]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/math/interpolators/detail/cubic_b_spline_detail.hpp
update sources to v12.2.3
[ceph.git] / ceph / src / boost / boost / math / interpolators / detail / cubic_b_spline_detail.hpp
1 // Copyright Nick Thompson, 2017
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt
5 // or copy at http://www.boost.org/LICENSE_1_0.txt)
6
7 #ifndef CUBIC_B_SPLINE_DETAIL_HPP
8 #define CUBIC_B_SPLINE_DETAIL_HPP
9
10 #include <limits>
11 #include <cmath>
12 #include <vector>
13 #include <memory>
14 #include <boost/math/constants/constants.hpp>
15 #include <boost/math/special_functions/fpclassify.hpp>
16
17 namespace boost{ namespace math{ namespace detail{
18
19
20 template <class Real>
21 class cubic_b_spline_imp
22 {
23 public:
24 // If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
25 // f[0] = f(a), f[length -1] = b, step_size = (b - a)/(length -1).
26 template <class BidiIterator>
27 cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
28 Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
29 Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
30
31 Real operator()(Real x) const;
32
33 Real prime(Real x) const;
34
35 private:
36 std::vector<Real> m_beta;
37 Real m_h_inv;
38 Real m_a;
39 Real m_avg;
40 };
41
42
43
44 template <class Real>
45 Real b3_spline(Real x)
46 {
47 using std::abs;
48 Real absx = abs(x);
49 if (absx < 1)
50 {
51 Real y = 2 - absx;
52 Real z = 1 - absx;
53 return boost::math::constants::sixth<Real>()*(y*y*y - 4*z*z*z);
54 }
55 if (absx < 2)
56 {
57 Real y = 2 - absx;
58 return boost::math::constants::sixth<Real>()*y*y*y;
59 }
60 return (Real) 0;
61 }
62
63 template<class Real>
64 Real b3_spline_prime(Real x)
65 {
66 if (x < 0)
67 {
68 return -b3_spline_prime(-x);
69 }
70
71 if (x < 1)
72 {
73 return x*(3*boost::math::constants::half<Real>()*x - 2);
74 }
75 if (x < 2)
76 {
77 return -boost::math::constants::half<Real>()*(2 - x)*(2 - x);
78 }
79 return (Real) 0;
80 }
81
82
83 template <class Real>
84 template <class BidiIterator>
85 cubic_b_spline_imp<Real>::cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
86 Real left_endpoint_derivative, Real right_endpoint_derivative) : m_a(left_endpoint), m_avg(0)
87 {
88 using boost::math::constants::third;
89
90 std::size_t length = end_p - f;
91
92 if (length < 5)
93 {
94 if (boost::math::isnan(left_endpoint_derivative) || boost::math::isnan(right_endpoint_derivative))
95 {
96 throw std::logic_error("Interpolation using a cubic b spline with derivatives estimated at the endpoints requires at least 5 points.\n");
97 }
98 if (length < 3)
99 {
100 throw std::logic_error("Interpolation using a cubic b spline requires at least 3 points.\n");
101 }
102 }
103
104 if (boost::math::isnan(left_endpoint))
105 {
106 throw std::logic_error("Left endpoint is NAN; this is disallowed.\n");
107 }
108 if (left_endpoint + length*step_size >= (std::numeric_limits<Real>::max)())
109 {
110 throw std::logic_error("Right endpoint overflows the maximum representable number of the specified precision.\n");
111 }
112 if (step_size <= 0)
113 {
114 throw std::logic_error("The step size must be strictly > 0.\n");
115 }
116 // Storing the inverse of the stepsize does provide a measurable speedup.
117 // It's not huge, but nonetheless worthwhile.
118 m_h_inv = 1/step_size;
119
120 // Following Kress's notation, s'(a) = a1, s'(b) = b1
121 Real a1 = left_endpoint_derivative;
122 // See the finite-difference table on Wikipedia for reference on how
123 // to construct high-order estimates for one-sided derivatives:
124 // https://en.wikipedia.org/wiki/Finite_difference_coefficient#Forward_and_backward_finite_difference
125 // Here, we estimate then to O(h^4), as that is the maximum accuracy we could obtain from this method.
126 if (boost::math::isnan(a1))
127 {
128 // For simple functions (linear, quadratic, so on)
129 // almost all the error comes from derivative estimation.
130 // This does pairwise summation which gives us another digit of accuracy over naive summation.
131 Real t0 = 4*(f[1] + third<Real>()*f[3]);
132 Real t1 = -(25*third<Real>()*f[0] + f[4])/4 - 3*f[2];
133 a1 = m_h_inv*(t0 + t1);
134 }
135
136 Real b1 = right_endpoint_derivative;
137 if (boost::math::isnan(b1))
138 {
139 size_t n = length - 1;
140 Real t0 = 4*(f[n-3] + third<Real>()*f[n - 1]);
141 Real t1 = -(25*third<Real>()*f[n - 4] + f[n])/4 - 3*f[n - 2];
142
143 b1 = m_h_inv*(t0 + t1);
144 }
145
146 // s(x) = \sum \alpha_i B_{3}( (x- x_i - a)/h )
147 // Of course we must reindex from Kress's notation, since he uses negative indices which make C++ unhappy.
148 m_beta.resize(length + 2, std::numeric_limits<Real>::quiet_NaN());
149
150 // Since the splines have compact support, they decay to zero very fast outside the endpoints.
151 // This is often very annoying; we'd like to evaluate the interpolant a little bit outside the
152 // boundary [a,b] without massive error.
153 // A simple way to deal with this is just to subtract the DC component off the signal, so we need the average.
154 // This algorithm for computing the average is recommended in
155 // http://www.heikohoffmann.de/htmlthesis/node134.html
156 Real t = 1;
157 for (size_t i = 0; i < length; ++i)
158 {
159 if (boost::math::isnan(f[i]))
160 {
161 std::string err = "This function you are trying to interpolate is a nan at index " + std::to_string(i) + "\n";
162 throw std::logic_error(err);
163 }
164 m_avg += (f[i] - m_avg) / t;
165 t += 1;
166 }
167
168
169 // Now we must solve an almost-tridiagonal system, which requires O(N) operations.
170 // There are, in fact 5 diagonals, but they only differ from zero on the first and last row,
171 // so we can patch up the tridiagonal row reduction algorithm to deal with two special rows.
172 // See Kress, equations 8.41
173 // The the "tridiagonal" matrix is:
174 // 1 0 -1
175 // 1 4 1
176 // 1 4 1
177 // 1 4 1
178 // ....
179 // 1 4 1
180 // 1 0 -1
181 // Numerical estimate indicate that as N->Infinity, cond(A) -> 6.9, so this matrix is good.
182 std::vector<Real> rhs(length + 2, std::numeric_limits<Real>::quiet_NaN());
183 std::vector<Real> super_diagonal(length + 2, std::numeric_limits<Real>::quiet_NaN());
184
185 rhs[0] = -2*step_size*a1;
186 rhs[rhs.size() - 1] = -2*step_size*b1;
187
188 super_diagonal[0] = 0;
189
190 for(size_t i = 1; i < rhs.size() - 1; ++i)
191 {
192 rhs[i] = 6*(f[i - 1] - m_avg);
193 super_diagonal[i] = 1;
194 }
195
196
197 // One step of row reduction on the first row to patch up the 5-diagonal problem:
198 // 1 0 -1 | r0
199 // 1 4 1 | r1
200 // mapsto:
201 // 1 0 -1 | r0
202 // 0 4 2 | r1 - r0
203 // mapsto
204 // 1 0 -1 | r0
205 // 0 1 1/2| (r1 - r0)/4
206 super_diagonal[1] = 0.5;
207 rhs[1] = (rhs[1] - rhs[0])/4;
208
209 // Now do a tridiagonal row reduction the standard way, until just before the last row:
210 for (size_t i = 2; i < rhs.size() - 1; ++i)
211 {
212 Real diagonal = 4 - super_diagonal[i - 1];
213 rhs[i] = (rhs[i] - rhs[i - 1])/diagonal;
214 super_diagonal[i] /= diagonal;
215 }
216
217 // Now the last row, which is in the form
218 // 1 sd[n-3] 0 | rhs[n-3]
219 // 0 1 sd[n-2] | rhs[n-2]
220 // 1 0 -1 | rhs[n-1]
221 Real final_subdiag = -super_diagonal[rhs.size() - 3];
222 rhs[rhs.size() - 1] = (rhs[rhs.size() - 1] - rhs[rhs.size() - 3])/final_subdiag;
223 Real final_diag = -1/final_subdiag;
224 // Now we're here:
225 // 1 sd[n-3] 0 | rhs[n-3]
226 // 0 1 sd[n-2] | rhs[n-2]
227 // 0 1 final_diag | (rhs[n-1] - rhs[n-3])/diag
228
229 final_diag = final_diag - super_diagonal[rhs.size() - 2];
230 rhs[rhs.size() - 1] = rhs[rhs.size() - 1] - rhs[rhs.size() - 2];
231
232
233 // Back substitutions:
234 m_beta[rhs.size() - 1] = rhs[rhs.size() - 1]/final_diag;
235 for(size_t i = rhs.size() - 2; i > 0; --i)
236 {
237 m_beta[i] = rhs[i] - super_diagonal[i]*m_beta[i + 1];
238 }
239 m_beta[0] = m_beta[2] + rhs[0];
240 }
241
242 template<class Real>
243 Real cubic_b_spline_imp<Real>::operator()(Real x) const
244 {
245 // See Kress, 8.40: Since B3 has compact support, we don't have to sum over all terms,
246 // just the (at most 5) whose support overlaps the argument.
247 Real z = m_avg;
248 Real t = m_h_inv*(x - m_a) + 1;
249
250 using std::max;
251 using std::min;
252 using std::ceil;
253 using std::floor;
254
255 size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
256 size_t k_max = (size_t) (max)((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))), (long) 0);
257 for (size_t k = k_min; k <= k_max; ++k)
258 {
259 z += m_beta[k]*b3_spline(t - k);
260 }
261
262 return z;
263 }
264
265 template<class Real>
266 Real cubic_b_spline_imp<Real>::prime(Real x) const
267 {
268 Real z = 0;
269 Real t = m_h_inv*(x - m_a) + 1;
270
271 using std::max;
272 using std::min;
273 using std::ceil;
274 using std::floor;
275
276 size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
277 size_t k_max = (size_t) (min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2)));
278
279 for (size_t k = k_min; k <= k_max; ++k)
280 {
281 z += m_beta[k]*b3_spline_prime(t - k);
282 }
283 return z*m_h_inv;
284 }
285
286 }}}
287 #endif