]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/geometry/strategies/cartesian/intersection.hpp
update sources to v12.2.3
[ceph.git] / ceph / src / boost / boost / geometry / strategies / cartesian / intersection.hpp
1 // Boost.Geometry (aka GGL, Generic Geometry Library)
2
3 // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands.
4 // Copyright (c) 2013-2014 Adam Wulkiewicz, Lodz, Poland.
5
6 // This file was modified by Oracle on 2014, 2016, 2017.
7 // Modifications copyright (c) 2014-2017, Oracle and/or its affiliates.
8
9 // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
10 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
11
12 // Use, modification and distribution is subject to the Boost Software License,
13 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
14 // http://www.boost.org/LICENSE_1_0.txt)
15
16 #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP
17 #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP
18
19 #include <algorithm>
20
21 #include <boost/geometry/core/exception.hpp>
22
23 #include <boost/geometry/geometries/concepts/point_concept.hpp>
24 #include <boost/geometry/geometries/concepts/segment_concept.hpp>
25
26 #include <boost/geometry/arithmetic/determinant.hpp>
27 #include <boost/geometry/algorithms/detail/assign_values.hpp>
28 #include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
29 #include <boost/geometry/algorithms/detail/equals/point_point.hpp>
30 #include <boost/geometry/algorithms/detail/recalculate.hpp>
31
32 #include <boost/geometry/util/math.hpp>
33 #include <boost/geometry/util/promote_integral.hpp>
34 #include <boost/geometry/util/select_calculation_type.hpp>
35
36 #include <boost/geometry/strategies/cartesian/area_surveyor.hpp>
37 #include <boost/geometry/strategies/cartesian/distance_pythagoras.hpp>
38 #include <boost/geometry/strategies/cartesian/envelope_segment.hpp>
39 #include <boost/geometry/strategies/cartesian/point_in_poly_winding.hpp>
40 #include <boost/geometry/strategies/cartesian/side_by_triangle.hpp>
41 #include <boost/geometry/strategies/covered_by.hpp>
42 #include <boost/geometry/strategies/intersection.hpp>
43 #include <boost/geometry/strategies/intersection_result.hpp>
44 #include <boost/geometry/strategies/side.hpp>
45 #include <boost/geometry/strategies/side_info.hpp>
46 #include <boost/geometry/strategies/within.hpp>
47
48 #include <boost/geometry/policies/robustness/robust_point_type.hpp>
49 #include <boost/geometry/policies/robustness/segment_ratio_type.hpp>
50
51
52 #if defined(BOOST_GEOMETRY_DEBUG_ROBUSTNESS)
53 # include <boost/geometry/io/wkt/write.hpp>
54 #endif
55
56
57 namespace boost { namespace geometry
58 {
59
60
61 namespace strategy { namespace intersection
62 {
63
64
65 /*!
66 \see http://mathworld.wolfram.com/Line-LineIntersection.html
67 */
68 template
69 <
70 typename CalculationType = void
71 >
72 struct cartesian_segments
73 {
74 typedef side::side_by_triangle<CalculationType> side_strategy_type;
75
76 static inline side_strategy_type get_side_strategy()
77 {
78 return side_strategy_type();
79 }
80
81 template <typename Geometry1, typename Geometry2>
82 struct point_in_geometry_strategy
83 {
84 typedef strategy::within::cartesian_winding
85 <
86 typename point_type<Geometry1>::type,
87 typename point_type<Geometry2>::type,
88 CalculationType
89 > type;
90 };
91
92 template <typename Geometry1, typename Geometry2>
93 static inline typename point_in_geometry_strategy<Geometry1, Geometry2>::type
94 get_point_in_geometry_strategy()
95 {
96 typedef typename point_in_geometry_strategy
97 <
98 Geometry1, Geometry2
99 >::type strategy_type;
100 return strategy_type();
101 }
102
103 template <typename Geometry>
104 struct area_strategy
105 {
106 typedef area::surveyor
107 <
108 typename point_type<Geometry>::type,
109 CalculationType
110 > type;
111 };
112
113 template <typename Geometry>
114 static inline typename area_strategy<Geometry>::type get_area_strategy()
115 {
116 typedef typename area_strategy<Geometry>::type strategy_type;
117 return strategy_type();
118 }
119
120 template <typename Geometry>
121 struct distance_strategy
122 {
123 typedef distance::pythagoras
124 <
125 CalculationType
126 > type;
127 };
128
129 template <typename Geometry>
130 static inline typename distance_strategy<Geometry>::type get_distance_strategy()
131 {
132 typedef typename distance_strategy<Geometry>::type strategy_type;
133 return strategy_type();
134 }
135
136 typedef envelope::cartesian_segment<CalculationType>
137 envelope_strategy_type;
138
139 static inline envelope_strategy_type get_envelope_strategy()
140 {
141 return envelope_strategy_type();
142 }
143
144 template <typename CoordinateType, typename SegmentRatio>
145 struct segment_intersection_info
146 {
147 typedef typename select_most_precise
148 <
149 CoordinateType, double
150 >::type promoted_type;
151
152 promoted_type comparable_length_a() const
153 {
154 return dx_a * dx_a + dy_a * dy_a;
155 }
156
157 promoted_type comparable_length_b() const
158 {
159 return dx_b * dx_b + dy_b * dy_b;
160 }
161
162 template <typename Point, typename Segment1, typename Segment2>
163 void assign_a(Point& point, Segment1 const& a, Segment2 const& ) const
164 {
165 assign(point, a, dx_a, dy_a, robust_ra);
166 }
167 template <typename Point, typename Segment1, typename Segment2>
168 void assign_b(Point& point, Segment1 const& , Segment2 const& b) const
169 {
170 assign(point, b, dx_b, dy_b, robust_rb);
171 }
172
173 template <typename Point, typename Segment>
174 void assign(Point& point, Segment const& segment, CoordinateType const& dx, CoordinateType const& dy, SegmentRatio const& ratio) const
175 {
176 // Calculate the intersection point based on segment_ratio
177 // Up to now, division was postponed. Here we divide using numerator/
178 // denominator. In case of integer this results in an integer
179 // division.
180 BOOST_GEOMETRY_ASSERT(ratio.denominator() != 0);
181
182 typedef typename promote_integral<CoordinateType>::type promoted_type;
183
184 promoted_type const numerator
185 = boost::numeric_cast<promoted_type>(ratio.numerator());
186 promoted_type const denominator
187 = boost::numeric_cast<promoted_type>(ratio.denominator());
188 promoted_type const dx_promoted = boost::numeric_cast<promoted_type>(dx);
189 promoted_type const dy_promoted = boost::numeric_cast<promoted_type>(dy);
190
191 set<0>(point, get<0, 0>(segment) + boost::numeric_cast
192 <
193 CoordinateType
194 >(numerator * dx_promoted / denominator));
195 set<1>(point, get<0, 1>(segment) + boost::numeric_cast
196 <
197 CoordinateType
198 >(numerator * dy_promoted / denominator));
199 }
200
201 CoordinateType dx_a, dy_a;
202 CoordinateType dx_b, dy_b;
203 SegmentRatio robust_ra;
204 SegmentRatio robust_rb;
205 };
206
207 template <typename D, typename W, typename ResultType>
208 static inline void cramers_rule(D const& dx_a, D const& dy_a,
209 D const& dx_b, D const& dy_b, W const& wx, W const& wy,
210 // out:
211 ResultType& d, ResultType& da)
212 {
213 // Cramers rule
214 d = geometry::detail::determinant<ResultType>(dx_a, dy_a, dx_b, dy_b);
215 da = geometry::detail::determinant<ResultType>(dx_b, dy_b, wx, wy);
216 // Ratio is da/d , collinear if d == 0, intersecting if 0 <= r <= 1
217 // IntersectionPoint = (x1 + r * dx_a, y1 + r * dy_a)
218 }
219
220
221 // Relate segments a and b
222 template
223 <
224 typename Segment1,
225 typename Segment2,
226 typename Policy,
227 typename RobustPolicy
228 >
229 static inline typename Policy::return_type
230 apply(Segment1 const& a, Segment2 const& b,
231 Policy const& policy, RobustPolicy const& robust_policy)
232 {
233 // type them all as in Segment1 - TODO reconsider this, most precise?
234 typedef typename geometry::point_type<Segment1>::type point_type;
235
236 typedef typename geometry::robust_point_type
237 <
238 point_type, RobustPolicy
239 >::type robust_point_type;
240
241 point_type a0, a1, b0, b1;
242 robust_point_type a0_rob, a1_rob, b0_rob, b1_rob;
243
244 detail::assign_point_from_index<0>(a, a0);
245 detail::assign_point_from_index<1>(a, a1);
246 detail::assign_point_from_index<0>(b, b0);
247 detail::assign_point_from_index<1>(b, b1);
248
249 geometry::recalculate(a0_rob, a0, robust_policy);
250 geometry::recalculate(a1_rob, a1, robust_policy);
251 geometry::recalculate(b0_rob, b0, robust_policy);
252 geometry::recalculate(b1_rob, b1, robust_policy);
253
254 return apply(a, b, policy, robust_policy, a0_rob, a1_rob, b0_rob, b1_rob);
255 }
256
257 // The main entry-routine, calculating intersections of segments a / b
258 // NOTE: Robust* types may be the same as Segments' point types
259 template
260 <
261 typename Segment1,
262 typename Segment2,
263 typename Policy,
264 typename RobustPolicy,
265 typename RobustPoint1,
266 typename RobustPoint2
267 >
268 static inline typename Policy::return_type
269 apply(Segment1 const& a, Segment2 const& b,
270 Policy const&, RobustPolicy const& /*robust_policy*/,
271 RobustPoint1 const& robust_a1, RobustPoint1 const& robust_a2,
272 RobustPoint2 const& robust_b1, RobustPoint2 const& robust_b2)
273 {
274 BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
275 BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );
276
277 using geometry::detail::equals::equals_point_point;
278 bool const a_is_point = equals_point_point(robust_a1, robust_a2);
279 bool const b_is_point = equals_point_point(robust_b1, robust_b2);
280
281 if(a_is_point && b_is_point)
282 {
283 return equals_point_point(robust_a1, robust_b2)
284 ? Policy::degenerate(a, true)
285 : Policy::disjoint()
286 ;
287 }
288
289 side_info sides;
290 sides.set<0>(side_strategy_type::apply(robust_b1, robust_b2, robust_a1),
291 side_strategy_type::apply(robust_b1, robust_b2, robust_a2));
292
293 if (sides.same<0>())
294 {
295 // Both points are at same side of other segment, we can leave
296 return Policy::disjoint();
297 }
298
299 sides.set<1>(side_strategy_type::apply(robust_a1, robust_a2, robust_b1),
300 side_strategy_type::apply(robust_a1, robust_a2, robust_b2));
301
302 if (sides.same<1>())
303 {
304 // Both points are at same side of other segment, we can leave
305 return Policy::disjoint();
306 }
307
308 bool collinear = sides.collinear();
309
310 typedef typename select_most_precise
311 <
312 typename geometry::coordinate_type<RobustPoint1>::type,
313 typename geometry::coordinate_type<RobustPoint2>::type
314 >::type robust_coordinate_type;
315
316 typedef typename segment_ratio_type
317 <
318 typename geometry::point_type<Segment1>::type, // TODO: most precise point?
319 RobustPolicy
320 >::type ratio_type;
321
322 segment_intersection_info
323 <
324 typename select_calculation_type<Segment1, Segment2, CalculationType>::type,
325 ratio_type
326 > sinfo;
327
328 sinfo.dx_a = get<1, 0>(a) - get<0, 0>(a); // distance in x-dir
329 sinfo.dx_b = get<1, 0>(b) - get<0, 0>(b);
330 sinfo.dy_a = get<1, 1>(a) - get<0, 1>(a); // distance in y-dir
331 sinfo.dy_b = get<1, 1>(b) - get<0, 1>(b);
332
333 robust_coordinate_type const robust_dx_a = get<0>(robust_a2) - get<0>(robust_a1);
334 robust_coordinate_type const robust_dx_b = get<0>(robust_b2) - get<0>(robust_b1);
335 robust_coordinate_type const robust_dy_a = get<1>(robust_a2) - get<1>(robust_a1);
336 robust_coordinate_type const robust_dy_b = get<1>(robust_b2) - get<1>(robust_b1);
337
338 // r: ratio 0-1 where intersection divides A/B
339 // (only calculated for non-collinear segments)
340 if (! collinear)
341 {
342 robust_coordinate_type robust_da0, robust_da;
343 robust_coordinate_type robust_db0, robust_db;
344
345 cramers_rule(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b,
346 get<0>(robust_a1) - get<0>(robust_b1),
347 get<1>(robust_a1) - get<1>(robust_b1),
348 robust_da0, robust_da);
349
350 cramers_rule(robust_dx_b, robust_dy_b, robust_dx_a, robust_dy_a,
351 get<0>(robust_b1) - get<0>(robust_a1),
352 get<1>(robust_b1) - get<1>(robust_a1),
353 robust_db0, robust_db);
354
355 math::detail::equals_factor_policy<robust_coordinate_type>
356 policy(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b);
357 robust_coordinate_type const zero = 0;
358 if (math::detail::equals_by_policy(robust_da0, zero, policy)
359 || math::detail::equals_by_policy(robust_db0, zero, policy))
360 {
361 // If this is the case, no rescaling is done for FP precision.
362 // We set it to collinear, but it indicates a robustness issue.
363 sides.set<0>(0,0);
364 sides.set<1>(0,0);
365 collinear = true;
366 }
367 else
368 {
369 sinfo.robust_ra.assign(robust_da, robust_da0);
370 sinfo.robust_rb.assign(robust_db, robust_db0);
371 }
372 }
373
374 if (collinear)
375 {
376 std::pair<bool, bool> const collinear_use_first
377 = is_x_more_significant(geometry::math::abs(robust_dx_a),
378 geometry::math::abs(robust_dy_a),
379 geometry::math::abs(robust_dx_b),
380 geometry::math::abs(robust_dy_b),
381 a_is_point, b_is_point);
382
383 if (collinear_use_first.second)
384 {
385 // Degenerate cases: segments of single point, lying on other segment, are not disjoint
386 // This situation is collinear too
387
388 if (collinear_use_first.first)
389 {
390 return relate_collinear<0, Policy, ratio_type>(a, b,
391 robust_a1, robust_a2, robust_b1, robust_b2,
392 a_is_point, b_is_point);
393 }
394 else
395 {
396 // Y direction contains larger segments (maybe dx is zero)
397 return relate_collinear<1, Policy, ratio_type>(a, b,
398 robust_a1, robust_a2, robust_b1, robust_b2,
399 a_is_point, b_is_point);
400 }
401 }
402 }
403
404 return Policy::segments_crosses(sides, sinfo, a, b);
405 }
406
407 private:
408 // first is true if x is more significant
409 // second is true if the more significant difference is not 0
410 template <typename RobustCoordinateType>
411 static inline std::pair<bool, bool>
412 is_x_more_significant(RobustCoordinateType const& abs_robust_dx_a,
413 RobustCoordinateType const& abs_robust_dy_a,
414 RobustCoordinateType const& abs_robust_dx_b,
415 RobustCoordinateType const& abs_robust_dy_b,
416 bool const a_is_point,
417 bool const b_is_point)
418 {
419 //BOOST_GEOMETRY_ASSERT_MSG(!(a_is_point && b_is_point), "both segments shouldn't be degenerated");
420
421 // for degenerated segments the second is always true because this function
422 // shouldn't be called if both segments were degenerated
423
424 if (a_is_point)
425 {
426 return std::make_pair(abs_robust_dx_b >= abs_robust_dy_b, true);
427 }
428 else if (b_is_point)
429 {
430 return std::make_pair(abs_robust_dx_a >= abs_robust_dy_a, true);
431 }
432 else
433 {
434 RobustCoordinateType const min_dx = (std::min)(abs_robust_dx_a, abs_robust_dx_b);
435 RobustCoordinateType const min_dy = (std::min)(abs_robust_dy_a, abs_robust_dy_b);
436 return min_dx == min_dy ?
437 std::make_pair(true, min_dx > RobustCoordinateType(0)) :
438 std::make_pair(min_dx > min_dy, true);
439 }
440 }
441
442 template
443 <
444 std::size_t Dimension,
445 typename Policy,
446 typename RatioType,
447 typename Segment1,
448 typename Segment2,
449 typename RobustPoint1,
450 typename RobustPoint2
451 >
452 static inline typename Policy::return_type
453 relate_collinear(Segment1 const& a,
454 Segment2 const& b,
455 RobustPoint1 const& robust_a1, RobustPoint1 const& robust_a2,
456 RobustPoint2 const& robust_b1, RobustPoint2 const& robust_b2,
457 bool a_is_point, bool b_is_point)
458 {
459 if (a_is_point)
460 {
461 return relate_one_degenerate<Policy, RatioType>(a,
462 get<Dimension>(robust_a1),
463 get<Dimension>(robust_b1), get<Dimension>(robust_b2),
464 true);
465 }
466 if (b_is_point)
467 {
468 return relate_one_degenerate<Policy, RatioType>(b,
469 get<Dimension>(robust_b1),
470 get<Dimension>(robust_a1), get<Dimension>(robust_a2),
471 false);
472 }
473 return relate_collinear<Policy, RatioType>(a, b,
474 get<Dimension>(robust_a1),
475 get<Dimension>(robust_a2),
476 get<Dimension>(robust_b1),
477 get<Dimension>(robust_b2));
478 }
479
480 /// Relate segments known collinear
481 template
482 <
483 typename Policy,
484 typename RatioType,
485 typename Segment1,
486 typename Segment2,
487 typename RobustType1,
488 typename RobustType2
489 >
490 static inline typename Policy::return_type
491 relate_collinear(Segment1 const& a, Segment2 const& b,
492 RobustType1 oa_1, RobustType1 oa_2,
493 RobustType2 ob_1, RobustType2 ob_2)
494 {
495 // Calculate the ratios where a starts in b, b starts in a
496 // a1--------->a2 (2..7)
497 // b1----->b2 (5..8)
498 // length_a: 7-2=5
499 // length_b: 8-5=3
500 // b1 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a)
501 // b2 is located w.r.t. a at ratio: (8-2)/5=6/5 (right of a)
502 // a1 is located w.r.t. b at ratio: (2-5)/3=-3/3 (left of b)
503 // a2 is located w.r.t. b at ratio: (7-5)/3=2/3 (on b)
504 // A arrives (a2 on b), B departs (b1 on a)
505
506 // If both are reversed:
507 // a2<---------a1 (7..2)
508 // b2<-----b1 (8..5)
509 // length_a: 2-7=-5
510 // length_b: 5-8=-3
511 // b1 is located w.r.t. a at ratio: (8-7)/-5=-1/5 (before a starts)
512 // b2 is located w.r.t. a at ratio: (5-7)/-5=2/5 (on a)
513 // a1 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b)
514 // a2 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends)
515
516 // If both one is reversed:
517 // a1--------->a2 (2..7)
518 // b2<-----b1 (8..5)
519 // length_a: 7-2=+5
520 // length_b: 5-8=-3
521 // b1 is located w.r.t. a at ratio: (8-2)/5=6/5 (after a ends)
522 // b2 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a)
523 // a1 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends)
524 // a2 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b)
525 RobustType1 const length_a = oa_2 - oa_1; // no abs, see above
526 RobustType2 const length_b = ob_2 - ob_1;
527
528 RatioType ra_from(oa_1 - ob_1, length_b);
529 RatioType ra_to(oa_2 - ob_1, length_b);
530 RatioType rb_from(ob_1 - oa_1, length_a);
531 RatioType rb_to(ob_2 - oa_1, length_a);
532
533 // use absolute measure to detect endpoints intersection
534 // NOTE: it'd be possible to calculate bx_wrt_a using ax_wrt_b values
535 int const a1_wrt_b = position_value(oa_1, ob_1, ob_2);
536 int const a2_wrt_b = position_value(oa_2, ob_1, ob_2);
537 int const b1_wrt_a = position_value(ob_1, oa_1, oa_2);
538 int const b2_wrt_a = position_value(ob_2, oa_1, oa_2);
539
540 // fix the ratios if necessary
541 // CONSIDER: fixing ratios also in other cases, if they're inconsistent
542 // e.g. if ratio == 1 or 0 (so IP at the endpoint)
543 // but position value indicates that the IP is in the middle of the segment
544 // because one of the segments is very long
545 // In such case the ratios could be moved into the middle direction
546 // by some small value (e.g. EPS+1ULP)
547 if (a1_wrt_b == 1)
548 {
549 ra_from.assign(0, 1);
550 rb_from.assign(0, 1);
551 }
552 else if (a1_wrt_b == 3)
553 {
554 ra_from.assign(1, 1);
555 rb_to.assign(0, 1);
556 }
557
558 if (a2_wrt_b == 1)
559 {
560 ra_to.assign(0, 1);
561 rb_from.assign(1, 1);
562 }
563 else if (a2_wrt_b == 3)
564 {
565 ra_to.assign(1, 1);
566 rb_to.assign(1, 1);
567 }
568
569 if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
570 //if ((ra_from.left() && ra_to.left()) || (ra_from.right() && ra_to.right()))
571 {
572 return Policy::disjoint();
573 }
574
575 bool const opposite = math::sign(length_a) != math::sign(length_b);
576
577 return Policy::segments_collinear(a, b, opposite,
578 a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
579 ra_from, ra_to, rb_from, rb_to);
580 }
581
582 /// Relate segments where one is degenerate
583 template
584 <
585 typename Policy,
586 typename RatioType,
587 typename DegenerateSegment,
588 typename RobustType1,
589 typename RobustType2
590 >
591 static inline typename Policy::return_type
592 relate_one_degenerate(DegenerateSegment const& degenerate_segment,
593 RobustType1 d, RobustType2 s1, RobustType2 s2,
594 bool a_degenerate)
595 {
596 // Calculate the ratios where ds starts in s
597 // a1--------->a2 (2..6)
598 // b1/b2 (4..4)
599 // Ratio: (4-2)/(6-2)
600 RatioType const ratio(d - s1, s2 - s1);
601
602 if (!ratio.on_segment())
603 {
604 return Policy::disjoint();
605 }
606
607 return Policy::one_degenerate(degenerate_segment, ratio, a_degenerate);
608 }
609
610 template <typename ProjCoord1, typename ProjCoord2>
611 static inline int position_value(ProjCoord1 const& ca1,
612 ProjCoord2 const& cb1,
613 ProjCoord2 const& cb2)
614 {
615 // S1x 0 1 2 3 4
616 // S2 |---------->
617 return math::equals(ca1, cb1) ? 1
618 : math::equals(ca1, cb2) ? 3
619 : cb1 < cb2 ?
620 ( ca1 < cb1 ? 0
621 : ca1 > cb2 ? 4
622 : 2 )
623 : ( ca1 > cb1 ? 0
624 : ca1 < cb2 ? 4
625 : 2 );
626 }
627 };
628
629
630 #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
631 namespace services
632 {
633
634 template <typename CalculationType>
635 struct default_strategy<cartesian_tag, CalculationType>
636 {
637 typedef cartesian_segments<CalculationType> type;
638 };
639
640 } // namespace services
641 #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
642
643
644 }} // namespace strategy::intersection
645
646 namespace strategy
647 {
648
649 namespace within { namespace services
650 {
651
652 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
653 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, cartesian_tag, cartesian_tag>
654 {
655 typedef strategy::intersection::cartesian_segments<> type;
656 };
657
658 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
659 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, cartesian_tag, cartesian_tag>
660 {
661 typedef strategy::intersection::cartesian_segments<> type;
662 };
663
664 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
665 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, cartesian_tag, cartesian_tag>
666 {
667 typedef strategy::intersection::cartesian_segments<> type;
668 };
669
670 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
671 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, cartesian_tag, cartesian_tag>
672 {
673 typedef strategy::intersection::cartesian_segments<> type;
674 };
675
676 }} // within::services
677
678 namespace covered_by { namespace services
679 {
680
681 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
682 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, cartesian_tag, cartesian_tag>
683 {
684 typedef strategy::intersection::cartesian_segments<> type;
685 };
686
687 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
688 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, cartesian_tag, cartesian_tag>
689 {
690 typedef strategy::intersection::cartesian_segments<> type;
691 };
692
693 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
694 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, cartesian_tag, cartesian_tag>
695 {
696 typedef strategy::intersection::cartesian_segments<> type;
697 };
698
699 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
700 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, cartesian_tag, cartesian_tag>
701 {
702 typedef strategy::intersection::cartesian_segments<> type;
703 };
704
705 }} // within::services
706
707 } // strategy
708
709 }} // namespace boost::geometry
710
711
712 #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP