]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/accumulators/include/boost/accumulators/statistics/weighted_p_square_quantile.hpp
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / accumulators / include / boost / accumulators / statistics / weighted_p_square_quantile.hpp
1 ///////////////////////////////////////////////////////////////////////////////
2 // weighted_p_square_quantile.hpp
3 //
4 // Copyright 2005 Daniel Egloff. Distributed under the Boost
5 // Software License, Version 1.0. (See accompanying file
6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7
8 #ifndef BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
9 #define BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
10
11 #include <cmath>
12 #include <functional>
13 #include <boost/array.hpp>
14 #include <boost/parameter/keyword.hpp>
15 #include <boost/mpl/placeholders.hpp>
16 #include <boost/type_traits/is_same.hpp>
17 #include <boost/accumulators/framework/accumulator_base.hpp>
18 #include <boost/accumulators/framework/extractor.hpp>
19 #include <boost/accumulators/numeric/functional.hpp>
20 #include <boost/accumulators/framework/parameters/sample.hpp>
21 #include <boost/accumulators/statistics_fwd.hpp>
22 #include <boost/accumulators/statistics/count.hpp>
23 #include <boost/accumulators/statistics/sum.hpp>
24 #include <boost/accumulators/statistics/parameters/quantile_probability.hpp>
25
26 namespace boost { namespace accumulators
27 {
28
29 namespace impl {
30 ///////////////////////////////////////////////////////////////////////////////
31 // weighted_p_square_quantile_impl
32 // single quantile estimation with weighted samples
33 /**
34 @brief Single quantile estimation with the \f$P^2\f$ algorithm for weighted samples
35
36 This version of the \f$P^2\f$ algorithm extends the \f$P^2\f$ algorithm to support weighted samples.
37 The \f$P^2\f$ algorithm estimates a quantile dynamically without storing samples. Instead of
38 storing the whole sample cumulative distribution, only five points (markers) are stored. The heights
39 of these markers are the minimum and the maximum of the samples and the current estimates of the
40 \f$(p/2)\f$-, \f$p\f$ - and \f$(1+p)/2\f$ -quantiles. Their positions are equal to the number
41 of samples that are smaller or equal to the markers. Each time a new sample is added, the
42 positions of the markers are updated and if necessary their heights are adjusted using a piecewise-
43 parabolic formula.
44
45 For further details, see
46
47 R. Jain and I. Chlamtac, The P^2 algorithm for dynamic calculation of quantiles and
48 histograms without storing observations, Communications of the ACM,
49 Volume 28 (October), Number 10, 1985, p. 1076-1085.
50
51 @param quantile_probability
52 */
53 template<typename Sample, typename Weight, typename Impl>
54 struct weighted_p_square_quantile_impl
55 : accumulator_base
56 {
57 typedef typename numeric::functional::multiplies<Sample, Weight>::result_type weighted_sample;
58 typedef typename numeric::functional::fdiv<weighted_sample, std::size_t>::result_type float_type;
59 typedef array<float_type, 5> array_type;
60 // for boost::result_of
61 typedef float_type result_type;
62
63 template<typename Args>
64 weighted_p_square_quantile_impl(Args const &args)
65 : p(is_same<Impl, for_median>::value ? 0.5 : args[quantile_probability | 0.5])
66 , heights()
67 , actual_positions()
68 , desired_positions()
69 {
70 }
71
72 template<typename Args>
73 void operator ()(Args const &args)
74 {
75 std::size_t cnt = count(args);
76
77 // accumulate 5 first samples
78 if (cnt <= 5)
79 {
80 this->heights[cnt - 1] = args[sample];
81
82 // In this initialization phase, actual_positions stores the weights of the
83 // initial samples that are needed at the end of the initialization phase to
84 // compute the correct initial positions of the markers.
85 this->actual_positions[cnt - 1] = args[weight];
86
87 // complete the initialization of heights and actual_positions by sorting
88 if (cnt == 5)
89 {
90 // TODO: we need to sort the initial samples (in heights) in ascending order and
91 // sort their weights (in actual_positions) the same way. The following lines do
92 // it, but there must be a better and more efficient way of doing this.
93 typename array_type::iterator it_begin, it_end, it_min;
94
95 it_begin = this->heights.begin();
96 it_end = this->heights.end();
97
98 std::size_t pos = 0;
99
100 while (it_begin != it_end)
101 {
102 it_min = std::min_element(it_begin, it_end);
103 std::size_t d = std::distance(it_begin, it_min);
104 std::swap(*it_begin, *it_min);
105 std::swap(this->actual_positions[pos], this->actual_positions[pos + d]);
106 ++it_begin;
107 ++pos;
108 }
109
110 // calculate correct initial actual positions
111 for (std::size_t i = 1; i < 5; ++i)
112 {
113 this->actual_positions[i] += this->actual_positions[i - 1];
114 }
115 }
116 }
117 else
118 {
119 std::size_t sample_cell = 1; // k
120
121 // find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values
122 if (args[sample] < this->heights[0])
123 {
124 this->heights[0] = args[sample];
125 this->actual_positions[0] = args[weight];
126 sample_cell = 1;
127 }
128 else if (this->heights[4] <= args[sample])
129 {
130 this->heights[4] = args[sample];
131 sample_cell = 4;
132 }
133 else
134 {
135 typedef typename array_type::iterator iterator;
136 iterator it = std::upper_bound(
137 this->heights.begin()
138 , this->heights.end()
139 , args[sample]
140 );
141
142 sample_cell = std::distance(this->heights.begin(), it);
143 }
144
145 // increment positions of markers above sample_cell
146 for (std::size_t i = sample_cell; i < 5; ++i)
147 {
148 this->actual_positions[i] += args[weight];
149 }
150
151 // update desired positions for all markers
152 this->desired_positions[0] = this->actual_positions[0];
153 this->desired_positions[1] = (sum_of_weights(args) - this->actual_positions[0])
154 * this->p/2. + this->actual_positions[0];
155 this->desired_positions[2] = (sum_of_weights(args) - this->actual_positions[0])
156 * this->p + this->actual_positions[0];
157 this->desired_positions[3] = (sum_of_weights(args) - this->actual_positions[0])
158 * (1. + this->p)/2. + this->actual_positions[0];
159 this->desired_positions[4] = sum_of_weights(args);
160
161 // adjust height and actual positions of markers 1 to 3 if necessary
162 for (std::size_t i = 1; i <= 3; ++i)
163 {
164 // offset to desired positions
165 float_type d = this->desired_positions[i] - this->actual_positions[i];
166
167 // offset to next position
168 float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];
169
170 // offset to previous position
171 float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];
172
173 // height ds
174 float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
175 float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;
176
177 if ( ( d >= 1. && dp > 1. ) || ( d <= -1. && dm < -1. ) )
178 {
179 short sign_d = static_cast<short>(d / std::abs(d));
180
181 // try adjusting heights[i] using p-squared formula
182 float_type h = this->heights[i] + sign_d / (dp - dm) * ( (sign_d - dm) * hp + (dp - sign_d) * hm );
183
184 if ( this->heights[i - 1] < h && h < this->heights[i + 1] )
185 {
186 this->heights[i] = h;
187 }
188 else
189 {
190 // use linear formula
191 if (d>0)
192 {
193 this->heights[i] += hp;
194 }
195 if (d<0)
196 {
197 this->heights[i] -= hm;
198 }
199 }
200 this->actual_positions[i] += sign_d;
201 }
202 }
203 }
204 }
205
206 result_type result(dont_care) const
207 {
208 return this->heights[2];
209 }
210
211 private:
212 float_type p; // the quantile probability p
213 array_type heights; // q_i
214 array_type actual_positions; // n_i
215 array_type desired_positions; // n'_i
216 };
217
218 } // namespace impl
219
220 ///////////////////////////////////////////////////////////////////////////////
221 // tag::weighted_p_square_quantile
222 //
223 namespace tag
224 {
225 struct weighted_p_square_quantile
226 : depends_on<count, sum_of_weights>
227 {
228 typedef accumulators::impl::weighted_p_square_quantile_impl<mpl::_1, mpl::_2, regular> impl;
229 };
230 struct weighted_p_square_quantile_for_median
231 : depends_on<count, sum_of_weights>
232 {
233 typedef accumulators::impl::weighted_p_square_quantile_impl<mpl::_1, mpl::_2, for_median> impl;
234 };
235 }
236
237 ///////////////////////////////////////////////////////////////////////////////
238 // extract::weighted_p_square_quantile
239 // extract::weighted_p_square_quantile_for_median
240 //
241 namespace extract
242 {
243 extractor<tag::weighted_p_square_quantile> const weighted_p_square_quantile = {};
244 extractor<tag::weighted_p_square_quantile_for_median> const weighted_p_square_quantile_for_median = {};
245
246 BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_p_square_quantile)
247 BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_p_square_quantile_for_median)
248 }
249
250 using extract::weighted_p_square_quantile;
251 using extract::weighted_p_square_quantile_for_median;
252
253 }} // namespace boost::accumulators
254
255 #endif