]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/math/interpolators/detail/cardinal_cubic_b_spline_detail.hpp
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / boost / boost / math / interpolators / detail / cardinal_cubic_b_spline_detail.hpp
1 // Copyright Nick Thompson, 2017
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt
5 // or copy at http://www.boost.org/LICENSE_1_0.txt)
6
7 #ifndef BOOST_MATH_INTERPOLATORS_CARDINAL_CUBIC_B_SPLINE_DETAIL_HPP
8 #define BOOST_MATH_INTERPOLATORS_CARDINAL_CUBIC_B_SPLINE_DETAIL_HPP
9
10 #include <limits>
11 #include <cmath>
12 #include <vector>
13 #include <memory>
14 #include <boost/math/constants/constants.hpp>
15 #include <boost/math/special_functions/fpclassify.hpp>
16 #include <boost/math/special_functions/trunc.hpp>
17
18 namespace boost{ namespace math{ namespace interpolators{ namespace detail{
19
20
21 template <class Real>
22 class cardinal_cubic_b_spline_imp
23 {
24 public:
25 // If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
26 // f[0] = f(a), f[length -1] = b, step_size = (b - a)/(length -1).
27 template <class BidiIterator>
28 cardinal_cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
29 Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
30 Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
31
32 Real operator()(Real x) const;
33
34 Real prime(Real x) const;
35
36 Real double_prime(Real x) const;
37
38 private:
39 std::vector<Real> m_beta;
40 Real m_h_inv;
41 Real m_a;
42 Real m_avg;
43 };
44
45
46
47 template <class Real>
48 Real b3_spline(Real x)
49 {
50 using std::abs;
51 Real absx = abs(x);
52 if (absx < 1)
53 {
54 Real y = 2 - absx;
55 Real z = 1 - absx;
56 return boost::math::constants::sixth<Real>()*(y*y*y - 4*z*z*z);
57 }
58 if (absx < 2)
59 {
60 Real y = 2 - absx;
61 return boost::math::constants::sixth<Real>()*y*y*y;
62 }
63 return static_cast<Real>(0);
64 }
65
66 template<class Real>
67 Real b3_spline_prime(Real x)
68 {
69 if (x < 0)
70 {
71 return -b3_spline_prime(-x);
72 }
73
74 if (x < 1)
75 {
76 return x*(3*boost::math::constants::half<Real>()*x - 2);
77 }
78 if (x < 2)
79 {
80 return -boost::math::constants::half<Real>()*(2 - x)*(2 - x);
81 }
82 return static_cast<Real>(0);
83 }
84
85 template<class Real>
86 Real b3_spline_double_prime(Real x)
87 {
88 if (x < 0)
89 {
90 return b3_spline_double_prime(-x);
91 }
92
93 if (x < 1)
94 {
95 return 3*x - 2;
96 }
97 if (x < 2)
98 {
99 return (2 - x);
100 }
101 return static_cast<Real>(0);
102 }
103
104
105 template <class Real>
106 template <class BidiIterator>
107 cardinal_cubic_b_spline_imp<Real>::cardinal_cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
108 Real left_endpoint_derivative, Real right_endpoint_derivative) : m_a(left_endpoint), m_avg(0)
109 {
110 using boost::math::constants::third;
111
112 std::size_t length = end_p - f;
113
114 if (length < 5)
115 {
116 if (boost::math::isnan(left_endpoint_derivative) || boost::math::isnan(right_endpoint_derivative))
117 {
118 throw std::logic_error("Interpolation using a cubic b spline with derivatives estimated at the endpoints requires at least 5 points.\n");
119 }
120 if (length < 3)
121 {
122 throw std::logic_error("Interpolation using a cubic b spline requires at least 3 points.\n");
123 }
124 }
125
126 if (boost::math::isnan(left_endpoint))
127 {
128 throw std::logic_error("Left endpoint is NAN; this is disallowed.\n");
129 }
130 if (left_endpoint + length*step_size >= (std::numeric_limits<Real>::max)())
131 {
132 throw std::logic_error("Right endpoint overflows the maximum representable number of the specified precision.\n");
133 }
134 if (step_size <= 0)
135 {
136 throw std::logic_error("The step size must be strictly > 0.\n");
137 }
138 // Storing the inverse of the stepsize does provide a measurable speedup.
139 // It's not huge, but nonetheless worthwhile.
140 m_h_inv = 1/step_size;
141
142 // Following Kress's notation, s'(a) = a1, s'(b) = b1
143 Real a1 = left_endpoint_derivative;
144 // See the finite-difference table on Wikipedia for reference on how
145 // to construct high-order estimates for one-sided derivatives:
146 // https://en.wikipedia.org/wiki/Finite_difference_coefficient#Forward_and_backward_finite_difference
147 // Here, we estimate then to O(h^4), as that is the maximum accuracy we could obtain from this method.
148 if (boost::math::isnan(a1))
149 {
150 // For simple functions (linear, quadratic, so on)
151 // almost all the error comes from derivative estimation.
152 // This does pairwise summation which gives us another digit of accuracy over naive summation.
153 Real t0 = 4*(f[1] + third<Real>()*f[3]);
154 Real t1 = -(25*third<Real>()*f[0] + f[4])/4 - 3*f[2];
155 a1 = m_h_inv*(t0 + t1);
156 }
157
158 Real b1 = right_endpoint_derivative;
159 if (boost::math::isnan(b1))
160 {
161 size_t n = length - 1;
162 Real t0 = 4*(f[n-3] + third<Real>()*f[n - 1]);
163 Real t1 = -(25*third<Real>()*f[n - 4] + f[n])/4 - 3*f[n - 2];
164
165 b1 = m_h_inv*(t0 + t1);
166 }
167
168 // s(x) = \sum \alpha_i B_{3}( (x- x_i - a)/h )
169 // Of course we must reindex from Kress's notation, since he uses negative indices which make C++ unhappy.
170 m_beta.resize(length + 2, std::numeric_limits<Real>::quiet_NaN());
171
172 // Since the splines have compact support, they decay to zero very fast outside the endpoints.
173 // This is often very annoying; we'd like to evaluate the interpolant a little bit outside the
174 // boundary [a,b] without massive error.
175 // A simple way to deal with this is just to subtract the DC component off the signal, so we need the average.
176 // This algorithm for computing the average is recommended in
177 // http://www.heikohoffmann.de/htmlthesis/node134.html
178 Real t = 1;
179 for (size_t i = 0; i < length; ++i)
180 {
181 if (boost::math::isnan(f[i]))
182 {
183 std::string err = "This function you are trying to interpolate is a nan at index " + std::to_string(i) + "\n";
184 throw std::logic_error(err);
185 }
186 m_avg += (f[i] - m_avg) / t;
187 t += 1;
188 }
189
190
191 // Now we must solve an almost-tridiagonal system, which requires O(N) operations.
192 // There are, in fact 5 diagonals, but they only differ from zero on the first and last row,
193 // so we can patch up the tridiagonal row reduction algorithm to deal with two special rows.
194 // See Kress, equations 8.41
195 // The the "tridiagonal" matrix is:
196 // 1 0 -1
197 // 1 4 1
198 // 1 4 1
199 // 1 4 1
200 // ....
201 // 1 4 1
202 // 1 0 -1
203 // Numerical estimate indicate that as N->Infinity, cond(A) -> 6.9, so this matrix is good.
204 std::vector<Real> rhs(length + 2, std::numeric_limits<Real>::quiet_NaN());
205 std::vector<Real> super_diagonal(length + 2, std::numeric_limits<Real>::quiet_NaN());
206
207 rhs[0] = -2*step_size*a1;
208 rhs[rhs.size() - 1] = -2*step_size*b1;
209
210 super_diagonal[0] = 0;
211
212 for(size_t i = 1; i < rhs.size() - 1; ++i)
213 {
214 rhs[i] = 6*(f[i - 1] - m_avg);
215 super_diagonal[i] = 1;
216 }
217
218
219 // One step of row reduction on the first row to patch up the 5-diagonal problem:
220 // 1 0 -1 | r0
221 // 1 4 1 | r1
222 // mapsto:
223 // 1 0 -1 | r0
224 // 0 4 2 | r1 - r0
225 // mapsto
226 // 1 0 -1 | r0
227 // 0 1 1/2| (r1 - r0)/4
228 super_diagonal[1] = 0.5;
229 rhs[1] = (rhs[1] - rhs[0])/4;
230
231 // Now do a tridiagonal row reduction the standard way, until just before the last row:
232 for (size_t i = 2; i < rhs.size() - 1; ++i)
233 {
234 Real diagonal = 4 - super_diagonal[i - 1];
235 rhs[i] = (rhs[i] - rhs[i - 1])/diagonal;
236 super_diagonal[i] /= diagonal;
237 }
238
239 // Now the last row, which is in the form
240 // 1 sd[n-3] 0 | rhs[n-3]
241 // 0 1 sd[n-2] | rhs[n-2]
242 // 1 0 -1 | rhs[n-1]
243 Real final_subdiag = -super_diagonal[rhs.size() - 3];
244 rhs[rhs.size() - 1] = (rhs[rhs.size() - 1] - rhs[rhs.size() - 3])/final_subdiag;
245 Real final_diag = -1/final_subdiag;
246 // Now we're here:
247 // 1 sd[n-3] 0 | rhs[n-3]
248 // 0 1 sd[n-2] | rhs[n-2]
249 // 0 1 final_diag | (rhs[n-1] - rhs[n-3])/diag
250
251 final_diag = final_diag - super_diagonal[rhs.size() - 2];
252 rhs[rhs.size() - 1] = rhs[rhs.size() - 1] - rhs[rhs.size() - 2];
253
254
255 // Back substitutions:
256 m_beta[rhs.size() - 1] = rhs[rhs.size() - 1]/final_diag;
257 for(size_t i = rhs.size() - 2; i > 0; --i)
258 {
259 m_beta[i] = rhs[i] - super_diagonal[i]*m_beta[i + 1];
260 }
261 m_beta[0] = m_beta[2] + rhs[0];
262 }
263
264 template<class Real>
265 Real cardinal_cubic_b_spline_imp<Real>::operator()(Real x) const
266 {
267 // See Kress, 8.40: Since B3 has compact support, we don't have to sum over all terms,
268 // just the (at most 5) whose support overlaps the argument.
269 Real z = m_avg;
270 Real t = m_h_inv*(x - m_a) + 1;
271
272 using std::max;
273 using std::min;
274 using std::ceil;
275 using std::floor;
276
277 size_t k_min = static_cast<size_t>((max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2))));
278 size_t k_max = static_cast<size_t>((max)((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))), 0l));
279
280 for (size_t k = k_min; k <= k_max; ++k)
281 {
282 z += m_beta[k]*b3_spline(t - k);
283 }
284
285 return z;
286 }
287
288 template<class Real>
289 Real cardinal_cubic_b_spline_imp<Real>::prime(Real x) const
290 {
291 Real z = 0;
292 Real t = m_h_inv*(x - m_a) + 1;
293
294 using std::max;
295 using std::min;
296 using std::ceil;
297 using std::floor;
298
299 size_t k_min = static_cast<size_t>((max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2))));
300 size_t k_max = static_cast<size_t>((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))));
301
302 for (size_t k = k_min; k <= k_max; ++k)
303 {
304 z += m_beta[k]*b3_spline_prime(t - k);
305 }
306 return z*m_h_inv;
307 }
308
309 template<class Real>
310 Real cardinal_cubic_b_spline_imp<Real>::double_prime(Real x) const
311 {
312 Real z = 0;
313 Real t = m_h_inv*(x - m_a) + 1;
314
315 using std::max;
316 using std::min;
317 using std::ceil;
318 using std::floor;
319
320 size_t k_min = static_cast<size_t>((max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2))));
321 size_t k_max = static_cast<size_t>((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))));
322
323 for (size_t k = k_min; k <= k_max; ++k)
324 {
325 z += m_beta[k]*b3_spline_double_prime(t - k);
326 }
327 return z*m_h_inv*m_h_inv;
328 }
329
330 }}}}
331 #endif