]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/test/execution_monitor.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / test / execution_monitor.hpp
1 // (C) Copyright Gennadiy Rozental 2001.
2 // (C) Copyright Beman Dawes 2001.
3 // Distributed under the Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
6
7 // See http://www.boost.org/libs/test for the library home page.
8 //
9 //!@file
10 //!@brief Defines public interface of the Execution Monitor and related classes
11 // ***************************************************************************
12
13 #ifndef BOOST_TEST_EXECUTION_MONITOR_HPP_071894GER
14 #define BOOST_TEST_EXECUTION_MONITOR_HPP_071894GER
15
16 // Boost.Test
17 #include <boost/test/detail/global_typedef.hpp>
18 #include <boost/test/detail/fwd_decl.hpp>
19 #include <boost/test/detail/throw_exception.hpp>
20
21 #include <boost/test/utils/class_properties.hpp>
22
23 // Boost
24 #include <boost/shared_ptr.hpp>
25 #include <boost/scoped_array.hpp>
26 #include <boost/type.hpp>
27 #include <boost/cstdlib.hpp>
28 #include <boost/function/function0.hpp>
29
30 #include <boost/test/detail/suppress_warnings.hpp>
31
32 #ifdef BOOST_SEH_BASED_SIGNAL_HANDLING
33
34 // for the FP constants and control routines
35 #include <float.h>
36
37 #ifndef EM_INVALID
38 #define EM_INVALID _EM_INVALID
39 #endif
40
41 #ifndef EM_DENORMAL
42 #define EM_DENORMAL _EM_DENORMAL
43 #endif
44
45 #ifndef EM_ZERODIVIDE
46 #define EM_ZERODIVIDE _EM_ZERODIVIDE
47 #endif
48
49 #ifndef EM_OVERFLOW
50 #define EM_OVERFLOW _EM_OVERFLOW
51 #endif
52
53 #ifndef EM_UNDERFLOW
54 #define EM_UNDERFLOW _EM_UNDERFLOW
55 #endif
56
57 #ifndef MCW_EM
58 #define MCW_EM _MCW_EM
59 #endif
60
61 #else // based on ISO C standard
62
63 #if !defined(BOOST_NO_FENV_H)
64 #include <boost/detail/fenv.hpp>
65 #endif
66
67 #endif
68
69 #if defined(BOOST_SEH_BASED_SIGNAL_HANDLING) && !defined(UNDER_CE)
70 //! Indicates tha the floating point exception handling is supported
71 //! through SEH
72 #define BOOST_TEST_FPE_SUPPORT_WITH_SEH__
73 #elif !defined(BOOST_SEH_BASED_SIGNAL_HANDLING) && !defined(UNDER_CE)
74 #if !defined(BOOST_NO_FENV_H) && !defined(BOOST_CLANG) && \
75 defined(__GLIBC__) && defined(__USE_GNU) && \
76 !(defined(__UCLIBC__) || defined(__nios2__) || defined(__microblaze__))
77 //! Indicates that floating point exception handling is supported for the
78 //! non SEH version of it, for the GLIBC extensions only
79 // see dicussions on the related topic: https://svn.boost.org/trac/boost/ticket/11756
80 #define BOOST_TEST_FPE_SUPPORT_WITH_GLIBC_EXTENSIONS__
81 #endif
82 #endif
83
84
85 // Additional macro documentations not being generated without this hack
86 #ifdef BOOST_TEST_DOXYGEN_DOC__
87
88 //! Disables the support of the alternative stack
89 //! during the compilation of the Boost.test framework. This is especially useful
90 //! in case it is not possible to detect the lack of alternative stack support for
91 //! your compiler (for instance, ESXi).
92 #define BOOST_TEST_DISABLE_ALT_STACK
93
94 #endif
95
96 //____________________________________________________________________________//
97
98 namespace boost {
99
100 /// @defgroup ExecutionMonitor Function Execution Monitor
101 /// @{
102 /// @section Intro Introduction
103 /// Sometimes we need to call a function and make sure that no user or system originated exceptions are being thrown by it. Uniform exception reporting
104 /// is also may be convenient. That's the purpose of the Boost.Test's Execution Monitor.
105 ///
106 /// The Execution Monitor is a lower-level component of the Boost Test Library. It is the base for implementing all other Boost.Test components, but also
107 /// can be used standalone to get controlled execution of error-prone functions with a uniform error notification. The Execution Monitor calls a user-supplied
108 /// function in a controlled environment, relieving users from messy error detection.
109 ///
110 /// The Execution Monitor usage is demonstrated in the example exec_mon_example.
111 ///
112 /// @section DesignRationale Design Rationale
113 ///
114 /// The Execution Monitor design assumes that it can be used when no (or almost no) memory available. Also the Execution Monitor
115 /// is intended to be portable to as many platforms as possible.
116 ///
117 /// @section UserGuide User's guide
118 /// The Execution Monitor is designed to solve the problem of executing potentially dangerous function that may result in any number of error conditions,
119 /// in monitored environment that should prevent any undesirable exceptions to propagate out of function call and produce consistent result report for all outcomes.
120 /// The Execution Monitor is able to produce informative report for all standard C++ exceptions and intrinsic types. All other exceptions are reported as unknown.
121 /// If you prefer different message for your exception type or need to perform any action, the Execution Monitor supports custom exception translators.
122 /// There are several other parameters of the monitored environment can be configured by setting appropriate properties of the Execution Monitor.
123 ///
124 /// All symbols in the Execution Monitor implementation are located in the namespace boost. To use the Execution Monitor you need to:
125 /// -# include @c boost/test/execution_monitor.hpp
126 /// -# Make an instance of execution_monitor.
127 /// -# Optionally register custom exception translators for exception classes which require special processing.
128 ///
129 /// @subsection FuncExec Monitored function execution
130 ///
131 /// The class execution_monitor can monitor functions with the following signatures:
132 /// - int ()
133 /// - void ()
134 ///
135 /// This function is expected to be self sufficient part of your application. You can't pass any arguments to this function directly. Instead you
136 /// should bind them into executable nullary function using bind function (either standard or boost variant). Neither you can return any other value,
137 /// but an integer result code. If necessary you can bind output parameters by reference or use some other more complicated nullary functor, which
138 /// maintains state. This includes class methods, static class methods etc.
139 ///
140 /// To start the monitored function, invoke the method execution_monitor::execute and pass the monitored function as an argument. If the call succeeds,
141 /// the method returns the result code produced by the monitored function. If any of the following conditions occur:
142 /// - Uncaught C++ exception
143 /// - Hardware or software signal, trap, or other exception
144 /// - Timeout reached
145 /// - Debug assert event occurred (under Microsoft Visual C++ or compatible compiler)
146 ///
147 /// then the method throws the execution_exception. The exception contains unique error_code value identifying the error condition and the detailed message
148 /// that can be used to report the error.
149 ///
150 /// @subsection Reporting Errors reporting and translation
151 ///
152 /// If you need to report an error inside monitored function execution you have to throw an exception. Do not use the execution_exception - it's not intended
153 /// to be used for this purpose. The simplest choice is to use one of the following C++ types as an exception:
154 /// - C string
155 /// - std:string
156 /// - any exception class in std::exception hierarchy
157 /// - boost::exception
158 ///
159 /// execution_monitor will catch and report these types of exceptions. If exception is thrown which is unknown to execution_monitor, it can only
160 /// report the fact of the exception. So in case if you prefer to use your own exception types or can't govern what exceptions are generated by monitored
161 /// function and would like to see proper error message in a report, execution_monitor can be configured with custom "translator" routine, which will have
162 /// a chance to either record the fact of the exception itself or translate it into one of standard exceptions and rethrow (or both). The translator routine
163 /// is registered per exception type and is invoked when exception of this class (or one inherited from it) is thrown inside monitored routine. You can
164 /// register as many independent translators as you like. See execution_monitor::register_exception_translator specification for requirements on translator
165 /// function.
166 ///
167 /// Finally, if you need to abort the monitored function execution without reporting any errors, you can throw an exception execution_aborted. As a result
168 /// the execution is aborted and zero result code is produced by the method execution_monitor::execute.
169 ///
170 /// @subsection Parameters Supported parameters
171 ///
172 /// The Execution Monitor behavior is configurable through the set of parameters (properties) associated with the instance of the monitor. See execution_monitor
173 /// specification for a list of supported parameters and their semantic.
174
175 // ************************************************************************** //
176 // ************** detail::translator_holder_base ************** //
177 // ************************************************************************** //
178
179 namespace detail {
180
181 class translator_holder_base;
182 typedef boost::shared_ptr<translator_holder_base> translator_holder_base_ptr;
183
184 class BOOST_TEST_DECL translator_holder_base {
185 protected:
186 typedef boost::unit_test::const_string const_string;
187 public:
188 // Constructor
189 translator_holder_base( translator_holder_base_ptr next, const_string tag )
190 : m_next( next )
191 , m_tag( std::string() + tag )
192 {
193 }
194
195 // Destructor
196 virtual ~translator_holder_base() {}
197
198 // translator holder interface
199 // invokes the function F inside the try/catch guarding against specific exception
200 virtual int operator()( boost::function<int ()> const& F ) = 0;
201
202 // erases specific translator holder from the chain
203 translator_holder_base_ptr erase( translator_holder_base_ptr this_, const_string tag )
204 {
205 if( m_next )
206 m_next = m_next->erase( m_next, tag );
207
208 return m_tag == tag ? m_next : this_;
209 }
210 #ifndef BOOST_NO_RTTI
211 virtual translator_holder_base_ptr erase( translator_holder_base_ptr this_, std::type_info const& ) = 0;
212 template<typename ExceptionType>
213 translator_holder_base_ptr erase( translator_holder_base_ptr this_, boost::type<ExceptionType>* = 0 )
214 {
215 if( m_next )
216 m_next = m_next->erase<ExceptionType>( m_next );
217
218 return erase( this_, typeid(ExceptionType) );
219 }
220 #endif
221
222 protected:
223 // Data members
224 translator_holder_base_ptr m_next;
225 std::string m_tag;
226 };
227
228 } // namespace detail
229
230 // ************************************************************************** //
231 /// @class execution_exception
232 /// @brief This class is used to report any kind of an failure during execution of a monitored function inside of execution_monitor
233 ///
234 /// The instance of this class is thrown out of execution_monitor::execute invocation when failure is detected. Regardless of a kind of failure occurred
235 /// the instance will provide a uniform way to catch and report it.
236 ///
237 /// One important design rationale for this class is that we should be ready to work after fatal memory corruptions or out of memory conditions. To facilitate
238 /// this class never allocates any memory and assumes that strings it refers to are either some constants or live in a some kind of persistent (preallocated) memory.
239 // ************************************************************************** //
240
241 class BOOST_SYMBOL_VISIBLE execution_exception {
242 typedef boost::unit_test::const_string const_string;
243 public:
244 /// These values are sometimes used as program return codes.
245 /// The particular values have been chosen to avoid conflicts with
246 /// commonly used program return codes: values < 100 are often user
247 /// assigned, values > 255 are sometimes used to report system errors.
248 /// Gaps in values allow for orderly expansion.
249 ///
250 /// @note(1) Only uncaught C++ exceptions are treated as errors.
251 /// If a function catches a C++ exception, it never reaches
252 /// the execution_monitor.
253 ///
254 /// The implementation decides what is a system_fatal_error and what is
255 /// just a system_exception. Fatal errors are so likely to have corrupted
256 /// machine state (like a stack overflow or addressing exception) that it
257 /// is unreasonable to continue execution.
258 ///
259 /// @note(2) These errors include Unix signals and Windows structured
260 /// exceptions. They are often initiated by hardware traps.
261 enum error_code {
262 no_error = 0, ///< for completeness only; never returned
263 user_error = 200, ///< user reported non-fatal error
264 cpp_exception_error = 205, ///< see note (1) above
265 system_error = 210, ///< see note (2) above
266 timeout_error = 215, ///< only detectable on certain platforms
267 user_fatal_error = 220, ///< user reported fatal error
268 system_fatal_error = 225 ///< see note (2) above
269 };
270
271 /// Simple model for the location of failure in a source code
272 struct BOOST_TEST_DECL location {
273 explicit location( char const* file_name = 0, size_t line_num = 0, char const* func = 0 );
274 explicit location( const_string file_name, size_t line_num = 0, char const* func = 0 );
275
276 const_string m_file_name; ///< File name
277 size_t m_line_num; ///< Line number
278 const_string m_function; ///< Function name
279 };
280
281 /// @name Constructors
282
283 /// Constructs instance based on message, location and error code
284
285 /// @param[in] ec error code
286 /// @param[in] what_msg error message
287 /// @param[in] location error location
288 execution_exception( error_code ec, const_string what_msg, location const& location );
289
290 /// @name Access methods
291
292 /// Exception error code
293 error_code code() const { return m_error_code; }
294 /// Exception message
295 const_string what() const { return m_what; }
296 /// Exception location
297 location const& where() const { return m_location; }
298 ///@}
299
300 private:
301 // Data members
302 error_code m_error_code;
303 const_string m_what;
304 location m_location;
305 }; // execution_exception
306
307 // ************************************************************************** //
308 /// @brief Function execution monitor
309
310 /// This class is used to uniformly detect and report an occurrence of several types of signals and exceptions, reducing various
311 /// errors to a uniform execution_exception that is returned to a caller.
312 ///
313 /// The executiom_monitor behavior can be customized through a set of public parameters (properties) associated with the execution_monitor instance.
314 /// All parameters are implemented as public unit_test::readwrite_property data members of the class execution_monitor.
315 // ************************************************************************** //
316
317 class BOOST_TEST_DECL execution_monitor {
318 typedef boost::unit_test::const_string const_string;
319 public:
320
321 /// Default constructor initializes all execution monitor properties
322 execution_monitor();
323
324 /// Should monitor catch system errors.
325 ///
326 /// The @em p_catch_system_errors property is a boolean flag (default value is true) specifying whether or not execution_monitor should trap system
327 /// errors/system level exceptions/signals, which would cause program to crash in a regular case (without execution_monitor).
328 /// Set this property to false, for example, if you wish to force coredump file creation. The Unit Test Framework provides a
329 /// runtime parameter @c \-\-catch_system_errors=yes to alter the behavior in monitored test cases.
330 unit_test::readwrite_property<bool> p_catch_system_errors;
331
332 /// Should monitor try to attach debugger in case of caught system error.
333 ///
334 /// The @em p_auto_start_dbg property is a boolean flag (default value is false) specifying whether or not execution_monitor should try to attach debugger
335 /// in case system error is caught.
336 unit_test::readwrite_property<bool> p_auto_start_dbg;
337
338
339 /// Specifies the seconds that elapse before a timer_error occurs.
340 ///
341 /// The @em p_timeout property is an integer timeout (in microseconds) for monitored function execution. Use this parameter to monitor code with possible deadlocks
342 /// or infinite loops. This feature is only available for some operating systems (not yet Microsoft Windows).
343 unit_test::readwrite_property<unsigned long int> p_timeout;
344
345 /// Should monitor use alternative stack for the signal catching.
346 ///
347 /// The @em p_use_alt_stack property is a boolean flag (default value is false) specifying whether or not execution_monitor should use an alternative stack
348 /// for the sigaction based signal catching. When enabled the signals are delivered to the execution_monitor on a stack different from current execution
349 /// stack, which is safer in case if it is corrupted by monitored function. For more details on alternative stack handling see appropriate manuals.
350 unit_test::readwrite_property<bool> p_use_alt_stack;
351
352 /// Should monitor try to detect hardware floating point exceptions (!= 0), and which specific exception to catch.
353 ///
354 /// The @em p_detect_fp_exceptions property is a boolean flag (default value is false) specifying whether or not execution_monitor should install hardware
355 /// traps for the floating point exception on platforms where it's supported.
356 unit_test::readwrite_property<unsigned> p_detect_fp_exceptions;
357
358
359 // @name Monitoring entry points
360
361 /// @brief Execution monitor entry point for functions returning integer value
362 ///
363 /// This method executes supplied function F inside a try/catch block and also may include other unspecified platform dependent error detection code.
364 ///
365 /// This method throws an execution_exception on an uncaught C++ exception, a hardware or software signal, trap, or other user exception.
366 ///
367 /// @note execute() doesn't consider it an error for F to return a non-zero value.
368 /// @param[in] F Function to monitor
369 /// @returns value returned by function call F().
370 /// @see vexecute
371 int execute( boost::function<int ()> const& F );
372
373 /// @brief Execution monitor entry point for functions returning void
374 ///
375 /// This method is semantically identical to execution_monitor::execute, but des't produce any result code.
376 /// @param[in] F Function to monitor
377 /// @see execute
378 void vexecute( boost::function<void ()> const& F );
379 // @}
380
381 // @name Exception translator registration
382
383 /// @brief Registers custom (user supplied) exception translator
384
385 /// This method template registers a translator for an exception type specified as a first template argument. For example
386 /// @code
387 /// void myExceptTr( MyException const& ex ) { /*do something with the exception here*/}
388 /// em.register_exception_translator<MyException>( myExceptTr );
389 /// @endcode
390 /// The translator should be any unary function/functor object which accepts MyException const&. This can be free standing function
391 /// or bound class method. The second argument is an optional string tag you can associate with this translator routine. The only reason
392 /// to specify the tag is if you plan to erase the translator eventually. This can be useful in scenario when you reuse the same
393 /// execution_monitor instance to monitor different routines and need to register a translator specific to the routine being monitored.
394 /// While it is possible to erase the translator based on an exception type it was registered for, tag string provides simpler way of doing this.
395 /// @tparam ExceptionType type of the exception we register a translator for
396 /// @tparam ExceptionTranslator type of the translator we register for this exception
397 /// @param[in] tr translator function object with the signature <em> void (ExceptionType const&)</em>
398 /// @param[in] tag tag associated with this translator
399 template<typename ExceptionType, typename ExceptionTranslator>
400 void register_exception_translator( ExceptionTranslator const& tr, const_string tag = const_string(), boost::type<ExceptionType>* = 0 );
401
402 /// @brief Erases custom exception translator based on a tag
403
404 /// Use the same tag as the one used during translator registration
405 /// @param[in] tag tag associated with translator you wants to erase
406 void erase_exception_translator( const_string tag )
407 {
408 m_custom_translators = m_custom_translators->erase( m_custom_translators, tag );
409 }
410 #ifndef BOOST_NO_RTTI
411 /// @brief Erases custom exception translator based on an exception type
412 ///
413 /// tparam ExceptionType Exception type for which you want to erase the translator
414 template<typename ExceptionType>
415 void erase_exception_translator( boost::type<ExceptionType>* = 0 )
416 {
417 m_custom_translators = m_custom_translators->erase<ExceptionType>( m_custom_translators );
418 }
419 //@}
420 #endif
421
422 private:
423 // implementation helpers
424 int catch_signals( boost::function<int ()> const& F );
425
426 // Data members
427 detail::translator_holder_base_ptr m_custom_translators;
428 boost::scoped_array<char> m_alt_stack;
429 }; // execution_monitor
430
431 // ************************************************************************** //
432 // ************** detail::translator_holder ************** //
433 // ************************************************************************** //
434
435 namespace detail {
436
437 template<typename ExceptionType, typename ExceptionTranslator>
438 class translator_holder : public translator_holder_base
439 {
440 public:
441 explicit translator_holder( ExceptionTranslator const& tr, translator_holder_base_ptr& next, const_string tag = const_string() )
442 : translator_holder_base( next, tag ), m_translator( tr ) {}
443
444 // translator holder interface
445 virtual int operator()( boost::function<int ()> const& F )
446 {
447 BOOST_TEST_I_TRY {
448 return m_next ? (*m_next)( F ) : F();
449 }
450 BOOST_TEST_I_CATCH( ExceptionType, e ) {
451 m_translator( e );
452 return boost::exit_exception_failure;
453 }
454 }
455 #ifndef BOOST_NO_RTTI
456 virtual translator_holder_base_ptr erase( translator_holder_base_ptr this_, std::type_info const& ti )
457 {
458 return ti == typeid(ExceptionType) ? m_next : this_;
459 }
460 #endif
461
462 private:
463 // Data members
464 ExceptionTranslator m_translator;
465 };
466
467 } // namespace detail
468
469 template<typename ExceptionType, typename ExceptionTranslator>
470 void
471 execution_monitor::register_exception_translator( ExceptionTranslator const& tr, const_string tag, boost::type<ExceptionType>* )
472 {
473 m_custom_translators.reset(
474 new detail::translator_holder<ExceptionType,ExceptionTranslator>( tr, m_custom_translators, tag ) );
475 }
476
477 // ************************************************************************** //
478 /// @class execution_aborted
479 /// @brief This is a trivial default constructible class. Use it to report graceful abortion of a monitored function execution.
480 // ************************************************************************** //
481
482 struct execution_aborted {};
483
484 // ************************************************************************** //
485 // ************** system_error ************** //
486 // ************************************************************************** //
487
488 class system_error {
489 public:
490 // Constructor
491 explicit system_error( char const* exp );
492
493 long const p_errno;
494 char const* const p_failed_exp;
495 };
496
497 //!@internal
498 #define BOOST_TEST_SYS_ASSERT( cond ) BOOST_TEST_I_ASSRT( cond, ::boost::system_error( BOOST_STRINGIZE( exp ) ) )
499
500 // ************************************************************************** //
501 // **************Floating point exception management interface ************** //
502 // ************************************************************************** //
503
504 namespace fpe {
505
506 enum masks {
507 BOOST_FPE_OFF = 0,
508
509 #if defined(BOOST_TEST_FPE_SUPPORT_WITH_SEH__) /* *** */
510 BOOST_FPE_DIVBYZERO = EM_ZERODIVIDE,
511 BOOST_FPE_INEXACT = EM_INEXACT,
512 BOOST_FPE_INVALID = EM_INVALID,
513 BOOST_FPE_OVERFLOW = EM_OVERFLOW,
514 BOOST_FPE_UNDERFLOW = EM_UNDERFLOW|EM_DENORMAL,
515
516 BOOST_FPE_ALL = MCW_EM,
517
518 #elif !defined(BOOST_TEST_FPE_SUPPORT_WITH_GLIBC_EXTENSIONS__)/* *** */
519 BOOST_FPE_DIVBYZERO = BOOST_FPE_OFF,
520 BOOST_FPE_INEXACT = BOOST_FPE_OFF,
521 BOOST_FPE_INVALID = BOOST_FPE_OFF,
522 BOOST_FPE_OVERFLOW = BOOST_FPE_OFF,
523 BOOST_FPE_UNDERFLOW = BOOST_FPE_OFF,
524 BOOST_FPE_ALL = BOOST_FPE_OFF,
525 #else /* *** */
526
527 #if defined(FE_DIVBYZERO)
528 BOOST_FPE_DIVBYZERO = FE_DIVBYZERO,
529 #else
530 BOOST_FPE_DIVBYZERO = BOOST_FPE_OFF,
531 #endif
532
533 #if defined(FE_INEXACT)
534 BOOST_FPE_INEXACT = FE_INEXACT,
535 #else
536 BOOST_FPE_INEXACT = BOOST_FPE_OFF,
537 #endif
538
539 #if defined(FE_INVALID)
540 BOOST_FPE_INVALID = FE_INVALID,
541 #else
542 BOOST_FPE_INVALID = BOOST_FPE_OFF,
543 #endif
544
545 #if defined(FE_OVERFLOW)
546 BOOST_FPE_OVERFLOW = FE_OVERFLOW,
547 #else
548 BOOST_FPE_OVERFLOW = BOOST_FPE_OFF,
549 #endif
550
551 #if defined(FE_UNDERFLOW)
552 BOOST_FPE_UNDERFLOW = FE_UNDERFLOW,
553 #else
554 BOOST_FPE_UNDERFLOW = BOOST_FPE_OFF,
555 #endif
556
557 #if defined(FE_ALL_EXCEPT)
558 BOOST_FPE_ALL = FE_ALL_EXCEPT,
559 #else
560 BOOST_FPE_ALL = BOOST_FPE_OFF,
561 #endif
562
563 #endif /* *** */
564 BOOST_FPE_INV = BOOST_FPE_ALL+1
565 };
566
567 //____________________________________________________________________________//
568
569 // return the previous set of enabled exceptions when successful, and BOOST_FPE_INV otherwise
570 unsigned BOOST_TEST_DECL enable( unsigned mask );
571 unsigned BOOST_TEST_DECL disable( unsigned mask );
572
573 //____________________________________________________________________________//
574
575 } // namespace fpe
576
577 ///@}
578
579 } // namespace boost
580
581
582 #include <boost/test/detail/enable_warnings.hpp>
583
584 #endif