]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/geometry/formulas/differential_quantities.hpp
update sources to v12.2.3
[ceph.git] / ceph / src / boost / boost / geometry / formulas / differential_quantities.hpp
1 // Boost.Geometry
2
3 // Copyright (c) 2016-2017 Oracle and/or its affiliates.
4
5 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
6
7 // Use, modification and distribution is subject to the Boost Software License,
8 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10
11 #ifndef BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
12 #define BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
13
14
15 #include <boost/geometry/util/condition.hpp>
16 #include <boost/geometry/util/math.hpp>
17
18
19 namespace boost { namespace geometry { namespace formula
20 {
21
22 /*!
23 \brief The solution of a part of the inverse problem - differential quantities.
24 \author See
25 - Charles F.F Karney, Algorithms for geodesics, 2011
26 https://arxiv.org/pdf/1109.4448.pdf
27 */
28 template <
29 typename CT,
30 bool EnableReducedLength,
31 bool EnableGeodesicScale,
32 unsigned int Order = 2,
33 bool ApproxF = true
34 >
35 class differential_quantities
36 {
37 public:
38 static inline void apply(CT const& lon1, CT const& lat1,
39 CT const& lon2, CT const& lat2,
40 CT const& azimuth, CT const& reverse_azimuth,
41 CT const& b, CT const& f,
42 CT & reduced_length, CT & geodesic_scale)
43 {
44 CT const dlon = lon2 - lon1;
45 CT const sin_lat1 = sin(lat1);
46 CT const cos_lat1 = cos(lat1);
47 CT const sin_lat2 = sin(lat2);
48 CT const cos_lat2 = cos(lat2);
49
50 apply(dlon, sin_lat1, cos_lat1, sin_lat2, cos_lat2,
51 azimuth, reverse_azimuth,
52 b, f,
53 reduced_length, geodesic_scale);
54 }
55
56 static inline void apply(CT const& dlon,
57 CT const& sin_lat1, CT const& cos_lat1,
58 CT const& sin_lat2, CT const& cos_lat2,
59 CT const& azimuth, CT const& reverse_azimuth,
60 CT const& b, CT const& f,
61 CT & reduced_length, CT & geodesic_scale)
62 {
63 CT const c0 = 0;
64 CT const c1 = 1;
65 CT const one_minus_f = c1 - f;
66
67 CT sin_bet1 = one_minus_f * sin_lat1;
68 CT sin_bet2 = one_minus_f * sin_lat2;
69
70 // equator
71 if (math::equals(sin_bet1, c0) && math::equals(sin_bet2, c0))
72 {
73 CT const sig_12 = math::abs(dlon) / one_minus_f;
74 if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
75 {
76 CT m12 = sin(sig_12) * b;
77 reduced_length = m12;
78 }
79
80 if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
81 {
82 CT M12 = cos(sig_12);
83 geodesic_scale = M12;
84 }
85 }
86 else
87 {
88 CT const c2 = 2;
89 CT const e2 = f * (c2 - f);
90 CT const ep2 = e2 / math::sqr(one_minus_f);
91
92 CT const sin_alp1 = sin(azimuth);
93 CT const cos_alp1 = cos(azimuth);
94 //CT const sin_alp2 = sin(reverse_azimuth);
95 CT const cos_alp2 = cos(reverse_azimuth);
96
97 CT cos_bet1 = cos_lat1;
98 CT cos_bet2 = cos_lat2;
99
100 normalize(sin_bet1, cos_bet1);
101 normalize(sin_bet2, cos_bet2);
102
103 CT sin_sig1 = sin_bet1;
104 CT cos_sig1 = cos_alp1 * cos_bet1;
105 CT sin_sig2 = sin_bet2;
106 CT cos_sig2 = cos_alp2 * cos_bet2;
107
108 normalize(sin_sig1, cos_sig1);
109 normalize(sin_sig2, cos_sig2);
110
111 CT const sin_alp0 = sin_alp1 * cos_bet1;
112 CT const cos_alp0_sqr = c1 - math::sqr(sin_alp0);
113
114 CT const J12 = BOOST_GEOMETRY_CONDITION(ApproxF) ?
115 J12_f(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, f) :
116 J12_ep_sqr(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, ep2) ;
117
118 CT const dn1 = math::sqrt(c1 + ep2 * math::sqr(sin_bet1));
119 CT const dn2 = math::sqrt(c1 + ep2 * math::sqr(sin_bet2));
120
121 if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
122 {
123 CT const m12_b = dn2 * (cos_sig1 * sin_sig2)
124 - dn1 * (sin_sig1 * cos_sig2)
125 - cos_sig1 * cos_sig2 * J12;
126 CT const m12 = m12_b * b;
127
128 reduced_length = m12;
129 }
130
131 if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
132 {
133 CT const cos_sig12 = cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2;
134 CT const t = ep2 * (cos_bet1 - cos_bet2) * (cos_bet1 + cos_bet2) / (dn1 + dn2);
135 CT const M12 = cos_sig12 + (t * sin_sig2 - cos_sig2 * J12) * sin_sig1 / dn1;
136
137 geodesic_scale = M12;
138 }
139 }
140 }
141
142 private:
143 /*! Approximation of J12, expanded into taylor series in f
144 Maxima script:
145 ep2: f * (2-f) / ((1-f)^2);
146 k2: ca02 * ep2;
147 assume(f < 1);
148 assume(sig > 0);
149 I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig);
150 I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig);
151 J(sig):= I1(sig) - I2(sig);
152 S: taylor(J(sig), f, 0, 3);
153 S1: factor( 2*integrate(sin(s)^2,s,0,sig)*ca02*f );
154 S2: factor( ((integrate(-6*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig)+integrate(-2*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig))*f^2)/4 );
155 S3: factor( ((integrate(30*ca02^3*sin(s)^6-54*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig)+integrate(6*ca02^3*sin(s)^6-18*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig))*f^3)/12 );
156 */
157 static inline CT J12_f(CT const& sin_sig1, CT const& cos_sig1,
158 CT const& sin_sig2, CT const& cos_sig2,
159 CT const& cos_alp0_sqr, CT const& f)
160 {
161 if (Order == 0)
162 {
163 return 0;
164 }
165
166 CT const c2 = 2;
167
168 CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2,
169 cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2);
170 CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1)
171 CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2)
172 CT const sin_2sig_12 = sin_2sig2 - sin_2sig1;
173 CT const L1 = sig_12 - sin_2sig_12 / c2;
174
175 if (Order == 1)
176 {
177 return cos_alp0_sqr * f * L1;
178 }
179
180 CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1)
181 CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2)
182 CT const sin_4sig_12 = sin_4sig2 - sin_4sig1;
183
184 CT const c8 = 8;
185 CT const c12 = 12;
186 CT const c16 = 16;
187 CT const c24 = 24;
188
189 CT const L2 = -( cos_alp0_sqr * sin_4sig_12
190 + (-c8 * cos_alp0_sqr + c12) * sin_2sig_12
191 + (c12 * cos_alp0_sqr - c24) * sig_12)
192 / c16;
193
194 if (Order == 2)
195 {
196 return cos_alp0_sqr * f * (L1 + f * L2);
197 }
198
199 CT const c4 = 4;
200 CT const c9 = 9;
201 CT const c48 = 48;
202 CT const c60 = 60;
203 CT const c64 = 64;
204 CT const c96 = 96;
205 CT const c128 = 128;
206 CT const c144 = 144;
207
208 CT const cos_alp0_quad = math::sqr(cos_alp0_sqr);
209 CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1;
210 CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2;
211 CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1;
212
213 CT const A = (c9 * cos_alp0_quad - c12 * cos_alp0_sqr) * sin_4sig_12;
214 CT const B = c4 * cos_alp0_quad * sin3_2sig_12;
215 CT const C = (-c48 * cos_alp0_quad + c96 * cos_alp0_sqr - c64) * sin_2sig_12;
216 CT const D = (c60 * cos_alp0_quad - c144 * cos_alp0_sqr + c128) * sig_12;
217
218 CT const L3 = (A + B + C + D) / c64;
219
220 // Order 3 and higher
221 return cos_alp0_sqr * f * (L1 + f * (L2 + f * L3));
222 }
223
224 /*! Approximation of J12, expanded into taylor series in e'^2
225 Maxima script:
226 k2: ca02 * ep2;
227 assume(sig > 0);
228 I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig);
229 I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig);
230 J(sig):= I1(sig) - I2(sig);
231 S: taylor(J(sig), ep2, 0, 3);
232 S1: factor( integrate(sin(s)^2,s,0,sig)*ca02*ep2 );
233 S2: factor( (integrate(sin(s)^4,s,0,sig)*ca02^2*ep2^2)/2 );
234 S3: factor( (3*integrate(sin(s)^6,s,0,sig)*ca02^3*ep2^3)/8 );
235 */
236 static inline CT J12_ep_sqr(CT const& sin_sig1, CT const& cos_sig1,
237 CT const& sin_sig2, CT const& cos_sig2,
238 CT const& cos_alp0_sqr, CT const& ep_sqr)
239 {
240 if (Order == 0)
241 {
242 return 0;
243 }
244
245 CT const c2 = 2;
246 CT const c4 = 4;
247
248 CT const c2a0ep2 = cos_alp0_sqr * ep_sqr;
249
250 CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2,
251 cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2); // sig2 - sig1
252 CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1)
253 CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2)
254 CT const sin_2sig_12 = sin_2sig2 - sin_2sig1;
255
256 CT const L1 = (c2 * sig_12 - sin_2sig_12) / c4;
257
258 if (Order == 1)
259 {
260 return c2a0ep2 * L1;
261 }
262
263 CT const c8 = 8;
264 CT const c64 = 64;
265
266 CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1)
267 CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2)
268 CT const sin_4sig_12 = sin_4sig2 - sin_4sig1;
269
270 CT const L2 = (sin_4sig_12 - c8 * sin_2sig_12 + 12 * sig_12) / c64;
271
272 if (Order == 2)
273 {
274 return c2a0ep2 * (L1 + c2a0ep2 * L2);
275 }
276
277 CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1;
278 CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2;
279 CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1;
280
281 CT const c9 = 9;
282 CT const c48 = 48;
283 CT const c60 = 60;
284 CT const c512 = 512;
285
286 CT const L3 = (c9 * sin_4sig_12 + c4 * sin3_2sig_12 - c48 * sin_2sig_12 + c60 * sig_12) / c512;
287
288 // Order 3 and higher
289 return c2a0ep2 * (L1 + c2a0ep2 * (L2 + c2a0ep2 * L3));
290 }
291
292 static inline void normalize(CT & x, CT & y)
293 {
294 CT const len = math::sqrt(math::sqr(x) + math::sqr(y));
295 x /= len;
296 y /= len;
297 }
298 };
299
300 }}} // namespace boost::geometry::formula
301
302
303 #endif // BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP