version BOOST_MOVE_I version_0>
1261 BOOST_MOVE_I dtl::is_convertible<FwdIt BOOST_MOVE_I size_type>
1262 BOOST_MOVE_I dtl::is_input_iterator<FwdIt>
1263 >::type * = 0)
1264 )
1265 {
1266 //For Fwd iterators the standard only requires EmplaceConstructible and assignable from *first
1267 //so we can't do any backwards allocation
1268 const typename iterator_traits<FwdIt>::size_type sz = boost::container::iterator_distance(first, last);
1269 if (sz > size_type(-1)){
1270 boost::container::throw_length_error("vector::assign, FwdIt's max length reached");
1271 }
1272
1273 const size_type input_sz = static_cast<size_type>(sz);
1274 const size_type old_capacity = this->capacity();
1275 if(input_sz > old_capacity){ //If input range is too big, we need to reallocate
1276 size_type real_cap = 0;
1277 pointer reuse(this->m_holder.start());
1278 pointer const ret(this->m_holder.allocation_command(allocate_new|expand_fwd, input_sz, real_cap = input_sz, reuse));
1279 if(!reuse){ //New allocation, just emplace new values
1280 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
1281 ++this->num_alloc;
1282 #endif
1283 pointer const old_p = this->m_holder.start();
1284 if(old_p){
1285 this->priv_destroy_all();
1286 this->m_holder.deallocate(old_p, old_capacity);
1287 }
1288 this->m_holder.start(ret);
1289 this->m_holder.capacity(real_cap);
1290 this->m_holder.m_size = 0;
1291 this->priv_uninitialized_construct_at_end(first, last);
1292 return;
1293 }
1294 else{
1295 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
1296 ++this->num_expand_fwd;
1297 #endif
1298 this->m_holder.capacity(real_cap);
1299 //Forward expansion, use assignment + back deletion/construction that comes later
1300 }
1301 }
1302
1303 boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), first, input_sz, this->priv_raw_begin(), this->size());
1304 m_holder.set_stored_size(input_sz);
1305 }
1306
1307 //! <b>Effects</b>: Assigns the n copies of val to *this.
1308 //!
1309 //! <b>Throws</b>: If memory allocation throws or
1310 //! T's copy/move constructor/assignment throws.
1311 //!
1312 //! <b>Complexity</b>: Linear to n.
1313 BOOST_CONTAINER_FORCEINLINE void assign(size_type n, const value_type& val)
1314 { this->assign(cvalue_iterator(val, n), cvalue_iterator()); }
1315
1316 //! <b>Effects</b>: Returns a copy of the internal allocator.
1317 //!
1318 //! <b>Throws</b>: If allocator's copy constructor throws.
1319 //!
1320 //! <b>Complexity</b>: Constant.
1321 allocator_type get_allocator() const BOOST_NOEXCEPT_OR_NOTHROW
1322 { return this->m_holder.alloc(); }
1323
1324 //! <b>Effects</b>: Returns a reference to the internal allocator.
1325 //!
1326 //! <b>Throws</b>: Nothing
1327 //!
1328 //! <b>Complexity</b>: Constant.
1329 //!
1330 //! <b>Note</b>: Non-standard extension.
1331 BOOST_CONTAINER_FORCEINLINE stored_allocator_type &get_stored_allocator() BOOST_NOEXCEPT_OR_NOTHROW
1332 { return this->m_holder.alloc(); }
1333
1334 //! <b>Effects</b>: Returns a reference to the internal allocator.
1335 //!
1336 //! <b>Throws</b>: Nothing
1337 //!
1338 //! <b>Complexity</b>: Constant.
1339 //!
1340 //! <b>Note</b>: Non-standard extension.
1341 BOOST_CONTAINER_FORCEINLINE const stored_allocator_type &get_stored_allocator() const BOOST_NOEXCEPT_OR_NOTHROW
1342 { return this->m_holder.alloc(); }
1343
1344 //////////////////////////////////////////////
1345 //
1346 // iterators
1347 //
1348 //////////////////////////////////////////////
1349
1350 //! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
1351 //!
1352 //! <b>Throws</b>: Nothing.
1353 //!
1354 //! <b>Complexity</b>: Constant.
1355 BOOST_CONTAINER_FORCEINLINE iterator begin() BOOST_NOEXCEPT_OR_NOTHROW
1356 { return iterator(this->m_holder.start()); }
1357
1358 //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
1359 //!
1360 //! <b>Throws</b>: Nothing.
1361 //!
1362 //! <b>Complexity</b>: Constant.
1363 BOOST_CONTAINER_FORCEINLINE const_iterator begin() const BOOST_NOEXCEPT_OR_NOTHROW
1364 { return const_iterator(this->m_holder.start()); }
1365
1366 //! <b>Effects</b>: Returns an iterator to the end of the vector.
1367 //!
1368 //! <b>Throws</b>: Nothing.
1369 //!
1370 //! <b>Complexity</b>: Constant.
1371 BOOST_CONTAINER_FORCEINLINE iterator end() BOOST_NOEXCEPT_OR_NOTHROW
1372 {
1373 iterator it (this->m_holder.start());
1374 it += this->m_holder.m_size;
1375 return it; //Adding zero to null pointer is allowed (non-UB)
1376 }
1377
1378 //! <b>Effects</b>: Returns a const_iterator to the end of the vector.
1379 //!
1380 //! <b>Throws</b>: Nothing.
1381 //!
1382 //! <b>Complexity</b>: Constant.
1383 BOOST_CONTAINER_FORCEINLINE const_iterator end() const BOOST_NOEXCEPT_OR_NOTHROW
1384 { return this->cend(); }
1385
1386 //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
1387 //! of the reversed vector.
1388 //!
1389 //! <b>Throws</b>: Nothing.
1390 //!
1391 //! <b>Complexity</b>: Constant.
1392 BOOST_CONTAINER_FORCEINLINE reverse_iterator rbegin() BOOST_NOEXCEPT_OR_NOTHROW
1393 { return reverse_iterator(this->end()); }
1394
1395 //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
1396 //! of the reversed vector.
1397 //!
1398 //! <b>Throws</b>: Nothing.
1399 //!
1400 //! <b>Complexity</b>: Constant.
1401 BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rbegin() const BOOST_NOEXCEPT_OR_NOTHROW
1402 { return this->crbegin(); }
1403
1404 //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
1405 //! of the reversed vector.
1406 //!
1407 //! <b>Throws</b>: Nothing.
1408 //!
1409 //! <b>Complexity</b>: Constant.
1410 BOOST_CONTAINER_FORCEINLINE reverse_iterator rend() BOOST_NOEXCEPT_OR_NOTHROW
1411 { return reverse_iterator(this->begin()); }
1412
1413 //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
1414 //! of the reversed vector.
1415 //!
1416 //! <b>Throws</b>: Nothing.
1417 //!
1418 //! <b>Complexity</b>: Constant.
1419 BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rend() const BOOST_NOEXCEPT_OR_NOTHROW
1420 { return this->crend(); }
1421
1422 //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
1423 //!
1424 //! <b>Throws</b>: Nothing.
1425 //!
1426 //! <b>Complexity</b>: Constant.
1427 BOOST_CONTAINER_FORCEINLINE const_iterator cbegin() const BOOST_NOEXCEPT_OR_NOTHROW
1428 { return const_iterator(this->m_holder.start()); }
1429
1430 //! <b>Effects</b>: Returns a const_iterator to the end of the vector.
1431 //!
1432 //! <b>Throws</b>: Nothing.
1433 //!
1434 //! <b>Complexity</b>: Constant.
1435 BOOST_CONTAINER_FORCEINLINE const_iterator cend() const BOOST_NOEXCEPT_OR_NOTHROW
1436 {
1437 const_iterator it (this->m_holder.start());
1438 it += this->m_holder.m_size;
1439 return it; //Adding zero to null pointer is allowed (non-UB)
1440 }
1441
1442 //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
1443 //! of the reversed vector.
1444 //!
1445 //! <b>Throws</b>: Nothing.
1446 //!
1447 //! <b>Complexity</b>: Constant.
1448 BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crbegin() const BOOST_NOEXCEPT_OR_NOTHROW
1449 { return const_reverse_iterator(this->end());}
1450
1451 //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
1452 //! of the reversed vector.
1453 //!
1454 //! <b>Throws</b>: Nothing.
1455 //!
1456 //! <b>Complexity</b>: Constant.
1457 BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crend() const BOOST_NOEXCEPT_OR_NOTHROW
1458 { return const_reverse_iterator(this->begin()); }
1459
1460 //////////////////////////////////////////////
1461 //
1462 // capacity
1463 //
1464 //////////////////////////////////////////////
1465
1466 //! <b>Effects</b>: Returns true if the vector contains no elements.
1467 //!
1468 //! <b>Throws</b>: Nothing.
1469 //!
1470 //! <b>Complexity</b>: Constant.
1471 BOOST_CONTAINER_FORCEINLINE bool empty() const BOOST_NOEXCEPT_OR_NOTHROW
1472 { return !this->m_holder.m_size; }
1473
1474 //! <b>Effects</b>: Returns the number of the elements contained in the vector.
1475 //!
1476 //! <b>Throws</b>: Nothing.
1477 //!
1478 //! <b>Complexity</b>: Constant.
1479 BOOST_CONTAINER_FORCEINLINE size_type size() const BOOST_NOEXCEPT_OR_NOTHROW
1480 { return this->m_holder.m_size; }
1481
1482 //! <b>Effects</b>: Returns the largest possible size of the vector.
1483 //!
1484 //! <b>Throws</b>: Nothing.
1485 //!
1486 //! <b>Complexity</b>: Constant.
1487 BOOST_CONTAINER_FORCEINLINE size_type max_size() const BOOST_NOEXCEPT_OR_NOTHROW
1488 { return allocator_traits_type::max_size(this->m_holder.alloc()); }
1489
1490 //! <b>Effects</b>: Inserts or erases elements at the end such that
1491 //! the size becomes n. New elements are value initialized.
1492 //!
1493 //! <b>Throws</b>: If memory allocation throws, or T's copy/move or value initialization throws.
1494 //!
1495 //! <b>Complexity</b>: Linear to the difference between size() and new_size.
1496 BOOST_CONTAINER_FORCEINLINE void resize(size_type new_size)
1497 { this->priv_resize(new_size, value_init, alloc_version()); }
1498
1499 //! <b>Effects</b>: Inserts or erases elements at the end such that
1500 //! the size becomes n. New elements are default initialized.
1501 //!
1502 //! <b>Throws</b>: If memory allocation throws, or T's copy/move or default initialization throws.
1503 //!
1504 //! <b>Complexity</b>: Linear to the difference between size() and new_size.
1505 //!
1506 //! <b>Note</b>: Non-standard extension
1507 BOOST_CONTAINER_FORCEINLINE void resize(size_type new_size, default_init_t)
1508 { this->priv_resize(new_size, default_init, alloc_version()); }
1509
1510 //! <b>Effects</b>: Inserts or erases elements at the end such that
1511 //! the size becomes n. New elements are copy constructed from x.
1512 //!
1513 //! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
1514 //!
1515 //! <b>Complexity</b>: Linear to the difference between size() and new_size.
1516 BOOST_CONTAINER_FORCEINLINE void resize(size_type new_size, const T& x)
1517 { this->priv_resize(new_size, x, alloc_version()); }
1518
1519 //! <b>Effects</b>: Number of elements for which memory has been allocated.
1520 //! capacity() is always greater than or equal to size().
1521 //!
1522 //! <b>Throws</b>: Nothing.
1523 //!
1524 //! <b>Complexity</b>: Constant.
1525 BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW
1526 { return this->m_holder.capacity(); }
1527
1528 //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
1529 //! effect. Otherwise, it is a request for allocation of additional memory.
1530 //! If the request is successful, then capacity() is greater than or equal to
1531 //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
1532 //!
1533 //! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.
1534 BOOST_CONTAINER_FORCEINLINE void reserve(size_type new_cap)
1535 {
1536 if (this->capacity() < new_cap){
1537 this->priv_move_to_new_buffer(new_cap, alloc_version());
1538 }
1539 }
1540
1541 //! <b>Effects</b>: Tries to deallocate the excess of memory created
1542 //! with previous allocations. The size of the vector is unchanged
1543 //!
1544 //! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
1545 //!
1546 //! <b>Complexity</b>: Linear to size().
1547 BOOST_CONTAINER_FORCEINLINE void shrink_to_fit()
1548 { this->priv_shrink_to_fit(alloc_version()); }
1549
1550 //////////////////////////////////////////////
1551 //
1552 // element access
1553 //
1554 //////////////////////////////////////////////
1555
1556 //! <b>Requires</b>: !empty()
1557 //!
1558 //! <b>Effects</b>: Returns a reference to the first
1559 //! element of the container.
1560 //!
1561 //! <b>Throws</b>: Nothing.
1562 //!
1563 //! <b>Complexity</b>: Constant.
1564 BOOST_CONTAINER_FORCEINLINE reference front() BOOST_NOEXCEPT_OR_NOTHROW
1565 {
1566 BOOST_ASSERT(!this->empty());
1567 return *this->m_holder.start();
1568 }
1569
1570 //! <b>Requires</b>: !empty()
1571 //!
1572 //! <b>Effects</b>: Returns a const reference to the first
1573 //! element of the container.
1574 //!
1575 //! <b>Throws</b>: Nothing.
1576 //!
1577 //! <b>Complexity</b>: Constant.
1578 BOOST_CONTAINER_FORCEINLINE const_reference front() const BOOST_NOEXCEPT_OR_NOTHROW
1579 {
1580 BOOST_ASSERT(!this->empty());
1581 return *this->m_holder.start();
1582 }
1583
1584 //! <b>Requires</b>: !empty()
1585 //!
1586 //! <b>Effects</b>: Returns a reference to the last
1587 //! element of the container.
1588 //!
1589 //! <b>Throws</b>: Nothing.
1590 //!
1591 //! <b>Complexity</b>: Constant.
1592 BOOST_CONTAINER_FORCEINLINE reference back() BOOST_NOEXCEPT_OR_NOTHROW
1593 {
1594 BOOST_ASSERT(!this->empty());
1595 return this->m_holder.start()[this->m_holder.m_size - 1];
1596 }
1597
1598 //! <b>Requires</b>: !empty()
1599 //!
1600 //! <b>Effects</b>: Returns a const reference to the last
1601 //! element of the container.
1602 //!
1603 //! <b>Throws</b>: Nothing.
1604 //!
1605 //! <b>Complexity</b>: Constant.
1606 BOOST_CONTAINER_FORCEINLINE const_reference back() const BOOST_NOEXCEPT_OR_NOTHROW
1607 {
1608 BOOST_ASSERT(!this->empty());
1609 return this->m_holder.start()[this->m_holder.m_size - 1];
1610 }
1611
1612 //! <b>Requires</b>: size() > n.
1613 //!
1614 //! <b>Effects</b>: Returns a reference to the nth element
1615 //! from the beginning of the container.
1616 //!
1617 //! <b>Throws</b>: Nothing.
1618 //!
1619 //! <b>Complexity</b>: Constant.
1620 BOOST_CONTAINER_FORCEINLINE reference operator[](size_type n) BOOST_NOEXCEPT_OR_NOTHROW
1621 {
1622 BOOST_ASSERT(this->m_holder.m_size > n);
1623 return this->m_holder.start()[n];
1624 }
1625
1626 //! <b>Requires</b>: size() > n.
1627 //!
1628 //! <b>Effects</b>: Returns a const reference to the nth element
1629 //! from the beginning of the container.
1630 //!
1631 //! <b>Throws</b>: Nothing.
1632 //!
1633 //! <b>Complexity</b>: Constant.
1634 BOOST_CONTAINER_FORCEINLINE const_reference operator[](size_type n) const BOOST_NOEXCEPT_OR_NOTHROW
1635 {
1636 BOOST_ASSERT(this->m_holder.m_size > n);
1637 return this->m_holder.start()[n];
1638 }
1639
1640 //! <b>Requires</b>: size() >= n.
1641 //!
1642 //! <b>Effects</b>: Returns an iterator to the nth element
1643 //! from the beginning of the container. Returns end()
1644 //! if n == size().
1645 //!
1646 //! <b>Throws</b>: Nothing.
1647 //!
1648 //! <b>Complexity</b>: Constant.
1649 //!
1650 //! <b>Note</b>: Non-standard extension
1651 BOOST_CONTAINER_FORCEINLINE iterator nth(size_type n) BOOST_NOEXCEPT_OR_NOTHROW
1652 {
1653 BOOST_ASSERT(this->m_holder.m_size >= n);
1654 return iterator(this->m_holder.start()+n);
1655 }
1656
1657 //! <b>Requires</b>: size() >= n.
1658 //!
1659 //! <b>Effects</b>: Returns a const_iterator to the nth element
1660 //! from the beginning of the container. Returns end()
1661 //! if n == size().
1662 //!
1663 //! <b>Throws</b>: Nothing.
1664 //!
1665 //! <b>Complexity</b>: Constant.
1666 //!
1667 //! <b>Note</b>: Non-standard extension
1668 BOOST_CONTAINER_FORCEINLINE const_iterator nth(size_type n) const BOOST_NOEXCEPT_OR_NOTHROW
1669 {
1670 BOOST_ASSERT(this->m_holder.m_size >= n);
1671 return const_iterator(this->m_holder.start()+n);
1672 }
1673
1674 //! <b>Requires</b>: begin() <= p <= end().
1675 //!
1676 //! <b>Effects</b>: Returns the index of the element pointed by p
1677 //! and size() if p == end().
1678 //!
1679 //! <b>Throws</b>: Nothing.
1680 //!
1681 //! <b>Complexity</b>: Constant.
1682 //!
1683 //! <b>Note</b>: Non-standard extension
1684 BOOST_CONTAINER_FORCEINLINE size_type index_of(iterator p) BOOST_NOEXCEPT_OR_NOTHROW
1685 {
1686 //Range check assert done in priv_index_of
1687 return this->priv_index_of(vector_iterator_get_ptr(p));
1688 }
1689
1690 //! <b>Requires</b>: begin() <= p <= end().
1691 //!
1692 //! <b>Effects</b>: Returns the index of the element pointed by p
1693 //! and size() if p == end().
1694 //!
1695 //! <b>Throws</b>: Nothing.
1696 //!
1697 //! <b>Complexity</b>: Constant.
1698 //!
1699 //! <b>Note</b>: Non-standard extension
1700 BOOST_CONTAINER_FORCEINLINE size_type index_of(const_iterator p) const BOOST_NOEXCEPT_OR_NOTHROW
1701 {
1702 //Range check assert done in priv_index_of
1703 return this->priv_index_of(vector_iterator_get_ptr(p));
1704 }
1705
1706 //! <b>Requires</b>: size() > n.
1707 //!
1708 //! <b>Effects</b>: Returns a reference to the nth element
1709 //! from the beginning of the container.
1710 //!
1711 //! <b>Throws</b>: std::range_error if n >= size()
1712 //!
1713 //! <b>Complexity</b>: Constant.
1714 BOOST_CONTAINER_FORCEINLINE reference at(size_type n)
1715 {
1716 this->priv_throw_if_out_of_range(n);
1717 return this->m_holder.start()[n];
1718 }
1719
1720 //! <b>Requires</b>: size() > n.
1721 //!
1722 //! <b>Effects</b>: Returns a const reference to the nth element
1723 //! from the beginning of the container.
1724 //!
1725 //! <b>Throws</b>: std::range_error if n >= size()
1726 //!
1727 //! <b>Complexity</b>: Constant.
1728 BOOST_CONTAINER_FORCEINLINE const_reference at(size_type n) const
1729 {
1730 this->priv_throw_if_out_of_range(n);
1731 return this->m_holder.start()[n];
1732 }
1733
1734 //////////////////////////////////////////////
1735 //
1736 // data access
1737 //
1738 //////////////////////////////////////////////
1739
1740 //! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.
1741 //! For a non-empty vector, data() == &front().
1742 //!
1743 //! <b>Throws</b>: Nothing.
1744 //!
1745 //! <b>Complexity</b>: Constant.
1746 BOOST_CONTAINER_FORCEINLINE T* data() BOOST_NOEXCEPT_OR_NOTHROW
1747 { return this->priv_raw_begin(); }
1748
1749 //! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.
1750 //! For a non-empty vector, data() == &front().
1751 //!
1752 //! <b>Throws</b>: Nothing.
1753 //!
1754 //! <b>Complexity</b>: Constant.
1755 BOOST_CONTAINER_FORCEINLINE const T * data() const BOOST_NOEXCEPT_OR_NOTHROW
1756 { return this->priv_raw_begin(); }
1757
1758 //////////////////////////////////////////////
1759 //
1760 // modifiers
1761 //
1762 //////////////////////////////////////////////
1763
1764 #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
1765 //! <b>Effects</b>: Inserts an object of type T constructed with
1766 //! std::forward<Args>(args)... in the end of the vector.
1767 //!
1768 //! <b>Returns</b>: A reference to the created object.
1769 //!
1770 //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
1771 //! T's copy/move constructor throws.
1772 //!
1773 //! <b>Complexity</b>: Amortized constant time.
1774 template<class ...Args>
1775 BOOST_CONTAINER_FORCEINLINE reference emplace_back(BOOST_FWD_REF(Args)...args)
1776 {
1777 T* const p = this->priv_raw_end();
1778 if (BOOST_LIKELY(this->room_enough())){
1779 //There is more memory, just construct a new object at the end
1780 allocator_traits_type::construct(this->m_holder.alloc(), p, ::boost::forward<Args>(args)...);
1781 ++this->m_holder.m_size;
1782 return *p;
1783 }
1784 else{
1785 typedef dtl::insert_emplace_proxy<allocator_type, T*, Args...> proxy_t;
1786 return *this->priv_insert_forward_range_no_capacity
1787 (p, 1, proxy_t(::boost::forward<Args>(args)...), alloc_version());
1788 }
1789 }
1790
1791 //! <b>Effects</b>: Inserts an object of type T constructed with
1792 //! std::forward<Args>(args)... in the end of the vector.
1793 //!
1794 //! <b>Throws</b>: If the in-place constructor throws.
1795 //!
1796 //! <b>Complexity</b>: Constant time.
1797 //!
1798 //! <b>Note</b>: Non-standard extension.
1799 template<class ...Args>
1800 BOOST_CONTAINER_FORCEINLINE bool stable_emplace_back(BOOST_FWD_REF(Args)...args)
1801 {
1802 const bool is_room_enough = this->room_enough() || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(1u));
1803 if (BOOST_LIKELY(is_room_enough)){
1804 //There is more memory, just construct a new object at the end
1805 allocator_traits_type::construct(this->m_holder.alloc(), this->priv_raw_end(), ::boost::forward<Args>(args)...);
1806 ++this->m_holder.m_size;
1807 }
1808 return is_room_enough;
1809 }
1810
1811 //! <b>Requires</b>: position must be a valid iterator of *this.
1812 //!
1813 //! <b>Effects</b>: Inserts an object of type T constructed with
1814 //! std::forward<Args>(args)... before position
1815 //!
1816 //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
1817 //! T's copy/move constructor/assignment throws.
1818 //!
1819 //! <b>Complexity</b>: If position is end(), amortized constant time
1820 //! Linear time otherwise.
1821 template<class ...Args>
1822 BOOST_CONTAINER_FORCEINLINE iterator emplace(const_iterator position, BOOST_FWD_REF(Args) ...args)
1823 {
1824 BOOST_ASSERT(this->priv_in_range_or_end(position));
1825 //Just call more general insert(pos, size, value) and return iterator
1826 typedef dtl::insert_emplace_proxy<allocator_type, T*, Args...> proxy_t;
1827 return this->priv_insert_forward_range( vector_iterator_get_ptr(position), 1
1828 , proxy_t(::boost::forward<Args>(args)...));
1829 }
1830
1831 #else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
1832
1833 #define BOOST_CONTAINER_VECTOR_EMPLACE_CODE(N) \
1834 BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
1835 BOOST_CONTAINER_FORCEINLINE reference emplace_back(BOOST_MOVE_UREF##N)\
1836 {\
1837 T* const p = this->priv_raw_end();\
1838 if (BOOST_LIKELY(this->room_enough())){\
1839 allocator_traits_type::construct (this->m_holder.alloc()\
1840 , this->priv_raw_end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
1841 ++this->m_holder.m_size;\
1842 return *p;\
1843 }\
1844 else{\
1845 typedef dtl::insert_emplace_proxy_arg##N<allocator_type, T* BOOST_MOVE_I##N BOOST_MOVE_TARG##N> proxy_t;\
1846 return *this->priv_insert_forward_range_no_capacity\
1847 ( p, 1, proxy_t(BOOST_MOVE_FWD##N), alloc_version());\
1848 }\
1849 }\
1850 \
1851 BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
1852 BOOST_CONTAINER_FORCEINLINE bool stable_emplace_back(BOOST_MOVE_UREF##N)\
1853 {\
1854 const bool is_room_enough = this->room_enough() || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(1u));\
1855 if (BOOST_LIKELY(is_room_enough)){\
1856 allocator_traits_type::construct (this->m_holder.alloc()\
1857 , this->priv_raw_end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
1858 ++this->m_holder.m_size;\
1859 }\
1860 return is_room_enough;\
1861 }\
1862 \
1863 BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
1864 BOOST_CONTAINER_FORCEINLINE iterator emplace(const_iterator pos BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
1865 {\
1866 BOOST_ASSERT(this->priv_in_range_or_end(pos));\
1867 typedef dtl::insert_emplace_proxy_arg##N<allocator_type, T* BOOST_MOVE_I##N BOOST_MOVE_TARG##N> proxy_t;\
1868 return this->priv_insert_forward_range(vector_iterator_get_ptr(pos), 1, proxy_t(BOOST_MOVE_FWD##N));\
1869 }\
1870 //
1871 BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_VECTOR_EMPLACE_CODE)
1872 #undef BOOST_CONTAINER_VECTOR_EMPLACE_CODE
1873
1874 #endif
1875
1876 #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
1877 //! <b>Effects</b>: Inserts a copy of x at the end of the vector.
1878 //!
1879 //! <b>Throws</b>: If memory allocation throws or
1880 //! T's copy/move constructor throws.
1881 //!
1882 //! <b>Complexity</b>: Amortized constant time.
1883 void push_back(const T &x);
1884
1885 //! <b>Effects</b>: Constructs a new element in the end of the vector
1886 //! and moves the resources of x to this new element.
1887 //!
1888 //! <b>Throws</b>: If memory allocation throws or
1889 //! T's copy/move constructor throws.
1890 //!
1891 //! <b>Complexity</b>: Amortized constant time.
1892 void push_back(T &&x);
1893 #else
1894 BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
1895 #endif
1896
1897 #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
1898 //! <b>Requires</b>: position must be a valid iterator of *this.
1899 //!
1900 //! <b>Effects</b>: Insert a copy of x before position.
1901 //!
1902 //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
1903 //!
1904 //! <b>Complexity</b>: If position is end(), amortized constant time
1905 //! Linear time otherwise.
1906 iterator insert(const_iterator position, const T &x);
1907
1908 //! <b>Requires</b>: position must be a valid iterator of *this.
1909 //!
1910 //! <b>Effects</b>: Insert a new element before position with x's resources.
1911 //!
1912 //! <b>Throws</b>: If memory allocation throws.
1913 //!
1914 //! <b>Complexity</b>: If position is end(), amortized constant time
1915 //! Linear time otherwise.
1916 iterator insert(const_iterator position, T &&x);
1917 #else
1918 BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
1919 #endif
1920
1921 //! <b>Requires</b>: p must be a valid iterator of *this.
1922 //!
1923 //! <b>Effects</b>: Insert n copies of x before pos.
1924 //!
1925 //! <b>Returns</b>: an iterator to the first inserted element or p if n is 0.
1926 //!
1927 //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor throws.
1928 //!
1929 //! <b>Complexity</b>: Linear to n.
1930 BOOST_CONTAINER_FORCEINLINE iterator insert(const_iterator p, size_type n, const T& x)
1931 {
1932 BOOST_ASSERT(this->priv_in_range_or_end(p));
1933 dtl::insert_n_copies_proxy<allocator_type, T*> proxy(x);
1934 return this->priv_insert_forward_range(vector_iterator_get_ptr(p), n, proxy);
1935 }
1936
1937 //! <b>Requires</b>: p must be a valid iterator of *this.
1938 //!
1939 //! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
1940 //!
1941 //! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
1942 //!
1943 //! <b>Throws</b>: If memory allocation throws, T's constructor from a
1944 //! dereferenced InpIt throws or T's copy/move constructor/assignment throws.
1945 //!
1946 //! <b>Complexity</b>: Linear to boost::container::iterator_distance [first, last).
1947 template <class InIt>
1948 iterator insert(const_iterator pos, InIt first, InIt last
1949 #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
1950 , typename dtl::disable_if_or
1951 < void
1952 , dtl::is_convertible<InIt, size_type>
1953 , dtl::is_not_input_iterator<InIt>
1954 >::type * = 0
1955 #endif
1956 )
1957 {
1958 BOOST_ASSERT(this->priv_in_range_or_end(pos));
1959 const size_type n_pos = pos - this->cbegin();
1960 iterator it(vector_iterator_get_ptr(pos));
1961 for(;first != last; ++first){
1962 it = this->emplace(it, *first);
1963 ++it;
1964 }
1965 return iterator(this->m_holder.start() + n_pos);
1966 }
1967
1968 #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
1969 template <class FwdIt>
1970 BOOST_CONTAINER_FORCEINLINE iterator insert(const_iterator pos, FwdIt first, FwdIt last
1971 , typename dtl::disable_if_or
1972 < void
1973 , dtl::is_convertible<FwdIt, size_type>
1974 , dtl::is_input_iterator<FwdIt>
1975 >::type * = 0
1976 )
1977 {
1978 BOOST_ASSERT(this->priv_in_range_or_end(pos));
1979 const typename iterator_traits<FwdIt>::size_type sz = boost::container::iterator_distance(first, last);
1980 if (sz > size_type(-1)){
1981 boost::container::throw_length_error("vector::insert, FwdIt's max length reached");
1982 }
1983
1984 dtl::insert_range_proxy<allocator_type, FwdIt, T*> proxy(first);
1985 return this->priv_insert_forward_range(vector_iterator_get_ptr(pos), static_cast<size_type>(sz), proxy);
1986 }
1987 #endif
1988
1989 //! <b>Requires</b>: p must be a valid iterator of *this. num, must
1990 //! be equal to boost::container::iterator_distance(first, last)
1991 //!
1992 //! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
1993 //!
1994 //! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
1995 //!
1996 //! <b>Throws</b>: If memory allocation throws, T's constructor from a
1997 //! dereferenced InpIt throws or T's copy/move constructor/assignment throws.
1998 //!
1999 //! <b>Complexity</b>: Linear to boost::container::iterator_distance [first, last).
2000 //!
2001 //! <b>Note</b>: This function avoids a linear operation to calculate boost::container::iterator_distance[first, last)
2002 //! for forward and bidirectional iterators, and a one by one insertion for input iterators. This is a
2003 //! a non-standard extension.
2004 #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
2005 template <class InIt>
2006 BOOST_CONTAINER_FORCEINLINE iterator insert(const_iterator pos, size_type num, InIt first, InIt last)
2007 {
2008 BOOST_ASSERT(this->priv_in_range_or_end(pos));
2009 BOOST_ASSERT(dtl::is_input_iterator<InIt>::value ||
2010 num == static_cast<size_type>(boost::container::iterator_distance(first, last)));
2011 (void)last;
2012 dtl::insert_range_proxy<allocator_type, InIt, T*> proxy(first);
2013 return this->priv_insert_forward_range(vector_iterator_get_ptr(pos), num, proxy);
2014 }
2015 #endif
2016
2017 #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
2018 //! <b>Requires</b>: position must be a valid iterator of *this.
2019 //!
2020 //! <b>Effects</b>: Insert a copy of the [il.begin(), il.end()) range before position.
2021 //!
2022 //! <b>Returns</b>: an iterator to the first inserted element or position if first == last.
2023 //!
2024 //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
2025 BOOST_CONTAINER_FORCEINLINE iterator insert(const_iterator position, std::initializer_list<value_type> il)
2026 {
2027 //Assertion done in insert()
2028 return this->insert(position, il.begin(), il.end());
2029 }
2030 #endif
2031
2032 //! <b>Effects</b>: Removes the last element from the container.
2033 //!
2034 //! <b>Throws</b>: Nothing.
2035 //!
2036 //! <b>Complexity</b>: Constant time.
2037 BOOST_CONTAINER_FORCEINLINE void pop_back() BOOST_NOEXCEPT_OR_NOTHROW
2038 {
2039 BOOST_ASSERT(!this->empty());
2040 //Destroy last element
2041 allocator_traits_type::destroy(this->get_stored_allocator(), this->priv_raw_end() - 1);
2042 --this->m_holder.m_size;
2043 }
2044
2045 //! <b>Effects</b>: Erases the element at position pos.
2046 //!
2047 //! <b>Throws</b>: Nothing.
2048 //!
2049 //! <b>Complexity</b>: Linear to the elements between pos and the
2050 //! last element. Constant if pos is the last element.
2051 iterator erase(const_iterator position)
2052 {
2053 BOOST_ASSERT(this->priv_in_range(position));
2054 const pointer p = vector_iterator_get_ptr(position);
2055 T *const pos_ptr = boost::movelib::to_raw_pointer(p);
2056 T *const end_ptr = this->priv_raw_end();
2057
2058 //Move elements forward and destroy last
2059 (void)::boost::container::move(pos_ptr + 1, end_ptr, pos_ptr);
2060
2061 T *const last_ptr = end_ptr-1;
2062 if(!value_traits::trivial_dctr_after_move || pos_ptr == last_ptr){
2063 allocator_traits_type::destroy(this->get_stored_allocator(), last_ptr);
2064 }
2065 --this->m_holder.m_size;
2066 return iterator(p);
2067 }
2068
2069 //! <b>Effects</b>: Erases the elements pointed by [first, last).
2070 //!
2071 //! <b>Throws</b>: Nothing.
2072 //!
2073 //! <b>Complexity</b>: Linear to the distance between first and last
2074 //! plus linear to the elements between pos and the last element.
2075 iterator erase(const_iterator first, const_iterator last)
2076 {
2077 BOOST_ASSERT(this->priv_in_range_or_end(first));
2078 BOOST_ASSERT(this->priv_in_range_or_end(last));
2079 BOOST_ASSERT(first <= last);
2080 if(first != last){
2081 T* const old_end_ptr = this->priv_raw_end();
2082 T* const first_ptr = boost::movelib::to_raw_pointer(vector_iterator_get_ptr(first));
2083 T* const last_ptr = boost::movelib::to_raw_pointer(vector_iterator_get_ptr(last));
2084 T* const new_last_ptr = boost::movelib::to_raw_pointer(boost::container::move(last_ptr, old_end_ptr, first_ptr));
2085 const size_type n = static_cast<size_type>(old_end_ptr - new_last_ptr);
2086 if(!value_traits::trivial_dctr_after_move || old_end_ptr == last_ptr){
2087 boost::container::destroy_alloc_n(this->get_stored_allocator(), new_last_ptr, n);
2088 }
2089 this->m_holder.dec_stored_size(n);
2090 }
2091 return iterator(vector_iterator_get_ptr(first));
2092 }
2093
2094 //! <b>Effects</b>: Swaps the contents of *this and x.
2095 //!
2096 //! <b>Throws</b>: Nothing.
2097 //!
2098 //! <b>Complexity</b>: Constant.
2099 BOOST_CONTAINER_FORCEINLINE void swap(vector& x)
2100 BOOST_NOEXCEPT_IF( ((allocator_traits_type::propagate_on_container_swap::value
2101 || allocator_traits_type::is_always_equal::value) &&
2102 !dtl::is_version<allocator_type, 0>::value))
2103 {
2104 this->priv_swap(x, dtl::bool_<dtl::is_version<allocator_type, 0>::value>());
2105 }
2106
2107 #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
2108
2109 //! <b>Effects</b>: Swaps the contents of *this and x.
2110 //!
2111 //! <b>Throws</b>: Nothing.
2112 //!
2113 //! <b>Complexity</b>: Linear
2114 //!
2115 //! <b>Note</b>: Non-standard extension to support static_vector
2116 template<class OtherA>
2117 BOOST_CONTAINER_FORCEINLINE void swap(vector<T, OtherA, Options> & x
2118 , typename dtl::enable_if_and
2119 < void
2120 , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>
2121 , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>
2122 >::type * = 0
2123 )
2124 { this->m_holder.deep_swap(x.m_holder); }
2125
2126 #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
2127
2128 //! <b>Effects</b>: Erases all the elements of the vector.
2129 //!
2130 //! <b>Throws</b>: Nothing.
2131 //!
2132 //! <b>Complexity</b>: Linear to the number of elements in the container.
2133 BOOST_CONTAINER_FORCEINLINE void clear() BOOST_NOEXCEPT_OR_NOTHROW
2134 { this->priv_destroy_all(); }
2135
2136 //! <b>Effects</b>: Returns true if x and y are equal
2137 //!
2138 //! <b>Complexity</b>: Linear to the number of elements in the container.
2139 BOOST_CONTAINER_FORCEINLINE friend bool operator==(const vector& x, const vector& y)
2140 { return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); }
2141
2142 //! <b>Effects</b>: Returns true if x and y are unequal
2143 //!
2144 //! <b>Complexity</b>: Linear to the number of elements in the container.
2145 BOOST_CONTAINER_FORCEINLINE friend bool operator!=(const vector& x, const vector& y)
2146 { return !(x == y); }
2147
2148 //! <b>Effects</b>: Returns true if x is less than y
2149 //!
2150 //! <b>Complexity</b>: Linear to the number of elements in the container.
2151 friend bool operator<(const vector& x, const vector& y)
2152 { return boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
2153
2154 //! <b>Effects</b>: Returns true if x is greater than y
2155 //!
2156 //! <b>Complexity</b>: Linear to the number of elements in the container.
2157 BOOST_CONTAINER_FORCEINLINE friend bool operator>(const vector& x, const vector& y)
2158 { return y < x; }
2159
2160 //! <b>Effects</b>: Returns true if x is equal or less than y
2161 //!
2162 //! <b>Complexity</b>: Linear to the number of elements in the container.
2163 BOOST_CONTAINER_FORCEINLINE friend bool operator<=(const vector& x, const vector& y)
2164 { return !(y < x); }
2165
2166 //! <b>Effects</b>: Returns true if x is equal or greater than y
2167 //!
2168 //! <b>Complexity</b>: Linear to the number of elements in the container.
2169 BOOST_CONTAINER_FORCEINLINE friend bool operator>=(const vector& x, const vector& y)
2170 { return !(x < y); }
2171
2172 //! <b>Effects</b>: x.swap(y)
2173 //!
2174 //! <b>Complexity</b>: Constant.
2175 BOOST_CONTAINER_FORCEINLINE friend void swap(vector& x, vector& y)
2176 { x.swap(y); }
2177
2178 #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
2179 //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
2180 //! effect. Otherwise, it is a request for allocation of additional memory
2181 //! (memory expansion) that will not invalidate iterators.
2182 //! If the request is successful, then capacity() is greater than or equal to
2183 //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
2184 //!
2185 //! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.
2186 //!
2187 //! <b>Note</b>: Non-standard extension.
2188 bool stable_reserve(size_type new_cap)
2189 {
2190 const size_type cp = this->capacity();
2191 return cp >= new_cap || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(new_cap - cp));
2192 }
2193
2194 //Absolutely experimental. This function might change, disappear or simply crash!
2195 template<class BiDirPosConstIt, class BiDirValueIt>
2196 BOOST_CONTAINER_FORCEINLINE void insert_ordered_at(const size_type element_count, BiDirPosConstIt last_position_it, BiDirValueIt last_value_it)
2197 {
2198 typedef vector_insert_ordered_cursor<BiDirPosConstIt, BiDirValueIt> inserter_t;
2199 return this->priv_insert_ordered_at(element_count, inserter_t(last_position_it, last_value_it));
2200 }
2201
2202 template<class InputIt>
2203 BOOST_CONTAINER_FORCEINLINE void merge(InputIt first, InputIt last)
2204 { this->merge(first, last, value_less_t()); }
2205
2206 template<class InputIt, class Compare>
2207 BOOST_CONTAINER_FORCEINLINE void merge(InputIt first, InputIt last, Compare comp)
2208 {
2209 size_type const s = this->size();
2210 size_type const c = this->capacity();
2211 size_type n = 0;
2212 size_type const free_cap = c - s;
2213 //If not input iterator and new elements don't fit in the remaining capacity, merge in new buffer
2214 if(!dtl::is_input_iterator<InputIt>::value &&
2215 free_cap < (n = static_cast<size_type>(boost::container::iterator_distance(first, last)))){
2216 this->priv_merge_in_new_buffer(first, n, comp, alloc_version());
2217 }
2218 else{
2219 this->insert(this->cend(), first, last);
2220 T *const raw_beg = this->priv_raw_begin();
2221 T *const raw_end = this->priv_raw_end();
2222 T *const raw_pos = raw_beg + s;
2223 boost::movelib::adaptive_merge(raw_beg, raw_pos, raw_end, comp, raw_end, free_cap - n);
2224 }
2225 }
2226
2227 template<class InputIt>
2228 BOOST_CONTAINER_FORCEINLINE void merge_unique(InputIt first, InputIt last)
2229 { this->merge_unique(first, last, value_less_t()); }
2230
2231 template<class InputIt, class Compare>
2232 BOOST_CONTAINER_FORCEINLINE void merge_unique(InputIt first, InputIt last, Compare comp)
2233 {
2234 size_type const old_size = this->size();
2235 this->priv_set_difference_back(first, last, comp);
2236 T *const raw_beg = this->priv_raw_begin();
2237 T *const raw_end = this->priv_raw_end();
2238 T *raw_pos = raw_beg + old_size;
2239 boost::movelib::adaptive_merge(raw_beg, raw_pos, raw_end, comp, raw_end, this->capacity() - this->size());
2240 }
2241
2242 private:
2243 template<class PositionValue>
2244 void priv_insert_ordered_at(const size_type element_count, PositionValue position_value)
2245 {
2246 const size_type old_size_pos = this->size();
2247 this->reserve(old_size_pos + element_count);
2248 T* const begin_ptr = this->priv_raw_begin();
2249 size_type insertions_left = element_count;
2250 size_type prev_pos = old_size_pos;
2251 size_type old_hole_size = element_count;
2252
2253 //Exception rollback. If any copy throws before the hole is filled, values
2254 //already inserted/copied at the end of the buffer will be destroyed.
2255 typename value_traits::ArrayDestructor past_hole_values_destroyer
2256 (begin_ptr + old_size_pos + element_count, this->m_holder.alloc(), size_type(0u));
2257 //Loop for each insertion backwards, first moving the elements after the insertion point,
2258 //then inserting the element.
2259 while(insertions_left){
2260 --position_value;
2261 size_type const pos = position_value.get_pos();
2262 BOOST_ASSERT(pos != size_type(-1) && pos <= old_size_pos && pos <= prev_pos);
2263 //If needed shift the range after the insertion point and the previous insertion point.
2264 //Function will take care if the shift crosses the size() boundary, using copy/move
2265 //or uninitialized copy/move if necessary.
2266 size_type new_hole_size = (pos != prev_pos)
2267 ? priv_insert_ordered_at_shift_range(pos, prev_pos, this->size(), insertions_left)
2268 : old_hole_size
2269 ;
2270 if(new_hole_size){
2271 //The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards
2272 past_hole_values_destroyer.increment_size_backwards(prev_pos - pos);
2273 //Insert the new value in the hole
2274 allocator_traits_type::construct(this->m_holder.alloc(), begin_ptr + pos + insertions_left - 1, position_value.get_val());
2275 if(--new_hole_size){
2276 //The hole was reduced by the new insertion by one
2277 past_hole_values_destroyer.increment_size_backwards(size_type(1u));
2278 }
2279 else{
2280 //Hole was just filled, disable exception rollback and change vector size
2281 past_hole_values_destroyer.release();
2282 this->m_holder.inc_stored_size(element_count);
2283 }
2284 }
2285 else{
2286 if(old_hole_size){
2287 //Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size
2288 past_hole_values_destroyer.release();
2289 this->m_holder.inc_stored_size(element_count);
2290 }
2291 //Insert the new value in the already constructed range
2292 begin_ptr[pos + insertions_left - 1] = position_value.get_val();
2293 }
2294 --insertions_left;
2295 old_hole_size = new_hole_size;
2296 prev_pos = pos;
2297 }
2298 }
2299
2300 template<class InputIt, class Compare>
2301 void priv_set_difference_back(InputIt first1, InputIt last1, Compare comp)
2302 {
2303 T * old_first2 = this->priv_raw_begin();
2304 T * first2 = old_first2;
2305 T * last2 = this->priv_raw_end();
2306
2307 while (first1 != last1) {
2308 if (first2 == last2){
2309 this->insert(this->cend(), first1, last1);
2310 return;
2311 }
2312
2313 if (comp(*first1, *first2)) {
2314 this->emplace_back(*first1);
2315 T * const raw_begin = this->priv_raw_begin();
2316 if(old_first2 != raw_begin)
2317 {
2318 //Reallocation happened, update range
2319 first2 = raw_begin + (first2 - old_first2);
2320 last2 = raw_begin + (last2 - old_first2);
2321 old_first2 = raw_begin;
2322 }
2323 ++first1;
2324 }
2325 else {
2326 if (!comp(*first2, *first1)) {
2327 ++first1;
2328 }
2329 ++first2;
2330 }
2331 }
2332 }
2333
2334 template<class FwdIt, class Compare>
2335 BOOST_CONTAINER_FORCEINLINE void priv_merge_in_new_buffer(FwdIt, size_type, Compare, version_0)
2336 {
2337 alloc_holder_t::on_capacity_overflow();
2338 }
2339
2340 template<class FwdIt, class Compare, class Version>
2341 void priv_merge_in_new_buffer(FwdIt first, size_type n, Compare comp, Version)
2342 {
2343 size_type const new_size = this->size() + n;
2344 size_type new_cap = new_size;
2345 pointer p = pointer();
2346 pointer const new_storage = this->m_holder.allocation_command(allocate_new, new_size, new_cap, p);
2347
2348 BOOST_ASSERT((new_cap >= this->size() ) && (new_cap - this->size()) >= n);
2349 allocator_type &a = this->m_holder.alloc();
2350 typename value_traits::ArrayDeallocator new_buffer_deallocator(new_storage, a, new_cap);
2351 typename value_traits::ArrayDestructor new_values_destroyer(new_storage, a, 0u);
2352 T* pbeg = this->priv_raw_begin();
2353 size_type const old_size = this->size();
2354 T* const pend = pbeg + old_size;
2355 T* d_first = boost::movelib::to_raw_pointer(new_storage);
2356 size_type added = n;
2357 //Merge in new buffer loop
2358 while(1){
2359 if(!n) {
2360 ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pbeg, pend, d_first);
2361 break;
2362 }
2363 else if(pbeg == pend) {
2364 ::boost::container::uninitialized_move_alloc_n(this->m_holder.alloc(), first, n, d_first);
2365 break;
2366 }
2367 //maintain stability moving external values only if they are strictly less
2368 else if(comp(*first, *pbeg)) {
2369 allocator_traits_type::construct( this->m_holder.alloc(), d_first, *first );
2370 new_values_destroyer.increment_size(1u);
2371 ++first;
2372 --n;
2373 ++d_first;
2374 }
2375 else{
2376 allocator_traits_type::construct( this->m_holder.alloc(), d_first, boost::move(*pbeg) );
2377 new_values_destroyer.increment_size(1u);
2378 ++pbeg;
2379 ++d_first;
2380 }
2381 }
2382
2383 //Nothrow operations
2384 pointer const old_p = this->m_holder.start();
2385 size_type const old_cap = this->m_holder.capacity();
2386 boost::container::destroy_alloc_n(a, boost::movelib::to_raw_pointer(old_p), old_size);
2387 if (old_cap > 0) {
2388 this->m_holder.deallocate(old_p, old_cap);
2389 }
2390 m_holder.set_stored_size(old_size + added);
2391 this->m_holder.start(new_storage);
2392 this->m_holder.capacity(new_cap);
2393 new_buffer_deallocator.release();
2394 new_values_destroyer.release();
2395 }
2396
2397 BOOST_CONTAINER_FORCEINLINE bool room_enough() const
2398 { return this->m_holder.m_size != this->m_holder.capacity(); }
2399
2400 BOOST_CONTAINER_FORCEINLINE pointer back_ptr() const
2401 { return this->m_holder.start() + this->m_holder.m_size; }
2402
2403 BOOST_CONTAINER_FORCEINLINE size_type priv_index_of(pointer p) const
2404 {
2405 BOOST_ASSERT(this->m_holder.start() <= p);
2406 BOOST_ASSERT(p <= (this->m_holder.start()+this->size()));
2407 return static_cast<size_type>(p - this->m_holder.start());
2408 }
2409
2410 template<class OtherA>
2411 void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherA, Options> BOOST_RV_REF_END x
2412 , typename dtl::enable_if_c
2413 < dtl::is_version<typename real_allocator<T, OtherA>::type, 0>::value >::type * = 0)
2414 {
2415 if(!dtl::is_same<typename real_allocator<T, OtherA>::type, allocator_type>::value &&
2416 this->capacity() < x.size()){
2417 alloc_holder_t::on_capacity_overflow();
2418 }
2419 T* const this_start = this->priv_raw_begin();
2420 T* const other_start = x.priv_raw_begin();
2421 const size_type this_sz = m_holder.m_size;
2422 const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
2423 boost::container::move_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
2424 m_holder.set_stored_size(other_sz);
2425 //Not emptying the source container seems to be confusing for users as drop-in
2426 //replacement for non-static vectors, so clear it.
2427 x.clear();
2428 }
2429
2430 template<class OtherA>
2431 void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherA, Options> BOOST_RV_REF_END x
2432 , typename dtl::disable_if_or
2433 < void
2434 , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>
2435 , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>
2436 >::type * = 0)
2437 {
2438 //for move assignment, no aliasing (&x != this) is assumed.
2439 //x.size() == 0 is allowed for buggy std libraries.
2440 BOOST_ASSERT(this != &x || x.size() == 0);
2441 allocator_type &this_alloc = this->m_holder.alloc();
2442 allocator_type &x_alloc = x.m_holder.alloc();
2443 const bool propagate_alloc = allocator_traits_type::propagate_on_container_move_assignment::value;
2444
2445 //In this allocator move constructor the allocator maybe will be propagated -----------------------v
2446 const bool is_propagable_from_x = is_propagable_from(x_alloc, x.m_holder.start(), this_alloc, propagate_alloc);
2447
2448 //Resources can be transferred if both allocators are
2449 //going to be equal after this function (either propagated or already equal)
2450 if(is_propagable_from_x){
2451 this->clear();
2452 if(BOOST_LIKELY(!!this->m_holder.m_start))
2453 this->m_holder.deallocate(this->m_holder.m_start, this->m_holder.m_capacity);
2454 this->m_holder.steal_resources(x.m_holder);
2455 }
2456 //Else do a one by one move. Also, clear the source as users find confusing
2457 //elements are still alive in the source container.
2458 else{
2459 this->assign( boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(x.begin()))
2460 , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(x.end() ))
2461 );
2462 x.clear();
2463 }
2464 //Move allocator if needed
2465 dtl::move_alloc(this_alloc, x_alloc, dtl::bool_<propagate_alloc>());
2466 }
2467
2468 template<class OtherA>
2469 void priv_copy_assign(const vector<T, OtherA, Options> &x
2470 , typename dtl::enable_if_c
2471 < dtl::is_version<typename real_allocator<T, OtherA>::type, 0>::value >::type * = 0)
2472 {
2473 if(!dtl::is_same<typename real_allocator<T, OtherA>::type, allocator_type>::value &&
2474 this->capacity() < x.size()){
2475 alloc_holder_t::on_capacity_overflow();
2476 }
2477 T* const this_start = this->priv_raw_begin();
2478 T* const other_start = x.priv_raw_begin();
2479 const size_type this_sz = m_holder.m_size;
2480 const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
2481 boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
2482 m_holder.set_stored_size(other_sz);
2483 }
2484
2485 template<class OtherA>
2486 typename dtl::disable_if_or
2487 < void
2488 , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>
2489 , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>
2490 >::type
2491 priv_copy_assign(const vector<T, OtherA, Options> &x)
2492 {
2493 allocator_type &this_alloc = this->m_holder.alloc();
2494 const allocator_type &x_alloc = x.m_holder.alloc();
2495 dtl::bool_<allocator_traits_type::
2496 propagate_on_container_copy_assignment::value> flag;
2497 if(flag && this_alloc != x_alloc){
2498 this->clear();
2499 this->shrink_to_fit();
2500 }
2501 dtl::assign_alloc(this_alloc, x_alloc, flag);
2502 this->assign( x.priv_raw_begin(), x.priv_raw_end() );
2503 }
2504
2505 template<class Vector> //Template it to avoid it in explicit instantiations
2506 BOOST_CONTAINER_FORCEINLINE void priv_swap(Vector &x, dtl::true_type) //version_0
2507 { this->m_holder.deep_swap(x.m_holder); }
2508
2509 template<class Vector> //Template it to avoid it in explicit instantiations
2510 void priv_swap(Vector &x, dtl::false_type) //version_N
2511 {
2512 const bool propagate_alloc = allocator_traits_type::propagate_on_container_swap::value;
2513 if(are_swap_propagable( this->get_stored_allocator(), this->m_holder.start()
2514 , x.get_stored_allocator(), x.m_holder.start(), propagate_alloc)){
2515 //Just swap internals
2516 this->m_holder.swap_resources(x.m_holder);
2517 }
2518 else{
2519 if (BOOST_UNLIKELY(&x == this))
2520 return;
2521
2522 //Else swap element by element...
2523 bool const t_smaller = this->size() < x.size();
2524 vector &sml = t_smaller ? *this : x;
2525 vector &big = t_smaller ? x : *this;
2526
2527 size_type const common_elements = sml.size();
2528 for(size_type i = 0; i != common_elements; ++i){
2529 boost::adl_move_swap(sml[i], big[i]);
2530 }
2531 //... and move-insert the remaining range
2532 sml.insert( sml.cend()
2533 , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(big.nth(common_elements)))
2534 , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(big.end()))
2535 );
2536 //Destroy remaining elements
2537 big.erase(big.nth(common_elements), big.cend());
2538 }
2539 //And now swap the allocator
2540 dtl::swap_alloc(this->m_holder.alloc(), x.m_holder.alloc(), dtl::bool_<propagate_alloc>());
2541 }
2542
2543 BOOST_CONTAINER_FORCEINLINE void priv_move_to_new_buffer(size_type, version_0)
2544 { alloc_holder_t::on_capacity_overflow(); }
2545
2546 BOOST_CONTAINER_FORCEINLINE dtl::insert_range_proxy<allocator_type, boost::move_iterator<T*>, T*> priv_dummy_empty_proxy()
2547 {
2548 return dtl::insert_range_proxy<allocator_type, boost::move_iterator<T*>, T*>
2549 (::boost::make_move_iterator((T *)0));
2550 }
2551
2552 BOOST_CONTAINER_FORCEINLINE void priv_move_to_new_buffer(size_type new_cap, version_1)
2553 {
2554 //There is not enough memory, allocate a new buffer
2555 //Pass the hint so that allocators can take advantage of this.
2556 pointer const p = this->m_holder.allocate(new_cap);
2557 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2558 ++this->num_alloc;
2559 #endif
2560 //We will reuse insert code, so create a dummy input iterator
2561 this->priv_insert_forward_range_new_allocation
2562 ( boost::movelib::to_raw_pointer(p), new_cap, this->priv_raw_end(), 0, this->priv_dummy_empty_proxy());
2563 }
2564
2565 void priv_move_to_new_buffer(size_type new_cap, version_2)
2566 {
2567 //There is not enough memory, allocate a new
2568 //buffer or expand the old one.
2569 bool same_buffer_start;
2570 size_type real_cap = 0;
2571 pointer reuse(this->m_holder.start());
2572 pointer const ret(this->m_holder.allocation_command(allocate_new | expand_fwd | expand_bwd, new_cap, real_cap = new_cap, reuse));
2573
2574 //Check for forward expansion
2575 same_buffer_start = reuse && this->m_holder.start() == ret;
2576 if(same_buffer_start){
2577 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2578 ++this->num_expand_fwd;
2579 #endif
2580 this->m_holder.capacity(real_cap);
2581 }
2582 else{ //If there is no forward expansion, move objects, we will reuse insertion code
2583 T * const new_mem = boost::movelib::to_raw_pointer(ret);
2584 T * const ins_pos = this->priv_raw_end();
2585 if(reuse){ //Backwards (and possibly forward) expansion
2586 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2587 ++this->num_expand_bwd;
2588 #endif
2589 this->priv_insert_forward_range_expand_backwards
2590 ( new_mem , real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());
2591 }
2592 else{ //New buffer
2593 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2594 ++this->num_alloc;
2595 #endif
2596 this->priv_insert_forward_range_new_allocation
2597 ( new_mem, real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());
2598 }
2599 }
2600 }
2601
2602 void priv_destroy_last_n(const size_type n) BOOST_NOEXCEPT_OR_NOTHROW
2603 {
2604 BOOST_ASSERT(n <= this->m_holder.m_size);
2605 boost::container::destroy_alloc_n(this->get_stored_allocator(), this->priv_raw_end() - n, n);
2606 this->m_holder.dec_stored_size(n);
2607 }
2608
2609 template<class InpIt>
2610 void priv_uninitialized_construct_at_end(InpIt first, InpIt last)
2611 {
2612 T* const old_end_pos = this->priv_raw_end();
2613 T* const new_end_pos = boost::container::uninitialized_copy_alloc(this->m_holder.alloc(), first, last, old_end_pos);
2614 this->m_holder.inc_stored_size(static_cast<size_type>(new_end_pos - old_end_pos));
2615 }
2616
2617 void priv_destroy_all() BOOST_NOEXCEPT_OR_NOTHROW
2618 {
2619 boost::container::destroy_alloc_n
2620 (this->get_stored_allocator(), this->priv_raw_begin(), this->m_holder.m_size);
2621 this->m_holder.m_size = 0;
2622 }
2623
2624 template<class U>
2625 BOOST_CONTAINER_FORCEINLINE iterator priv_insert(const const_iterator &p, BOOST_FWD_REF(U) u)
2626 {
2627 return this->emplace(p, ::boost::forward<U>(u));
2628 }
2629
2630 template <class U>
2631 BOOST_CONTAINER_FORCEINLINE void priv_push_back(BOOST_FWD_REF(U) u)
2632 {
2633 this->emplace_back(::boost::forward<U>(u));
2634 }
2635
2636 //Overload to support compiler errors that instantiate too much
2637 BOOST_CONTAINER_FORCEINLINE void priv_push_back(::boost::move_detail::nat)
2638 {}
2639
2640 BOOST_CONTAINER_FORCEINLINE iterator priv_insert(const_iterator, ::boost::move_detail::nat)
2641 { return iterator(); }
2642
2643 BOOST_CONTAINER_FORCEINLINE dtl::insert_n_copies_proxy<allocator_type, T*> priv_resize_proxy(const T &x)
2644 { return dtl::insert_n_copies_proxy<allocator_type, T*>(x); }
2645
2646 BOOST_CONTAINER_FORCEINLINE dtl::insert_default_initialized_n_proxy<allocator_type, T*> priv_resize_proxy(default_init_t)
2647 { return dtl::insert_default_initialized_n_proxy<allocator_type, T*>(); }
2648
2649 BOOST_CONTAINER_FORCEINLINE dtl::insert_value_initialized_n_proxy<allocator_type, T*> priv_resize_proxy(value_init_t)
2650 { return dtl::insert_value_initialized_n_proxy<allocator_type, T*>(); }
2651
2652 BOOST_CONTAINER_FORCEINLINE void priv_shrink_to_fit(version_0) BOOST_NOEXCEPT_OR_NOTHROW
2653 {}
2654
2655 void priv_shrink_to_fit(version_1)
2656 {
2657 const size_type cp = this->m_holder.capacity();
2658 if(cp){
2659 const size_type sz = this->size();
2660 if(!sz){
2661 if(BOOST_LIKELY(!!this->m_holder.m_start))
2662 this->m_holder.deallocate(this->m_holder.m_start, cp);
2663 this->m_holder.m_start = pointer();
2664 this->m_holder.m_capacity = 0;
2665 }
2666 else if(sz < cp){
2667 this->priv_move_to_new_buffer(sz, alloc_version());
2668 }
2669 }
2670 }
2671
2672 void priv_shrink_to_fit(version_2) BOOST_NOEXCEPT_OR_NOTHROW
2673 {
2674 const size_type cp = this->m_holder.capacity();
2675 if(cp){
2676 const size_type sz = this->size();
2677 if(!sz){
2678 if(BOOST_LIKELY(!!this->m_holder.m_start))
2679 this->m_holder.deallocate(this->m_holder.m_start, cp);
2680 this->m_holder.m_start = pointer();
2681 this->m_holder.m_capacity = 0;
2682 }
2683 else{
2684 size_type received_size = sz;
2685 pointer reuse(this->m_holder.start());
2686 if(this->m_holder.allocation_command
2687 (shrink_in_place | nothrow_allocation, cp, received_size, reuse)){
2688 this->m_holder.capacity(received_size);
2689 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2690 ++this->num_shrink;
2691 #endif
2692 }
2693 }
2694 }
2695 }
2696
2697 template <class InsertionProxy>
2698 BOOST_CONTAINER_FORCEINLINE iterator priv_insert_forward_range_no_capacity
2699 (T * const, const size_type, const InsertionProxy , version_0)
2700 {
2701 return alloc_holder_t::on_capacity_overflow(), iterator();
2702 }
2703
2704 template <class InsertionProxy>
2705 BOOST_CONTAINER_NOINLINE iterator priv_insert_forward_range_no_capacity
2706 (T *const raw_pos, const size_type n, const InsertionProxy insert_range_proxy, version_1)
2707 {
2708 //Check if we have enough memory or try to expand current memory
2709 const size_type n_pos = static_cast<size_type>(raw_pos - this->priv_raw_begin());
2710
2711 const size_type new_cap = this->m_holder.template next_capacity<growth_factor_type>(n);
2712 //Pass the hint so that allocators can take advantage of this.
2713 T * const new_buf = boost::movelib::to_raw_pointer(this->m_holder.allocate(new_cap));
2714 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2715 ++this->num_alloc;
2716 #endif
2717 this->priv_insert_forward_range_new_allocation(new_buf, new_cap, raw_pos, n, insert_range_proxy);
2718 return iterator(this->m_holder.start() + n_pos);
2719 }
2720
2721 template <class InsertionProxy>
2722 BOOST_CONTAINER_NOINLINE iterator priv_insert_forward_range_no_capacity
2723 (T *const raw_pos, const size_type n, const InsertionProxy insert_range_proxy, version_2)
2724 {
2725 //Check if we have enough memory or try to expand current memory
2726 const size_type n_pos = raw_pos - this->priv_raw_begin();
2727
2728 //There is not enough memory, allocate a new
2729 //buffer or expand the old one.
2730 size_type real_cap = this->m_holder.template next_capacity<growth_factor_type>(n);
2731 pointer reuse(this->m_holder.start());
2732 pointer const ret (this->m_holder.allocation_command
2733 (allocate_new | expand_fwd | expand_bwd, this->m_holder.m_size + n, real_cap, reuse));
2734
2735 //Buffer reallocated
2736 if(reuse){
2737 //Forward expansion, delay insertion
2738 if(this->m_holder.start() == ret){
2739 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2740 ++this->num_expand_fwd;
2741 #endif
2742 this->m_holder.capacity(real_cap);
2743 //Expand forward
2744 this->priv_insert_forward_range_expand_forward
2745 (raw_pos, n, insert_range_proxy, dtl::bool_<dtl::is_single_value_proxy<InsertionProxy>::value>());
2746 }
2747 //Backwards (and possibly forward) expansion
2748 else{
2749 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2750 ++this->num_expand_bwd;
2751 #endif
2752 this->priv_insert_forward_range_expand_backwards
2753 (boost::movelib::to_raw_pointer(ret), real_cap, raw_pos, n, insert_range_proxy);
2754 }
2755 }
2756 //New buffer
2757 else{
2758 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
2759 ++this->num_alloc;
2760 #endif
2761 this->priv_insert_forward_range_new_allocation
2762 ( boost::movelib::to_raw_pointer(ret), real_cap, raw_pos, n, insert_range_proxy);
2763 }
2764
2765 return iterator(this->m_holder.start() + n_pos);
2766 }
2767
2768 template <class InsertionProxy>
2769 BOOST_CONTAINER_FORCEINLINE iterator priv_insert_forward_range
2770 (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy)
2771 {
2772 BOOST_ASSERT(this->m_holder.capacity() >= this->m_holder.m_size);
2773 T *const p = boost::movelib::to_raw_pointer(pos);
2774 //Check if we have enough memory or try to expand current memory
2775 if (BOOST_LIKELY(n <= (this->m_holder.capacity() - this->m_holder.m_size))){
2776 //Expand forward
2777 this->priv_insert_forward_range_expand_forward
2778 (p, n, insert_range_proxy, dtl::bool_<dtl::is_single_value_proxy<InsertionProxy>::value>());
2779 return iterator(pos);
2780 }
2781 else{
2782 return this->priv_insert_forward_range_no_capacity(p, n, insert_range_proxy, alloc_version());
2783 }
2784 }
2785
2786 template <class U>
2787 void priv_resize(const size_type new_size, const U &u, version_0)
2788 {
2789 const size_type sz = this->m_holder.m_size;
2790 if (new_size > this->capacity()){
2791 //This will trigger an error
2792 alloc_holder_t::on_capacity_overflow();
2793 }
2794 else if (new_size < sz){
2795 //Destroy last elements
2796 this->priv_destroy_last_n(sz - new_size);
2797 }
2798 else{
2799 T* const old_finish = this->priv_raw_end();
2800 this->priv_resize_proxy(u).uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, new_size - sz);
2801 this->m_holder.set_stored_size(new_size);
2802 }
2803 }
2804
2805 template <class U, class AllocVersion>
2806 void priv_resize(const size_type new_size, const U &u, AllocVersion)
2807 {
2808 const size_type sz = this->m_holder.m_size;
2809 if (new_size < sz){
2810 //Destroy last elements
2811 this->priv_destroy_last_n(sz - new_size);
2812 }
2813 else {
2814 this->priv_insert_forward_range(this->back_ptr(), new_size - sz, this->priv_resize_proxy(u));
2815 }
2816 }
2817
2818 //Takes the range pointed by [first_pos, last_pos) and shifts it to the right
2819 //by 'shift_count'. 'limit_pos' marks the end of constructed elements.
2820 //
2821 //Precondition: first_pos <= last_pos <= limit_pos
2822 //
2823 //The shift operation might cross limit_pos so elements to moved beyond limit_pos
2824 //are uninitialized_moved with an allocator. Other elements are moved.
2825 //
2826 //The shift operation might left uninitialized elements after limit_pos
2827 //and the number of uninitialized elements is returned by the function.
2828 //
2829 //Old situation:
2830 // first_pos last_pos old_limit
2831 // | | |
2832 // ____________V_______V__________________V_____________
2833 //| prefix | range | suffix |raw_mem ~
2834 //|____________|_______|__________________|_____________~
2835 //
2836 //New situation in Case A (hole_size == 0):
2837 // range is moved through move assignments
2838 //
2839 // first_pos last_pos limit_pos
2840 // | | |
2841 // ____________V_______V__________________V_____________
2842 //| prefix' | | | range |suffix'|raw_mem ~
2843 //|________________+______|___^___|_______|_____________~
2844 // | |
2845 // |_>_>_>_>_>^
2846 //
2847 //
2848 //New situation in Case B (hole_size >= 0):
2849 // range is moved through uninitialized moves
2850 //
2851 // first_pos last_pos limit_pos
2852 // | | |
2853 // ____________V_______V__________________V________________
2854 //| prefix' | | | [hole] | range |
2855 //|_______________________________________|________|___^___|
2856 // | |
2857 // |_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_^
2858 //
2859 //New situation in Case C (hole_size == 0):
2860 // range is moved through move assignments and uninitialized moves
2861 //
2862 // first_pos last_pos limit_pos
2863 // | | |
2864 // ____________V_______V__________________V___
2865 //| prefix' | | | range |
2866 //|___________________________________|___^___|
2867 // | |
2868 // |_>_>_>_>_>_>_>_>_>_>_>^
2869 size_type priv_insert_ordered_at_shift_range
2870 (size_type first_pos, size_type last_pos, size_type limit_pos, size_type shift_count)
2871 {
2872 BOOST_ASSERT(first_pos <= last_pos);
2873 BOOST_ASSERT(last_pos <= limit_pos);
2874 //
2875 T* const begin_ptr = this->priv_raw_begin();
2876 T* const first_ptr = begin_ptr + first_pos;
2877 T* const last_ptr = begin_ptr + last_pos;
2878
2879 size_type hole_size = 0;
2880 //Case A:
2881 if((last_pos + shift_count) <= limit_pos){
2882 //All move assigned
2883 boost::container::move_backward(first_ptr, last_ptr, last_ptr + shift_count);
2884 }
2885 //Case B:
2886 else if((first_pos + shift_count) >= limit_pos){
2887 //All uninitialized_moved
2888 ::boost::container::uninitialized_move_alloc
2889 (this->m_holder.alloc(), first_ptr, last_ptr, first_ptr + shift_count);
2890 hole_size = first_pos + shift_count - limit_pos;
2891 }
2892 //Case C:
2893 else{
2894 //Some uninitialized_moved
2895 T* const limit_ptr = begin_ptr + limit_pos;
2896 T* const boundary_ptr = limit_ptr - shift_count;
2897 ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), boundary_ptr, last_ptr, limit_ptr);
2898 //The rest is move assigned
2899 boost::container::move_backward(first_ptr, boundary_ptr, limit_ptr);
2900 }
2901 return hole_size;
2902 }
2903
2904 private:
2905 BOOST_CONTAINER_FORCEINLINE T *priv_raw_begin() const
2906 { return boost::movelib::to_raw_pointer(m_holder.start()); }
2907
2908 BOOST_CONTAINER_FORCEINLINE T* priv_raw_end() const
2909 { return this->priv_raw_begin() + this->m_holder.m_size; }
2910
2911 template <class InsertionProxy> //inline single-element version as it is significantly smaller
2912 BOOST_CONTAINER_FORCEINLINE void priv_insert_forward_range_expand_forward
2913 (T* const raw_pos, const size_type, InsertionProxy insert_range_proxy, dtl::true_type)
2914 {
2915 BOOST_ASSERT(this->room_enough());
2916 //There is enough memory
2917 T* const old_finish = this->priv_raw_end();
2918 allocator_type & a = this->m_holder.alloc();
2919
2920 if (old_finish == raw_pos){
2921 insert_range_proxy.uninitialized_copy_n_and_update(a, old_finish, 1);
2922 ++this->m_holder.m_size;
2923 }
2924 else{
2925 //New elements can be just copied.
2926 //Move to uninitialized memory last objects
2927 T * const before_old_finish = old_finish-1;
2928
2929 allocator_traits_type::construct(a, old_finish, ::boost::move(*before_old_finish));
2930 ++this->m_holder.m_size;
2931 //Copy previous to last objects to the initialized end
2932 boost::container::move_backward(raw_pos, before_old_finish, old_finish);
2933 //Insert new objects in the raw_pos
2934 insert_range_proxy.copy_n_and_update(a, raw_pos, 1);
2935 }
2936 }
2937
2938 template <class InsertionProxy>
2939 BOOST_CONTAINER_FORCEINLINE void priv_insert_forward_range_expand_forward(T* const raw_pos, const size_type n, InsertionProxy insert_range_proxy, dtl::false_type)
2940 {
2941 //There is enough memory
2942 boost::container::expand_forward_and_insert_alloc
2943 ( this->m_holder.alloc(), raw_pos, this->priv_raw_end(), n, insert_range_proxy);
2944 this->m_holder.inc_stored_size(n);
2945 }
2946
2947 template <class InsertionProxy>
2948 void priv_insert_forward_range_new_allocation
2949 (T* const new_start, size_type new_cap, T* const pos, const size_type n, InsertionProxy insert_range_proxy)
2950 {
2951 //n can be zero, if we want to reallocate!
2952 allocator_type &a = this->m_holder.alloc();
2953 T * const raw_old_buffer = this->priv_raw_begin();
2954
2955 typename value_traits::ArrayDeallocator new_buffer_deallocator(new_start, a, new_cap);
2956 boost::container::uninitialized_move_and_insert_alloc
2957 (a, raw_old_buffer, pos, this->priv_raw_end(), new_start, n, insert_range_proxy);
2958 new_buffer_deallocator.release();
2959
2960 //Destroy and deallocate old elements
2961 if(raw_old_buffer){
2962 BOOST_IF_CONSTEXPR(!has_trivial_destructor_after_move<value_type>::value)
2963 boost::container::destroy_alloc_n(a, raw_old_buffer, this->m_holder.m_size);
2964 this->m_holder.deallocate(this->m_holder.start(), this->m_holder.capacity());
2965 }
2966
2967 this->m_holder.start(new_start);
2968 this->m_holder.inc_stored_size(n);
2969 this->m_holder.capacity(new_cap);
2970 }
2971
2972 template <class InsertionProxy>
2973 void priv_insert_forward_range_expand_backwards
2974 (T* const new_start, const size_type new_capacity,
2975 T* const pos, const size_type n, InsertionProxy insert_range_proxy)
2976 {
2977 //n can be zero to just expand capacity
2978 //Backup old data
2979 T* const old_start = this->priv_raw_begin();
2980 const size_type old_size = this->m_holder.m_size;
2981 T* const old_finish = old_start + old_size;
2982 allocator_type &a = this->m_holder.alloc();
2983
2984 //Update the vector buffer information to a safe state
2985 this->m_holder.start(new_start);
2986 this->m_holder.capacity(new_capacity);
2987 this->m_holder.m_size = 0;
2988
2989 //We can have 8 possibilities:
2990 const size_type elemsbefore = static_cast<size_type>(pos - old_start);
2991 const size_type s_before = static_cast<size_type>(old_start - new_start);
2992 const size_type before_plus_new = elemsbefore + n;
2993
2994 typedef typename value_traits::ArrayDestructor array_destructor_t;
2995
2996 //If anything goes wrong, this object will destroy
2997 //all the old objects to fulfill previous vector state
2998 array_destructor_t old_values_destroyer(old_start, a, old_size);
2999 //Check if s_before is big enough to hold the beginning of old data + new data
3000 if(s_before >= before_plus_new){
3001 //Copy first old values before pos, after that the new objects
3002 T *const new_elem_pos =
3003 ::boost::container::uninitialized_move_alloc(a, old_start, pos, new_start);
3004 this->m_holder.set_stored_size(elemsbefore);
3005 insert_range_proxy.uninitialized_copy_n_and_update(a, new_elem_pos, n);
3006 this->m_holder.set_stored_size(before_plus_new);
3007 const size_type new_size = old_size + n;
3008 //Check if s_before is so big that even copying the old data + new data
3009 //there is a gap between the new data and the old data
3010 if(s_before >= new_size){
3011 //Old situation:
3012 // _________________________________________________________
3013 //| raw_mem | old_begin | old_end |
3014 //| __________________________________|___________|_________|
3015 //
3016 //New situation:
3017 // _________________________________________________________
3018 //| old_begin | new | old_end | raw_mem |
3019 //|___________|__________|_________|________________________|
3020 //
3021 //Now initialize the rest of memory with the last old values
3022 if(before_plus_new != new_size){ //Special case to avoid operations in back insertion
3023 ::boost::container::uninitialized_move_alloc(a, pos, old_finish, new_start + before_plus_new);
3024 //All new elements correctly constructed, avoid new element destruction
3025 this->m_holder.set_stored_size(new_size);
3026 }
3027 //Old values destroyed automatically with "old_values_destroyer"
3028 //when "old_values_destroyer" goes out of scope unless the have trivial
3029 //destructor after move.
3030 BOOST_IF_CONSTEXPR(value_traits::trivial_dctr_after_move)
3031 old_values_destroyer.release();
3032 }
3033 //s_before is so big that divides old_end
3034 else{
3035 //Old situation:
3036 // __________________________________________________
3037 //| raw_mem | old_begin | old_end |
3038 //| ___________________________|___________|_________|
3039 //
3040 //New situation:
3041 // __________________________________________________
3042 //| old_begin | new | old_end | raw_mem |
3043 //|___________|__________|_________|_________________|
3044 //
3045 //Now initialize the rest of memory with the last old values
3046 //All new elements correctly constructed, avoid new element destruction
3047 BOOST_IF_CONSTEXPR(!value_traits::trivial_dctr){
3048 const size_type raw_gap = s_before - before_plus_new;
3049 //Now initialize the rest of s_before memory with the
3050 //first of elements after new values
3051 ::boost::container::uninitialized_move_alloc_n(a, pos, raw_gap, new_start + before_plus_new);
3052 //Now we have a contiguous buffer so program trailing element destruction
3053 //and update size to the final size.
3054 old_values_destroyer.shrink_forward(new_size-s_before);
3055 this->m_holder.set_stored_size(new_size);
3056 //Now move remaining last objects in the old buffer begin
3057 T * const remaining_pos = pos + raw_gap;
3058 if(remaining_pos != old_start){ //Make sure data has to be moved
3059 ::boost::container::move(remaining_pos, old_finish, old_start);
3060 }
3061 //Once moved, avoid calling the destructors if trivial after move
3062 BOOST_IF_CONSTEXPR(value_traits::trivial_dctr_after_move){
3063 old_values_destroyer.release();
3064 }
3065 }
3066 else{ //If trivial destructor, we can uninitialized copy + copy in a single uninitialized copy
3067 ::boost::container::uninitialized_move_alloc_n
3068 (a, pos, static_cast<size_type>(old_finish - pos), new_start + before_plus_new);
3069 this->m_holder.set_stored_size(new_size);
3070 old_values_destroyer.release();
3071 }
3072 }
3073 }
3074 else{
3075 //Check if we have to do the insertion in two phases
3076 //since maybe s_before is not big enough and
3077 //the buffer was expanded both sides
3078 //
3079 //Old situation:
3080 // _________________________________________________
3081 //| raw_mem | old_begin + old_end | raw_mem |
3082 //|_________|_____________________|_________________|
3083 //
3084 //New situation with do_after:
3085 // _________________________________________________
3086 //| old_begin + new + old_end | raw_mem |
3087 //|___________________________________|_____________|
3088 //
3089 //New without do_after:
3090 // _________________________________________________
3091 //| old_begin + new + old_end | raw_mem |
3092 //|____________________________|____________________|
3093 //
3094 const bool do_after = n > s_before;
3095
3096 //Now we can have two situations: the raw_mem of the
3097 //beginning divides the old_begin, or the new elements:
3098 if (s_before <= elemsbefore) {
3099 //The raw memory divides the old_begin group:
3100 //
3101 //If we need two phase construction (do_after)
3102 //new group is divided in new = new_beg + new_end groups
3103 //In this phase only new_beg will be inserted
3104 //
3105 //Old situation:
3106 // _________________________________________________
3107 //| raw_mem | old_begin | old_end | raw_mem |
3108 //|_________|___________|_________|_________________|
3109 //
3110 //New situation with do_after(1):
3111 //This is not definitive situation, the second phase
3112 //will include
3113 // _________________________________________________
3114 //| old_begin | new_beg | old_end | raw_mem |
3115 //|___________|_________|_________|_________________|
3116 //
3117 //New situation without do_after:
3118 // _________________________________________________
3119 //| old_begin | new | old_end | raw_mem |
3120 //|___________|_____|_________|_____________________|
3121 //
3122 //Copy the first part of old_begin to raw_mem
3123 ::boost::container::uninitialized_move_alloc_n(a, old_start, s_before, new_start);
3124 //The buffer is all constructed until old_end,
3125 //so program trailing destruction and assign final size
3126 //if !do_after, s_before+n otherwise.
3127 size_type new_1st_range;
3128 if(do_after){
3129 new_1st_range = s_before;
3130 //release destroyer and update size
3131 old_values_destroyer.release();
3132 }
3133 else{
3134 new_1st_range = n;
3135 BOOST_IF_CONSTEXPR(value_traits::trivial_dctr_after_move){
3136 old_values_destroyer.release();
3137 }
3138 else{
3139 old_values_destroyer.shrink_forward(old_size - (s_before - n));
3140 }
3141 }
3142 this->m_holder.set_stored_size(old_size + new_1st_range);
3143 //Now copy the second part of old_begin overwriting itself
3144 T *const next = ::boost::container::move(old_start + s_before, pos, old_start);
3145 //Now copy the new_beg elements
3146 insert_range_proxy.copy_n_and_update(a, next, new_1st_range);
3147
3148 //If there is no after work and the last old part needs to be moved to front, do it
3149 if(!do_after && (n != s_before)){
3150 //Now displace old_end elements
3151 ::boost::container::move(pos, old_finish, next + new_1st_range);
3152 }
3153 }
3154 else {
3155 //If we have to expand both sides,
3156 //we will play if the first new values so
3157 //calculate the upper bound of new values
3158
3159 //The raw memory divides the new elements
3160 //
3161 //If we need two phase construction (do_after)
3162 //new group is divided in new = new_beg + new_end groups
3163 //In this phase only new_beg will be inserted
3164 //
3165 //Old situation:
3166 // _______________________________________________________
3167 //| raw_mem | old_begin | old_end | raw_mem |
3168 //|_______________|___________|_________|_________________|
3169 //
3170 //New situation with do_after():
3171 // ____________________________________________________
3172 //| old_begin | new_beg | old_end | raw_mem |
3173 //|___________|_______________|_________|______________|
3174 //
3175 //New situation without do_after:
3176 // ______________________________________________________
3177 //| old_begin | new | old_end | raw_mem |
3178 //|___________|_____|_________|__________________________|
3179 //
3180 //First copy whole old_begin and part of new to raw_mem
3181 T * const new_pos = ::boost::container::uninitialized_move_alloc
3182 (a, old_start, pos, new_start);
3183 this->m_holder.set_stored_size(elemsbefore);
3184 const size_type mid_n = s_before - elemsbefore;
3185 insert_range_proxy.uninitialized_copy_n_and_update(a, new_pos, mid_n);
3186 //The buffer is all constructed until old_end,
3187 //release destroyer
3188 this->m_holder.set_stored_size(old_size + s_before);
3189 old_values_destroyer.release();
3190
3191 if(do_after){
3192 //Copy new_beg part
3193 insert_range_proxy.copy_n_and_update(a, old_start, elemsbefore);
3194 }
3195 else{
3196 //Copy all new elements
3197 const size_type rest_new = n - mid_n;
3198 insert_range_proxy.copy_n_and_update(a, old_start, rest_new);
3199
3200 T* const move_start = old_start + rest_new;
3201 //Displace old_end, but make sure data has to be moved
3202 T* const move_end = move_start != pos ? ::boost::container::move(pos, old_finish, move_start)
3203 : old_finish;
3204 (void)move_end; //To avoid warnings of unused initialization for move_end in case
3205 //trivial_dctr_after_move is true
3206 //Destroy remaining moved elements from old_end except if they
3207 //have trivial destructor after being moved
3208 const size_type n_destroy = s_before - n;
3209 BOOST_IF_CONSTEXPR(!value_traits::trivial_dctr_after_move){
3210 boost::container::destroy_alloc_n(a, move_end, n_destroy);
3211 }
3212 this->m_holder.dec_stored_size(n_destroy);
3213 }
3214 }
3215
3216 //This is only executed if two phase construction is needed
3217 if(do_after){
3218 //The raw memory divides the new elements
3219 //
3220 //Old situation:
3221 // ______________________________________________________
3222 //| raw_mem | old_begin | old_end | raw_mem |
3223 //|______________|___________|____________|______________|
3224 //
3225 //New situation with do_after(1):
3226 // _______________________________________________________
3227 //| old_begin + new_beg | new_end |old_end | raw_mem |
3228 //|__________________________|_________|________|_________|
3229 //
3230 //New situation with do_after(2):
3231 // ______________________________________________________
3232 //| old_begin + new | old_end |raw |
3233 //|_______________________________________|_________|____|
3234 //
3235 const size_type n_after = n - s_before;
3236 const size_type elemsafter = old_size - elemsbefore;
3237
3238 //We can have two situations:
3239 if (elemsafter >= n_after){
3240 //The raw_mem from end will divide displaced old_end
3241 //
3242 //Old situation:
3243 // ______________________________________________________
3244 //| raw_mem | old_begin | old_end | raw_mem |
3245 //|______________|___________|____________|______________|
3246 //
3247 //New situation with do_after(1):
3248 // _______________________________________________________
3249 //| old_begin + new_beg | new_end |old_end | raw_mem |
3250 //|__________________________|_________|________|_________|
3251 //
3252 //First copy the part of old_end raw_mem
3253 T* finish_n = old_finish - n_after;
3254 ::boost::container::uninitialized_move_alloc(a, finish_n, old_finish, old_finish);
3255 this->m_holder.inc_stored_size(n_after);
3256 //Displace the rest of old_end to the new position
3257 boost::container::move_backward(pos, finish_n, old_finish);
3258 //Now overwrite with new_end
3259 //The new_end part is [first + (n - n_after), last)
3260 insert_range_proxy.copy_n_and_update(a, pos, n_after);
3261 }
3262 else {
3263 //The raw_mem from end will divide new_end part
3264 //
3265 //Old situation:
3266 // _____________________________________________________________
3267 //| raw_mem | old_begin | old_end | raw_mem |
3268 //|______________|___________|____________|_____________________|
3269 //
3270 //New situation with do_after(2):
3271 // _____________________________________________________________
3272 //| old_begin + new_beg | new_end |old_end | raw_mem |
3273 //|__________________________|_______________|________|_________|
3274
3275 //First initialize data in raw memory
3276 const size_type mid_last_dist = n_after - elemsafter;
3277
3278 //Copy to the old_end part to the uninitialized zone leaving a gap.
3279 ::boost::container::uninitialized_move_alloc(a, pos, old_finish, old_finish + mid_last_dist);
3280
3281 array_destructor_t old_end_destroyer(old_finish + mid_last_dist, a, static_cast<size_type>(old_finish - pos));
3282
3283 //Copy the first part to the already constructed old_end zone
3284 insert_range_proxy.copy_n_and_update(a, pos, elemsafter);
3285 //Copy the rest to the uninitialized zone filling the gap
3286 insert_range_proxy.uninitialized_copy_n_and_update(a, old_finish, mid_last_dist);
3287 this->m_holder.inc_stored_size(n_after);
3288 old_end_destroyer.release();
3289 }
3290 }
3291 }
3292 }
3293
3294 void priv_throw_if_out_of_range(size_type n) const
3295 {
3296 //If n is out of range, throw an out_of_range exception
3297 if (n >= this->size()){
3298 throw_out_of_range("vector::at out of range");
3299 }
3300 }
3301
3302 BOOST_CONTAINER_FORCEINLINE bool priv_in_range(const_iterator pos) const
3303 {
3304 return (this->begin() <= pos) && (pos < this->end());
3305 }
3306
3307 BOOST_CONTAINER_FORCEINLINE bool priv_in_range_or_end(const_iterator pos) const
3308 {
3309 return (this->begin() <= pos) && (pos <= this->end());
3310 }
3311
3312 #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
3313 public:
3314 unsigned int num_expand_fwd;
3315 unsigned int num_expand_bwd;
3316 unsigned int num_shrink;
3317 unsigned int num_alloc;
3318 void reset_alloc_stats()
3319 { num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0; }
3320 #endif
3321 #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
3322 };
3323
3324 #ifndef BOOST_CONTAINER_NO_CXX17_CTAD
3325
3326 template <typename InputIterator>
3327 vector(InputIterator, InputIterator) ->
3328 vector<typename iterator_traits<InputIterator>::value_type>;
3329
3330 template <typename InputIterator, typename Allocator>
3331 vector(InputIterator, InputIterator, Allocator const&) ->
3332 vector<typename iterator_traits<InputIterator>::value_type, Allocator>;
3333
3334 #endif
3335
3336
3337 }} //namespace boost::container
3338
3339 #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
3340
3341 namespace boost {
3342
3343 //!has_trivial_destructor_after_move<> == true_type
3344 //!specialization for optimizations
3345 template <class T, class Allocator, class Options>
3346 struct has_trivial_destructor_after_move<boost::container::vector<T, Allocator, Options> >
3347 {
3348 typedef typename boost::container::vector<T, Allocator, Options>::allocator_type allocator_type;
3349 typedef typename ::boost::container::allocator_traits<allocator_type>::pointer pointer;
3350 static const bool value = ::boost::has_trivial_destructor_after_move<allocator_type>::value &&
3351 ::boost::has_trivial_destructor_after_move<pointer>::value;
3352 };
3353
3354 }
3355
3356 #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
3357
3358 #include <boost/container/detail/config_end.hpp>
3359
3360 #endif // #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP