]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/math/interpolators/barycentric_rational.hpp
update sources to v12.2.3
[ceph.git] / ceph / src / boost / boost / math / interpolators / barycentric_rational.hpp
1 /*
2 * Copyright Nick Thompson, 2017
3 * Use, modification and distribution are subject to the
4 * Boost Software License, Version 1.0. (See accompanying file
5 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 *
7 * Given N samples (t_i, y_i) which are irregularly spaced, this routine constructs an
8 * interpolant s which is constructed in O(N) time, occupies O(N) space, and can be evaluated in O(N) time.
9 * The interpolation is stable, unless one point is incredibly close to another, and the next point is incredibly far.
10 * The measure of this stability is the "local mesh ratio", which can be queried from the routine.
11 * Pictorially, the following t_i spacing is bad (has a high local mesh ratio)
12 * || | | | |
13 * and this t_i spacing is good (has a low local mesh ratio)
14 * | | | | | | | | | |
15 *
16 *
17 * If f is C^{d+2}, then the interpolant is O(h^(d+1)) accurate, where d is the interpolation order.
18 * A disadvantage of this interpolant is that it does not reproduce rational functions; for example, 1/(1+x^2) is not interpolated exactly.
19 *
20 * References:
21 * Floater, Michael S., and Kai Hormann. "Barycentric rational interpolation with no poles and high rates of approximation." Numerische Mathematik 107.2 (2007): 315-331.
22 * Press, William H., et al. "Numerical recipes third edition: the art of scientific computing." Cambridge University Press 32 (2007): 10013-2473.
23 */
24
25 #ifndef BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_HPP
26 #define BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_HPP
27
28 #include <memory>
29 #include <boost/math/interpolators/detail/barycentric_rational_detail.hpp>
30
31 namespace boost{ namespace math{
32
33 template<class Real>
34 class barycentric_rational
35 {
36 public:
37 barycentric_rational(const Real* const x, const Real* const y, size_t n, size_t approximation_order = 3);
38
39 template <class InputIterator1, class InputIterator2>
40 barycentric_rational(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order = 3, typename boost::disable_if_c<boost::is_integral<InputIterator2>::value>::type* = 0);
41
42 Real operator()(Real x) const;
43
44 private:
45 std::shared_ptr<detail::barycentric_rational_imp<Real>> m_imp;
46 };
47
48 template <class Real>
49 barycentric_rational<Real>::barycentric_rational(const Real* const x, const Real* const y, size_t n, size_t approximation_order):
50 m_imp(std::make_shared<detail::barycentric_rational_imp<Real>>(x, x + n, y, approximation_order))
51 {
52 return;
53 }
54
55 template <class Real>
56 template <class InputIterator1, class InputIterator2>
57 barycentric_rational<Real>::barycentric_rational(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order, typename boost::disable_if_c<boost::is_integral<InputIterator2>::value>::type*)
58 : m_imp(std::make_shared<detail::barycentric_rational_imp<Real>>(start_x, end_x, start_y, approximation_order))
59 {
60 }
61
62 template<class Real>
63 Real barycentric_rational<Real>::operator()(Real x) const
64 {
65 return m_imp->operator()(x);
66 }
67
68
69 }}
70 #endif