]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/functional/factory/doc/factory.qbk
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / functional / factory / doc / factory.qbk
1 [library Boost.Functional/Factory
2 [quickbook 1.3]
3 [version 1.0]
4 [authors [Schwinger, Tobias]]
5 [copyright 2007 2008 Tobias Schwinger]
6 [license
7 Distributed under the Boost Software License, Version 1.0.
8 (See accompanying file LICENSE_1_0.txt or copy at
9 [@http://www.boost.org/LICENSE_1_0.txt])
10 ]
11 [purpose Function object templates for object creation.]
12 [category higher-order]
13 [category generic]
14 [last-revision $Date: 2008/11/01 21:44:52 $]
15 ]
16
17 [def __boost_bind__ [@http://www.boost.org/libs/bind/bind.html Boost.Bind]]
18 [def __boost__bind__ [@http://www.boost.org/libs/bind/bind.html `boost::bind`]]
19
20 [def __boost__forward_adapter__ [@http://www.boost.org/libs/functional/forward/doc/index.html `boost::forward_adapter`]]
21 [def __fusion_functional_adapters__ [@http://www.boost.org/libs/fusion/doc/html/functional.html Fusion Functional Adapters]]
22
23 [def __boost_function__ [@http://www.boost.org/doc/html/function.html Boost.Function]]
24 [def __boost__function__ [@http://www.boost.org/doc/html/function.html `boost::function`]]
25
26 [def __smart_pointer__ [@http://www.boost.org/libs/smart_ptr/index.html Smart Pointer]]
27 [def __smart_pointers__ [@http://www.boost.org/libs/smart_ptr/index.html Smart Pointers]]
28 [def __boost__shared_ptr__ [@http://www.boost.org/libs/smart_ptr/shared_ptr.htm `boost::shared_ptr`]]
29
30 [def __std__map__ [@http://www.sgi.com/tech/stl/map.html `std::map`]]
31 [def __std__string__ [@http://www.sgi.com/tech/stl/string.html `std::string`]]
32 [def __allocator__ [@http://www.sgi.com/tech/stl/concepts/allocator.html Allocator]]
33 [def __std_allocator__ [@http://www.sgi.com/tech/stl/concepts/allocator.html Allocator]]
34 [def __std_allocators__ [@http://www.sgi.com/tech/stl/concepts/allocator.html Allocators]]
35
36 [def __boost__ptr_map__ [@http://www.boost.org/libs/ptr_container/doc/ptr_map.html `boost::ptr_map`]]
37
38 [def __boost__factory__ `boost::factory`]
39 [def __boost__value_factory__ `boost::value_factory`]
40
41 [def __factory__ `factory`]
42 [def __value_factory__ `value_factory`]
43
44
45 [section Brief Description]
46
47 The template __boost__factory__ lets you encapsulate a `new` expression
48 as a function object, __boost__value_factory__ encapsulates a constructor
49 invocation without `new`.
50
51 __boost__factory__<T*>()(arg1,arg2,arg3)
52 // same as new T(arg1,arg2,arg3)
53
54 __boost__value_factory__<T>()(arg1,arg2,arg3)
55 // same as T(arg1,arg2,arg3)
56
57 For technical reasons the arguments to the function objects have to be
58 LValues. A factory that also accepts RValues can be composed using the
59 __boost__forward_adapter__ or __boost__bind__.
60
61 [endsect]
62
63 [section Background]
64
65 In traditional Object Oriented Programming a Factory is an object implementing
66 an interface of one or more methods that construct objects conforming to known
67 interfaces.
68
69 // assuming a_concrete_class and another_concrete_class are derived
70 // from an_abstract_class
71
72 class a_factory
73 {
74 public:
75 virtual an_abstract_class* create() const = 0;
76 virtual ~a_factory() { }
77 };
78
79 class a_concrete_factory : public a_factory
80 {
81 public:
82 virtual an_abstract_class* create() const
83 {
84 return new a_concrete_class();
85 }
86 };
87
88 class another_concrete_factory : public a_factory
89 {
90 public:
91 virtual an_abstract_class* create() const
92 {
93 return new another_concrete_class();
94 }
95 };
96
97 // [...]
98
99 int main()
100 {
101 __boost__ptr_map__<__std__string__,a_factory> factories;
102
103 // [...]
104
105 factories.insert("a_name",std::auto_ptr<a_factory>(
106 new a_concrete_factory));
107 factories.insert("another_name",std::auto_ptr<a_factory>(
108 new another_concrete_factory));
109
110 // [...]
111
112 std::auto_ptr<an_abstract_class> x(factories.at(some_name).create());
113
114 // [...]
115 }
116
117 This approach has several drawbacks. The most obvious one is that there is
118 lots of boilerplate code. In other words there is too much code to express
119 a rather simple intention. We could use templates to get rid of some of it
120 but the approach remains inflexible:
121
122 * We may want a factory that takes some arguments that are forwarded to
123 the constructor,
124 * we will probably want to use smart pointers,
125 * we may want several member functions to create different kinds of
126 objects,
127 * we might not necessarily need a polymorphic base class for the objects,
128 * as we will see, we do not need a factory base class at all,
129 * we might want to just call the constructor - without `new` to create
130 an object on the stack, and
131 * finally we might want to use customized memory management.
132
133 Experience has shown that using function objects and generic Boost components
134 for their composition, Design Patterns that describe callback mechanisms
135 (typically requiring a high percentage of boilerplate code with pure Object
136 Oriented methodology) become implementable with just few code lines and without
137 extra classes.
138
139 Factories are callback mechanisms for constructors, so we provide two class
140 templates, __boost__value_factory__ and __boost__factory__, that encapsulate
141 object construction via direct application of the constructor and the `new`
142 operator, respectively.
143
144 We let the function objects forward their arguments to the construction
145 expressions they encapsulate. Over this __boost__factory__ optionally allows
146 the use of smart pointers and __std_allocators__.
147
148 Compile-time polymorphism can be used where appropriate,
149
150 template< class T >
151 void do_something()
152 {
153 // [...]
154 T x = T(a,b);
155
156 // for conceptually similar objects x we neither need virtual
157 // functions nor a common base class in this context.
158 // [...]
159 }
160
161 Now, to allow inhomogeneous signatures for the constructors of the types passed
162 in for `T` we can use __value_factory__ and __boost__bind__ to normalize between
163 them.
164
165 template< class ValueFactory >
166 void do_something(ValueFactory make_obj = ValueFactory())
167 {
168 // [...]
169 typename ValueFactory::result_type x = make_obj(a,b);
170
171 // for conceptually similar objects x we neither need virtual
172 // functions nor a common base class in this context.
173 // [...]
174 }
175
176 int main()
177 {
178 // [...]
179
180 do_something(__boost__value_factory__<X>());
181 do_something(boost::bind(__boost__value_factory__<Y>(),_1,5,_2));
182 // construct X(a,b) and Y(a,5,b), respectively.
183
184 // [...]
185 }
186
187 Maybe we want our objects to outlive the function's scope, in this case we
188 have to use dynamic allocation;
189
190 template< class Factory >
191 whatever do_something(Factory new_obj = Factory())
192 {
193 typename Factory::result_type ptr = new_obj(a,b);
194
195 // again, no common base class or virtual functions needed,
196 // we could enforce a polymorphic base by writing e.g.
197 // boost::shared_ptr<base>
198 // instead of
199 // typename Factory::result_type
200 // above.
201 // Note that we are also free to have the type erasure happen
202 // somewhere else (e.g. in the constructor of this function's
203 // result type).
204
205 // [...]
206 }
207
208 // [... call do_something like above but with __factory__ instead
209 // of __value_factory__]
210
211 Although we might have created polymorphic objects in the previous example,
212 we have used compile time polymorphism for the factory. If we want to erase
213 the type of the factory and thus allow polymorphism at run time, we can
214 use __boost_function__ to do so. The first example can be rewritten as
215 follows.
216
217 typedef boost::function< an_abstract_class*() > a_factory;
218
219 // [...]
220
221 int main()
222 {
223 __std__map__<__std__string__,a_factory> factories;
224
225 // [...]
226
227 factories["a_name"] = __boost__factory__<a_concrete_class*>();
228 factories["another_name"] =
229 __boost__factory__<another_concrete_class*>();
230
231 // [...]
232 }
233
234 Of course we can just as easy create factories that take arguments and/or
235 return __smart_pointers__.
236
237 [endsect]
238
239
240 [section:reference Reference]
241
242
243 [section value_factory]
244
245 [heading Description]
246
247 Function object template that invokes the constructor of the type `T`.
248
249 [heading Header]
250 #include <boost/functional/value_factory.hpp>
251
252 [heading Synopsis]
253
254 namespace boost
255 {
256 template< typename T >
257 class value_factory;
258 }
259
260 [variablelist Notation
261 [[`T`] [an arbitrary type with at least one public constructor]]
262 [[`a0`...`aN`] [argument LValues to a constructor of `T`]]
263 [[`F`] [the type `value_factory<F>`]]
264 [[`f`] [an instance object of `F`]]
265 ]
266
267 [heading Expression Semantics]
268
269 [table
270 [[Expression] [Semantics]]
271 [[`F()`] [creates an object of type `F`.]]
272 [[`F(f)`] [creates an object of type `F`.]]
273 [[`f(a0`...`aN)`] [returns `T(a0`...`aN)`.]]
274 [[`F::result_type`] [is the type `T`.]]
275 ]
276
277 [heading Limits]
278
279 The macro BOOST_FUNCTIONAL_VALUE_FACTORY_MAX_ARITY can be defined to set the
280 maximum arity. It defaults to 10.
281
282 [endsect]
283
284
285 [section factory]
286
287 [heading Description]
288
289 Function object template that dynamically constructs a pointee object for
290 the type of pointer given as template argument. Smart pointers may be used
291 for the template argument, given that `boost::pointee<Pointer>::type` yields
292 the pointee type.
293
294 If an __allocator__ is given, it is used for memory allocation and the
295 placement form of the `new` operator is used to construct the object.
296 A function object that calls the destructor and deallocates the memory
297 with a copy of the Allocator is used for the second constructor argument
298 of `Pointer` (thus it must be a __smart_pointer__ that provides a suitable
299 constructor, such as __boost__shared_ptr__).
300
301 If a third template argument is `factory_passes_alloc_to_smart_pointer`,
302 the allocator itself is used for the third constructor argument of `Pointer`
303 (__boost__shared_ptr__ then uses the allocator to manage the memory of its
304 separately allocated reference counter).
305
306 [heading Header]
307 #include <boost/functional/factory.hpp>
308
309 [heading Synopsis]
310
311 namespace boost
312 {
313 enum factory_alloc_propagation
314 {
315 factory_alloc_for_pointee_and_deleter,
316 factory_passes_alloc_to_smart_pointer
317 };
318
319 template< typename Pointer,
320 class Allocator = void,
321 factory_alloc_propagation AllocProp =
322 factory_alloc_for_pointee_and_deleter >
323 class factory;
324 }
325
326 [variablelist Notation
327 [[`T`] [an arbitrary type with at least one public constructor]]
328 [[`P`] [pointer or smart pointer to `T`]]
329 [[`a0`...`aN`] [argument LValues to a constructor of `T`]]
330 [[`F`] [the type `factory<P>`]]
331 [[`f`] [an instance object of `F`]]
332 ]
333
334 [heading Expression Semantics]
335
336 [table
337 [[Expression] [Semantics]]
338 [[`F()`] [creates an object of type `F`.]]
339 [[`F(f)`] [creates an object of type `F`.]]
340 [[`f(a0`...`aN)`] [dynamically creates an object of type `T` using
341 `a0`...`aN` as arguments for the constructor invocation.]]
342 [[`F::result_type`] [is the type `P` with top-level cv-qualifiers removed.]]
343 ]
344
345 [heading Limits]
346
347 The macro BOOST_FUNCTIONAL_FACTORY_MAX_ARITY can be defined to set the
348 maximum arity. It defaults to 10.
349
350 [endsect]
351
352 [endsect]
353
354 [section Changes]
355
356 [heading Boost 1.58.0]
357
358 In order to remove the dependency on Boost.Optional, the default parameter
359 for allocators has been changed from `boost::none_t` to `void`.
360 If you have code that has stopped working because it uses `boost::none_t`,
361 a quick fix is to define `BOOST_FUNCTIONAL_FACTORY_SUPPORT_NONE_T`, which will
362 restore support, but this will be removed in a future release.
363 It should be be relatively easy to fix this properly.
364
365 [endsect]
366
367 [section Acknowledgements]
368
369 Eric Niebler requested a function to invoke a type's constructor (with the
370 arguments supplied as a Tuple) as a Fusion feature. These Factory utilities are
371 a factored-out generalization of this idea.
372
373 Dave Abrahams suggested Smart Pointer support for exception safety, providing
374 useful hints for the implementation.
375
376 Joel de Guzman's documentation style was copied from Fusion.
377
378 Further, I want to thank Peter Dimov for sharing his insights on language
379 details and their evolution.
380
381 [endsect]
382
383 [section References]
384
385 # [@http://en.wikipedia.org/wiki/Design_Patterns Design Patterns],
386 Gamma et al. - Addison Wesley Publishing, 1995
387
388 # [@http://www.sgi.com/tech/stl/ Standard Template Library Programmer's Guide],
389 Hewlett-Packard Company, 1994
390
391 # [@http://www.boost.org/libs/bind/bind.html Boost.Bind],
392 Peter Dimov, 2001-2005
393
394 # [@http://www.boost.org/doc/html/function.html Boost.Function],
395 Douglas Gregor, 2001-2004
396
397 [endsect]
398
399