]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/spirit/home/karma/numeric/detail/numeric_utils.hpp
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / boost / boost / spirit / home / karma / numeric / detail / numeric_utils.hpp
1 // Copyright (c) 2001-2011 Hartmut Kaiser
2 //
3 // Distributed under the Boost Software License, Version 1.0. (See accompanying
4 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 #if !defined(BOOST_SPIRIT_KARMA_NUMERIC_UTILS_FEB_23_2007_0841PM)
7 #define BOOST_SPIRIT_KARMA_NUMERIC_UTILS_FEB_23_2007_0841PM
8
9 #if defined(_MSC_VER)
10 #pragma once
11 #endif
12
13 #include <boost/config.hpp>
14 #include <boost/config/no_tr1/cmath.hpp>
15 #include <boost/limits.hpp>
16
17 #include <boost/type_traits/is_integral.hpp>
18 #include <boost/spirit/home/support/char_class.hpp>
19 #include <boost/spirit/home/support/unused.hpp>
20 #include <boost/spirit/home/support/numeric_traits.hpp>
21 #include <boost/spirit/home/support/detail/pow10.hpp>
22 #include <boost/spirit/home/karma/detail/generate_to.hpp>
23 #include <boost/spirit/home/karma/detail/string_generate.hpp>
24
25 #include <boost/core/cmath.hpp>
26
27 ///////////////////////////////////////////////////////////////////////////////
28 //
29 // The value BOOST_KARMA_NUMERICS_LOOP_UNROLL specifies, how to unroll the
30 // integer string generation loop (see below).
31 //
32 // Set the value to some integer in between 0 (no unrolling) and the
33 // largest expected generated integer string length (complete unrolling).
34 // If not specified, this value defaults to 6.
35 //
36 ///////////////////////////////////////////////////////////////////////////////
37 #if !defined(BOOST_KARMA_NUMERICS_LOOP_UNROLL)
38 #define BOOST_KARMA_NUMERICS_LOOP_UNROLL 6
39 #endif
40
41 #if BOOST_KARMA_NUMERICS_LOOP_UNROLL < 0
42 #error "Please set the BOOST_KARMA_NUMERICS_LOOP_UNROLL to a non-negative value!"
43 #endif
44
45 namespace boost { namespace spirit { namespace traits
46 {
47 ///////////////////////////////////////////////////////////////////////
48 //
49 // return the absolute value from a given number, avoiding over- and
50 // underflow
51 //
52 ///////////////////////////////////////////////////////////////////////
53 template <typename T, typename Enable/* = void*/>
54 struct absolute_value
55 {
56 typedef T type;
57 static T call (T n)
58 {
59 // allow for ADL to find the correct overloads for fabs
60 using namespace std;
61 return fabs(n);
62 }
63 };
64
65 #define BOOST_SPIRIT_ABSOLUTE_VALUE(signedtype, unsignedtype) \
66 template <> \
67 struct absolute_value<signedtype> \
68 { \
69 typedef unsignedtype type; \
70 static type call(signedtype n) \
71 { \
72 /* implementation is well-defined for one's complement, */ \
73 /* two's complement, and signed magnitude architectures */ \
74 /* by the C++ Standard. [conv.integral] [expr.unary.op] */ \
75 return (n >= 0) ? static_cast<type>(n) \
76 : -static_cast<type>(n); \
77 } \
78 } \
79 /**/
80 #define BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsignedtype) \
81 template <> \
82 struct absolute_value<unsignedtype> \
83 { \
84 typedef unsignedtype type; \
85 static type call(unsignedtype n) \
86 { \
87 return n; \
88 } \
89 } \
90 /**/
91
92 #if defined(BOOST_MSVC)
93 # pragma warning(push)
94 // unary minus operator applied to unsigned type, result still unsigned
95 # pragma warning(disable: 4146)
96 #endif
97 BOOST_SPIRIT_ABSOLUTE_VALUE(signed char, unsigned char);
98 BOOST_SPIRIT_ABSOLUTE_VALUE(char, unsigned char);
99 BOOST_SPIRIT_ABSOLUTE_VALUE(short, unsigned short);
100 BOOST_SPIRIT_ABSOLUTE_VALUE(int, unsigned int);
101 BOOST_SPIRIT_ABSOLUTE_VALUE(long, unsigned long);
102 BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned char);
103 BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned short);
104 BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned int);
105 BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned long);
106 #ifdef BOOST_HAS_LONG_LONG
107 BOOST_SPIRIT_ABSOLUTE_VALUE(boost::long_long_type, boost::ulong_long_type);
108 BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(boost::ulong_long_type);
109 #endif
110 #if defined(BOOST_MSVC)
111 # pragma warning(pop)
112 #endif
113
114 #undef BOOST_SPIRIT_ABSOLUTE_VALUE
115 #undef BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED
116
117 template <>
118 struct absolute_value<float>
119 {
120 typedef float type;
121 static type call(float n)
122 {
123 return (std::fabs)(n);
124 }
125 };
126
127 template <>
128 struct absolute_value<double>
129 {
130 typedef double type;
131 static type call(double n)
132 {
133 return (std::fabs)(n);
134 }
135 };
136
137 template <>
138 struct absolute_value<long double>
139 {
140 typedef long double type;
141 static type call(long double n)
142 {
143 return (std::fabs)(n);
144 }
145 };
146
147 // specialization for pointers
148 template <typename T>
149 struct absolute_value<T*>
150 {
151 typedef std::size_t type;
152 static type call (T* p)
153 {
154 return std::size_t(p);
155 }
156 };
157
158 template <typename T>
159 inline typename absolute_value<T>::type
160 get_absolute_value(T n)
161 {
162 return absolute_value<T>::call(n);
163 }
164
165 ///////////////////////////////////////////////////////////////////////
166 template <typename T, typename Enable/* = void*/>
167 struct is_negative
168 {
169 static bool call(T n)
170 {
171 return (n < 0) ? true : false;
172 }
173 };
174
175 template <>
176 struct is_negative<float>
177 {
178 static bool call(float n)
179 {
180 return (core::signbit)(n) ? true : false;
181 }
182 };
183
184 template <>
185 struct is_negative<double>
186 {
187 static bool call(double n)
188 {
189 return (core::signbit)(n) ? true : false;
190 }
191 };
192
193 template <>
194 struct is_negative<long double>
195 {
196 static bool call(long double n)
197 {
198 return (core::signbit)(n) ? true : false;
199 }
200 };
201
202 template <typename T>
203 inline bool test_negative(T n)
204 {
205 return is_negative<T>::call(n);
206 }
207
208 ///////////////////////////////////////////////////////////////////////
209 template <typename T, typename Enable/* = void*/>
210 struct is_zero
211 {
212 static bool call(T n)
213 {
214 return (n == 0) ? true : false;
215 }
216 };
217
218 template <>
219 struct is_zero<float>
220 {
221 static bool call(float n)
222 {
223 return (core::fpclassify)(n) == core::fp_zero;
224 }
225 };
226
227 template <>
228 struct is_zero<double>
229 {
230 static bool call(double n)
231 {
232 return (core::fpclassify)(n) == core::fp_zero;
233 }
234 };
235
236 template <>
237 struct is_zero<long double>
238 {
239 static bool call(long double n)
240 {
241 return (core::fpclassify)(n) == core::fp_zero;
242 }
243 };
244
245 template <typename T>
246 inline bool test_zero(T n)
247 {
248 return is_zero<T>::call(n);
249 }
250
251 ///////////////////////////////////////////////////////////////////////
252 template <typename T, typename Enable/* = void*/>
253 struct is_nan
254 {
255 static bool call(T n)
256 {
257 // NaN numbers are not equal to anything
258 return (n != n) ? true : false;
259 }
260 };
261
262 template <>
263 struct is_nan<float>
264 {
265 static bool call(float n)
266 {
267 return (core::fpclassify)(n) == core::fp_nan;
268 }
269 };
270
271 template <>
272 struct is_nan<double>
273 {
274 static bool call(double n)
275 {
276 return (core::fpclassify)(n) == core::fp_nan;
277 }
278 };
279
280 template <>
281 struct is_nan<long double>
282 {
283 static bool call(long double n)
284 {
285 return (core::fpclassify)(n) == core::fp_nan;
286 }
287 };
288
289 template <typename T>
290 inline bool test_nan(T n)
291 {
292 return is_nan<T>::call(n);
293 }
294
295 ///////////////////////////////////////////////////////////////////////
296 template <typename T, typename Enable/* = void*/>
297 struct is_infinite
298 {
299 static bool call(T n)
300 {
301 return std::numeric_limits<T>::has_infinity
302 && n == std::numeric_limits<T>::infinity();
303 }
304 };
305
306 template <>
307 struct is_infinite<float>
308 {
309 static bool call(float n)
310 {
311 return (core::fpclassify)(n) == core::fp_infinite;
312 }
313 };
314
315 template <>
316 struct is_infinite<double>
317 {
318 static bool call(double n)
319 {
320 return (core::fpclassify)(n) == core::fp_infinite;
321 }
322 };
323
324 template <>
325 struct is_infinite<long double>
326 {
327 static bool call(long double n)
328 {
329 return (core::fpclassify)(n) == core::fp_infinite;
330 }
331 };
332
333 template <typename T>
334 inline bool test_infinite(T n)
335 {
336 return is_infinite<T>::call(n);
337 }
338
339 ///////////////////////////////////////////////////////////////////////
340 struct cast_to_long
341 {
342 static long call(float n, mpl::false_)
343 {
344 return static_cast<long>(std::floor(n));
345 }
346
347 static long call(double n, mpl::false_)
348 {
349 return static_cast<long>(std::floor(n));
350 }
351
352 static long call(long double n, mpl::false_)
353 {
354 return static_cast<long>(std::floor(n));
355 }
356
357 template <typename T>
358 static long call(T n, mpl::false_)
359 {
360 // allow for ADL to find the correct overload for floor and
361 // lround
362 using namespace std;
363 return lround(floor(n));
364 }
365
366 template <typename T>
367 static long call(T n, mpl::true_)
368 {
369 return static_cast<long>(n);
370 }
371
372 template <typename T>
373 static long call(T n)
374 {
375 return call(n, mpl::bool_<is_integral<T>::value>());
376 }
377 };
378
379 ///////////////////////////////////////////////////////////////////////
380 struct truncate_to_long
381 {
382 static long call(float n, mpl::false_)
383 {
384 return test_negative(n) ? static_cast<long>(std::ceil(n)) :
385 static_cast<long>(std::floor(n));
386 }
387
388 static long call(double n, mpl::false_)
389 {
390 return test_negative(n) ? static_cast<long>(std::ceil(n)) :
391 static_cast<long>(std::floor(n));
392 }
393
394 static long call(long double n, mpl::false_)
395 {
396 return test_negative(n) ? static_cast<long>(std::ceil(n)) :
397 static_cast<long>(std::floor(n));
398 }
399
400 template <typename T>
401 static long call(T n, mpl::false_)
402 {
403 // allow for ADL to find the correct overloads for ltrunc
404 using namespace std;
405 return ltrunc(n);
406 }
407
408 template <typename T>
409 static long call(T n, mpl::true_)
410 {
411 return static_cast<long>(n);
412 }
413
414 template <typename T>
415 static long call(T n)
416 {
417 return call(n, mpl::bool_<is_integral<T>::value>());
418 }
419 };
420
421 ///////////////////////////////////////////////////////////////////////
422 //
423 // Traits class for radix specific number conversion
424 //
425 // Convert a digit from binary representation to character
426 // representation:
427 //
428 // static int call(unsigned n);
429 //
430 ///////////////////////////////////////////////////////////////////////
431 namespace detail
432 {
433 template <typename CharEncoding, typename Tag, bool radix_less_than_10>
434 struct convert_digit
435 {
436 static int call(unsigned n)
437 {
438 if (n <= 9)
439 return n + '0';
440
441 using spirit::char_class::convert;
442 return convert<CharEncoding>::to(Tag(), n - 10 + 'a');
443 }
444 };
445
446 template <>
447 struct convert_digit<unused_type, unused_type, false>
448 {
449 static int call(unsigned n)
450 {
451 if (n <= 9)
452 return n + '0';
453 return n - 10 + 'a';
454 }
455 };
456
457 template <typename CharEncoding, typename Tag>
458 struct convert_digit<CharEncoding, Tag, true>
459 {
460 static int call(unsigned n)
461 {
462 return n + '0';
463 }
464 };
465 }
466
467 template <unsigned Radix, typename CharEncoding, typename Tag>
468 struct convert_digit
469 : detail::convert_digit<CharEncoding, Tag, (Radix <= 10) ? true : false>
470 {};
471
472 ///////////////////////////////////////////////////////////////////////
473 template <unsigned Radix>
474 struct divide
475 {
476 template <typename T>
477 static T call(T& n, mpl::true_)
478 {
479 return n / Radix;
480 }
481
482 template <typename T>
483 static T call(T& n, mpl::false_)
484 {
485 // Allow ADL to find the correct overload for floor
486 using namespace std;
487 return floor(n / Radix);
488 }
489
490 template <typename T>
491 static T call(T& n, T const&, int)
492 {
493 return call(n, mpl::bool_<is_integral<T>::value>());
494 }
495
496 template <typename T>
497 static T call(T& n)
498 {
499 return call(n, mpl::bool_<is_integral<T>::value>());
500 }
501 };
502
503 // specialization for division by 10
504 template <>
505 struct divide<10>
506 {
507 template <typename T>
508 static T call(T& n, T, int, mpl::true_)
509 {
510 return n / 10;
511 }
512
513 template <typename T>
514 static T call(T, T& num, int exp, mpl::false_)
515 {
516 // Allow ADL to find the correct overload for floor
517 using namespace std;
518 return floor(num / spirit::traits::pow10<T>(exp));
519 }
520
521 template <typename T>
522 static T call(T& n, T& num, int exp)
523 {
524 return call(n, num, exp, mpl::bool_<is_integral<T>::value>());
525 }
526
527 template <typename T>
528 static T call(T& n)
529 {
530 return call(n, n, 1, mpl::bool_<is_integral<T>::value>());
531 }
532 };
533
534 ///////////////////////////////////////////////////////////////////////
535 template <unsigned Radix>
536 struct remainder
537 {
538 template <typename T>
539 static long call(T n, mpl::true_)
540 {
541 // this cast is safe since we know the result is not larger
542 // than Radix
543 return static_cast<long>(n % Radix);
544 }
545
546 template <typename T>
547 static long call(T n, mpl::false_)
548 {
549 // Allow ADL to find the correct overload for fmod
550 using namespace std;
551 return cast_to_long::call(fmod(n, T(Radix)));
552 }
553
554 template <typename T>
555 static long call(T n)
556 {
557 return call(n, mpl::bool_<is_integral<T>::value>());
558 }
559 };
560 }}}
561
562 namespace boost { namespace spirit { namespace karma
563 {
564 ///////////////////////////////////////////////////////////////////////////
565 //
566 // The int_inserter template takes care of the integer to string
567 // conversion. If specified, the loop is unrolled for better performance.
568 //
569 // Set the value BOOST_KARMA_NUMERICS_LOOP_UNROLL to some integer in
570 // between 0 (no unrolling) and the largest expected generated integer
571 // string length (complete unrolling).
572 // If not specified, this value defaults to 6.
573 //
574 ///////////////////////////////////////////////////////////////////////////
575 #define BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX(z, x, data) \
576 if (!traits::test_zero(n)) { \
577 int ch_##x = radix_type::call(remainder_type::call(n)); \
578 n = divide_type::call(n, num, ++exp); \
579 /**/
580
581 #define BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX(z, x, n_rolls_sub1) \
582 *sink = char(BOOST_PP_CAT(ch_, BOOST_PP_SUB(n_rolls_sub1, x))); \
583 ++sink; \
584 } \
585 /**/
586
587 template <
588 unsigned Radix, typename CharEncoding = unused_type
589 , typename Tag = unused_type>
590 struct int_inserter
591 {
592 typedef traits::convert_digit<Radix, CharEncoding, Tag> radix_type;
593 typedef traits::divide<Radix> divide_type;
594 typedef traits::remainder<Radix> remainder_type;
595
596 template <typename OutputIterator, typename T>
597 static bool
598 call(OutputIterator& sink, T n, T& num, int exp)
599 {
600 // remainder_type::call returns n % Radix
601 int ch = radix_type::call(remainder_type::call(n));
602 n = divide_type::call(n, num, ++exp);
603
604 BOOST_PP_REPEAT(
605 BOOST_KARMA_NUMERICS_LOOP_UNROLL,
606 BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX, _);
607
608 if (!traits::test_zero(n))
609 call(sink, n, num, exp);
610
611 BOOST_PP_REPEAT(
612 BOOST_KARMA_NUMERICS_LOOP_UNROLL,
613 BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX,
614 BOOST_PP_DEC(BOOST_KARMA_NUMERICS_LOOP_UNROLL));
615
616 *sink = char(ch);
617 ++sink;
618 return true;
619 }
620
621 // Common code for integer string representations
622 template <typename OutputIterator, typename T>
623 static bool
624 call(OutputIterator& sink, T n)
625 {
626 return call(sink, n, n, 0);
627 }
628
629 private:
630 // helper function returning the biggest number representable either in
631 // a boost::long_long_type (if this does exist) or in a plain long
632 // otherwise
633 #if defined(BOOST_HAS_LONG_LONG)
634 typedef boost::long_long_type biggest_long_type;
635 #else
636 typedef long biggest_long_type;
637 #endif
638
639 static biggest_long_type max_long()
640 {
641 return (std::numeric_limits<biggest_long_type>::max)();
642 }
643
644 public:
645 // Specialization for doubles and floats, falling back to long integers
646 // for representable values. These specializations speed up formatting
647 // of floating point numbers considerably as all the required
648 // arithmetics will be executed using integral data types.
649 template <typename OutputIterator>
650 static bool
651 call(OutputIterator& sink, long double n)
652 {
653 if (std::fabs(n) < max_long())
654 {
655 biggest_long_type l((biggest_long_type)n);
656 return call(sink, l, l, 0);
657 }
658 return call(sink, n, n, 0);
659 }
660 template <typename OutputIterator>
661 static bool
662 call(OutputIterator& sink, double n)
663 {
664 if (std::fabs(n) < max_long())
665 {
666 biggest_long_type l((biggest_long_type)n);
667 return call(sink, l, l, 0);
668 }
669 return call(sink, n, n, 0);
670 }
671 template <typename OutputIterator>
672 static bool
673 call(OutputIterator& sink, float n)
674 {
675 if (std::fabs(n) < max_long())
676 {
677 biggest_long_type l((biggest_long_type)n);
678 return call(sink, l, l, 0);
679 }
680 return call(sink, n, n, 0);
681 }
682 };
683
684 #undef BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX
685 #undef BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX
686
687 ///////////////////////////////////////////////////////////////////////////
688 //
689 // The uint_inserter template takes care of the conversion of any integer
690 // to a string, while interpreting the number as an unsigned type.
691 //
692 ///////////////////////////////////////////////////////////////////////////
693 template <
694 unsigned Radix, typename CharEncoding = unused_type
695 , typename Tag = unused_type>
696 struct uint_inserter : int_inserter<Radix, CharEncoding, Tag>
697 {
698 typedef int_inserter<Radix, CharEncoding, Tag> base_type;
699
700 // Common code for integer string representations
701 template <typename OutputIterator, typename T>
702 static bool
703 call(OutputIterator& sink, T const& n)
704 {
705 typedef typename traits::absolute_value<T>::type type;
706 type un = type(n);
707 return base_type::call(sink, un, un, 0);
708 }
709 };
710
711 ///////////////////////////////////////////////////////////////////////////
712 //
713 // The sign_inserter template generates a sign for a given numeric value.
714 //
715 // The parameter forcesign allows to generate a sign even for positive
716 // numbers.
717 //
718 ///////////////////////////////////////////////////////////////////////////
719 struct sign_inserter
720 {
721 template <typename OutputIterator>
722 static bool
723 call_noforce(OutputIterator& sink, bool is_zero, bool is_negative,
724 bool sign_if_zero)
725 {
726 // generate a sign for negative numbers only
727 if (is_negative || (is_zero && sign_if_zero)) {
728 *sink = '-';
729 ++sink;
730 }
731 return true;
732 }
733
734 template <typename OutputIterator>
735 static bool
736 call_force(OutputIterator& sink, bool is_zero, bool is_negative,
737 bool sign_if_zero)
738 {
739 // generate a sign for all numbers except zero
740 if (!is_zero || sign_if_zero)
741 *sink = is_negative ? '-' : '+';
742 else
743 *sink = ' ';
744
745 ++sink;
746 return true;
747 }
748
749 template <typename OutputIterator>
750 static bool
751 call(OutputIterator& sink, bool is_zero, bool is_negative
752 , bool forcesign, bool sign_if_zero = false)
753 {
754 return forcesign ?
755 call_force(sink, is_zero, is_negative, sign_if_zero) :
756 call_noforce(sink, is_zero, is_negative, sign_if_zero);
757 }
758 };
759
760 ///////////////////////////////////////////////////////////////////////////
761 // These are helper functions for the real policies allowing to generate
762 // a single character and a string
763 ///////////////////////////////////////////////////////////////////////////
764 template <typename CharEncoding = unused_type, typename Tag = unused_type>
765 struct char_inserter
766 {
767 template <typename OutputIterator, typename Char>
768 static bool call(OutputIterator& sink, Char c)
769 {
770 return detail::generate_to(sink, c, CharEncoding(), Tag());
771 }
772 };
773
774 template <typename CharEncoding = unused_type, typename Tag = unused_type>
775 struct string_inserter
776 {
777 template <typename OutputIterator, typename String>
778 static bool call(OutputIterator& sink, String str)
779 {
780 return detail::string_generate(sink, str, CharEncoding(), Tag());
781 }
782 };
783
784 }}}
785
786 #endif