]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/geometry/srs/projections/proj/healpix.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / geometry / srs / projections / proj / healpix.hpp
1 // Boost.Geometry - gis-projections (based on PROJ4)
2
3 // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
4
5 // This file was modified by Oracle on 2017, 2018, 2019.
6 // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
7 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
8
9 // Use, modification and distribution is subject to the Boost Software License,
10 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
11 // http://www.boost.org/LICENSE_1_0.txt)
12
13 // This file is converted from PROJ4, http://trac.osgeo.org/proj
14 // PROJ4 is originally written by Gerald Evenden (then of the USGS)
15 // PROJ4 is maintained by Frank Warmerdam
16 // PROJ4 is converted to Boost.Geometry by Barend Gehrels
17
18 // Last updated version of proj: 5.0.0
19
20 // Original copyright notice:
21
22 // Purpose: Implementation of the HEALPix and rHEALPix projections.
23 // For background see <http://code.scenzgrid.org/index.php/p/scenzgrid-py/source/tree/master/docs/rhealpix_dggs.pdf>.
24 // Authors: Alex Raichev (raichev@cs.auckland.ac.nz)
25 // Michael Speth (spethm@landcareresearch.co.nz)
26 // Notes: Raichev implemented these projections in Python and
27 // Speth translated them into C here.
28
29 // Copyright (c) 2001, Thomas Flemming, tf@ttqv.com
30
31 // Permission is hereby granted, free of charge, to any person obtaining a
32 // copy of this software and associated documentation files (the "Software"),
33 // to deal in the Software without restriction, including without limitation
34 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
35 // and/or sell copies of the Software, and to permit persons to whom the
36 // Software is furnished to do so, subject to the following conditions:
37
38 // The above copyright notice and this permission notice shall be included
39 // in all copies or substantial portions of the Software.
40
41 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
42 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
43 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
44 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
45 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
46 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
47 // DEALINGS IN THE SOFTWARE.
48
49 #ifndef BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP
50 #define BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP
51
52 #include <boost/geometry/srs/projections/impl/base_static.hpp>
53 #include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
54 #include <boost/geometry/srs/projections/impl/factory_entry.hpp>
55 #include <boost/geometry/srs/projections/impl/pj_auth.hpp>
56 #include <boost/geometry/srs/projections/impl/pj_param.hpp>
57 #include <boost/geometry/srs/projections/impl/pj_qsfn.hpp>
58 #include <boost/geometry/srs/projections/impl/projects.hpp>
59
60 #include <boost/geometry/util/math.hpp>
61
62 namespace boost { namespace geometry
63 {
64
65 namespace projections
66 {
67 #ifndef DOXYGEN_NO_DETAIL
68 namespace detail { namespace healpix
69 {
70
71 /* Fuzz to handle rounding errors: */
72 static const double epsilon = 1e-15;
73
74 template <typename T>
75 struct par_healpix
76 {
77 T qp;
78 detail::apa<T> apa;
79 int north_square;
80 int south_square;
81 };
82
83 template <typename T>
84 struct cap_map
85 {
86 T x, y; /* Coordinates of the pole point (point of most extreme latitude on the polar caps). */
87 int cn; /* An integer 0--3 indicating the position of the polar cap. */
88 enum region_type {north, south, equatorial} region;
89 };
90 template <typename T>
91 struct point_xy
92 {
93 T x, y;
94 };
95
96 /* IDENT, R1, R2, R3, R1 inverse, R2 inverse, R3 inverse:*/
97 static double rot[7][2][2] = {
98 /* Identity matrix */
99 {{1, 0},{0, 1}},
100 /* Matrix for counterclockwise rotation by pi/2: */
101 {{ 0,-1},{ 1, 0}},
102 /* Matrix for counterclockwise rotation by pi: */
103 {{-1, 0},{ 0,-1}},
104 /* Matrix for counterclockwise rotation by 3*pi/2: */
105 {{ 0, 1},{-1, 0}},
106 {{ 0, 1},{-1, 0}}, // 3*pi/2
107 {{-1, 0},{ 0,-1}}, // pi
108 {{ 0,-1},{ 1, 0}} // pi/2
109 };
110
111 /**
112 * Returns the sign of the double.
113 * @param v the parameter whose sign is returned.
114 * @return 1 for positive number, -1 for negative, and 0 for zero.
115 **/
116 template <typename T>
117 inline T pj_sign (T const& v)
118 {
119 return v > 0 ? 1 : (v < 0 ? -1 : 0);
120 }
121 /**
122 * Return the index of the matrix in {{{1, 0},{0, 1}}, {{ 0,-1},{ 1, 0}}, {{-1, 0},{ 0,-1}}, {{ 0, 1},{-1, 0}}, {{ 0, 1},{-1, 0}}, {{-1, 0},{ 0,-1}}, {{ 0,-1},{ 1, 0}}}.
123 * @param index ranges from -3 to 3.
124 */
125 inline int get_rotate_index(int index)
126 {
127 switch(index) {
128 case 0:
129 return 0;
130 case 1:
131 return 1;
132 case 2:
133 return 2;
134 case 3:
135 return 3;
136 case -1:
137 return 4;
138 case -2:
139 return 5;
140 case -3:
141 return 6;
142 }
143 return 0;
144 }
145 /**
146 * Return 1 if point (testx, testy) lies in the interior of the polygon
147 * determined by the vertices in vert, and return 0 otherwise.
148 * See http://paulbourke.net/geometry/polygonmesh/ for more details.
149 * @param nvert the number of vertices in the polygon.
150 * @param vert the (x, y)-coordinates of the polygon's vertices
151 **/
152 template <typename T>
153 inline int pnpoly(int nvert, T vert[][2], T const& testx, T const& testy)
154 {
155 int i;
156 int counter = 0;
157 T xinters;
158 point_xy<T> p1, p2;
159
160 /* Check for boundrary cases */
161 for (i = 0; i < nvert; i++) {
162 if (testx == vert[i][0] && testy == vert[i][1]) {
163 return 1;
164 }
165 }
166
167 p1.x = vert[0][0];
168 p1.y = vert[0][1];
169
170 for (i = 1; i < nvert; i++) {
171 p2.x = vert[i % nvert][0];
172 p2.y = vert[i % nvert][1];
173 if (testy > (std::min)(p1.y, p2.y) &&
174 testy <= (std::max)(p1.y, p2.y) &&
175 testx <= (std::max)(p1.x, p2.x) &&
176 p1.y != p2.y)
177 {
178 xinters = (testy-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;
179 if (p1.x == p2.x || testx <= xinters)
180 counter++;
181 }
182 p1 = p2;
183 }
184
185 if (counter % 2 == 0) {
186 return 0;
187 } else {
188 return 1;
189 }
190 }
191 /**
192 * Return 1 if (x, y) lies in (the interior or boundary of) the image of the
193 * HEALPix projection (in case proj=0) or in the image the rHEALPix projection
194 * (in case proj=1), and return 0 otherwise.
195 * @param north_square the position of the north polar square (rHEALPix only)
196 * @param south_square the position of the south polar square (rHEALPix only)
197 **/
198 template <typename T>
199 inline int in_image(T const& x, T const& y, int proj, int north_square, int south_square)
200 {
201 static const T pi = detail::pi<T>();
202 static const T half_pi = detail::half_pi<T>();
203 static const T fourth_pi = detail::fourth_pi<T>();
204
205 if (proj == 0) {
206 T healpixVertsJit[][2] = {
207 {-pi - epsilon, fourth_pi},
208 {-3.0*fourth_pi, half_pi + epsilon},
209 {-half_pi, fourth_pi + epsilon},
210 {-fourth_pi, half_pi + epsilon},
211 {0.0, fourth_pi + epsilon},
212 {fourth_pi, half_pi + epsilon},
213 {half_pi, fourth_pi + epsilon},
214 {3.0*fourth_pi, half_pi + epsilon},
215 {pi + epsilon, fourth_pi},
216 {pi + epsilon, -fourth_pi},
217 {3.0*fourth_pi, -half_pi - epsilon},
218 {half_pi, -fourth_pi - epsilon},
219 {fourth_pi, -half_pi - epsilon},
220 {0.0, -fourth_pi - epsilon},
221 {-fourth_pi, -half_pi - epsilon},
222 {-half_pi, -fourth_pi - epsilon},
223 {-3.0*fourth_pi, -half_pi - epsilon},
224 {-pi - epsilon, -fourth_pi}
225 };
226 return pnpoly((int)sizeof(healpixVertsJit)/
227 sizeof(healpixVertsJit[0]), healpixVertsJit, x, y);
228 } else {
229 T rhealpixVertsJit[][2] = {
230 {-pi - epsilon, fourth_pi + epsilon},
231 {-pi + north_square*half_pi - epsilon, fourth_pi + epsilon},
232 {-pi + north_square*half_pi - epsilon, 3.0*fourth_pi + epsilon},
233 {-pi + (north_square + 1.0)*half_pi + epsilon, 3.0*fourth_pi + epsilon},
234 {-pi + (north_square + 1.0)*half_pi + epsilon, fourth_pi + epsilon},
235 {pi + epsilon, fourth_pi + epsilon},
236 {pi + epsilon, -fourth_pi - epsilon},
237 {-pi + (south_square + 1.0)*half_pi + epsilon, -fourth_pi - epsilon},
238 {-pi + (south_square + 1.0)*half_pi + epsilon, -3.0*fourth_pi - epsilon},
239 {-pi + south_square*half_pi - epsilon, -3.0*fourth_pi - epsilon},
240 {-pi + south_square*half_pi - epsilon, -fourth_pi - epsilon},
241 {-pi - epsilon, -fourth_pi - epsilon}
242 };
243
244 return pnpoly((int)sizeof(rhealpixVertsJit)/
245 sizeof(rhealpixVertsJit[0]), rhealpixVertsJit, x, y);
246 }
247 }
248 /**
249 * Return the authalic latitude of latitude alpha (if inverse=0) or
250 * return the approximate latitude of authalic latitude alpha (if inverse=1).
251 * P contains the relavent ellipsoid parameters.
252 **/
253 template <typename Parameters, typename T>
254 inline T auth_lat(const Parameters& par, const par_healpix<T>& proj_parm, T const& alpha, int inverse)
255 {
256 if (inverse == 0) {
257 /* Authalic latitude. */
258 T q = pj_qsfn(sin(alpha), par.e, 1.0 - par.es);
259 T qp = proj_parm.qp;
260 T ratio = q/qp;
261
262 if (math::abs(ratio) > 1) {
263 /* Rounding error. */
264 ratio = pj_sign(ratio);
265 }
266
267 return asin(ratio);
268 } else {
269 /* Approximation to inverse authalic latitude. */
270 return pj_authlat(alpha, proj_parm.apa);
271 }
272 }
273 /**
274 * Return the HEALPix projection of the longitude-latitude point lp on
275 * the unit sphere.
276 **/
277 template <typename T>
278 inline void healpix_sphere(T const& lp_lam, T const& lp_phi, T& xy_x, T& xy_y)
279 {
280 static const T pi = detail::pi<T>();
281 static const T half_pi = detail::half_pi<T>();
282 static const T fourth_pi = detail::fourth_pi<T>();
283
284 T lam = lp_lam;
285 T phi = lp_phi;
286 T phi0 = asin(T(2.0)/T(3.0));
287
288 /* equatorial region */
289 if ( fabsl(phi) <= phi0) {
290 xy_x = lam;
291 xy_y = 3.0*pi/8.0*sin(phi);
292 } else {
293 T lamc;
294 T sigma = sqrt(3.0*(1 - math::abs(sin(phi))));
295 T cn = floor(2*lam / pi + 2);
296 if (cn >= 4) {
297 cn = 3;
298 }
299 lamc = -3*fourth_pi + half_pi*cn;
300 xy_x = lamc + (lam - lamc)*sigma;
301 xy_y = pj_sign(phi)*fourth_pi*(2 - sigma);
302 }
303 return;
304 }
305 /**
306 * Return the inverse of healpix_sphere().
307 **/
308 template <typename T>
309 inline void healpix_sphere_inverse(T const& xy_x, T const& xy_y, T& lp_lam, T& lp_phi)
310 {
311 static const T pi = detail::pi<T>();
312 static const T half_pi = detail::half_pi<T>();
313 static const T fourth_pi = detail::fourth_pi<T>();
314
315 T x = xy_x;
316 T y = xy_y;
317 T y0 = fourth_pi;
318
319 /* Equatorial region. */
320 if (math::abs(y) <= y0) {
321 lp_lam = x;
322 lp_phi = asin(8.0*y/(3.0*pi));
323 } else if (fabsl(y) < half_pi) {
324 T cn = floor(2.0*x/pi + 2.0);
325 T xc, tau;
326 if (cn >= 4) {
327 cn = 3;
328 }
329 xc = -3.0*fourth_pi + (half_pi)*cn;
330 tau = 2.0 - 4.0*fabsl(y)/pi;
331 lp_lam = xc + (x - xc)/tau;
332 lp_phi = pj_sign(y)*asin(1.0 - math::pow(tau, 2)/3.0);
333 } else {
334 lp_lam = -1.0*pi;
335 lp_phi = pj_sign(y)*half_pi;
336 }
337 return;
338 }
339 /**
340 * Return the vector sum a + b, where a and b are 2-dimensional vectors.
341 * @param ret holds a + b.
342 **/
343 template <typename T>
344 inline void vector_add(const T a[2], const T b[2], T ret[2])
345 {
346 int i;
347 for(i = 0; i < 2; i++) {
348 ret[i] = a[i] + b[i];
349 }
350 }
351 /**
352 * Return the vector difference a - b, where a and b are 2-dimensional vectors.
353 * @param ret holds a - b.
354 **/
355 template <typename T>
356 inline void vector_sub(const T a[2], const T b[2], T ret[2])
357 {
358 int i;
359 for(i = 0; i < 2; i++) {
360 ret[i] = a[i] - b[i];
361 }
362 }
363 /**
364 * Return the 2 x 1 matrix product a*b, where a is a 2 x 2 matrix and
365 * b is a 2 x 1 matrix.
366 * @param ret holds a*b.
367 **/
368 template <typename T1, typename T2>
369 inline void dot_product(const T1 a[2][2], const T2 b[2], T2 ret[2])
370 {
371 int i, j;
372 int length = 2;
373 for(i = 0; i < length; i++) {
374 ret[i] = 0;
375 for(j = 0; j < length; j++) {
376 ret[i] += a[i][j]*b[j];
377 }
378 }
379 }
380 /**
381 * Return the number of the polar cap, the pole point coordinates, and
382 * the region that (x, y) lies in.
383 * If inverse=0, then assume (x,y) lies in the image of the HEALPix
384 * projection of the unit sphere.
385 * If inverse=1, then assume (x,y) lies in the image of the
386 * (north_square, south_square)-rHEALPix projection of the unit sphere.
387 **/
388 template <typename T>
389 inline cap_map<T> get_cap(T x, T const& y, int north_square, int south_square,
390 int inverse)
391 {
392 static const T pi = detail::pi<T>();
393 static const T half_pi = detail::half_pi<T>();
394 static const T fourth_pi = detail::fourth_pi<T>();
395
396 cap_map<T> capmap;
397 T c;
398 capmap.x = x;
399 capmap.y = y;
400 if (inverse == 0) {
401 if (y > fourth_pi) {
402 capmap.region = cap_map<T>::north;
403 c = half_pi;
404 } else if (y < -fourth_pi) {
405 capmap.region = cap_map<T>::south;
406 c = -half_pi;
407 } else {
408 capmap.region = cap_map<T>::equatorial;
409 capmap.cn = 0;
410 return capmap;
411 }
412 /* polar region */
413 if (x < -half_pi) {
414 capmap.cn = 0;
415 capmap.x = (-3.0*fourth_pi);
416 capmap.y = c;
417 } else if (x >= -half_pi && x < 0) {
418 capmap.cn = 1;
419 capmap.x = -fourth_pi;
420 capmap.y = c;
421 } else if (x >= 0 && x < half_pi) {
422 capmap.cn = 2;
423 capmap.x = fourth_pi;
424 capmap.y = c;
425 } else {
426 capmap.cn = 3;
427 capmap.x = 3.0*fourth_pi;
428 capmap.y = c;
429 }
430 } else {
431 if (y > fourth_pi) {
432 capmap.region = cap_map<T>::north;
433 capmap.x = (-3.0*fourth_pi + north_square*half_pi);
434 capmap.y = half_pi;
435 x = x - north_square*half_pi;
436 } else if (y < -fourth_pi) {
437 capmap.region = cap_map<T>::south;
438 capmap.x = (-3.0*fourth_pi + south_square*pi/2);
439 capmap.y = -half_pi;
440 x = x - south_square*half_pi;
441 } else {
442 capmap.region = cap_map<T>::equatorial;
443 capmap.cn = 0;
444 return capmap;
445 }
446 /* Polar Region, find the HEALPix polar cap number that
447 x, y moves to when rHEALPix polar square is disassembled. */
448 if (capmap.region == cap_map<T>::north) {
449 if (y >= -x - fourth_pi - epsilon && y < x + 5.0*fourth_pi - epsilon) {
450 capmap.cn = (north_square + 1) % 4;
451 } else if (y > -x -fourth_pi + epsilon && y >= x + 5.0*fourth_pi - epsilon) {
452 capmap.cn = (north_square + 2) % 4;
453 } else if (y <= -x -fourth_pi + epsilon && y > x + 5.0*fourth_pi + epsilon) {
454 capmap.cn = (north_square + 3) % 4;
455 } else {
456 capmap.cn = north_square;
457 }
458 } else if (capmap.region == cap_map<T>::south) {
459 if (y <= x + fourth_pi + epsilon && y > -x - 5.0*fourth_pi + epsilon) {
460 capmap.cn = (south_square + 1) % 4;
461 } else if (y < x + fourth_pi - epsilon && y <= -x - 5.0*fourth_pi + epsilon) {
462 capmap.cn = (south_square + 2) % 4;
463 } else if (y >= x + fourth_pi - epsilon && y < -x - 5.0*fourth_pi - epsilon) {
464 capmap.cn = (south_square + 3) % 4;
465 } else {
466 capmap.cn = south_square;
467 }
468 }
469 }
470 return capmap;
471 }
472 /**
473 * Rearrange point (x, y) in the HEALPix projection by
474 * combining the polar caps into two polar squares.
475 * Put the north polar square in position north_square and
476 * the south polar square in position south_square.
477 * If inverse=1, then uncombine the polar caps.
478 * @param north_square integer between 0 and 3.
479 * @param south_square integer between 0 and 3.
480 **/
481 template <typename T>
482 inline void combine_caps(T& xy_x, T& xy_y, int north_square, int south_square,
483 int inverse)
484 {
485 static const T half_pi = detail::half_pi<T>();
486 static const T fourth_pi = detail::fourth_pi<T>();
487
488 T v[2];
489 T c[2];
490 T vector[2];
491 T v_min_c[2];
492 T ret_dot[2];
493 const double (*tmpRot)[2];
494 int pole = 0;
495
496 cap_map<T> capmap = get_cap(xy_x, xy_y, north_square, south_square, inverse);
497 if (capmap.region == cap_map<T>::equatorial) {
498 xy_x = capmap.x;
499 xy_y = capmap.y;
500 return;
501 }
502
503 v[0] = xy_x; v[1] = xy_y;
504 c[0] = capmap.x; c[1] = capmap.y;
505
506 if (inverse == 0) {
507 /* Rotate (xy_x, xy_y) about its polar cap tip and then translate it to
508 north_square or south_square. */
509
510 if (capmap.region == cap_map<T>::north) {
511 pole = north_square;
512 tmpRot = rot[get_rotate_index(capmap.cn - pole)];
513 } else {
514 pole = south_square;
515 tmpRot = rot[get_rotate_index(-1*(capmap.cn - pole))];
516 }
517 } else {
518 /* Inverse function.
519 Unrotate (xy_x, xy_y) and then translate it back. */
520
521 /* disassemble */
522 if (capmap.region == cap_map<T>::north) {
523 pole = north_square;
524 tmpRot = rot[get_rotate_index(-1*(capmap.cn - pole))];
525 } else {
526 pole = south_square;
527 tmpRot = rot[get_rotate_index(capmap.cn - pole)];
528 }
529 }
530
531 vector_sub(v, c, v_min_c);
532 dot_product(tmpRot, v_min_c, ret_dot);
533
534 {
535 T a[2];
536 /* Workaround cppcheck git issue */
537 T* pa = a;
538 // TODO: in proj4 5.0.0 this line is used instead
539 //pa[0] = -3.0*fourth_pi + ((inverse == 0) ? 0 : capmap.cn) *half_pi;
540 pa[0] = -3.0*fourth_pi + ((inverse == 0) ? pole : capmap.cn) *half_pi;
541 pa[1] = half_pi;
542 vector_add(ret_dot, a, vector);
543 }
544
545 xy_x = vector[0];
546 xy_y = vector[1];
547 }
548
549 template <typename T, typename Parameters>
550 struct base_healpix_ellipsoid
551 {
552 par_healpix<T> m_proj_parm;
553
554 // FORWARD(e_healpix_forward) ellipsoid
555 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
556 inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const
557 {
558 lp_lat = auth_lat(par, m_proj_parm, lp_lat, 0);
559 return healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);
560 }
561
562 // INVERSE(e_healpix_inverse) ellipsoid
563 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
564 inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const
565 {
566 /* Check whether (x, y) lies in the HEALPix image. */
567 if (in_image(xy_x, xy_y, 0, 0, 0) == 0) {
568 lp_lon = HUGE_VAL;
569 lp_lat = HUGE_VAL;
570 BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );
571 }
572 healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);
573 lp_lat = auth_lat(par, m_proj_parm, lp_lat, 1);
574 }
575
576 static inline std::string get_name()
577 {
578 return "healpix_ellipsoid";
579 }
580
581 };
582
583 template <typename T, typename Parameters>
584 struct base_healpix_spheroid
585 {
586 par_healpix<T> m_proj_parm;
587
588 // FORWARD(s_healpix_forward) sphere
589 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
590 inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
591 {
592 return healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);
593 }
594
595 // INVERSE(s_healpix_inverse) sphere
596 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
597 inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const
598 {
599 /* Check whether (x, y) lies in the HEALPix image */
600 if (in_image(xy_x, xy_y, 0, 0, 0) == 0) {
601 lp_lon = HUGE_VAL;
602 lp_lat = HUGE_VAL;
603 BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );
604 }
605 return healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);
606 }
607
608 static inline std::string get_name()
609 {
610 return "healpix_spheroid";
611 }
612
613 };
614
615 template <typename T, typename Parameters>
616 struct base_rhealpix_ellipsoid
617 {
618 par_healpix<T> m_proj_parm;
619
620 // FORWARD(e_rhealpix_forward) ellipsoid
621 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
622 inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const
623 {
624 lp_lat = auth_lat(par, m_proj_parm, lp_lat, 0);
625 healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);
626 combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 0);
627 }
628
629 // INVERSE(e_rhealpix_inverse) ellipsoid
630 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
631 inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const
632 {
633 /* Check whether (x, y) lies in the rHEALPix image. */
634 if (in_image(xy_x, xy_y, 1, this->m_proj_parm.north_square, this->m_proj_parm.south_square) == 0) {
635 lp_lon = HUGE_VAL;
636 lp_lat = HUGE_VAL;
637 BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );
638 }
639 combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 1);
640 healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);
641 lp_lat = auth_lat(par, m_proj_parm, lp_lat, 1);
642 }
643
644 static inline std::string get_name()
645 {
646 return "rhealpix_ellipsoid";
647 }
648
649 };
650
651 template <typename T, typename Parameters>
652 struct base_rhealpix_spheroid
653 {
654 par_healpix<T> m_proj_parm;
655
656 // FORWARD(s_rhealpix_forward) sphere
657 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
658 inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
659 {
660 healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);
661 combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 0);
662 }
663
664 // INVERSE(s_rhealpix_inverse) sphere
665 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
666 inline void inv(Parameters const& , T xy_x, T xy_y, T& lp_lon, T& lp_lat) const
667 {
668 /* Check whether (x, y) lies in the rHEALPix image. */
669 if (in_image(xy_x, xy_y, 1, this->m_proj_parm.north_square, this->m_proj_parm.south_square) == 0) {
670 lp_lon = HUGE_VAL;
671 lp_lat = HUGE_VAL;
672 BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );
673 }
674 combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 1);
675 return healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);
676 }
677
678 static inline std::string get_name()
679 {
680 return "rhealpix_spheroid";
681 }
682
683 };
684
685 // HEALPix
686 template <typename Parameters, typename T>
687 inline void setup_healpix(Parameters& par, par_healpix<T>& proj_parm)
688 {
689 if (par.es != 0.0) {
690 proj_parm.apa = pj_authset<T>(par.es); /* For auth_lat(). */
691 proj_parm.qp = pj_qsfn(1.0, par.e, par.one_es); /* For auth_lat(). */
692 par.a = par.a*sqrt(0.5*proj_parm.qp); /* Set par.a to authalic radius. */
693 pj_calc_ellipsoid_params(par, par.a, par.es); /* Ensure we have a consistent parameter set */
694 } else {
695 }
696 }
697
698 // rHEALPix
699 template <typename Params, typename Parameters, typename T>
700 inline void setup_rhealpix(Params const& params, Parameters& par, par_healpix<T>& proj_parm)
701 {
702 proj_parm.north_square = pj_get_param_i<srs::spar::north_square>(params, "north_square", srs::dpar::north_square);
703 proj_parm.south_square = pj_get_param_i<srs::spar::south_square>(params, "south_square", srs::dpar::south_square);
704 /* Check for valid north_square and south_square inputs. */
705 if ((proj_parm.north_square < 0) || (proj_parm.north_square > 3)) {
706 BOOST_THROW_EXCEPTION( projection_exception(error_axis) );
707 }
708 if ((proj_parm.south_square < 0) || (proj_parm.south_square > 3)) {
709 BOOST_THROW_EXCEPTION( projection_exception(error_axis) );
710 }
711 if (par.es != 0.0) {
712 proj_parm.apa = pj_authset<T>(par.es); /* For auth_lat(). */
713 proj_parm.qp = pj_qsfn(1.0, par.e, par.one_es); /* For auth_lat(). */
714 par.a = par.a*sqrt(0.5*proj_parm.qp); /* Set par.a to authalic radius. */
715 // TODO: why not the same as in healpix?
716 //pj_calc_ellipsoid_params(par, par.a, par.es);
717 par.ra = 1.0/par.a;
718 } else {
719 }
720 }
721
722 }} // namespace detail::healpix
723 #endif // doxygen
724
725 /*!
726 \brief HEALPix projection
727 \ingroup projections
728 \tparam Geographic latlong point type
729 \tparam Cartesian xy point type
730 \tparam Parameters parameter type
731 \par Projection characteristics
732 - Spheroid
733 - Ellipsoid
734 \par Example
735 \image html ex_healpix.gif
736 */
737 template <typename T, typename Parameters>
738 struct healpix_ellipsoid : public detail::healpix::base_healpix_ellipsoid<T, Parameters>
739 {
740 template <typename Params>
741 inline healpix_ellipsoid(Params const& , Parameters & par)
742 {
743 detail::healpix::setup_healpix(par, this->m_proj_parm);
744 }
745 };
746
747 /*!
748 \brief HEALPix projection
749 \ingroup projections
750 \tparam Geographic latlong point type
751 \tparam Cartesian xy point type
752 \tparam Parameters parameter type
753 \par Projection characteristics
754 - Spheroid
755 - Ellipsoid
756 \par Example
757 \image html ex_healpix.gif
758 */
759 template <typename T, typename Parameters>
760 struct healpix_spheroid : public detail::healpix::base_healpix_spheroid<T, Parameters>
761 {
762 template <typename Params>
763 inline healpix_spheroid(Params const& , Parameters & par)
764 {
765 detail::healpix::setup_healpix(par, this->m_proj_parm);
766 }
767 };
768
769 /*!
770 \brief rHEALPix projection
771 \ingroup projections
772 \tparam Geographic latlong point type
773 \tparam Cartesian xy point type
774 \tparam Parameters parameter type
775 \par Projection characteristics
776 - Spheroid
777 - Ellipsoid
778 \par Projection parameters
779 - north_square (integer)
780 - south_square (integer)
781 \par Example
782 \image html ex_rhealpix.gif
783 */
784 template <typename T, typename Parameters>
785 struct rhealpix_ellipsoid : public detail::healpix::base_rhealpix_ellipsoid<T, Parameters>
786 {
787 template <typename Params>
788 inline rhealpix_ellipsoid(Params const& params, Parameters & par)
789 {
790 detail::healpix::setup_rhealpix(params, par, this->m_proj_parm);
791 }
792 };
793
794 /*!
795 \brief rHEALPix projection
796 \ingroup projections
797 \tparam Geographic latlong point type
798 \tparam Cartesian xy point type
799 \tparam Parameters parameter type
800 \par Projection characteristics
801 - Spheroid
802 - Ellipsoid
803 \par Projection parameters
804 - north_square (integer)
805 - south_square (integer)
806 \par Example
807 \image html ex_rhealpix.gif
808 */
809 template <typename T, typename Parameters>
810 struct rhealpix_spheroid : public detail::healpix::base_rhealpix_spheroid<T, Parameters>
811 {
812 template <typename Params>
813 inline rhealpix_spheroid(Params const& params, Parameters & par)
814 {
815 detail::healpix::setup_rhealpix(params, par, this->m_proj_parm);
816 }
817 };
818
819 #ifndef DOXYGEN_NO_DETAIL
820 namespace detail
821 {
822
823 // Static projection
824 BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_healpix, healpix_spheroid, healpix_ellipsoid)
825 BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_rhealpix, rhealpix_spheroid, rhealpix_ellipsoid)
826
827 // Factory entry(s)
828 BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(healpix_entry, healpix_spheroid, healpix_ellipsoid)
829 BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(rhealpix_entry, rhealpix_spheroid, rhealpix_ellipsoid)
830
831 BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(healpix_init)
832 {
833 BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(healpix, healpix_entry)
834 BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(rhealpix, rhealpix_entry)
835 }
836
837 } // namespace detail
838 #endif // doxygen
839
840 } // namespace projections
841
842 }} // namespace boost::geometry
843
844 #endif // BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP
845