]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/geometry/strategies/spherical/intersection.hpp
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / boost / boost / geometry / strategies / spherical / intersection.hpp
1 // Boost.Geometry
2
3 // Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
4
5 // Copyright (c) 2016-2021, Oracle and/or its affiliates.
6 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
7
8 // Use, modification and distribution is subject to the Boost Software License,
9 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
10 // http://www.boost.org/LICENSE_1_0.txt)
11
12 #ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
13 #define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
14
15 #include <algorithm>
16 #include <type_traits>
17
18 #include <boost/geometry/core/cs.hpp>
19 #include <boost/geometry/core/access.hpp>
20 #include <boost/geometry/core/radian_access.hpp>
21 #include <boost/geometry/core/tags.hpp>
22
23 #include <boost/geometry/algorithms/detail/assign_values.hpp>
24 #include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
25 #include <boost/geometry/algorithms/detail/equals/point_point.hpp>
26 #include <boost/geometry/algorithms/detail/recalculate.hpp>
27
28 #include <boost/geometry/arithmetic/arithmetic.hpp>
29 #include <boost/geometry/arithmetic/cross_product.hpp>
30 #include <boost/geometry/arithmetic/dot_product.hpp>
31 #include <boost/geometry/arithmetic/normalize.hpp>
32 #include <boost/geometry/formulas/spherical.hpp>
33
34 #include <boost/geometry/geometries/concepts/point_concept.hpp>
35 #include <boost/geometry/geometries/concepts/segment_concept.hpp>
36 #include <boost/geometry/geometries/segment.hpp>
37
38 #include <boost/geometry/policies/robustness/segment_ratio.hpp>
39
40 #include <boost/geometry/strategy/spherical/area.hpp>
41 #include <boost/geometry/strategy/spherical/envelope.hpp>
42 #include <boost/geometry/strategy/spherical/expand_box.hpp>
43 #include <boost/geometry/strategy/spherical/expand_segment.hpp>
44
45 #include <boost/geometry/strategies/covered_by.hpp>
46 #include <boost/geometry/strategies/intersection.hpp>
47 #include <boost/geometry/strategies/intersection_result.hpp>
48 #include <boost/geometry/strategies/side.hpp>
49 #include <boost/geometry/strategies/side_info.hpp>
50 #include <boost/geometry/strategies/spherical/disjoint_box_box.hpp>
51 #include <boost/geometry/strategies/spherical/disjoint_segment_box.hpp>
52 #include <boost/geometry/strategies/spherical/distance_haversine.hpp>
53 #include <boost/geometry/strategies/spherical/point_in_point.hpp>
54 #include <boost/geometry/strategies/spherical/point_in_poly_winding.hpp>
55 #include <boost/geometry/strategies/spherical/ssf.hpp>
56 #include <boost/geometry/strategies/within.hpp>
57
58 #include <boost/geometry/util/math.hpp>
59 #include <boost/geometry/util/select_calculation_type.hpp>
60
61
62 namespace boost { namespace geometry
63 {
64
65 namespace strategy { namespace intersection
66 {
67
68 // NOTE:
69 // The coordinates of crossing IP may be calculated with small precision in some cases.
70 // For double, near the equator noticed error ~1e-9 so far greater than
71 // machine epsilon which is ~1e-16. This error is ~0.04m.
72 // E.g. consider two cases, one near the origin and the second one rotated by 90 deg around Z or SN axis.
73 // After the conversion from spherical degrees to cartesian 3d the following coordinates
74 // are calculated:
75 // for sph (-1 -1, 1 1) deg cart3d ys are -0.017449748351250485 and 0.017449748351250485
76 // for sph (89 -1, 91 1) deg cart3d xs are 0.017449748351250571 and -0.017449748351250450
77 // During the conversion degrees must first be converted to radians and then radians
78 // are passed into trigonometric functions. The error may have several causes:
79 // 1. Radians cannot represent exactly the same angles as degrees.
80 // 2. Different longitudes are passed into sin() for x, corresponding to cos() for y,
81 // and for different angle the error of the result may be different.
82 // 3. These non-corresponding cartesian coordinates are used in calculation,
83 // e.g. multiplied several times in cross and dot products.
84 // If it was a problem this strategy could e.g. "normalize" longitudes before the conversion using the source units
85 // by rotating the globe around Z axis, so moving longitudes always the same way towards the origin,
86 // assuming this could help which is not clear.
87 // For now, intersection points near the endpoints are checked explicitly if needed (if the IP is near the endpoint)
88 // to generate precise result for them. Only the crossing (i) case may suffer from lower precision.
89
90 template
91 <
92 typename CalcPolicy,
93 typename CalculationType = void
94 >
95 struct ecef_segments
96 {
97 typedef spherical_tag cs_tag;
98
99 enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
100
101 // segment_intersection_info cannot outlive relate_ecef_segments
102 template <typename CoordinateType, typename SegmentRatio, typename Vector3d>
103 struct segment_intersection_info
104 {
105 segment_intersection_info(CalcPolicy const& calc)
106 : calc_policy(calc)
107 {}
108
109 template <typename Point, typename Segment1, typename Segment2>
110 void calculate(Point& point, Segment1 const& a, Segment2 const& b) const
111 {
112 if (ip_flag == ipi_inters)
113 {
114 // TODO: assign the rest of coordinates
115 point = calc_policy.template from_cart3d<Point>(intersection_point);
116 }
117 else if (ip_flag == ipi_at_a1)
118 {
119 detail::assign_point_from_index<0>(a, point);
120 }
121 else if (ip_flag == ipi_at_a2)
122 {
123 detail::assign_point_from_index<1>(a, point);
124 }
125 else if (ip_flag == ipi_at_b1)
126 {
127 detail::assign_point_from_index<0>(b, point);
128 }
129 else // ip_flag == ipi_at_b2
130 {
131 detail::assign_point_from_index<1>(b, point);
132 }
133 }
134
135 Vector3d intersection_point;
136 SegmentRatio robust_ra;
137 SegmentRatio robust_rb;
138 intersection_point_flag ip_flag;
139
140 CalcPolicy const& calc_policy;
141 };
142
143 // Relate segments a and b
144 template
145 <
146 typename UniqueSubRange1,
147 typename UniqueSubRange2,
148 typename Policy
149 >
150 static inline typename Policy::return_type
151 apply(UniqueSubRange1 const& range_p, UniqueSubRange2 const& range_q,
152 Policy const&)
153 {
154 // For now create it using default constructor. In the future it could
155 // be stored in strategy. However then apply() wouldn't be static and
156 // all relops and setops would have to take the strategy or model.
157 // Initialize explicitly to prevent compiler errors in case of PoD type
158 CalcPolicy const calc_policy = CalcPolicy();
159
160 typedef typename UniqueSubRange1::point_type point1_type;
161 typedef typename UniqueSubRange2::point_type point2_type;
162
163 BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point1_type>) );
164 BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point2_type>) );
165
166 point1_type const& a1 = range_p.at(0);
167 point1_type const& a2 = range_p.at(1);
168 point2_type const& b1 = range_q.at(0);
169 point2_type const& b2 = range_q.at(1);
170
171 typedef model::referring_segment<point1_type const> segment1_type;
172 typedef model::referring_segment<point2_type const> segment2_type;
173 segment1_type const a(a1, a2);
174 segment2_type const b(b1, b2);
175
176 // TODO: check only 2 first coordinates here?
177 bool a_is_point = equals_point_point(a1, a2);
178 bool b_is_point = equals_point_point(b1, b2);
179
180 if(a_is_point && b_is_point)
181 {
182 return equals_point_point(a1, b2)
183 ? Policy::degenerate(a, true)
184 : Policy::disjoint()
185 ;
186 }
187
188 typedef typename select_calculation_type
189 <segment1_type, segment2_type, CalculationType>::type calc_t;
190
191 calc_t const c0 = 0;
192 calc_t const c1 = 1;
193
194 typedef model::point<calc_t, 3, cs::cartesian> vec3d_t;
195
196 vec3d_t const a1v = calc_policy.template to_cart3d<vec3d_t>(a1);
197 vec3d_t const a2v = calc_policy.template to_cart3d<vec3d_t>(a2);
198 vec3d_t const b1v = calc_policy.template to_cart3d<vec3d_t>(b1);
199 vec3d_t const b2v = calc_policy.template to_cart3d<vec3d_t>(b2);
200
201 bool degen_neq_coords = false;
202 side_info sides;
203
204 typename CalcPolicy::template plane<vec3d_t>
205 plane2 = calc_policy.get_plane(b1v, b2v);
206
207 calc_t dist_b1_b2 = 0;
208 if (! b_is_point)
209 {
210 calculate_dist(b1v, b2v, plane2, dist_b1_b2);
211 if (math::equals(dist_b1_b2, c0))
212 {
213 degen_neq_coords = true;
214 b_is_point = true;
215 dist_b1_b2 = 0;
216 }
217 else
218 {
219 // not normalized normals, the same as in side strategy
220 sides.set<0>(plane2.side_value(a1v), plane2.side_value(a2v));
221 if (sides.same<0>())
222 {
223 // Both points are at same side of other segment, we can leave
224 return Policy::disjoint();
225 }
226 }
227 }
228
229 typename CalcPolicy::template plane<vec3d_t>
230 plane1 = calc_policy.get_plane(a1v, a2v);
231
232 calc_t dist_a1_a2 = 0;
233 if (! a_is_point)
234 {
235 calculate_dist(a1v, a2v, plane1, dist_a1_a2);
236 if (math::equals(dist_a1_a2, c0))
237 {
238 degen_neq_coords = true;
239 a_is_point = true;
240 dist_a1_a2 = 0;
241 }
242 else
243 {
244 // not normalized normals, the same as in side strategy
245 sides.set<1>(plane1.side_value(b1v), plane1.side_value(b2v));
246 if (sides.same<1>())
247 {
248 // Both points are at same side of other segment, we can leave
249 return Policy::disjoint();
250 }
251 }
252 }
253
254 // NOTE: at this point the segments may still be disjoint
255
256 calc_t len1 = 0;
257 // point or opposite sides of a sphere/spheroid, assume point
258 if (! a_is_point && ! detail::vec_normalize(plane1.normal, len1))
259 {
260 a_is_point = true;
261 if (sides.get<0, 0>() == 0 || sides.get<0, 1>() == 0)
262 {
263 sides.set<0>(0, 0);
264 }
265 }
266
267 calc_t len2 = 0;
268 if (! b_is_point && ! detail::vec_normalize(plane2.normal, len2))
269 {
270 b_is_point = true;
271 if (sides.get<1, 0>() == 0 || sides.get<1, 1>() == 0)
272 {
273 sides.set<1>(0, 0);
274 }
275 }
276
277 // check both degenerated once more
278 if (a_is_point && b_is_point)
279 {
280 return equals_point_point(a1, b2)
281 ? Policy::degenerate(a, true)
282 : Policy::disjoint()
283 ;
284 }
285
286 // NOTE: at this point the segments may still be disjoint
287 // NOTE: at this point one of the segments may be degenerated
288
289 bool collinear = sides.collinear();
290
291 if (! collinear)
292 {
293 // NOTE: for some approximations it's possible that both points may lie
294 // on the same geodesic but still some of the sides may be != 0.
295 // This is e.g. true for long segments represented as elliptic arcs
296 // with origin different than the center of the coordinate system.
297 // So make the sides consistent
298
299 // WARNING: the side strategy doesn't have the info about the other
300 // segment so it may return results inconsistent with this intersection
301 // strategy, as it checks both segments for consistency
302
303 if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
304 {
305 collinear = true;
306 sides.set<1>(0, 0);
307 }
308 else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
309 {
310 collinear = true;
311 sides.set<0>(0, 0);
312 }
313 }
314
315 calc_t dot_n1n2 = dot_product(plane1.normal, plane2.normal);
316
317 // NOTE: this is technically not needed since theoretically above sides
318 // are calculated, but just in case check the normals.
319 // Have in mind that SSF side strategy doesn't check this.
320 // collinear if normals are equal or opposite: cos(a) in {-1, 1}
321 if (! collinear && math::equals(math::abs(dot_n1n2), c1))
322 {
323 collinear = true;
324 sides.set<0>(0, 0);
325 sides.set<1>(0, 0);
326 }
327
328 if (collinear)
329 {
330 if (a_is_point)
331 {
332 return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, b1v, b2v,
333 plane2, a1v, a2v, dist_b1_b2, degen_neq_coords);
334 }
335 else if (b_is_point)
336 {
337 // b2 used to be consistent with (degenerated) checks above (is it needed?)
338 return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, a1v, a2v,
339 plane1, b1v, b2v, dist_a1_a2, degen_neq_coords);
340 }
341 else
342 {
343 calc_t dist_a1_b1, dist_a1_b2;
344 calc_t dist_b1_a1, dist_b1_a2;
345 calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, plane1, b1v, b2v, dist_a1_a2, dist_a1_b1);
346 calculate_collinear_data(a1, a2, b2, b1, a1v, a2v, plane1, b2v, b1v, dist_a1_a2, dist_a1_b2);
347 calculate_collinear_data(b1, b2, a1, a2, b1v, b2v, plane2, a1v, a2v, dist_b1_b2, dist_b1_a1);
348 calculate_collinear_data(b1, b2, a2, a1, b1v, b2v, plane2, a2v, a1v, dist_b1_b2, dist_b1_a2);
349 // NOTE: The following optimization causes problems with consitency
350 // It may either be caused by numerical issues or the way how distance is coded:
351 // as cosine of angle scaled and translated, see: calculate_dist()
352 /*dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
353 dist_b1_a1 = -dist_a1_b1;
354 dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
355 dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
356 dist_a1_b1 = -dist_b1_a1;
357 dist_a1_b2 = dist_b1_b2 - dist_b1_a1;*/
358
359 segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
360 segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
361 segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
362 segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
363
364 // NOTE: this is probably not needed
365 int const a1_wrt_b = position_value(c0, dist_a1_b1, dist_a1_b2);
366 int const a2_wrt_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
367 int const b1_wrt_a = position_value(c0, dist_b1_a1, dist_b1_a2);
368 int const b2_wrt_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
369
370 if (a1_wrt_b == 1)
371 {
372 ra_from.assign(0, dist_b1_b2);
373 rb_from.assign(0, dist_a1_a2);
374 }
375 else if (a1_wrt_b == 3)
376 {
377 ra_from.assign(dist_b1_b2, dist_b1_b2);
378 rb_to.assign(0, dist_a1_a2);
379 }
380
381 if (a2_wrt_b == 1)
382 {
383 ra_to.assign(0, dist_b1_b2);
384 rb_from.assign(dist_a1_a2, dist_a1_a2);
385 }
386 else if (a2_wrt_b == 3)
387 {
388 ra_to.assign(dist_b1_b2, dist_b1_b2);
389 rb_to.assign(dist_a1_a2, dist_a1_a2);
390 }
391
392 if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
393 {
394 return Policy::disjoint();
395 }
396
397 bool const opposite = dot_n1n2 < c0;
398
399 return Policy::segments_collinear(a, b, opposite,
400 a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
401 ra_from, ra_to, rb_from, rb_to);
402 }
403 }
404 else // crossing
405 {
406 if (a_is_point || b_is_point)
407 {
408 return Policy::disjoint();
409 }
410
411 vec3d_t i1;
412 intersection_point_flag ip_flag;
413 calc_t dist_a1_i1, dist_b1_i1;
414 if (calculate_ip_data(a1, a2, b1, b2, a1v, a2v, b1v, b2v,
415 plane1, plane2, calc_policy,
416 sides, dist_a1_a2, dist_b1_b2,
417 i1, dist_a1_i1, dist_b1_i1, ip_flag))
418 {
419 // intersects
420 segment_intersection_info
421 <
422 calc_t,
423 segment_ratio<calc_t>,
424 vec3d_t
425 > sinfo(calc_policy);
426
427 sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
428 sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
429 sinfo.intersection_point = i1;
430 sinfo.ip_flag = ip_flag;
431
432 return Policy::segments_crosses(sides, sinfo, a, b);
433 }
434 else
435 {
436 return Policy::disjoint();
437 }
438 }
439 }
440
441 private:
442 template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename Vec3d, typename Plane>
443 static inline typename Policy::return_type
444 collinear_one_degenerated(Segment const& segment, bool degenerated_a,
445 Point1 const& a1, Point1 const& a2,
446 Point2 const& b1, Point2 const& b2,
447 Vec3d const& a1v, Vec3d const& a2v,
448 Plane const& plane,
449 Vec3d const& b1v, Vec3d const& b2v,
450 CalcT const& dist_1_2,
451 bool degen_neq_coords)
452 {
453 CalcT dist_1_o;
454 return ! calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, plane, b1v, b2v, dist_1_2, dist_1_o, degen_neq_coords)
455 ? Policy::disjoint()
456 : Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
457 }
458
459 template <typename Point1, typename Point2, typename Vec3d, typename Plane, typename CalcT>
460 static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
461 Point2 const& b1, Point2 const& /*b2*/, // in
462 Vec3d const& a1v, // in
463 Vec3d const& a2v, // in
464 Plane const& plane1, // in
465 Vec3d const& b1v, // in
466 Vec3d const& b2v, // in
467 CalcT const& dist_a1_a2, // in
468 CalcT& dist_a1_b1, // out
469 bool degen_neq_coords = false) // in
470 {
471 // calculate dist_a1_b1
472 calculate_dist(a1v, a2v, plane1, b1v, dist_a1_b1);
473
474 // if b1 is equal to a1
475 if (is_endpoint_equal(dist_a1_b1, a1, b1))
476 {
477 dist_a1_b1 = 0;
478 return true;
479 }
480 // or b1 is equal to a2
481 else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1))
482 {
483 dist_a1_b1 = dist_a1_a2;
484 return true;
485 }
486
487 // check the other endpoint of degenerated segment near a pole
488 if (degen_neq_coords)
489 {
490 static CalcT const c0 = 0;
491
492 CalcT dist_a1_b2 = 0;
493 calculate_dist(a1v, a2v, plane1, b2v, dist_a1_b2);
494
495 if (math::equals(dist_a1_b2, c0))
496 {
497 dist_a1_b1 = 0;
498 return true;
499 }
500 else if (math::equals(dist_a1_a2 - dist_a1_b2, c0))
501 {
502 dist_a1_b1 = dist_a1_a2;
503 return true;
504 }
505 }
506
507 // or i1 is on b
508 return segment_ratio<CalcT>(dist_a1_b1, dist_a1_a2).on_segment();
509 }
510
511 template <typename Point1, typename Point2, typename Vec3d, typename Plane, typename CalcT>
512 static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
513 Point2 const& b1, Point2 const& b2, // in
514 Vec3d const& a1v, Vec3d const& a2v, // in
515 Vec3d const& b1v, Vec3d const& b2v, // in
516 Plane const& plane1, // in
517 Plane const& plane2, // in
518 CalcPolicy const& calc_policy, // in
519 side_info const& sides, // in
520 CalcT const& dist_a1_a2, // in
521 CalcT const& dist_b1_b2, // in
522 Vec3d & ip, // out
523 CalcT& dist_a1_ip, // out
524 CalcT& dist_b1_ip, // out
525 intersection_point_flag& ip_flag) // out
526 {
527 Vec3d ip1, ip2;
528 calc_policy.intersection_points(plane1, plane2, ip1, ip2);
529
530 calculate_dist(a1v, a2v, plane1, ip1, dist_a1_ip);
531 ip = ip1;
532
533 // choose the opposite side of the globe if the distance is shorter
534 {
535 CalcT const d = abs_distance(dist_a1_a2, dist_a1_ip);
536 if (d > CalcT(0))
537 {
538 // TODO: this should be ok not only for sphere
539 // but requires more investigation
540 CalcT const dist_a1_i2 = dist_of_i2(dist_a1_ip);
541 CalcT const d2 = abs_distance(dist_a1_a2, dist_a1_i2);
542 if (d2 < d)
543 {
544 dist_a1_ip = dist_a1_i2;
545 ip = ip2;
546 }
547 }
548 }
549
550 bool is_on_a = false, is_near_a1 = false, is_near_a2 = false;
551 if (! is_potentially_crossing(dist_a1_a2, dist_a1_ip, is_on_a, is_near_a1, is_near_a2))
552 {
553 return false;
554 }
555
556 calculate_dist(b1v, b2v, plane2, ip, dist_b1_ip);
557
558 bool is_on_b = false, is_near_b1 = false, is_near_b2 = false;
559 if (! is_potentially_crossing(dist_b1_b2, dist_b1_ip, is_on_b, is_near_b1, is_near_b2))
560 {
561 return false;
562 }
563
564 // reassign the IP if some endpoints overlap
565 if (is_near_a1)
566 {
567 if (is_near_b1 && equals_point_point(a1, b1))
568 {
569 dist_a1_ip = 0;
570 dist_b1_ip = 0;
571 //i1 = a1v;
572 ip_flag = ipi_at_a1;
573 return true;
574 }
575
576 if (is_near_b2 && equals_point_point(a1, b2))
577 {
578 dist_a1_ip = 0;
579 dist_b1_ip = dist_b1_b2;
580 //i1 = a1v;
581 ip_flag = ipi_at_a1;
582 return true;
583 }
584 }
585
586 if (is_near_a2)
587 {
588 if (is_near_b1 && equals_point_point(a2, b1))
589 {
590 dist_a1_ip = dist_a1_a2;
591 dist_b1_ip = 0;
592 //i1 = a2v;
593 ip_flag = ipi_at_a2;
594 return true;
595 }
596
597 if (is_near_b2 && equals_point_point(a2, b2))
598 {
599 dist_a1_ip = dist_a1_a2;
600 dist_b1_ip = dist_b1_b2;
601 //i1 = a2v;
602 ip_flag = ipi_at_a2;
603 return true;
604 }
605 }
606
607 // at this point we know that the endpoints doesn't overlap
608 // reassign IP and distance if the IP is on a segment and one of
609 // the endpoints of the other segment lies on the former segment
610 if (is_on_a)
611 {
612 if (is_near_b1 && sides.template get<1, 0>() == 0) // b1 wrt a
613 {
614 calculate_dist(a1v, a2v, plane1, b1v, dist_a1_ip); // for consistency
615 dist_b1_ip = 0;
616 //i1 = b1v;
617 ip_flag = ipi_at_b1;
618 return true;
619 }
620
621 if (is_near_b2 && sides.template get<1, 1>() == 0) // b2 wrt a
622 {
623 calculate_dist(a1v, a2v, plane1, b2v, dist_a1_ip); // for consistency
624 dist_b1_ip = dist_b1_b2;
625 //i1 = b2v;
626 ip_flag = ipi_at_b2;
627 return true;
628 }
629 }
630
631 if (is_on_b)
632 {
633 if (is_near_a1 && sides.template get<0, 0>() == 0) // a1 wrt b
634 {
635 dist_a1_ip = 0;
636 calculate_dist(b1v, b2v, plane2, a1v, dist_b1_ip); // for consistency
637 //i1 = a1v;
638 ip_flag = ipi_at_a1;
639 return true;
640 }
641
642 if (is_near_a2 && sides.template get<0, 1>() == 0) // a2 wrt b
643 {
644 dist_a1_ip = dist_a1_a2;
645 calculate_dist(b1v, b2v, plane2, a2v, dist_b1_ip); // for consistency
646 //i1 = a2v;
647 ip_flag = ipi_at_a2;
648 return true;
649 }
650 }
651
652 ip_flag = ipi_inters;
653
654 return is_on_a && is_on_b;
655 }
656
657 template <typename Vec3d, typename Plane, typename CalcT>
658 static inline void calculate_dist(Vec3d const& a1v, // in
659 Vec3d const& a2v, // in
660 Plane const& plane1, // in
661 CalcT& dist_a1_a2) // out
662 {
663 static CalcT const c1 = 1;
664 CalcT const cos_a1_a2 = plane1.cos_angle_between(a1v, a2v);
665 dist_a1_a2 = -cos_a1_a2 + c1; // [1, -1] -> [0, 2] representing [0, pi]
666 }
667
668 template <typename Vec3d, typename Plane, typename CalcT>
669 static inline void calculate_dist(Vec3d const& a1v, // in
670 Vec3d const& /*a2v*/, // in
671 Plane const& plane1, // in
672 Vec3d const& i1, // in
673 CalcT& dist_a1_i1) // out
674 {
675 static CalcT const c1 = 1;
676 static CalcT const c2 = 2;
677 static CalcT const c4 = 4;
678
679 bool is_forward = true;
680 CalcT cos_a1_i1 = plane1.cos_angle_between(a1v, i1, is_forward);
681 dist_a1_i1 = -cos_a1_i1 + c1; // [0, 2] representing [0, pi]
682 if (! is_forward) // left or right of a1 on a
683 {
684 dist_a1_i1 = -dist_a1_i1; // [0, 2] -> [0, -2] representing [0, -pi]
685 }
686 if (dist_a1_i1 <= -c2) // <= -pi
687 {
688 dist_a1_i1 += c4; // += 2pi
689 }
690 }
691 /*
692 template <typename Vec3d, typename Plane, typename CalcT>
693 static inline void calculate_dists(Vec3d const& a1v, // in
694 Vec3d const& a2v, // in
695 Plane const& plane1, // in
696 Vec3d const& i1, // in
697 CalcT& dist_a1_a2, // out
698 CalcT& dist_a1_i1) // out
699 {
700 calculate_dist(a1v, a2v, plane1, dist_a1_a2);
701 calculate_dist(a1v, a2v, plane1, i1, dist_a1_i1);
702 }
703 */
704 // the dist of the ip on the other side of the sphere
705 template <typename CalcT>
706 static inline CalcT dist_of_i2(CalcT const& dist_a1_i1)
707 {
708 CalcT const c2 = 2;
709 CalcT const c4 = 4;
710
711 CalcT dist_a1_i2 = dist_a1_i1 - c2; // dist_a1_i2 = dist_a1_i1 - pi;
712 if (dist_a1_i2 <= -c2) // <= -pi
713 {
714 dist_a1_i2 += c4; // += 2pi;
715 }
716 return dist_a1_i2;
717 }
718
719 template <typename CalcT>
720 static inline CalcT abs_distance(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1)
721 {
722 if (dist_a1_i1 < CalcT(0))
723 return -dist_a1_i1;
724 else if (dist_a1_i1 > dist_a1_a2)
725 return dist_a1_i1 - dist_a1_a2;
726 else
727 return CalcT(0);
728 }
729
730 template <typename CalcT>
731 static inline bool is_potentially_crossing(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1, // in
732 bool& is_on_a, bool& is_near_a1, bool& is_near_a2) // out
733 {
734 is_on_a = segment_ratio<CalcT>(dist_a1_i1, dist_a1_a2).on_segment();
735 is_near_a1 = is_near(dist_a1_i1);
736 is_near_a2 = is_near(dist_a1_a2 - dist_a1_i1);
737 return is_on_a || is_near_a1 || is_near_a2;
738 }
739
740 template <typename CalcT, typename P1, typename P2>
741 static inline bool is_endpoint_equal(CalcT const& dist,
742 P1 const& ai, P2 const& b1)
743 {
744 static CalcT const c0 = 0;
745 return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1));
746 }
747
748 template <typename CalcT>
749 static inline bool is_near(CalcT const& dist)
750 {
751 CalcT const small_number = CalcT(std::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
752 return math::abs(dist) <= small_number;
753 }
754
755 template <typename ProjCoord1, typename ProjCoord2>
756 static inline int position_value(ProjCoord1 const& ca1,
757 ProjCoord2 const& cb1,
758 ProjCoord2 const& cb2)
759 {
760 // S1x 0 1 2 3 4
761 // S2 |---------->
762 return math::equals(ca1, cb1) ? 1
763 : math::equals(ca1, cb2) ? 3
764 : cb1 < cb2 ?
765 ( ca1 < cb1 ? 0
766 : ca1 > cb2 ? 4
767 : 2 )
768 : ( ca1 > cb1 ? 0
769 : ca1 < cb2 ? 4
770 : 2 );
771 }
772
773 template <typename Point1, typename Point2>
774 static inline bool equals_point_point(Point1 const& point1, Point2 const& point2)
775 {
776 return strategy::within::spherical_point_point::apply(point1, point2);
777 }
778 };
779
780 struct spherical_segments_calc_policy
781 {
782 template <typename Point, typename Point3d>
783 static Point from_cart3d(Point3d const& point_3d)
784 {
785 return formula::cart3d_to_sph<Point>(point_3d);
786 }
787
788 template <typename Point3d, typename Point>
789 static Point3d to_cart3d(Point const& point)
790 {
791 return formula::sph_to_cart3d<Point3d>(point);
792 }
793
794 template <typename Point3d>
795 struct plane
796 {
797 typedef typename coordinate_type<Point3d>::type coord_t;
798
799 // not normalized
800 plane(Point3d const& p1, Point3d const& p2)
801 : normal(cross_product(p1, p2))
802 {}
803
804 int side_value(Point3d const& pt) const
805 {
806 return formula::sph_side_value(normal, pt);
807 }
808
809 static coord_t cos_angle_between(Point3d const& p1, Point3d const& p2)
810 {
811 return dot_product(p1, p2);
812 }
813
814 coord_t cos_angle_between(Point3d const& p1, Point3d const& p2, bool & is_forward) const
815 {
816 coord_t const c0 = 0;
817 is_forward = dot_product(normal, cross_product(p1, p2)) >= c0;
818 return dot_product(p1, p2);
819 }
820
821 Point3d normal;
822 };
823
824 template <typename Point3d>
825 static plane<Point3d> get_plane(Point3d const& p1, Point3d const& p2)
826 {
827 return plane<Point3d>(p1, p2);
828 }
829
830 template <typename Point3d>
831 static bool intersection_points(plane<Point3d> const& plane1,
832 plane<Point3d> const& plane2,
833 Point3d & ip1, Point3d & ip2)
834 {
835 typedef typename coordinate_type<Point3d>::type coord_t;
836
837 ip1 = cross_product(plane1.normal, plane2.normal);
838 // NOTE: the length should be greater than 0 at this point
839 // if the normals were not normalized and their dot product
840 // not checked before this function is called the length
841 // should be checked here (math::equals(len, c0))
842 coord_t const len = math::sqrt(dot_product(ip1, ip1));
843 geometry::detail::for_each_dimension<Point3d>([&](auto index)
844 {
845 coord_t const coord = get<index>(ip1) / len; // normalize
846 set<index>(ip1, coord);
847 set<index>(ip2, -coord);
848 });
849
850 return true;
851 }
852 };
853
854
855 template
856 <
857 typename CalculationType = void
858 >
859 struct spherical_segments
860 : ecef_segments
861 <
862 spherical_segments_calc_policy,
863 CalculationType
864 >
865 {};
866
867
868 #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
869 namespace services
870 {
871
872 /*template <typename CalculationType>
873 struct default_strategy<spherical_polar_tag, CalculationType>
874 {
875 typedef spherical_segments<CalculationType> type;
876 };*/
877
878 template <typename CalculationType>
879 struct default_strategy<spherical_equatorial_tag, CalculationType>
880 {
881 typedef spherical_segments<CalculationType> type;
882 };
883
884 template <typename CalculationType>
885 struct default_strategy<geographic_tag, CalculationType>
886 {
887 // NOTE: Spherical strategy returns the same result as the geographic one
888 // representing segments as great elliptic arcs. If the elliptic arcs are
889 // not great elliptic arcs (the origin not in the center of the coordinate
890 // system) then there may be problems with consistency of the side and
891 // intersection strategies.
892 typedef spherical_segments<CalculationType> type;
893 };
894
895 } // namespace services
896 #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
897
898
899 }} // namespace strategy::intersection
900
901
902 namespace strategy
903 {
904
905 namespace within { namespace services
906 {
907
908 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
909 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, spherical_tag, spherical_tag>
910 {
911 typedef strategy::intersection::spherical_segments<> type;
912 };
913
914 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
915 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, spherical_tag, spherical_tag>
916 {
917 typedef strategy::intersection::spherical_segments<> type;
918 };
919
920 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
921 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, spherical_tag, spherical_tag>
922 {
923 typedef strategy::intersection::spherical_segments<> type;
924 };
925
926 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
927 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, spherical_tag, spherical_tag>
928 {
929 typedef strategy::intersection::spherical_segments<> type;
930 };
931
932 }} // within::services
933
934 namespace covered_by { namespace services
935 {
936
937 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
938 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, spherical_tag, spherical_tag>
939 {
940 typedef strategy::intersection::spherical_segments<> type;
941 };
942
943 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
944 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, spherical_tag, spherical_tag>
945 {
946 typedef strategy::intersection::spherical_segments<> type;
947 };
948
949 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
950 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, spherical_tag, spherical_tag>
951 {
952 typedef strategy::intersection::spherical_segments<> type;
953 };
954
955 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
956 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, spherical_tag, spherical_tag>
957 {
958 typedef strategy::intersection::spherical_segments<> type;
959 };
960
961 }} // within::services
962
963 } // strategy
964
965
966 }} // namespace boost::geometry
967
968
969 #endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP