]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/geometry/formulas/vertex_longitude.hpp
update sources to v12.2.3
[ceph.git] / ceph / src / boost / boost / geometry / formulas / vertex_longitude.hpp
1 // Boost.Geometry
2
3 // Copyright (c) 2016-2017 Oracle and/or its affiliates.
4
5 // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
6 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
7
8 // Use, modification and distribution is subject to the Boost Software License,
9 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
10 // http://www.boost.org/LICENSE_1_0.txt)
11
12 #ifndef BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP
13 #define BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP
14
15 #include <boost/geometry/formulas/spherical.hpp>
16 #include <boost/geometry/formulas/flattening.hpp>
17 #include <boost/geometry/core/srs.hpp>
18 #include <boost/mpl/assert.hpp>
19
20 #include <boost/math/special_functions/hypot.hpp>
21
22 namespace boost { namespace geometry { namespace formula
23 {
24
25 /*!
26 \brief Algorithm to compute the vertex longitude of a geodesic segment. Vertex is
27 a point on the geodesic that maximizes (or minimizes) the latitude. The algorithm
28 is given the vertex latitude.
29 */
30
31 //Classes for spesific CS
32
33 template <typename CT>
34 class vertex_longitude_on_sphere
35 {
36
37 public:
38
39 template <typename T>
40 static inline CT apply(T const& lat1, //segment point 1
41 T const& lat2, //segment point 2
42 T const& lat3, //vertex latitude
43 T const& sin_l12,
44 T const& cos_l12) //lon1 -lon2
45 {
46 //https://en.wikipedia.org/wiki/Great-circle_navigation#Finding_way-points
47 CT const A = sin(lat1) * cos(lat2) * cos(lat3) * sin_l12;
48 CT const B = sin(lat1) * cos(lat2) * cos(lat3) * cos_l12
49 - cos(lat1) * sin(lat2) * cos(lat3);
50 CT lon = atan2(B, A);
51 return lon + math::pi<CT>();
52 }
53 };
54
55 template <typename CT>
56 class vertex_longitude_on_spheroid
57 {
58 template<typename T>
59 static inline void normalize(T& x, T& y)
60 {
61 T h = boost::math::hypot(x, y);
62 x /= h;
63 y /= h;
64 }
65
66 public:
67
68 template <typename T, typename Spheroid>
69 static inline CT apply(T const& lat1, //segment point 1
70 T const& lat2, //segment point 2
71 T const& lat3, //vertex latitude
72 T& alp1,
73 Spheroid const& spheroid)
74 {
75 // We assume that segment points lay on different side w.r.t.
76 // the vertex
77
78 // Constants
79 CT const c0 = 0;
80 CT const c2 = 2;
81 CT const half_pi = math::pi<CT>() / c2;
82 if (math::equals(lat1, half_pi)
83 || math::equals(lat2, half_pi)
84 || math::equals(lat1, -half_pi)
85 || math::equals(lat2, -half_pi))
86 {
87 // one segment point is the pole
88 return c0;
89 }
90
91 // More constants
92 CT const f = flattening<CT>(spheroid);
93 CT const pi = math::pi<CT>();
94 CT const c1 = 1;
95 CT const cminus1 = -1;
96
97 // First, compute longitude on auxiliary sphere
98
99 CT const one_minus_f = c1 - f;
100 CT const bet1 = atan(one_minus_f * tan(lat1));
101 CT const bet2 = atan(one_minus_f * tan(lat2));
102 CT const bet3 = atan(one_minus_f * tan(lat3));
103
104 CT cos_bet1 = cos(bet1);
105 CT cos_bet2 = cos(bet2);
106 CT const sin_bet1 = sin(bet1);
107 CT const sin_bet2 = sin(bet2);
108 CT const sin_bet3 = sin(bet3);
109
110 CT omg12 = 0;
111
112 if (bet1 < c0)
113 {
114 cos_bet1 *= cminus1;
115 omg12 += pi;
116 }
117 if (bet2 < c0)
118 {
119 cos_bet2 *= cminus1;
120 omg12 += pi;
121 }
122
123 CT const sin_alp1 = sin(alp1);
124 CT const cos_alp1 = math::sqrt(c1 - math::sqr(sin_alp1));
125
126 CT const norm = math::sqrt(math::sqr(cos_alp1) + math::sqr(sin_alp1 * sin_bet1));
127 CT const sin_alp0 = sin(atan2(sin_alp1 * cos_bet1, norm));
128
129 BOOST_ASSERT(cos_bet2 != c0);
130 CT const sin_alp2 = sin_alp1 * cos_bet1 / cos_bet2;
131
132 CT const cos_alp0 = math::sqrt(c1 - math::sqr(sin_alp0));
133 CT const cos_alp2 = math::sqrt(c1 - math::sqr(sin_alp2));
134
135 CT const sig1 = atan2(sin_bet1, cos_alp1 * cos_bet1);
136 CT const sig2 = atan2(sin_bet2, -cos_alp2 * cos_bet2); //lat3 is a vertex
137
138 CT const cos_sig1 = cos(sig1);
139 CT const sin_sig1 = math::sqrt(c1 - math::sqr(cos_sig1));
140
141 CT const cos_sig2 = cos(sig2);
142 CT const sin_sig2 = math::sqrt(c1 - math::sqr(cos_sig2));
143
144 CT const omg1 = atan2(sin_alp0 * sin_sig1, cos_sig1);
145 CT const omg2 = atan2(sin_alp0 * sin_sig2, cos_sig2);
146
147 omg12 += omg1 - omg2;
148
149 CT const sin_omg12 = sin(omg12);
150 CT const cos_omg12 = cos(omg12);
151
152 CT omg13 = geometry::formula::vertex_longitude_on_sphere<CT>
153 ::apply(bet1, bet2, bet3, sin_omg12, cos_omg12);
154
155 if (lat1 * lat2 < c0)//different hemispheres
156 {
157 if ((lat2 - lat1) * lat3 > c0)// ascending segment
158 {
159 omg13 = pi - omg13;
160 }
161 }
162
163 // Second, compute the ellipsoidal longitude
164
165 CT const e2 = f * (c2 - f);
166 CT const ep = math::sqrt(e2 / (c1 - e2));
167 CT const k2 = math::sqr(ep * cos_alp0);
168 CT const sqrt_k2_plus_one = math::sqrt(c1 + k2);
169 CT const eps = (sqrt_k2_plus_one - c1) / (sqrt_k2_plus_one + c1);
170 CT const eps2 = eps * eps;
171 CT const n = f / (c2 - f);
172
173 // sig3 is the length from equator to the vertex
174 CT sig3;
175 if(sin_bet3 > c0)
176 {
177 sig3 = half_pi;
178 } else {
179 sig3 = -half_pi;
180 }
181 CT const cos_sig3 = 0;
182 CT const sin_sig3 = 1;
183
184 CT sig13 = sig3 - sig1;
185 if (sig13 > pi)
186 {
187 sig13 -= 2 * pi;
188 }
189
190 // Order 2 approximation
191 CT const c1over2 = 0.5;
192 CT const c1over4 = 0.25;
193 CT const c1over8 = 0.125;
194 CT const c1over16 = 0.0625;
195 CT const c4 = 4;
196 CT const c8 = 8;
197
198 CT const A3 = 1 - (c1over2 - c1over2 * n) * eps - c1over4 * eps2;
199 CT const C31 = (c1over4 - c1over4 * n) * eps + c1over8 * eps2;
200 CT const C32 = c1over16 * eps2;
201
202 CT const sin2_sig3 = c2 * cos_sig3 * sin_sig3;
203 CT const sin4_sig3 = sin_sig3 * (-c4 * cos_sig3
204 + c8 * cos_sig3 * cos_sig3 * cos_sig3);
205 CT const sin2_sig1 = c2 * cos_sig1 * sin_sig1;
206 CT const sin4_sig1 = sin_sig1 * (-c4 * cos_sig1
207 + c8 * cos_sig1 * cos_sig1 * cos_sig1);
208 CT const I3 = A3 * (sig13
209 + C31 * (sin2_sig3 - sin2_sig1)
210 + C32 * (sin4_sig3 - sin4_sig1));
211
212 int sign = c1;
213 if (bet3 < c0)
214 {
215 sign = cminus1;
216 }
217
218 CT const dlon_max = omg13 - sign * f * sin_alp0 * I3;
219
220 return dlon_max;
221 }
222 };
223
224 //CS_tag dispatching
225
226 template <typename CT, typename CS_Tag>
227 struct compute_vertex_lon
228 {
229 BOOST_MPL_ASSERT_MSG
230 (
231 false, NOT_IMPLEMENTED_FOR_THIS_COORDINATE_SYSTEM, (types<CS_Tag>)
232 );
233
234 };
235
236 template <typename CT>
237 struct compute_vertex_lon<CT, spherical_equatorial_tag>
238 {
239 template <typename Strategy>
240 static inline CT apply(CT const& lat1,
241 CT const& lat2,
242 CT const& vertex_lat,
243 CT const& sin_l12,
244 CT const& cos_l12,
245 CT,
246 Strategy)
247 {
248 return vertex_longitude_on_sphere<CT>
249 ::apply(lat1,
250 lat2,
251 vertex_lat,
252 sin_l12,
253 cos_l12);
254 }
255 };
256
257 template <typename CT>
258 struct compute_vertex_lon<CT, geographic_tag>
259 {
260 template <typename Strategy>
261 static inline CT apply(CT const& lat1,
262 CT const& lat2,
263 CT const& vertex_lat,
264 CT,
265 CT,
266 CT& alp1,
267 Strategy const& azimuth_strategy)
268 {
269 return vertex_longitude_on_spheroid<CT>
270 ::apply(lat1,
271 lat2,
272 vertex_lat,
273 alp1,
274 azimuth_strategy.model());
275 }
276 };
277
278 // Vertex longitude interface
279 // Assume that lon1 < lon2 and vertex_lat is the latitude of the vertex
280
281 template <typename CT, typename CS_Tag>
282 class vertex_longitude
283 {
284 public :
285 template <typename Strategy>
286 static inline CT apply(CT& lon1,
287 CT& lat1,
288 CT& lon2,
289 CT& lat2,
290 CT const& vertex_lat,
291 CT& alp1,
292 Strategy const& azimuth_strategy)
293 {
294 CT const c0 = 0;
295 CT pi = math::pi<CT>();
296
297 //Vertex is a segment's point
298 if (math::equals(vertex_lat, lat1))
299 {
300 return lon1;
301 }
302 if (math::equals(vertex_lat, lat2))
303 {
304 return lon2;
305 }
306
307 //Segment lay on meridian
308 if (math::equals(lon1, lon2))
309 {
310 return (std::max)(lat1, lat2);
311 }
312 BOOST_ASSERT(lon1 < lon2);
313
314 CT dlon = compute_vertex_lon<CT, CS_Tag>::apply(lat1, lat2,
315 vertex_lat,
316 sin(lon1 - lon2),
317 cos(lon1 - lon2),
318 alp1,
319 azimuth_strategy);
320
321 CT vertex_lon = std::fmod(lon1 + dlon, 2 * pi);
322
323 if (vertex_lat < c0)
324 {
325 vertex_lon -= pi;
326 }
327
328 if (std::abs(lon1 - lon2) > pi)
329 {
330 vertex_lon -= pi;
331 }
332
333 return vertex_lon;
334 }
335 };
336
337 }}} // namespace boost::geometry::formula
338 #endif // BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP
339