]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/math/constants/calculate_constants.hpp
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / boost / boost / math / constants / calculate_constants.hpp
1 // Copyright John Maddock 2010, 2012.
2 // Copyright Paul A. Bristow 2011, 2012.
3
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0. (See accompanying file
6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7
8 #ifndef BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
9 #define BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
10 #include <type_traits>
11
12 namespace boost{ namespace math{ namespace constants{ namespace detail{
13
14 template <class T>
15 template<int N>
16 inline T constant_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
17 {
18 BOOST_MATH_STD_USING
19
20 return ldexp(acos(T(0)), 1);
21
22 /*
23 // Although this code works well, it's usually more accurate to just call acos
24 // and access the number types own representation of PI which is usually calculated
25 // at slightly higher precision...
26
27 T result;
28 T a = 1;
29 T b;
30 T A(a);
31 T B = 0.5f;
32 T D = 0.25f;
33
34 T lim;
35 lim = boost::math::tools::epsilon<T>();
36
37 unsigned k = 1;
38
39 do
40 {
41 result = A + B;
42 result = ldexp(result, -2);
43 b = sqrt(B);
44 a += b;
45 a = ldexp(a, -1);
46 A = a * a;
47 B = A - result;
48 B = ldexp(B, 1);
49 result = A - B;
50 bool neg = boost::math::sign(result) < 0;
51 if(neg)
52 result = -result;
53 if(result <= lim)
54 break;
55 if(neg)
56 result = -result;
57 result = ldexp(result, k - 1);
58 D -= result;
59 ++k;
60 lim = ldexp(lim, 1);
61 }
62 while(true);
63
64 result = B / D;
65 return result;
66 */
67 }
68
69 template <class T>
70 template<int N>
71 inline T constant_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
72 {
73 return 2 * pi<T, policies::policy<policies::digits2<N> > >();
74 }
75
76 template <class T> // 2 / pi
77 template<int N>
78 inline T constant_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
79 {
80 return 2 / pi<T, policies::policy<policies::digits2<N> > >();
81 }
82
83 template <class T> // sqrt(2/pi)
84 template <int N>
85 inline T constant_root_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
86 {
87 BOOST_MATH_STD_USING
88 return sqrt((2 / pi<T, policies::policy<policies::digits2<N> > >()));
89 }
90
91 template <class T>
92 template<int N>
93 inline T constant_one_div_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
94 {
95 return 1 / two_pi<T, policies::policy<policies::digits2<N> > >();
96 }
97
98 template <class T>
99 template<int N>
100 inline T constant_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
101 {
102 BOOST_MATH_STD_USING
103 return sqrt(pi<T, policies::policy<policies::digits2<N> > >());
104 }
105
106 template <class T>
107 template<int N>
108 inline T constant_root_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
109 {
110 BOOST_MATH_STD_USING
111 return sqrt(pi<T, policies::policy<policies::digits2<N> > >() / 2);
112 }
113
114 template <class T>
115 template<int N>
116 inline T constant_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
117 {
118 BOOST_MATH_STD_USING
119 return sqrt(two_pi<T, policies::policy<policies::digits2<N> > >());
120 }
121
122 template <class T>
123 template<int N>
124 inline T constant_log_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
125 {
126 BOOST_MATH_STD_USING
127 return log(root_two_pi<T, policies::policy<policies::digits2<N> > >());
128 }
129
130 template <class T>
131 template<int N>
132 inline T constant_root_ln_four<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
133 {
134 BOOST_MATH_STD_USING
135 return sqrt(log(static_cast<T>(4)));
136 }
137
138 template <class T>
139 template<int N>
140 inline T constant_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
141 {
142 //
143 // Although we can clearly calculate this from first principles, this hooks into
144 // T's own notion of e, which hopefully will more accurate than one calculated to
145 // a few epsilon:
146 //
147 BOOST_MATH_STD_USING
148 return exp(static_cast<T>(1));
149 }
150
151 template <class T>
152 template<int N>
153 inline T constant_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
154 {
155 return static_cast<T>(1) / static_cast<T>(2);
156 }
157
158 template <class T>
159 template<int M>
160 inline T constant_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, M>)))
161 {
162 BOOST_MATH_STD_USING
163 //
164 // This is the method described in:
165 // "Some New Algorithms for High-Precision Computation of Euler's Constant"
166 // Richard P Brent and Edwin M McMillan.
167 // Mathematics of Computation, Volume 34, Number 149, Jan 1980, pages 305-312.
168 // See equation 17 with p = 2.
169 //
170 T n = 3 + (M ? (std::min)(M, tools::digits<T>()) : tools::digits<T>()) / 4;
171 T lim = M ? ldexp(T(1), 1 - (std::min)(M, tools::digits<T>())) : tools::epsilon<T>();
172 T lnn = log(n);
173 T term = 1;
174 T N = -lnn;
175 T D = 1;
176 T Hk = 0;
177 T one = 1;
178
179 for(unsigned k = 1;; ++k)
180 {
181 term *= n * n;
182 term /= k * k;
183 Hk += one / k;
184 N += term * (Hk - lnn);
185 D += term;
186
187 if(term < D * lim)
188 break;
189 }
190 return N / D;
191 }
192
193 template <class T>
194 template<int N>
195 inline T constant_euler_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
196 {
197 BOOST_MATH_STD_USING
198 return euler<T, policies::policy<policies::digits2<N> > >()
199 * euler<T, policies::policy<policies::digits2<N> > >();
200 }
201
202 template <class T>
203 template<int N>
204 inline T constant_one_div_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
205 {
206 BOOST_MATH_STD_USING
207 return static_cast<T>(1)
208 / euler<T, policies::policy<policies::digits2<N> > >();
209 }
210
211
212 template <class T>
213 template<int N>
214 inline T constant_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
215 {
216 BOOST_MATH_STD_USING
217 return sqrt(static_cast<T>(2));
218 }
219
220
221 template <class T>
222 template<int N>
223 inline T constant_root_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
224 {
225 BOOST_MATH_STD_USING
226 return sqrt(static_cast<T>(3));
227 }
228
229 template <class T>
230 template<int N>
231 inline T constant_half_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
232 {
233 BOOST_MATH_STD_USING
234 return sqrt(static_cast<T>(2)) / 2;
235 }
236
237 template <class T>
238 template<int N>
239 inline T constant_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
240 {
241 //
242 // Although there are good ways to calculate this from scratch, this hooks into
243 // T's own notion of log(2) which will hopefully be accurate to the full precision
244 // of T:
245 //
246 BOOST_MATH_STD_USING
247 return log(static_cast<T>(2));
248 }
249
250 template <class T>
251 template<int N>
252 inline T constant_ln_ten<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
253 {
254 BOOST_MATH_STD_USING
255 return log(static_cast<T>(10));
256 }
257
258 template <class T>
259 template<int N>
260 inline T constant_ln_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
261 {
262 BOOST_MATH_STD_USING
263 return log(log(static_cast<T>(2)));
264 }
265
266 template <class T>
267 template<int N>
268 inline T constant_third<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
269 {
270 BOOST_MATH_STD_USING
271 return static_cast<T>(1) / static_cast<T>(3);
272 }
273
274 template <class T>
275 template<int N>
276 inline T constant_twothirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
277 {
278 BOOST_MATH_STD_USING
279 return static_cast<T>(2) / static_cast<T>(3);
280 }
281
282 template <class T>
283 template<int N>
284 inline T constant_two_thirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
285 {
286 BOOST_MATH_STD_USING
287 return static_cast<T>(2) / static_cast<T>(3);
288 }
289
290 template <class T>
291 template<int N>
292 inline T constant_three_quarters<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
293 {
294 BOOST_MATH_STD_USING
295 return static_cast<T>(3) / static_cast<T>(4);
296 }
297
298 template <class T>
299 template<int N>
300 inline T constant_sixth<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
301 {
302 BOOST_MATH_STD_USING
303 return static_cast<T>(1) / static_cast<T>(6);
304 }
305
306 // Pi and related constants.
307 template <class T>
308 template<int N>
309 inline T constant_pi_minus_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
310 {
311 return pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(3);
312 }
313
314 template <class T>
315 template<int N>
316 inline T constant_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
317 {
318 return static_cast<T>(4) - pi<T, policies::policy<policies::digits2<N> > >();
319 }
320
321 template <class T>
322 template<int N>
323 inline T constant_exp_minus_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
324 {
325 BOOST_MATH_STD_USING
326 return exp(static_cast<T>(-0.5));
327 }
328
329 template <class T>
330 template<int N>
331 inline T constant_exp_minus_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
332 {
333 BOOST_MATH_STD_USING
334 return exp(static_cast<T>(-1.));
335 }
336
337 template <class T>
338 template<int N>
339 inline T constant_one_div_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
340 {
341 return static_cast<T>(1) / root_two<T, policies::policy<policies::digits2<N> > >();
342 }
343
344 template <class T>
345 template<int N>
346 inline T constant_one_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
347 {
348 return static_cast<T>(1) / root_pi<T, policies::policy<policies::digits2<N> > >();
349 }
350
351 template <class T>
352 template<int N>
353 inline T constant_one_div_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
354 {
355 return static_cast<T>(1) / root_two_pi<T, policies::policy<policies::digits2<N> > >();
356 }
357
358 template <class T>
359 template<int N>
360 inline T constant_root_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
361 {
362 BOOST_MATH_STD_USING
363 return sqrt(static_cast<T>(1) / pi<T, policies::policy<policies::digits2<N> > >());
364 }
365
366 template <class T>
367 template<int N>
368 inline T constant_four_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
369 {
370 BOOST_MATH_STD_USING
371 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(4) / static_cast<T>(3);
372 }
373
374 template <class T>
375 template<int N>
376 inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
377 {
378 BOOST_MATH_STD_USING
379 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2);
380 }
381
382 template <class T>
383 template<int N>
384 inline T constant_third_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
385 {
386 BOOST_MATH_STD_USING
387 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(3);
388 }
389
390 template <class T>
391 template<int N>
392 inline T constant_sixth_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
393 {
394 BOOST_MATH_STD_USING
395 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(6);
396 }
397
398 template <class T>
399 template<int N>
400 inline T constant_two_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
401 {
402 BOOST_MATH_STD_USING
403 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(2) / static_cast<T>(3);
404 }
405
406 template <class T>
407 template<int N>
408 inline T constant_three_quarters_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
409 {
410 BOOST_MATH_STD_USING
411 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(3) / static_cast<T>(4);
412 }
413
414 template <class T>
415 template<int N>
416 inline T constant_pi_pow_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
417 {
418 BOOST_MATH_STD_USING
419 return pow(pi<T, policies::policy<policies::digits2<N> > >(), e<T, policies::policy<policies::digits2<N> > >()); //
420 }
421
422 template <class T>
423 template<int N>
424 inline T constant_pi_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
425 {
426 BOOST_MATH_STD_USING
427 return pi<T, policies::policy<policies::digits2<N> > >()
428 * pi<T, policies::policy<policies::digits2<N> > >() ; //
429 }
430
431 template <class T>
432 template<int N>
433 inline T constant_pi_sqr_div_six<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
434 {
435 BOOST_MATH_STD_USING
436 return pi<T, policies::policy<policies::digits2<N> > >()
437 * pi<T, policies::policy<policies::digits2<N> > >()
438 / static_cast<T>(6); //
439 }
440
441 template <class T>
442 template<int N>
443 inline T constant_pi_cubed<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
444 {
445 BOOST_MATH_STD_USING
446 return pi<T, policies::policy<policies::digits2<N> > >()
447 * pi<T, policies::policy<policies::digits2<N> > >()
448 * pi<T, policies::policy<policies::digits2<N> > >()
449 ; //
450 }
451
452 template <class T>
453 template<int N>
454 inline T constant_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
455 {
456 BOOST_MATH_STD_USING
457 return pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3));
458 }
459
460 template <class T>
461 template<int N>
462 inline T constant_one_div_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
463 {
464 BOOST_MATH_STD_USING
465 return static_cast<T>(1)
466 / pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3));
467 }
468
469 // Euler's e
470
471 template <class T>
472 template<int N>
473 inline T constant_e_pow_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
474 {
475 BOOST_MATH_STD_USING
476 return pow(e<T, policies::policy<policies::digits2<N> > >(), pi<T, policies::policy<policies::digits2<N> > >()); //
477 }
478
479 template <class T>
480 template<int N>
481 inline T constant_root_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
482 {
483 BOOST_MATH_STD_USING
484 return sqrt(e<T, policies::policy<policies::digits2<N> > >());
485 }
486
487 template <class T>
488 template<int N>
489 inline T constant_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
490 {
491 BOOST_MATH_STD_USING
492 return log10(e<T, policies::policy<policies::digits2<N> > >());
493 }
494
495 template <class T>
496 template<int N>
497 inline T constant_one_div_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
498 {
499 BOOST_MATH_STD_USING
500 return static_cast<T>(1) /
501 log10(e<T, policies::policy<policies::digits2<N> > >());
502 }
503
504 // Trigonometric
505
506 template <class T>
507 template<int N>
508 inline T constant_degree<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
509 {
510 BOOST_MATH_STD_USING
511 return pi<T, policies::policy<policies::digits2<N> > >()
512 / static_cast<T>(180)
513 ; //
514 }
515
516 template <class T>
517 template<int N>
518 inline T constant_radian<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
519 {
520 BOOST_MATH_STD_USING
521 return static_cast<T>(180)
522 / pi<T, policies::policy<policies::digits2<N> > >()
523 ; //
524 }
525
526 template <class T>
527 template<int N>
528 inline T constant_sin_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
529 {
530 BOOST_MATH_STD_USING
531 return sin(static_cast<T>(1)) ; //
532 }
533
534 template <class T>
535 template<int N>
536 inline T constant_cos_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
537 {
538 BOOST_MATH_STD_USING
539 return cos(static_cast<T>(1)) ; //
540 }
541
542 template <class T>
543 template<int N>
544 inline T constant_sinh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
545 {
546 BOOST_MATH_STD_USING
547 return sinh(static_cast<T>(1)) ; //
548 }
549
550 template <class T>
551 template<int N>
552 inline T constant_cosh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
553 {
554 BOOST_MATH_STD_USING
555 return cosh(static_cast<T>(1)) ; //
556 }
557
558 template <class T>
559 template<int N>
560 inline T constant_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
561 {
562 BOOST_MATH_STD_USING
563 return (static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ; //
564 }
565
566 template <class T>
567 template<int N>
568 inline T constant_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
569 {
570 BOOST_MATH_STD_USING
571 return log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) );
572 }
573
574 template <class T>
575 template<int N>
576 inline T constant_one_div_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
577 {
578 BOOST_MATH_STD_USING
579 return static_cast<T>(1) /
580 log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) );
581 }
582
583 // Zeta
584
585 template <class T>
586 template<int N>
587 inline T constant_zeta_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
588 {
589 BOOST_MATH_STD_USING
590
591 return pi<T, policies::policy<policies::digits2<N> > >()
592 * pi<T, policies::policy<policies::digits2<N> > >()
593 /static_cast<T>(6);
594 }
595
596 template <class T>
597 template<int N>
598 inline T constant_zeta_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
599 {
600 // http://mathworld.wolfram.com/AperysConstant.html
601 // http://en.wikipedia.org/wiki/Mathematical_constant
602
603 // http://oeis.org/A002117/constant
604 //T zeta3("1.20205690315959428539973816151144999076"
605 // "4986292340498881792271555341838205786313"
606 // "09018645587360933525814619915");
607
608 //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915" A002117
609 // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00);
610 //"1.2020569031595942 double
611 // http://www.spaennare.se/SSPROG/ssnum.pdf // section 11, Algorithm for Apery's constant zeta(3).
612 // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50
613
614 // by Stefan Spannare September 19, 2007
615 // zeta(3) = 1/64 * sum
616 BOOST_MATH_STD_USING
617 T n_fact=static_cast<T>(1); // build n! for n = 0.
618 T sum = static_cast<double>(77); // Start with n = 0 case.
619 // for n = 0, (77/1) /64 = 1.203125
620 //double lim = std::numeric_limits<double>::epsilon();
621 T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>();
622 for(unsigned int n = 1; n < 40; ++n)
623 { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits.
624 //cout << "n = " << n << endl;
625 n_fact *= n; // n!
626 T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10
627 T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77
628 // int nn = (2 * n + 1);
629 // T d = factorial(nn); // inline factorial.
630 T d = 1;
631 for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1)
632 {
633 d *= i;
634 }
635 T den = d * d * d * d * d; // [(2n+1)!]^5
636 //cout << "den = " << den << endl;
637 T term = num/den;
638 if (n % 2 != 0)
639 { //term *= -1;
640 sum -= term;
641 }
642 else
643 {
644 sum += term;
645 }
646 //cout << "term = " << term << endl;
647 //cout << "sum/64 = " << sum/64 << endl;
648 if(abs(term) < lim)
649 {
650 break;
651 }
652 }
653 return sum / 64;
654 }
655
656 template <class T>
657 template<int N>
658 inline T constant_catalan<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
659 { // http://oeis.org/A006752/constant
660 //T c("0.915965594177219015054603514932384110774"
661 //"149374281672134266498119621763019776254769479356512926115106248574");
662
663 // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01);
664
665 // This is equation (entry) 31 from
666 // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm
667 // See also http://www.mpfr.org/algorithms.pdf
668 BOOST_MATH_STD_USING
669 T k_fact = 1;
670 T tk_fact = 1;
671 T sum = 1;
672 T term;
673 T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>();
674
675 for(unsigned k = 1;; ++k)
676 {
677 k_fact *= k;
678 tk_fact *= (2 * k) * (2 * k - 1);
679 term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1));
680 sum += term;
681 if(term < lim)
682 {
683 break;
684 }
685 }
686 return boost::math::constants::pi<T, boost::math::policies::policy<> >()
687 * log(2 + boost::math::constants::root_three<T, boost::math::policies::policy<> >())
688 / 8
689 + 3 * sum / 8;
690 }
691
692 namespace khinchin_detail{
693
694 template <class T>
695 T zeta_polynomial_series(T s, T sc, int digits)
696 {
697 BOOST_MATH_STD_USING
698 //
699 // This is algorithm 3 from:
700 //
701 // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein,
702 // Canadian Mathematical Society, Conference Proceedings, 2000.
703 // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf
704 //
705 BOOST_MATH_STD_USING
706 int n = (digits * 19) / 53;
707 T sum = 0;
708 T two_n = ldexp(T(1), n);
709 int ej_sign = 1;
710 for(int j = 0; j < n; ++j)
711 {
712 sum += ej_sign * -two_n / pow(T(j + 1), s);
713 ej_sign = -ej_sign;
714 }
715 T ej_sum = 1;
716 T ej_term = 1;
717 for(int j = n; j <= 2 * n - 1; ++j)
718 {
719 sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s);
720 ej_sign = -ej_sign;
721 ej_term *= 2 * n - j;
722 ej_term /= j - n + 1;
723 ej_sum += ej_term;
724 }
725 return -sum / (two_n * (1 - pow(T(2), sc)));
726 }
727
728 template <class T>
729 T khinchin(int digits)
730 {
731 BOOST_MATH_STD_USING
732 T sum = 0;
733 T term;
734 T lim = ldexp(T(1), 1-digits);
735 T factor = 0;
736 unsigned last_k = 1;
737 T num = 1;
738 for(unsigned n = 1;; ++n)
739 {
740 for(unsigned k = last_k; k <= 2 * n - 1; ++k)
741 {
742 factor += num / k;
743 num = -num;
744 }
745 last_k = 2 * n;
746 term = (zeta_polynomial_series(T(2 * n), T(1 - T(2 * n)), digits) - 1) * factor / n;
747 sum += term;
748 if(term < lim)
749 break;
750 }
751 return exp(sum / boost::math::constants::ln_two<T, boost::math::policies::policy<> >());
752 }
753
754 }
755
756 template <class T>
757 template<int N>
758 inline T constant_khinchin<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
759 {
760 int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>();
761 return khinchin_detail::khinchin<T>(n);
762 }
763
764 template <class T>
765 template<int N>
766 inline T constant_extreme_value_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
767 { // N[12 Sqrt[6] Zeta[3]/Pi^3, 1101]
768 BOOST_MATH_STD_USING
769 T ev(12 * sqrt(static_cast<T>(6)) * zeta_three<T, policies::policy<policies::digits2<N> > >()
770 / pi_cubed<T, policies::policy<policies::digits2<N> > >() );
771
772 //T ev(
773 //"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150"
774 //"1894272048688553376986765366075828644841024041679714157616857834895702411080704529137366329462558680"
775 //"2015498788776135705587959418756809080074611906006528647805347822929577145038743873949415294942796280"
776 //"0895597703063466053535550338267721294164578901640163603544404938283861127819804918174973533694090594"
777 //"3094963822672055237678432023017824416203652657301470473548274848068762500300316769691474974950757965"
778 //"8640779777748741897542093874605477776538884083378029488863880220988107155275203245233994097178778984"
779 //"3488995668362387892097897322246698071290011857605809901090220903955815127463328974447572119951192970"
780 //"3684453635456559086126406960279692862247058250100678008419431185138019869693206366891639436908462809"
781 //"9756051372711251054914491837034685476095423926553367264355374652153595857163724698198860485357368964"
782 //"3807049634423621246870868566707915720704996296083373077647528285782964567312903914752617978405994377"
783 //"9064157147206717895272199736902453130842229559980076472936976287378945035706933650987259357729800315");
784
785 return ev;
786 }
787
788 namespace detail{
789 //
790 // Calculation of the Glaisher constant depends upon calculating the
791 // derivative of the zeta function at 2, we can then use the relation:
792 // zeta'(2) = 1/6 pi^2 [euler + ln(2pi)-12ln(A)]
793 // To get the constant A.
794 // See equation 45 at http://mathworld.wolfram.com/RiemannZetaFunction.html.
795 //
796 // The derivative of the zeta function is computed by direct differentiation
797 // of the relation:
798 // (1-2^(1-s))zeta(s) = SUM(n=0, INF){ (-n)^n / (n+1)^s }
799 // Which gives us 2 slowly converging but alternating sums to compute,
800 // for this we use Algorithm 1 from "Convergent Acceleration of Alternating Series",
801 // Henri Cohen, Fernando Rodriguez Villegas and Don Zagier, Experimental Mathematics 9:1 (1999).
802 // See http://www.math.utexas.edu/users/villegas/publications/conv-accel.pdf
803 //
804 template <class T>
805 T zeta_series_derivative_2(unsigned digits)
806 {
807 // Derivative of the series part, evaluated at 2:
808 BOOST_MATH_STD_USING
809 int n = digits * 301 * 13 / 10000;
810 T d = pow(3 + sqrt(T(8)), n);
811 d = (d + 1 / d) / 2;
812 T b = -1;
813 T c = -d;
814 T s = 0;
815 for(int k = 0; k < n; ++k)
816 {
817 T a = -log(T(k+1)) / ((k+1) * (k+1));
818 c = b - c;
819 s = s + c * a;
820 b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1));
821 }
822 return s / d;
823 }
824
825 template <class T>
826 T zeta_series_2(unsigned digits)
827 {
828 // Series part of zeta at 2:
829 BOOST_MATH_STD_USING
830 int n = digits * 301 * 13 / 10000;
831 T d = pow(3 + sqrt(T(8)), n);
832 d = (d + 1 / d) / 2;
833 T b = -1;
834 T c = -d;
835 T s = 0;
836 for(int k = 0; k < n; ++k)
837 {
838 T a = T(1) / ((k + 1) * (k + 1));
839 c = b - c;
840 s = s + c * a;
841 b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1));
842 }
843 return s / d;
844 }
845
846 template <class T>
847 inline T zeta_series_lead_2()
848 {
849 // lead part at 2:
850 return 2;
851 }
852
853 template <class T>
854 inline T zeta_series_derivative_lead_2()
855 {
856 // derivative of lead part at 2:
857 return -2 * boost::math::constants::ln_two<T>();
858 }
859
860 template <class T>
861 inline T zeta_derivative_2(unsigned n)
862 {
863 // zeta derivative at 2:
864 return zeta_series_derivative_2<T>(n) * zeta_series_lead_2<T>()
865 + zeta_series_derivative_lead_2<T>() * zeta_series_2<T>(n);
866 }
867
868 } // namespace detail
869
870 template <class T>
871 template<int N>
872 inline T constant_glaisher<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
873 {
874
875 BOOST_MATH_STD_USING
876 typedef policies::policy<policies::digits2<N> > forwarding_policy;
877 int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>();
878 T v = detail::zeta_derivative_2<T>(n);
879 v *= 6;
880 v /= boost::math::constants::pi<T, forwarding_policy>() * boost::math::constants::pi<T, forwarding_policy>();
881 v -= boost::math::constants::euler<T, forwarding_policy>();
882 v -= log(2 * boost::math::constants::pi<T, forwarding_policy>());
883 v /= -12;
884 return exp(v);
885
886 /*
887 // from http://mpmath.googlecode.com/svn/data/glaisher.txt
888 // 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1))
889 // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12)
890 // with Euler-Maclaurin summation for zeta'(2).
891 T g(
892 "1.282427129100622636875342568869791727767688927325001192063740021740406308858826"
893 "46112973649195820237439420646120399000748933157791362775280404159072573861727522"
894 "14334327143439787335067915257366856907876561146686449997784962754518174312394652"
895 "76128213808180219264516851546143919901083573730703504903888123418813674978133050"
896 "93770833682222494115874837348064399978830070125567001286994157705432053927585405"
897 "81731588155481762970384743250467775147374600031616023046613296342991558095879293"
898 "36343887288701988953460725233184702489001091776941712153569193674967261270398013"
899 "52652668868978218897401729375840750167472114895288815996668743164513890306962645"
900 "59870469543740253099606800842447417554061490189444139386196089129682173528798629"
901 "88434220366989900606980888785849587494085307347117090132667567503310523405221054"
902 "14176776156308191919997185237047761312315374135304725819814797451761027540834943"
903 "14384965234139453373065832325673954957601692256427736926358821692159870775858274"
904 "69575162841550648585890834128227556209547002918593263079373376942077522290940187");
905
906 return g;
907 */
908 }
909
910 template <class T>
911 template<int N>
912 inline T constant_rayleigh_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
913 { // 1100 digits of the Rayleigh distribution skewness
914 // N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100]
915
916 BOOST_MATH_STD_USING
917 T rs(2 * root_pi<T, policies::policy<policies::digits2<N> > >()
918 * pi_minus_three<T, policies::policy<policies::digits2<N> > >()
919 / pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(3./2))
920 );
921 // 6.31110657818937138191899351544227779844042203134719497658094585692926819617473725459905027032537306794400047264,
922
923 //"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067"
924 //"9440004726436754739597525250317640394102954301685809920213808351450851396781817932734836994829371322"
925 //"5797376021347531983451654130317032832308462278373358624120822253764532674177325950686466133508511968"
926 //"2389168716630349407238090652663422922072397393006683401992961569208109477307776249225072042971818671"
927 //"4058887072693437217879039875871765635655476241624825389439481561152126886932506682176611183750503553"
928 //"1218982627032068396407180216351425758181396562859085306247387212297187006230007438534686340210168288"
929 //"8956816965453815849613622117088096547521391672977226658826566757207615552041767516828171274858145957"
930 //"6137539156656005855905288420585194082284972984285863898582313048515484073396332610565441264220790791"
931 //"0194897267890422924599776483890102027823328602965235306539844007677157873140562950510028206251529523"
932 //"7428049693650605954398446899724157486062545281504433364675815915402937209673727753199567661561209251"
933 //"4695589950526053470201635372590001578503476490223746511106018091907936826431407434894024396366284848"); ;
934 return rs;
935 }
936
937 template <class T>
938 template<int N>
939 inline T constant_rayleigh_kurtosis_excess<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
940 { // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
941 // Might provide and calculate this using pi_minus_four.
942 BOOST_MATH_STD_USING
943 return - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
944 * pi<T, policies::policy<policies::digits2<N> > >())
945 - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
946 /
947 ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))
948 * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)))
949 );
950 }
951
952 template <class T>
953 template<int N>
954 inline T constant_rayleigh_kurtosis<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
955 { // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
956 // Might provide and calculate this using pi_minus_four.
957 BOOST_MATH_STD_USING
958 return static_cast<T>(3) - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
959 * pi<T, policies::policy<policies::digits2<N> > >())
960 - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
961 /
962 ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))
963 * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)))
964 );
965 }
966
967 template <class T>
968 template<int N>
969 inline T constant_log2_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
970 {
971 return 1 / boost::math::constants::ln_two<T>();
972 }
973
974 template <class T>
975 template<int N>
976 inline T constant_quarter_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
977 {
978 return boost::math::constants::pi<T>() / 4;
979 }
980
981 template <class T>
982 template<int N>
983 inline T constant_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
984 {
985 return 1 / boost::math::constants::pi<T>();
986 }
987
988 template <class T>
989 template<int N>
990 inline T constant_two_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
991 {
992 return 2 * boost::math::constants::one_div_root_pi<T>();
993 }
994
995 #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900)
996 template <class T>
997 template<int N>
998 inline T constant_first_feigenbaum<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
999 {
1000 // We know the constant to 1018 decimal digits.
1001 // See: http://www.plouffe.fr/simon/constants/feigenbaum.txt
1002 // Also: https://oeis.org/A006890
1003 // N is in binary digits; so we multiply by log_2(10)
1004
1005 static_assert(N < 3.321*1018, "\nThe first Feigenbaum constant cannot be computed at runtime; it is too expensive. It is known to 1018 decimal digits; you must request less than that.");
1006 T alpha{"4.6692016091029906718532038204662016172581855774757686327456513430041343302113147371386897440239480138171659848551898151344086271420279325223124429888908908599449354632367134115324817142199474556443658237932020095610583305754586176522220703854106467494942849814533917262005687556659523398756038256372256480040951071283890611844702775854285419801113440175002428585382498335715522052236087250291678860362674527213399057131606875345083433934446103706309452019115876972432273589838903794946257251289097948986768334611626889116563123474460575179539122045562472807095202198199094558581946136877445617396074115614074243754435499204869180982648652368438702799649017397793425134723808737136211601860128186102056381818354097598477964173900328936171432159878240789776614391395764037760537119096932066998361984288981837003229412030210655743295550388845849737034727532121925706958414074661841981961006129640161487712944415901405467941800198133253378592493365883070459999938375411726563553016862529032210862320550634510679399023341675"};
1007 return alpha;
1008 }
1009
1010 template <class T>
1011 template<int N>
1012 inline T constant_plastic<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
1013 {
1014 using std::cbrt;
1015 using std::sqrt;
1016 return (cbrt(9-sqrt(T(69))) + cbrt(9+sqrt(T(69))))/cbrt(T(18));
1017 }
1018
1019
1020 template <class T>
1021 template<int N>
1022 inline T constant_gauss<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
1023 {
1024 using std::sqrt;
1025 T a = sqrt(T(2));
1026 T g = 1;
1027 const T scale = sqrt(std::numeric_limits<T>::epsilon())/512;
1028 while (a-g > scale*g)
1029 {
1030 T anp1 = (a + g)/2;
1031 g = sqrt(a*g);
1032 a = anp1;
1033 }
1034
1035 return 2/(a + g);
1036 }
1037
1038 template <class T>
1039 template<int N>
1040 inline T constant_dottie<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
1041 {
1042 // Error analysis: cos(x(1+d)) - x(1+d) = -(sin(x)+1)xd; plug in x = 0.739 gives -1.236d; take d as half an ulp gives the termination criteria we want.
1043 using std::cos;
1044 using std::abs;
1045 using std::sin;
1046 T x{".739085133215160641655312087673873404013411758900757464965680635773284654883547594599376106931766531849801246"};
1047 T residual = cos(x) - x;
1048 do {
1049 x += residual/(sin(x)+1);
1050 residual = cos(x) - x;
1051 } while(abs(residual) > std::numeric_limits<T>::epsilon());
1052 return x;
1053 }
1054
1055
1056 template <class T>
1057 template<int N>
1058 inline T constant_reciprocal_fibonacci<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
1059 {
1060 // Wikipedia says Gosper has deviced a faster algorithm for this, but I read the linked paper and couldn't see it!
1061 // In any case, k bits per iteration is fine, though it would be better to sum from smallest to largest.
1062 // That said, the condition number is unity, so it should be fine.
1063 T x0 = 1;
1064 T x1 = 1;
1065 T sum = 2;
1066 T diff = 1;
1067 while (diff > std::numeric_limits<T>::epsilon()) {
1068 T tmp = x1 + x0;
1069 diff = 1/tmp;
1070 sum += diff;
1071 x0 = x1;
1072 x1 = tmp;
1073 }
1074 return sum;
1075 }
1076
1077 template <class T>
1078 template<int N>
1079 inline T constant_laplace_limit<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant<int, N>)))
1080 {
1081 // If x is the exact root, then the approximate root is given by x(1+delta).
1082 // Plugging this into the equation for the Laplace limit gives the residual of approximately
1083 // 2.6389delta. Take delta as half an epsilon and give some leeway so we don't get caught in an infinite loop,
1084 // gives a termination condition as 2eps.
1085 using std::abs;
1086 using std::exp;
1087 using std::sqrt;
1088 T x{"0.66274341934918158097474209710925290705623354911502241752039253499097185308651127724965480259895818168"};
1089 T tmp = sqrt(1+x*x);
1090 T etmp = exp(tmp);
1091 T residual = x*exp(tmp) - 1 - tmp;
1092 T df = etmp -x/tmp + etmp*x*x/tmp;
1093 do {
1094 x -= residual/df;
1095 tmp = sqrt(1+x*x);
1096 etmp = exp(tmp);
1097 residual = x*exp(tmp) - 1 - tmp;
1098 df = etmp -x/tmp + etmp*x*x/tmp;
1099 } while(abs(residual) > 2*std::numeric_limits<T>::epsilon());
1100 return x;
1101 }
1102
1103 #endif
1104
1105 }
1106 }
1107 }
1108 } // namespaces
1109
1110 #endif // BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED