]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/math/constants/calculate_constants.hpp
update sources to v12.2.3
[ceph.git] / ceph / src / boost / boost / math / constants / calculate_constants.hpp
1 // Copyright John Maddock 2010, 2012.
2 // Copyright Paul A. Bristow 2011, 2012.
3
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0. (See accompanying file
6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7
8 #ifndef BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
9 #define BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
10
11 #include <boost/math/special_functions/trunc.hpp>
12
13 namespace boost{ namespace math{ namespace constants{ namespace detail{
14
15 template <class T>
16 template<int N>
17 inline T constant_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
18 {
19 BOOST_MATH_STD_USING
20
21 return ldexp(acos(T(0)), 1);
22
23 /*
24 // Although this code works well, it's usually more accurate to just call acos
25 // and access the number types own representation of PI which is usually calculated
26 // at slightly higher precision...
27
28 T result;
29 T a = 1;
30 T b;
31 T A(a);
32 T B = 0.5f;
33 T D = 0.25f;
34
35 T lim;
36 lim = boost::math::tools::epsilon<T>();
37
38 unsigned k = 1;
39
40 do
41 {
42 result = A + B;
43 result = ldexp(result, -2);
44 b = sqrt(B);
45 a += b;
46 a = ldexp(a, -1);
47 A = a * a;
48 B = A - result;
49 B = ldexp(B, 1);
50 result = A - B;
51 bool neg = boost::math::sign(result) < 0;
52 if(neg)
53 result = -result;
54 if(result <= lim)
55 break;
56 if(neg)
57 result = -result;
58 result = ldexp(result, k - 1);
59 D -= result;
60 ++k;
61 lim = ldexp(lim, 1);
62 }
63 while(true);
64
65 result = B / D;
66 return result;
67 */
68 }
69
70 template <class T>
71 template<int N>
72 inline T constant_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
73 {
74 return 2 * pi<T, policies::policy<policies::digits2<N> > >();
75 }
76
77 template <class T> // 2 / pi
78 template<int N>
79 inline T constant_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
80 {
81 return 2 / pi<T, policies::policy<policies::digits2<N> > >();
82 }
83
84 template <class T> // sqrt(2/pi)
85 template <int N>
86 inline T constant_root_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
87 {
88 BOOST_MATH_STD_USING
89 return sqrt((2 / pi<T, policies::policy<policies::digits2<N> > >()));
90 }
91
92 template <class T>
93 template<int N>
94 inline T constant_one_div_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
95 {
96 return 1 / two_pi<T, policies::policy<policies::digits2<N> > >();
97 }
98
99 template <class T>
100 template<int N>
101 inline T constant_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
102 {
103 BOOST_MATH_STD_USING
104 return sqrt(pi<T, policies::policy<policies::digits2<N> > >());
105 }
106
107 template <class T>
108 template<int N>
109 inline T constant_root_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
110 {
111 BOOST_MATH_STD_USING
112 return sqrt(pi<T, policies::policy<policies::digits2<N> > >() / 2);
113 }
114
115 template <class T>
116 template<int N>
117 inline T constant_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
118 {
119 BOOST_MATH_STD_USING
120 return sqrt(two_pi<T, policies::policy<policies::digits2<N> > >());
121 }
122
123 template <class T>
124 template<int N>
125 inline T constant_log_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
126 {
127 BOOST_MATH_STD_USING
128 return log(root_two_pi<T, policies::policy<policies::digits2<N> > >());
129 }
130
131 template <class T>
132 template<int N>
133 inline T constant_root_ln_four<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
134 {
135 BOOST_MATH_STD_USING
136 return sqrt(log(static_cast<T>(4)));
137 }
138
139 template <class T>
140 template<int N>
141 inline T constant_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
142 {
143 //
144 // Although we can clearly calculate this from first principles, this hooks into
145 // T's own notion of e, which hopefully will more accurate than one calculated to
146 // a few epsilon:
147 //
148 BOOST_MATH_STD_USING
149 return exp(static_cast<T>(1));
150 }
151
152 template <class T>
153 template<int N>
154 inline T constant_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
155 {
156 return static_cast<T>(1) / static_cast<T>(2);
157 }
158
159 template <class T>
160 template<int M>
161 inline T constant_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<M>))
162 {
163 BOOST_MATH_STD_USING
164 //
165 // This is the method described in:
166 // "Some New Algorithms for High-Precision Computation of Euler's Constant"
167 // Richard P Brent and Edwin M McMillan.
168 // Mathematics of Computation, Volume 34, Number 149, Jan 1980, pages 305-312.
169 // See equation 17 with p = 2.
170 //
171 T n = 3 + (M ? (std::min)(M, tools::digits<T>()) : tools::digits<T>()) / 4;
172 T lim = M ? ldexp(T(1), 1 - (std::min)(M, tools::digits<T>())) : tools::epsilon<T>();
173 T lnn = log(n);
174 T term = 1;
175 T N = -lnn;
176 T D = 1;
177 T Hk = 0;
178 T one = 1;
179
180 for(unsigned k = 1;; ++k)
181 {
182 term *= n * n;
183 term /= k * k;
184 Hk += one / k;
185 N += term * (Hk - lnn);
186 D += term;
187
188 if(term < D * lim)
189 break;
190 }
191 return N / D;
192 }
193
194 template <class T>
195 template<int N>
196 inline T constant_euler_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
197 {
198 BOOST_MATH_STD_USING
199 return euler<T, policies::policy<policies::digits2<N> > >()
200 * euler<T, policies::policy<policies::digits2<N> > >();
201 }
202
203 template <class T>
204 template<int N>
205 inline T constant_one_div_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
206 {
207 BOOST_MATH_STD_USING
208 return static_cast<T>(1)
209 / euler<T, policies::policy<policies::digits2<N> > >();
210 }
211
212
213 template <class T>
214 template<int N>
215 inline T constant_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
216 {
217 BOOST_MATH_STD_USING
218 return sqrt(static_cast<T>(2));
219 }
220
221
222 template <class T>
223 template<int N>
224 inline T constant_root_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
225 {
226 BOOST_MATH_STD_USING
227 return sqrt(static_cast<T>(3));
228 }
229
230 template <class T>
231 template<int N>
232 inline T constant_half_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
233 {
234 BOOST_MATH_STD_USING
235 return sqrt(static_cast<T>(2)) / 2;
236 }
237
238 template <class T>
239 template<int N>
240 inline T constant_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
241 {
242 //
243 // Although there are good ways to calculate this from scratch, this hooks into
244 // T's own notion of log(2) which will hopefully be accurate to the full precision
245 // of T:
246 //
247 BOOST_MATH_STD_USING
248 return log(static_cast<T>(2));
249 }
250
251 template <class T>
252 template<int N>
253 inline T constant_ln_ten<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
254 {
255 BOOST_MATH_STD_USING
256 return log(static_cast<T>(10));
257 }
258
259 template <class T>
260 template<int N>
261 inline T constant_ln_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
262 {
263 BOOST_MATH_STD_USING
264 return log(log(static_cast<T>(2)));
265 }
266
267 template <class T>
268 template<int N>
269 inline T constant_third<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
270 {
271 BOOST_MATH_STD_USING
272 return static_cast<T>(1) / static_cast<T>(3);
273 }
274
275 template <class T>
276 template<int N>
277 inline T constant_twothirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
278 {
279 BOOST_MATH_STD_USING
280 return static_cast<T>(2) / static_cast<T>(3);
281 }
282
283 template <class T>
284 template<int N>
285 inline T constant_two_thirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
286 {
287 BOOST_MATH_STD_USING
288 return static_cast<T>(2) / static_cast<T>(3);
289 }
290
291 template <class T>
292 template<int N>
293 inline T constant_three_quarters<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
294 {
295 BOOST_MATH_STD_USING
296 return static_cast<T>(3) / static_cast<T>(4);
297 }
298
299 template <class T>
300 template<int N>
301 inline T constant_pi_minus_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
302 {
303 return pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(3);
304 }
305
306 template <class T>
307 template<int N>
308 inline T constant_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
309 {
310 return static_cast<T>(4) - pi<T, policies::policy<policies::digits2<N> > >();
311 }
312
313 //template <class T>
314 //template<int N>
315 //inline T constant_pow23_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
316 //{
317 // BOOST_MATH_STD_USING
318 // return pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1.5));
319 //}
320
321 template <class T>
322 template<int N>
323 inline T constant_exp_minus_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
324 {
325 BOOST_MATH_STD_USING
326 return exp(static_cast<T>(-0.5));
327 }
328
329 // Pi
330 template <class T>
331 template<int N>
332 inline T constant_one_div_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
333 {
334 return static_cast<T>(1) / root_two<T, policies::policy<policies::digits2<N> > >();
335 }
336
337 template <class T>
338 template<int N>
339 inline T constant_one_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
340 {
341 return static_cast<T>(1) / root_pi<T, policies::policy<policies::digits2<N> > >();
342 }
343
344 template <class T>
345 template<int N>
346 inline T constant_one_div_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
347 {
348 return static_cast<T>(1) / root_two_pi<T, policies::policy<policies::digits2<N> > >();
349 }
350
351 template <class T>
352 template<int N>
353 inline T constant_root_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
354 {
355 BOOST_MATH_STD_USING
356 return sqrt(static_cast<T>(1) / pi<T, policies::policy<policies::digits2<N> > >());
357 }
358
359
360 template <class T>
361 template<int N>
362 inline T constant_four_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
363 {
364 BOOST_MATH_STD_USING
365 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(4) / static_cast<T>(3);
366 }
367
368 template <class T>
369 template<int N>
370 inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
371 {
372 BOOST_MATH_STD_USING
373 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2);
374 }
375
376
377 template <class T>
378 template<int N>
379 inline T constant_third_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
380 {
381 BOOST_MATH_STD_USING
382 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(3);
383 }
384
385 template <class T>
386 template<int N>
387 inline T constant_sixth_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
388 {
389 BOOST_MATH_STD_USING
390 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(6);
391 }
392
393 template <class T>
394 template<int N>
395 inline T constant_two_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
396 {
397 BOOST_MATH_STD_USING
398 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(2) / static_cast<T>(3);
399 }
400
401 template <class T>
402 template<int N>
403 inline T constant_three_quarters_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
404 {
405 BOOST_MATH_STD_USING
406 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(3) / static_cast<T>(4);
407 }
408
409 template <class T>
410 template<int N>
411 inline T constant_pi_pow_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
412 {
413 BOOST_MATH_STD_USING
414 return pow(pi<T, policies::policy<policies::digits2<N> > >(), e<T, policies::policy<policies::digits2<N> > >()); //
415 }
416
417 template <class T>
418 template<int N>
419 inline T constant_pi_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
420 {
421 BOOST_MATH_STD_USING
422 return pi<T, policies::policy<policies::digits2<N> > >()
423 * pi<T, policies::policy<policies::digits2<N> > >() ; //
424 }
425
426 template <class T>
427 template<int N>
428 inline T constant_pi_sqr_div_six<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
429 {
430 BOOST_MATH_STD_USING
431 return pi<T, policies::policy<policies::digits2<N> > >()
432 * pi<T, policies::policy<policies::digits2<N> > >()
433 / static_cast<T>(6); //
434 }
435
436
437 template <class T>
438 template<int N>
439 inline T constant_pi_cubed<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
440 {
441 BOOST_MATH_STD_USING
442 return pi<T, policies::policy<policies::digits2<N> > >()
443 * pi<T, policies::policy<policies::digits2<N> > >()
444 * pi<T, policies::policy<policies::digits2<N> > >()
445 ; //
446 }
447
448 template <class T>
449 template<int N>
450 inline T constant_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
451 {
452 BOOST_MATH_STD_USING
453 return pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3));
454 }
455
456 template <class T>
457 template<int N>
458 inline T constant_one_div_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
459 {
460 BOOST_MATH_STD_USING
461 return static_cast<T>(1)
462 / pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3));
463 }
464
465 // Euler's e
466
467 template <class T>
468 template<int N>
469 inline T constant_e_pow_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
470 {
471 BOOST_MATH_STD_USING
472 return pow(e<T, policies::policy<policies::digits2<N> > >(), pi<T, policies::policy<policies::digits2<N> > >()); //
473 }
474
475 template <class T>
476 template<int N>
477 inline T constant_root_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
478 {
479 BOOST_MATH_STD_USING
480 return sqrt(e<T, policies::policy<policies::digits2<N> > >());
481 }
482
483 template <class T>
484 template<int N>
485 inline T constant_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
486 {
487 BOOST_MATH_STD_USING
488 return log10(e<T, policies::policy<policies::digits2<N> > >());
489 }
490
491 template <class T>
492 template<int N>
493 inline T constant_one_div_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
494 {
495 BOOST_MATH_STD_USING
496 return static_cast<T>(1) /
497 log10(e<T, policies::policy<policies::digits2<N> > >());
498 }
499
500 // Trigonometric
501
502 template <class T>
503 template<int N>
504 inline T constant_degree<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
505 {
506 BOOST_MATH_STD_USING
507 return pi<T, policies::policy<policies::digits2<N> > >()
508 / static_cast<T>(180)
509 ; //
510 }
511
512 template <class T>
513 template<int N>
514 inline T constant_radian<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
515 {
516 BOOST_MATH_STD_USING
517 return static_cast<T>(180)
518 / pi<T, policies::policy<policies::digits2<N> > >()
519 ; //
520 }
521
522 template <class T>
523 template<int N>
524 inline T constant_sin_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
525 {
526 BOOST_MATH_STD_USING
527 return sin(static_cast<T>(1)) ; //
528 }
529
530 template <class T>
531 template<int N>
532 inline T constant_cos_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
533 {
534 BOOST_MATH_STD_USING
535 return cos(static_cast<T>(1)) ; //
536 }
537
538 template <class T>
539 template<int N>
540 inline T constant_sinh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
541 {
542 BOOST_MATH_STD_USING
543 return sinh(static_cast<T>(1)) ; //
544 }
545
546 template <class T>
547 template<int N>
548 inline T constant_cosh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
549 {
550 BOOST_MATH_STD_USING
551 return cosh(static_cast<T>(1)) ; //
552 }
553
554 template <class T>
555 template<int N>
556 inline T constant_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
557 {
558 BOOST_MATH_STD_USING
559 return (static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ; //
560 }
561
562 template <class T>
563 template<int N>
564 inline T constant_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
565 {
566 BOOST_MATH_STD_USING
567 //return log(phi<T, policies::policy<policies::digits2<N> > >()); // ???
568 return log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) );
569 }
570 template <class T>
571 template<int N>
572 inline T constant_one_div_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
573 {
574 BOOST_MATH_STD_USING
575 return static_cast<T>(1) /
576 log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) );
577 }
578
579 // Zeta
580
581 template <class T>
582 template<int N>
583 inline T constant_zeta_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
584 {
585 BOOST_MATH_STD_USING
586
587 return pi<T, policies::policy<policies::digits2<N> > >()
588 * pi<T, policies::policy<policies::digits2<N> > >()
589 /static_cast<T>(6);
590 }
591
592 template <class T>
593 template<int N>
594 inline T constant_zeta_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
595 {
596 // http://mathworld.wolfram.com/AperysConstant.html
597 // http://en.wikipedia.org/wiki/Mathematical_constant
598
599 // http://oeis.org/A002117/constant
600 //T zeta3("1.20205690315959428539973816151144999076"
601 // "4986292340498881792271555341838205786313"
602 // "09018645587360933525814619915");
603
604 //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915" A002117
605 // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00);
606 //"1.2020569031595942 double
607 // http://www.spaennare.se/SSPROG/ssnum.pdf // section 11, Algorithm for Apery's constant zeta(3).
608 // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50
609
610 // by Stefan Spannare September 19, 2007
611 // zeta(3) = 1/64 * sum
612 BOOST_MATH_STD_USING
613 T n_fact=static_cast<T>(1); // build n! for n = 0.
614 T sum = static_cast<double>(77); // Start with n = 0 case.
615 // for n = 0, (77/1) /64 = 1.203125
616 //double lim = std::numeric_limits<double>::epsilon();
617 T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>();
618 for(unsigned int n = 1; n < 40; ++n)
619 { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits.
620 //cout << "n = " << n << endl;
621 n_fact *= n; // n!
622 T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10
623 T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77
624 // int nn = (2 * n + 1);
625 // T d = factorial(nn); // inline factorial.
626 T d = 1;
627 for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1)
628 {
629 d *= i;
630 }
631 T den = d * d * d * d * d; // [(2n+1)!]^5
632 //cout << "den = " << den << endl;
633 T term = num/den;
634 if (n % 2 != 0)
635 { //term *= -1;
636 sum -= term;
637 }
638 else
639 {
640 sum += term;
641 }
642 //cout << "term = " << term << endl;
643 //cout << "sum/64 = " << sum/64 << endl;
644 if(abs(term) < lim)
645 {
646 break;
647 }
648 }
649 return sum / 64;
650 }
651
652 template <class T>
653 template<int N>
654 inline T constant_catalan<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
655 { // http://oeis.org/A006752/constant
656 //T c("0.915965594177219015054603514932384110774"
657 //"149374281672134266498119621763019776254769479356512926115106248574");
658
659 // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01);
660
661 // This is equation (entry) 31 from
662 // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm
663 // See also http://www.mpfr.org/algorithms.pdf
664 BOOST_MATH_STD_USING
665 T k_fact = 1;
666 T tk_fact = 1;
667 T sum = 1;
668 T term;
669 T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>();
670
671 for(unsigned k = 1;; ++k)
672 {
673 k_fact *= k;
674 tk_fact *= (2 * k) * (2 * k - 1);
675 term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1));
676 sum += term;
677 if(term < lim)
678 {
679 break;
680 }
681 }
682 return boost::math::constants::pi<T, boost::math::policies::policy<> >()
683 * log(2 + boost::math::constants::root_three<T, boost::math::policies::policy<> >())
684 / 8
685 + 3 * sum / 8;
686 }
687
688 namespace khinchin_detail{
689
690 template <class T>
691 T zeta_polynomial_series(T s, T sc, int digits)
692 {
693 BOOST_MATH_STD_USING
694 //
695 // This is algorithm 3 from:
696 //
697 // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein,
698 // Canadian Mathematical Society, Conference Proceedings, 2000.
699 // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf
700 //
701 BOOST_MATH_STD_USING
702 int n = (digits * 19) / 53;
703 T sum = 0;
704 T two_n = ldexp(T(1), n);
705 int ej_sign = 1;
706 for(int j = 0; j < n; ++j)
707 {
708 sum += ej_sign * -two_n / pow(T(j + 1), s);
709 ej_sign = -ej_sign;
710 }
711 T ej_sum = 1;
712 T ej_term = 1;
713 for(int j = n; j <= 2 * n - 1; ++j)
714 {
715 sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s);
716 ej_sign = -ej_sign;
717 ej_term *= 2 * n - j;
718 ej_term /= j - n + 1;
719 ej_sum += ej_term;
720 }
721 return -sum / (two_n * (1 - pow(T(2), sc)));
722 }
723
724 template <class T>
725 T khinchin(int digits)
726 {
727 BOOST_MATH_STD_USING
728 T sum = 0;
729 T term;
730 T lim = ldexp(T(1), 1-digits);
731 T factor = 0;
732 unsigned last_k = 1;
733 T num = 1;
734 for(unsigned n = 1;; ++n)
735 {
736 for(unsigned k = last_k; k <= 2 * n - 1; ++k)
737 {
738 factor += num / k;
739 num = -num;
740 }
741 last_k = 2 * n;
742 term = (zeta_polynomial_series(T(2 * n), T(1 - T(2 * n)), digits) - 1) * factor / n;
743 sum += term;
744 if(term < lim)
745 break;
746 }
747 return exp(sum / boost::math::constants::ln_two<T, boost::math::policies::policy<> >());
748 }
749
750 }
751
752 template <class T>
753 template<int N>
754 inline T constant_khinchin<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
755 {
756 int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>();
757 return khinchin_detail::khinchin<T>(n);
758 }
759
760 template <class T>
761 template<int N>
762 inline T constant_extreme_value_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
763 { // from e_float constants.cpp
764 // Mathematica: N[12 Sqrt[6] Zeta[3]/Pi^3, 1101]
765 BOOST_MATH_STD_USING
766 T ev(12 * sqrt(static_cast<T>(6)) * zeta_three<T, policies::policy<policies::digits2<N> > >()
767 / pi_cubed<T, policies::policy<policies::digits2<N> > >() );
768
769 //T ev(
770 //"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150"
771 //"1894272048688553376986765366075828644841024041679714157616857834895702411080704529137366329462558680"
772 //"2015498788776135705587959418756809080074611906006528647805347822929577145038743873949415294942796280"
773 //"0895597703063466053535550338267721294164578901640163603544404938283861127819804918174973533694090594"
774 //"3094963822672055237678432023017824416203652657301470473548274848068762500300316769691474974950757965"
775 //"8640779777748741897542093874605477776538884083378029488863880220988107155275203245233994097178778984"
776 //"3488995668362387892097897322246698071290011857605809901090220903955815127463328974447572119951192970"
777 //"3684453635456559086126406960279692862247058250100678008419431185138019869693206366891639436908462809"
778 //"9756051372711251054914491837034685476095423926553367264355374652153595857163724698198860485357368964"
779 //"3807049634423621246870868566707915720704996296083373077647528285782964567312903914752617978405994377"
780 //"9064157147206717895272199736902453130842229559980076472936976287378945035706933650987259357729800315");
781
782 return ev;
783 }
784
785 namespace detail{
786 //
787 // Calculation of the Glaisher constant depends upon calculating the
788 // derivative of the zeta function at 2, we can then use the relation:
789 // zeta'(2) = 1/6 pi^2 [euler + ln(2pi)-12ln(A)]
790 // To get the constant A.
791 // See equation 45 at http://mathworld.wolfram.com/RiemannZetaFunction.html.
792 //
793 // The derivative of the zeta function is computed by direct differentiation
794 // of the relation:
795 // (1-2^(1-s))zeta(s) = SUM(n=0, INF){ (-n)^n / (n+1)^s }
796 // Which gives us 2 slowly converging but alternating sums to compute,
797 // for this we use Algorithm 1 from "Convergent Acceleration of Alternating Series",
798 // Henri Cohen, Fernando Rodriguez Villegas and Don Zagier, Experimental Mathematics 9:1 (1999).
799 // See http://www.math.utexas.edu/users/villegas/publications/conv-accel.pdf
800 //
801 template <class T>
802 T zeta_series_derivative_2(unsigned digits)
803 {
804 // Derivative of the series part, evaluated at 2:
805 BOOST_MATH_STD_USING
806 int n = digits * 301 * 13 / 10000;
807 boost::math::itrunc((std::numeric_limits<T>::digits10 + 1) * 1.3);
808 T d = pow(3 + sqrt(T(8)), n);
809 d = (d + 1 / d) / 2;
810 T b = -1;
811 T c = -d;
812 T s = 0;
813 for(int k = 0; k < n; ++k)
814 {
815 T a = -log(T(k+1)) / ((k+1) * (k+1));
816 c = b - c;
817 s = s + c * a;
818 b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1));
819 }
820 return s / d;
821 }
822
823 template <class T>
824 T zeta_series_2(unsigned digits)
825 {
826 // Series part of zeta at 2:
827 BOOST_MATH_STD_USING
828 int n = digits * 301 * 13 / 10000;
829 T d = pow(3 + sqrt(T(8)), n);
830 d = (d + 1 / d) / 2;
831 T b = -1;
832 T c = -d;
833 T s = 0;
834 for(int k = 0; k < n; ++k)
835 {
836 T a = T(1) / ((k + 1) * (k + 1));
837 c = b - c;
838 s = s + c * a;
839 b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1));
840 }
841 return s / d;
842 }
843
844 template <class T>
845 inline T zeta_series_lead_2()
846 {
847 // lead part at 2:
848 return 2;
849 }
850
851 template <class T>
852 inline T zeta_series_derivative_lead_2()
853 {
854 // derivative of lead part at 2:
855 return -2 * boost::math::constants::ln_two<T>();
856 }
857
858 template <class T>
859 inline T zeta_derivative_2(unsigned n)
860 {
861 // zeta derivative at 2:
862 return zeta_series_derivative_2<T>(n) * zeta_series_lead_2<T>()
863 + zeta_series_derivative_lead_2<T>() * zeta_series_2<T>(n);
864 }
865
866 } // namespace detail
867
868 template <class T>
869 template<int N>
870 inline T constant_glaisher<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
871 {
872
873 BOOST_MATH_STD_USING
874 typedef policies::policy<policies::digits2<N> > forwarding_policy;
875 int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>();
876 T v = detail::zeta_derivative_2<T>(n);
877 v *= 6;
878 v /= boost::math::constants::pi<T, forwarding_policy>() * boost::math::constants::pi<T, forwarding_policy>();
879 v -= boost::math::constants::euler<T, forwarding_policy>();
880 v -= log(2 * boost::math::constants::pi<T, forwarding_policy>());
881 v /= -12;
882 return exp(v);
883
884 /*
885 // from http://mpmath.googlecode.com/svn/data/glaisher.txt
886 // 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1))
887 // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12)
888 // with Euler-Maclaurin summation for zeta'(2).
889 T g(
890 "1.282427129100622636875342568869791727767688927325001192063740021740406308858826"
891 "46112973649195820237439420646120399000748933157791362775280404159072573861727522"
892 "14334327143439787335067915257366856907876561146686449997784962754518174312394652"
893 "76128213808180219264516851546143919901083573730703504903888123418813674978133050"
894 "93770833682222494115874837348064399978830070125567001286994157705432053927585405"
895 "81731588155481762970384743250467775147374600031616023046613296342991558095879293"
896 "36343887288701988953460725233184702489001091776941712153569193674967261270398013"
897 "52652668868978218897401729375840750167472114895288815996668743164513890306962645"
898 "59870469543740253099606800842447417554061490189444139386196089129682173528798629"
899 "88434220366989900606980888785849587494085307347117090132667567503310523405221054"
900 "14176776156308191919997185237047761312315374135304725819814797451761027540834943"
901 "14384965234139453373065832325673954957601692256427736926358821692159870775858274"
902 "69575162841550648585890834128227556209547002918593263079373376942077522290940187");
903
904 return g;
905 */
906 }
907
908 template <class T>
909 template<int N>
910 inline T constant_rayleigh_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
911 { // From e_float
912 // 1100 digits of the Rayleigh distribution skewness
913 // Mathematica: N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100]
914
915 BOOST_MATH_STD_USING
916 T rs(2 * root_pi<T, policies::policy<policies::digits2<N> > >()
917 * pi_minus_three<T, policies::policy<policies::digits2<N> > >()
918 / pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(3./2))
919 );
920 // 6.31110657818937138191899351544227779844042203134719497658094585692926819617473725459905027032537306794400047264,
921
922 //"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067"
923 //"9440004726436754739597525250317640394102954301685809920213808351450851396781817932734836994829371322"
924 //"5797376021347531983451654130317032832308462278373358624120822253764532674177325950686466133508511968"
925 //"2389168716630349407238090652663422922072397393006683401992961569208109477307776249225072042971818671"
926 //"4058887072693437217879039875871765635655476241624825389439481561152126886932506682176611183750503553"
927 //"1218982627032068396407180216351425758181396562859085306247387212297187006230007438534686340210168288"
928 //"8956816965453815849613622117088096547521391672977226658826566757207615552041767516828171274858145957"
929 //"6137539156656005855905288420585194082284972984285863898582313048515484073396332610565441264220790791"
930 //"0194897267890422924599776483890102027823328602965235306539844007677157873140562950510028206251529523"
931 //"7428049693650605954398446899724157486062545281504433364675815915402937209673727753199567661561209251"
932 //"4695589950526053470201635372590001578503476490223746511106018091907936826431407434894024396366284848"); ;
933 return rs;
934 }
935
936 template <class T>
937 template<int N>
938 inline T constant_rayleigh_kurtosis_excess<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
939 { // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
940 // Might provide and calculate this using pi_minus_four.
941 BOOST_MATH_STD_USING
942 return - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
943 * pi<T, policies::policy<policies::digits2<N> > >())
944 - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
945 /
946 ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))
947 * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)))
948 );
949 }
950
951 template <class T>
952 template<int N>
953 inline T constant_rayleigh_kurtosis<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
954 { // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
955 // Might provide and calculate this using pi_minus_four.
956 BOOST_MATH_STD_USING
957 return static_cast<T>(3) - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
958 * pi<T, policies::policy<policies::digits2<N> > >())
959 - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
960 /
961 ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))
962 * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)))
963 );
964 }
965
966 }}}} // namespaces
967
968 #endif // BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED