]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/geometry/algorithms/detail/overlay/traversal.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / geometry / algorithms / detail / overlay / traversal.hpp
1 // Boost.Geometry (aka GGL, Generic Geometry Library)
2
3 // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
4
5 // This file was modified by Oracle on 2017, 2018.
6 // Modifications copyright (c) 2017-2018 Oracle and/or its affiliates.
7
8 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
9
10 // Use, modification and distribution is subject to the Boost Software License,
11 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
12 // http://www.boost.org/LICENSE_1_0.txt)
13
14 #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP
15 #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP
16
17 #include <cstddef>
18 #include <set>
19
20 #include <boost/range.hpp>
21
22 #include <boost/geometry/algorithms/detail/overlay/cluster_info.hpp>
23 #include <boost/geometry/algorithms/detail/overlay/is_self_turn.hpp>
24 #include <boost/geometry/algorithms/detail/overlay/sort_by_side.hpp>
25 #include <boost/geometry/algorithms/detail/overlay/turn_info.hpp>
26 #include <boost/geometry/core/access.hpp>
27 #include <boost/geometry/core/assert.hpp>
28 #include <boost/geometry/util/condition.hpp>
29
30 #if defined(BOOST_GEOMETRY_DEBUG_INTERSECTION) \
31 || defined(BOOST_GEOMETRY_OVERLAY_REPORT_WKT) \
32 || defined(BOOST_GEOMETRY_DEBUG_TRAVERSE)
33 # include <string>
34 # include <boost/geometry/algorithms/detail/overlay/debug_turn_info.hpp>
35 # include <boost/geometry/io/wkt/wkt.hpp>
36 #endif
37
38 namespace boost { namespace geometry
39 {
40
41 #ifndef DOXYGEN_NO_DETAIL
42 namespace detail { namespace overlay
43 {
44
45 template <typename Turn, typename Operation>
46 #ifdef BOOST_GEOMETRY_DEBUG_TRAVERSE
47 inline void debug_traverse(Turn const& turn, Operation op,
48 std::string const& header, bool condition = true)
49 {
50 if (! condition)
51 {
52 return;
53 }
54 std::cout << " " << header
55 << " at " << op.seg_id
56 << " meth: " << method_char(turn.method)
57 << " op: " << operation_char(op.operation)
58 << " vis: " << visited_char(op.visited)
59 << " of: " << operation_char(turn.operations[0].operation)
60 << operation_char(turn.operations[1].operation)
61 << " " << geometry::wkt(turn.point)
62 << std::endl;
63
64 if (boost::contains(header, "Finished"))
65 {
66 std::cout << std::endl;
67 }
68 }
69 #else
70 inline void debug_traverse(Turn const& , Operation, const char*, bool = true)
71 {
72 }
73 #endif
74
75 template
76 <
77 bool Reverse1,
78 bool Reverse2,
79 overlay_type OverlayType,
80 typename Geometry1,
81 typename Geometry2,
82 typename Turns,
83 typename Clusters,
84 typename RobustPolicy,
85 typename SideStrategy,
86 typename Visitor
87 >
88 struct traversal
89 {
90 private :
91 struct linked_turn_op_info
92 {
93 explicit linked_turn_op_info(signed_size_type ti = -1, int oi = -1,
94 signed_size_type nti = -1)
95 : turn_index(ti)
96 , op_index(oi)
97 , next_turn_index(nti)
98 , rank_index(-1)
99 {}
100
101 signed_size_type turn_index;
102 int op_index;
103 signed_size_type next_turn_index;
104 signed_size_type rank_index;
105 };
106
107 static const operation_type target_operation = operation_from_overlay<OverlayType>::value;
108
109 typedef typename sort_by_side::side_compare<target_operation>::type side_compare_type;
110 typedef typename boost::range_value<Turns>::type turn_type;
111 typedef typename turn_type::turn_operation_type turn_operation_type;
112
113 typedef typename geometry::point_type<Geometry1>::type point_type;
114 typedef sort_by_side::side_sorter
115 <
116 Reverse1, Reverse2, OverlayType,
117 point_type, SideStrategy, side_compare_type
118 > sbs_type;
119
120 public :
121 inline traversal(Geometry1 const& geometry1, Geometry2 const& geometry2,
122 Turns& turns, Clusters const& clusters,
123 RobustPolicy const& robust_policy, SideStrategy const& strategy,
124 Visitor& visitor)
125 : m_geometry1(geometry1)
126 , m_geometry2(geometry2)
127 , m_turns(turns)
128 , m_clusters(clusters)
129 , m_robust_policy(robust_policy)
130 , m_strategy(strategy)
131 , m_visitor(visitor)
132 {
133 }
134
135 template <typename TurnInfoMap>
136 inline void finalize_visit_info(TurnInfoMap& turn_info_map)
137 {
138 for (typename boost::range_iterator<Turns>::type
139 it = boost::begin(m_turns);
140 it != boost::end(m_turns);
141 ++it)
142 {
143 turn_type& turn = *it;
144 for (int i = 0; i < 2; i++)
145 {
146 turn_operation_type& op = turn.operations[i];
147 if (op.visited.visited()
148 || op.visited.started()
149 || op.visited.finished() )
150 {
151 ring_identifier const ring_id
152 (
153 op.seg_id.source_index,
154 op.seg_id.multi_index,
155 op.seg_id.ring_index
156 );
157 turn_info_map[ring_id].has_traversed_turn = true;
158
159 if (op.operation == operation_continue)
160 {
161 // Continue operations should mark the other operation
162 // as traversed too
163 turn_operation_type& other_op = turn.operations[1 - i];
164 ring_identifier const other_ring_id
165 (
166 other_op.seg_id.source_index,
167 other_op.seg_id.multi_index,
168 other_op.seg_id.ring_index
169 );
170 turn_info_map[other_ring_id].has_traversed_turn = true;
171 }
172 }
173 op.visited.finalize();
174 }
175 }
176 }
177
178 //! Sets visited for ALL turns traveling to the same turn
179 inline void set_visited_in_cluster(signed_size_type cluster_id,
180 signed_size_type rank)
181 {
182 typename Clusters::const_iterator mit = m_clusters.find(cluster_id);
183 BOOST_ASSERT(mit != m_clusters.end());
184
185 cluster_info const& cinfo = mit->second;
186 std::set<signed_size_type> const& ids = cinfo.turn_indices;
187
188 for (typename std::set<signed_size_type>::const_iterator it = ids.begin();
189 it != ids.end(); ++it)
190 {
191 signed_size_type const turn_index = *it;
192 turn_type& turn = m_turns[turn_index];
193
194 for (int i = 0; i < 2; i++)
195 {
196 turn_operation_type& op = turn.operations[i];
197 if (op.visited.none()
198 && op.enriched.rank == rank)
199 {
200 op.visited.set_visited();
201 }
202 }
203 }
204 }
205 inline void set_visited(turn_type& turn, turn_operation_type& op)
206 {
207 if (op.operation == detail::overlay::operation_continue)
208 {
209 // On "continue", all go in same direction so set "visited" for ALL
210 for (int i = 0; i < 2; i++)
211 {
212 turn_operation_type& turn_op = turn.operations[i];
213 if (turn_op.visited.none())
214 {
215 turn_op.visited.set_visited();
216 }
217 }
218 }
219 else
220 {
221 op.visited.set_visited();
222 }
223 if (turn.is_clustered())
224 {
225 set_visited_in_cluster(turn.cluster_id, op.enriched.rank);
226 }
227 }
228
229 inline bool is_visited(turn_type const& , turn_operation_type const& op,
230 signed_size_type , int) const
231 {
232 return op.visited.visited();
233 }
234
235 template <signed_size_type segment_identifier::*Member>
236 inline bool select_source_generic(turn_type const& turn,
237 segment_identifier const& current,
238 segment_identifier const& previous) const
239 {
240 turn_operation_type const& op0 = turn.operations[0];
241 turn_operation_type const& op1 = turn.operations[1];
242
243 bool const switch_source = op0.enriched.region_id != -1
244 && op0.enriched.region_id == op1.enriched.region_id;
245
246 #if defined(BOOST_GEOMETRY_DEBUG_TRAVERSAL_SWITCH_DETECTOR)
247 if (switch_source)
248 {
249 std::cout << "Switch source at " << &turn << std::endl;
250 }
251 else
252 {
253 std::cout << "DON'T SWITCH SOURCES at " << &turn << std::endl;
254 }
255 #endif
256 return switch_source
257 ? current.*Member != previous.*Member
258 : current.*Member == previous.*Member;
259 }
260
261 inline bool select_source(turn_type const& turn,
262 segment_identifier const& candidate_seg_id,
263 segment_identifier const& previous_seg_id) const
264 {
265 // For uu/ii, only switch sources if indicated
266
267 if (BOOST_GEOMETRY_CONDITION(OverlayType == overlay_buffer))
268 {
269 // Buffer does not use source_index (always 0).
270 return select_source_generic<&segment_identifier::multi_index>(
271 turn, candidate_seg_id, previous_seg_id);
272 }
273
274 if (is_self_turn<OverlayType>(turn))
275 {
276 // Also, if it is a self-turn, stay on same ring (multi/ring)
277 return select_source_generic<&segment_identifier::multi_index>(
278 turn, candidate_seg_id, previous_seg_id);
279 }
280
281 // Use source_index
282 return select_source_generic<&segment_identifier::source_index>(
283 turn, candidate_seg_id, previous_seg_id);
284 }
285
286 inline bool traverse_possible(signed_size_type turn_index) const
287 {
288 if (turn_index == -1)
289 {
290 return false;
291 }
292
293 turn_type const& turn = m_turns[turn_index];
294
295 // It is not a dead end if there is an operation to continue, or of
296 // there is a cluster (assuming for now we can get out of the cluster)
297 return turn.is_clustered()
298 || turn.has(target_operation)
299 || turn.has(operation_continue);
300 }
301
302 inline std::size_t get_shortcut_level(turn_operation_type const& op,
303 signed_size_type start_turn_index,
304 signed_size_type origin_turn_index,
305 std::size_t level = 1) const
306 {
307 signed_size_type next_turn_index = op.enriched.get_next_turn_index();
308 if (next_turn_index == -1)
309 {
310 return 0;
311 }
312 if (next_turn_index == start_turn_index)
313 {
314 // This operation finishes the ring
315 return 0;
316 }
317 if (next_turn_index == origin_turn_index)
318 {
319 // This operation travels to itself
320 return level;
321 }
322 if (level > 10)
323 {
324 // Avoid infinite recursion
325 return 0;
326 }
327
328 turn_type const& next_turn = m_turns[next_turn_index];
329 for (int i = 0; i < 2; i++)
330 {
331 turn_operation_type const& next_op = next_turn.operations[i];
332 if (next_op.operation == target_operation
333 && ! next_op.visited.finished()
334 && ! next_op.visited.visited())
335 {
336 // Recursively continue verifying
337 if (get_shortcut_level(next_op, start_turn_index,
338 origin_turn_index, level + 1))
339 {
340 return level + 1;
341 }
342 }
343 }
344 return 0;
345 }
346
347 inline
348 bool select_cc_operation(turn_type const& turn,
349 signed_size_type start_turn_index,
350 int& selected_op_index) const
351 {
352 // For "cc", take either one, but if there is a starting one,
353 // take that one. If next is dead end, skip that one.
354 // If both are valid candidates, take the one with minimal remaining
355 // distance (important for #mysql_23023665 in buffer).
356
357 signed_size_type next[2] = {0};
358 bool possible[2] = {0};
359 bool close[2] = {0};
360
361 for (int i = 0; i < 2; i++)
362 {
363 next[i] = turn.operations[i].enriched.get_next_turn_index();
364 possible[i] = traverse_possible(next[i]);
365 close[i] = possible[i] && next[i] == start_turn_index;
366 }
367
368 if (close[0] != close[1])
369 {
370 // One of the operations will finish the ring. Take that one.
371 selected_op_index = close[0] ? 0 : 1;
372 debug_traverse(turn, turn.operations[selected_op_index], "Candidate cc closing");
373 return true;
374 }
375
376 if (BOOST_GEOMETRY_CONDITION(OverlayType == overlay_buffer)
377 && possible[0] && possible[1])
378 {
379 // Buffers sometimes have multiple overlapping pieces, where remaining
380 // distance could lead to the wrong choice. Take the matching operation.
381
382 bool is_target[2] = {0};
383 for (int i = 0; i < 2; i++)
384 {
385 turn_operation_type const& next_op = m_turns[next[i]].operations[i];
386 is_target[i] = next_op.operation == target_operation;
387 }
388
389 if (is_target[0] != is_target[1])
390 {
391 // Take the matching operation
392 selected_op_index = is_target[0] ? 0 : 1;
393 debug_traverse(turn, turn.operations[selected_op_index], "Candidate cc target");
394 return true;
395 }
396 }
397
398 static bool const is_union = target_operation == operation_union;
399
400 typename turn_operation_type::comparable_distance_type
401 best_remaining_distance = 0;
402
403 bool result = false;
404
405 for (int i = 0; i < 2; i++)
406 {
407 if (!possible[i])
408 {
409 continue;
410 }
411
412 turn_operation_type const& op = turn.operations[i];
413
414 if (! result
415 || (is_union && op.remaining_distance > best_remaining_distance)
416 || (!is_union && op.remaining_distance < best_remaining_distance))
417 {
418 debug_traverse(turn, op, "First candidate cc", ! result);
419 debug_traverse(turn, op, "Candidate cc override (remaining)",
420 result && op.remaining_distance < best_remaining_distance);
421
422 selected_op_index = i;
423 best_remaining_distance = op.remaining_distance;
424 result = true;
425 }
426 }
427
428 return result;
429 }
430
431 inline
432 bool select_noncc_operation(turn_type const& turn,
433 segment_identifier const& previous_seg_id,
434 int& selected_op_index) const
435 {
436 bool result = false;
437
438 for (int i = 0; i < 2; i++)
439 {
440 turn_operation_type const& op = turn.operations[i];
441
442 if (op.operation == target_operation
443 && ! op.visited.finished()
444 && ! op.visited.visited()
445 && (! result || select_source(turn, op.seg_id, previous_seg_id)))
446 {
447 selected_op_index = i;
448 debug_traverse(turn, op, "Candidate");
449 result = true;
450 }
451 }
452
453 return result;
454 }
455
456 inline
457 bool select_preferred_operation(turn_type const& turn,
458 signed_size_type turn_index,
459 signed_size_type start_turn_index,
460 int& selected_op_index) const
461 {
462 bool option[2] = {0};
463 bool finishing[2] = {0};
464 bool preferred[2] = {0};
465 std::size_t shortcut_level[2] = {0};
466 for (int i = 0; i < 2; i++)
467 {
468 turn_operation_type const& op = turn.operations[i];
469
470 if (op.operation == target_operation
471 && ! op.visited.finished()
472 && ! op.visited.visited())
473 {
474 option[i] = true;
475 if (op.enriched.get_next_turn_index() == start_turn_index)
476 {
477 finishing[i] = true;
478 }
479 else
480 {
481 shortcut_level[i] = get_shortcut_level(op, start_turn_index,
482 turn_index);
483 }
484
485 if (op.enriched.prefer_start)
486 {
487 preferred[i] = true;
488 }
489 }
490 }
491
492 if (option[0] != option[1])
493 {
494 // Only one operation is acceptable, take that one
495 selected_op_index = option[0] ? 0 : 1;
496 return true;
497 }
498
499 if (option[0] && option[1])
500 {
501 // Both operations are acceptable
502 if (finishing[0] != finishing[1])
503 {
504 // Prefer operation finishing the ring
505 selected_op_index = finishing[0] ? 0 : 1;
506 return true;
507 }
508
509 if (shortcut_level[0] != shortcut_level[1])
510 {
511 // If a turn can travel to itself again (without closing the
512 // ring), take the shortest one
513 selected_op_index = shortcut_level[0] < shortcut_level[1] ? 0 : 1;
514 return true;
515 }
516
517 if (preferred[0] != preferred[1])
518 {
519 // Only one operation is preferred (== was not intersection)
520 selected_op_index = preferred[0] ? 0 : 1;
521 return true;
522 }
523 }
524
525 for (int i = 0; i < 2; i++)
526 {
527 if (option[i])
528 {
529 selected_op_index = 0;
530 return true;
531 }
532 }
533
534 return false;
535 }
536
537 inline
538 bool select_operation(const turn_type& turn,
539 signed_size_type turn_index,
540 signed_size_type start_turn_index,
541 segment_identifier const& previous_seg_id,
542 int& selected_op_index) const
543 {
544 bool result = false;
545 selected_op_index = -1;
546 if (turn.both(operation_continue))
547 {
548 result = select_cc_operation(turn, start_turn_index,
549 selected_op_index);
550 }
551 else if (BOOST_GEOMETRY_CONDITION(OverlayType == overlay_dissolve))
552 {
553 result = select_preferred_operation(turn, turn_index,
554 start_turn_index, selected_op_index);
555 }
556 else
557 {
558 result = select_noncc_operation(turn, previous_seg_id,
559 selected_op_index);
560 }
561 if (result)
562 {
563 debug_traverse(turn, turn.operations[selected_op_index], "Accepted");
564 }
565
566 return result;
567 }
568
569 inline int starting_operation_index(const turn_type& turn) const
570 {
571 for (int i = 0; i < 2; i++)
572 {
573 if (turn.operations[i].visited.started())
574 {
575 return i;
576 }
577 }
578 return -1;
579 }
580
581 inline bool both_finished(const turn_type& turn) const
582 {
583 for (int i = 0; i < 2; i++)
584 {
585 if (! turn.operations[i].visited.finished())
586 {
587 return false;
588 }
589 }
590 return true;
591 }
592
593
594 template <typename RankedPoint>
595 inline turn_operation_type const& operation_from_rank(RankedPoint const& rp) const
596 {
597 return m_turns[rp.turn_index].operations[rp.operation_index];
598 }
599
600 inline int select_turn_in_cluster_union(sort_by_side::rank_type selected_rank,
601 typename sbs_type::rp const& ranked_point,
602 signed_size_type start_turn_index, int start_op_index) const
603 {
604 // Returns 0 if it not OK
605 // Returns 1 if it OK
606 // Returns 2 if it OK and start turn matches
607 // Returns 3 if it OK and start turn and start op both match
608 if (ranked_point.rank != selected_rank
609 || ranked_point.direction != sort_by_side::dir_to)
610 {
611 return 0;
612 }
613
614 turn_operation_type const& op = operation_from_rank(ranked_point);
615
616 // Check finalized: TODO: this should be finetuned, it is not necessary
617 if (op.visited.finalized())
618 {
619 return 0;
620 }
621
622 if (BOOST_GEOMETRY_CONDITION(OverlayType != overlay_dissolve)
623 && (op.enriched.count_left != 0 || op.enriched.count_right == 0))
624 {
625 // Check counts: in some cases interior rings might be generated with
626 // polygons on both sides. For dissolve it can be anything.
627 return 0;
628 }
629
630 return ranked_point.turn_index == start_turn_index
631 && ranked_point.operation_index == start_op_index ? 3
632 : ranked_point.turn_index == start_turn_index ? 2
633 : 1
634 ;
635 }
636
637 inline sort_by_side::rank_type select_rank(sbs_type const& sbs,
638 bool skip_isolated) const
639 {
640 // Take the first outgoing rank corresponding to incoming region,
641 // or take another region if it is not isolated
642 turn_operation_type const& incoming_op
643 = operation_from_rank(sbs.m_ranked_points.front());
644
645 for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++)
646 {
647 typename sbs_type::rp const& rp = sbs.m_ranked_points[i];
648 if (rp.rank == 0 || rp.direction == sort_by_side::dir_from)
649 {
650 continue;
651 }
652 turn_operation_type const& op = operation_from_rank(rp);
653
654 if (op.operation != target_operation
655 && op.operation != operation_continue)
656 {
657 continue;
658 }
659
660 if (op.enriched.region_id == incoming_op.enriched.region_id
661 || (skip_isolated && ! op.enriched.isolated))
662 {
663 // Region corresponds to incoming region, or (for intersection)
664 // there is a non-isolated other region which should be taken
665 return rp.rank;
666 }
667 }
668 return -1;
669 }
670
671 inline bool select_from_cluster_union(signed_size_type& turn_index,
672 int& op_index, sbs_type const& sbs,
673 signed_size_type start_turn_index, int start_op_index) const
674 {
675 sort_by_side::rank_type const selected_rank = select_rank(sbs, false);
676
677 int best_code = 0;
678 bool result = false;
679 for (std::size_t i = 1; i < sbs.m_ranked_points.size(); i++)
680 {
681 typename sbs_type::rp const& ranked_point = sbs.m_ranked_points[i];
682
683 if (ranked_point.rank > selected_rank)
684 {
685 // Sorted on rank, so it makes no sense to continue
686 break;
687 }
688
689 int const code
690 = select_turn_in_cluster_union(selected_rank, ranked_point,
691 start_turn_index, start_op_index);
692
693 if (code > best_code)
694 {
695 // It is 1 or higher and matching better than previous
696 best_code = code;
697 turn_index = ranked_point.turn_index;
698 op_index = ranked_point.operation_index;
699 result = true;
700 }
701 }
702 return result;
703 }
704
705 inline bool analyze_cluster_intersection(signed_size_type& turn_index,
706 int& op_index, sbs_type const& sbs) const
707 {
708 sort_by_side::rank_type const selected_rank = select_rank(sbs, true);
709
710 if (selected_rank > 0)
711 {
712 typename turn_operation_type::comparable_distance_type
713 min_remaining_distance = 0;
714
715 std::size_t selected_index = sbs.m_ranked_points.size();
716 for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++)
717 {
718 typename sbs_type::rp const& ranked_point = sbs.m_ranked_points[i];
719
720 if (ranked_point.rank == selected_rank)
721 {
722 turn_operation_type const& op = operation_from_rank(ranked_point);
723
724 if (op.visited.finalized())
725 {
726 // This direction is already traveled before, the same
727 // cannot be traveled again
728 continue;
729 }
730
731 // Take turn with the smallest remaining distance
732 if (selected_index == sbs.m_ranked_points.size()
733 || op.remaining_distance < min_remaining_distance)
734 {
735 selected_index = i;
736 min_remaining_distance = op.remaining_distance;
737 }
738 }
739 }
740
741 if (selected_index < sbs.m_ranked_points.size())
742 {
743 typename sbs_type::rp const& ranked_point = sbs.m_ranked_points[selected_index];
744 turn_index = ranked_point.turn_index;
745 op_index = ranked_point.operation_index;
746 return true;
747 }
748 }
749
750 return false;
751 }
752
753 inline signed_size_type get_rank(sbs_type const& sbs,
754 linked_turn_op_info const& info) const
755 {
756 for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++)
757 {
758 typename sbs_type::rp const& rp = sbs.m_ranked_points[i];
759 if (rp.turn_index == info.turn_index
760 && rp.operation_index == info.op_index
761 && rp.direction == sort_by_side::dir_to)
762 {
763 return rp.rank;
764 }
765 }
766 return -1;
767 }
768
769 // Function checks simple cases, such as a cluster with two turns,
770 // arriving at the first turn, first turn points to second turn,
771 // second turn points further.
772 inline bool select_turn_from_cluster_linked(signed_size_type& turn_index,
773 int& op_index,
774 std::set<signed_size_type> const& ids,
775 segment_identifier const& previous_seg_id) const
776 {
777 typedef typename std::set<signed_size_type>::const_iterator sit_type;
778
779 std::vector<linked_turn_op_info> possibilities;
780 std::vector<linked_turn_op_info> blocked;
781 for (sit_type it = ids.begin(); it != ids.end(); ++it)
782 {
783 signed_size_type cluster_turn_index = *it;
784 turn_type const& cluster_turn = m_turns[cluster_turn_index];
785 if (cluster_turn.discarded)
786 {
787 continue;
788 }
789 if (cluster_turn.both(target_operation))
790 {
791 // Not (yet) supported, can be cluster of u/u turns
792 return false;
793 }
794 for (int i = 0; i < 2; i++)
795 {
796 turn_operation_type const& op = cluster_turn.operations[i];
797 turn_operation_type const& other_op = cluster_turn.operations[1 - i];
798 signed_size_type const ni = op.enriched.get_next_turn_index();
799 if (op.operation == target_operation
800 || op.operation == operation_continue)
801 {
802 if (ni == cluster_turn_index)
803 {
804 // Not (yet) supported, traveling to itself, can be
805 // hole
806 return false;
807 }
808 possibilities.push_back(
809 linked_turn_op_info(cluster_turn_index, i, ni));
810 }
811 else if (op.operation == operation_blocked
812 && ! (ni == other_op.enriched.get_next_turn_index())
813 && ids.count(ni) == 0)
814 {
815 // Points to turn, not part of this cluster,
816 // and that way is blocked. But if the other operation
817 // points at the same turn, it is still fine.
818 blocked.push_back(
819 linked_turn_op_info(cluster_turn_index, i, ni));
820 }
821 }
822 }
823
824 typedef typename std::vector<linked_turn_op_info>::const_iterator const_it_type;
825
826 if (! blocked.empty())
827 {
828 sbs_type sbs(m_strategy);
829
830 if (! fill_sbs(sbs, turn_index, ids, previous_seg_id))
831 {
832 return false;
833 }
834
835 for (typename std::vector<linked_turn_op_info>::iterator it = possibilities.begin();
836 it != possibilities.end(); ++it)
837 {
838 linked_turn_op_info& info = *it;
839 info.rank_index = get_rank(sbs, info);
840 }
841 for (typename std::vector<linked_turn_op_info>::iterator it = blocked.begin();
842 it != blocked.end(); ++it)
843 {
844 linked_turn_op_info& info = *it;
845 info.rank_index = get_rank(sbs, info);
846 }
847
848
849 for (const_it_type it = possibilities.begin();
850 it != possibilities.end(); ++it)
851 {
852 linked_turn_op_info const& lti = *it;
853 for (const_it_type bit = blocked.begin();
854 bit != blocked.end(); ++bit)
855 {
856 linked_turn_op_info const& blti = *bit;
857 if (blti.next_turn_index == lti.next_turn_index
858 && blti.rank_index == lti.rank_index)
859 {
860 return false;
861 }
862 }
863 }
864 }
865
866 // Traversal can either enter the cluster in the first turn,
867 // or it can start halfway.
868 // If there is one (and only one) possibility pointing outside
869 // the cluster, take that one.
870 linked_turn_op_info target;
871 for (const_it_type it = possibilities.begin();
872 it != possibilities.end(); ++it)
873 {
874 linked_turn_op_info const& lti = *it;
875 if (ids.count(lti.next_turn_index) == 0)
876 {
877 if (target.turn_index >= 0
878 && target.next_turn_index != lti.next_turn_index)
879 {
880 // Points to different target
881 return false;
882 }
883 if (BOOST_GEOMETRY_CONDITION(OverlayType == overlay_buffer)
884 && target.turn_index > 0)
885 {
886 // Target already assigned, so there are more targets
887 // or more ways to the same target
888 return false;
889 }
890
891 target = lti;
892 }
893 }
894 if (target.turn_index < 0)
895 {
896 return false;
897 }
898
899 turn_index = target.turn_index;
900 op_index = target.op_index;
901
902 return true;
903 }
904
905 inline bool fill_sbs(sbs_type& sbs,
906 signed_size_type turn_index,
907 std::set<signed_size_type> const& ids,
908 segment_identifier const& previous_seg_id) const
909 {
910 for (typename std::set<signed_size_type>::const_iterator sit = ids.begin();
911 sit != ids.end(); ++sit)
912 {
913 signed_size_type cluster_turn_index = *sit;
914 turn_type const& cluster_turn = m_turns[cluster_turn_index];
915 bool const departure_turn = cluster_turn_index == turn_index;
916 if (cluster_turn.discarded)
917 {
918 // Defensive check, discarded turns should not be in cluster
919 continue;
920 }
921
922 for (int i = 0; i < 2; i++)
923 {
924 sbs.add(cluster_turn.operations[i],
925 cluster_turn_index, i, previous_seg_id,
926 m_geometry1, m_geometry2,
927 departure_turn);
928 }
929 }
930
931 if (! sbs.has_origin())
932 {
933 return false;
934 }
935 turn_type const& turn = m_turns[turn_index];
936 sbs.apply(turn.point);
937 return true;
938 }
939
940
941 inline bool select_turn_from_cluster(signed_size_type& turn_index,
942 int& op_index,
943 signed_size_type start_turn_index, int start_op_index,
944 segment_identifier const& previous_seg_id) const
945 {
946 bool const is_union = target_operation == operation_union;
947
948 turn_type const& turn = m_turns[turn_index];
949 BOOST_ASSERT(turn.is_clustered());
950
951 typename Clusters::const_iterator mit = m_clusters.find(turn.cluster_id);
952 BOOST_ASSERT(mit != m_clusters.end());
953
954 cluster_info const& cinfo = mit->second;
955 std::set<signed_size_type> const& ids = cinfo.turn_indices;
956
957 if (select_turn_from_cluster_linked(turn_index, op_index, ids, previous_seg_id))
958 {
959 return true;
960 }
961
962 sbs_type sbs(m_strategy);
963
964 if (! fill_sbs(sbs, turn_index, ids, previous_seg_id))
965 {
966 return false;
967 }
968
969 bool result = false;
970
971 if (is_union)
972 {
973 result = select_from_cluster_union(turn_index, op_index, sbs,
974 start_turn_index, start_op_index);
975 }
976 else
977 {
978 result = analyze_cluster_intersection(turn_index, op_index, sbs);
979 }
980 return result;
981 }
982
983 inline bool analyze_ii_intersection(signed_size_type& turn_index, int& op_index,
984 turn_type const& current_turn,
985 segment_identifier const& previous_seg_id)
986 {
987 sbs_type sbs(m_strategy);
988
989 // Add this turn to the sort-by-side sorter
990 for (int i = 0; i < 2; i++)
991 {
992 sbs.add(current_turn.operations[i],
993 turn_index, i, previous_seg_id,
994 m_geometry1, m_geometry2,
995 true);
996 }
997
998 if (! sbs.has_origin())
999 {
1000 return false;
1001 }
1002
1003 sbs.apply(current_turn.point);
1004
1005 bool result = analyze_cluster_intersection(turn_index, op_index, sbs);
1006
1007 return result;
1008 }
1009
1010 inline void change_index_for_self_turn(signed_size_type& to_vertex_index,
1011 turn_type const& start_turn,
1012 turn_operation_type const& start_op,
1013 int start_op_index) const
1014 {
1015 if (BOOST_GEOMETRY_CONDITION(OverlayType != overlay_buffer
1016 && OverlayType != overlay_dissolve))
1017 {
1018 return;
1019 }
1020
1021 const bool allow_uu = OverlayType != overlay_buffer;
1022
1023 // It travels to itself, can happen. If this is a buffer, it can
1024 // sometimes travel to itself in the following configuration:
1025 //
1026 // +---->--+
1027 // | |
1028 // | +---*----+ *: one turn, with segment index 2/7
1029 // | | | |
1030 // | +---C | C: closing point (start/end)
1031 // | |
1032 // +------------+
1033 //
1034 // If it starts on segment 2 and travels to itself on segment 2, that
1035 // should be corrected to 7 because that is the shortest path
1036 //
1037 // Also a uu turn (touching with another buffered ring) might have this
1038 // apparent configuration, but there it should
1039 // always travel the whole ring
1040
1041 turn_operation_type const& other_op
1042 = start_turn.operations[1 - start_op_index];
1043
1044 bool const correct
1045 = (allow_uu || ! start_turn.both(operation_union))
1046 && start_op.seg_id.source_index == other_op.seg_id.source_index
1047 && start_op.seg_id.multi_index == other_op.seg_id.multi_index
1048 && start_op.seg_id.ring_index == other_op.seg_id.ring_index
1049 && start_op.seg_id.segment_index == to_vertex_index;
1050
1051 #if defined(BOOST_GEOMETRY_DEBUG_TRAVERSE)
1052 std::cout << " WARNING: self-buffer "
1053 << " correct=" << correct
1054 << " turn=" << operation_char(start_turn.operations[0].operation)
1055 << operation_char(start_turn.operations[1].operation)
1056 << " start=" << start_op.seg_id.segment_index
1057 << " from=" << to_vertex_index
1058 << " to=" << other_op.enriched.travels_to_vertex_index
1059 << std::endl;
1060 #endif
1061
1062 if (correct)
1063 {
1064 to_vertex_index = other_op.enriched.travels_to_vertex_index;
1065 }
1066 }
1067
1068 bool select_turn_from_enriched(signed_size_type& turn_index,
1069 segment_identifier& previous_seg_id,
1070 signed_size_type& to_vertex_index,
1071 signed_size_type start_turn_index,
1072 int start_op_index,
1073 turn_type const& previous_turn,
1074 turn_operation_type const& previous_op,
1075 bool is_start) const
1076 {
1077 to_vertex_index = -1;
1078
1079 if (previous_op.enriched.next_ip_index < 0)
1080 {
1081 // There is no next IP on this segment
1082 if (previous_op.enriched.travels_to_vertex_index < 0
1083 || previous_op.enriched.travels_to_ip_index < 0)
1084 {
1085 return false;
1086 }
1087
1088 to_vertex_index = previous_op.enriched.travels_to_vertex_index;
1089
1090 if (is_start &&
1091 previous_op.enriched.travels_to_ip_index == start_turn_index)
1092 {
1093 change_index_for_self_turn(to_vertex_index, previous_turn,
1094 previous_op, start_op_index);
1095 }
1096
1097 turn_index = previous_op.enriched.travels_to_ip_index;
1098 previous_seg_id = previous_op.seg_id;
1099 }
1100 else
1101 {
1102 // Take the next IP on this segment
1103 turn_index = previous_op.enriched.next_ip_index;
1104 previous_seg_id = previous_op.seg_id;
1105 }
1106 return true;
1107 }
1108
1109 bool select_turn(signed_size_type start_turn_index, int start_op_index,
1110 signed_size_type& turn_index,
1111 int& op_index,
1112 int previous_op_index,
1113 signed_size_type previous_turn_index,
1114 segment_identifier const& previous_seg_id,
1115 bool is_start, bool has_points)
1116 {
1117 turn_type const& current_turn = m_turns[turn_index];
1118
1119 if (BOOST_GEOMETRY_CONDITION(target_operation == operation_intersection))
1120 {
1121 if (has_points)
1122 {
1123 bool const back_at_start_cluster
1124 = current_turn.is_clustered()
1125 && m_turns[start_turn_index].cluster_id == current_turn.cluster_id;
1126
1127 if (turn_index == start_turn_index || back_at_start_cluster)
1128 {
1129 // Intersection can always be finished if returning
1130 turn_index = start_turn_index;
1131 op_index = start_op_index;
1132 return true;
1133 }
1134 }
1135
1136 if (! current_turn.is_clustered()
1137 && current_turn.both(operation_intersection))
1138 {
1139 if (analyze_ii_intersection(turn_index, op_index,
1140 current_turn, previous_seg_id))
1141 {
1142 return true;
1143 }
1144 }
1145 }
1146
1147 if (current_turn.is_clustered())
1148 {
1149 if (! select_turn_from_cluster(turn_index, op_index,
1150 start_turn_index, start_op_index, previous_seg_id))
1151 {
1152 return false;
1153 }
1154
1155 if (is_start && turn_index == previous_turn_index)
1156 {
1157 op_index = previous_op_index;
1158 }
1159 }
1160 else
1161 {
1162 op_index = starting_operation_index(current_turn);
1163 if (op_index == -1)
1164 {
1165 if (both_finished(current_turn))
1166 {
1167 return false;
1168 }
1169
1170 if (! select_operation(current_turn, turn_index,
1171 start_turn_index,
1172 previous_seg_id,
1173 op_index))
1174 {
1175 return false;
1176 }
1177 }
1178 }
1179 return true;
1180 }
1181
1182 private :
1183 Geometry1 const& m_geometry1;
1184 Geometry2 const& m_geometry2;
1185 Turns& m_turns;
1186 Clusters const& m_clusters;
1187 RobustPolicy const& m_robust_policy;
1188 SideStrategy m_strategy;
1189 Visitor& m_visitor;
1190 };
1191
1192
1193
1194 }} // namespace detail::overlay
1195 #endif // DOXYGEN_NO_DETAIL
1196
1197 }} // namespace boost::geometry
1198
1199 #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP