]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/geometry/example/02_linestring_example.cpp
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / geometry / example / 02_linestring_example.cpp
1 // Boost.Geometry (aka GGL, Generic Geometry Library)
2
3 // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
4 // Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
5 // Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
6
7 // Use, modification and distribution is subject to the Boost Software License,
8 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10 //
11 // Linestring Example
12
13 #include <algorithm> // for reverse, unique
14 #include <iostream>
15 #include <iterator>
16 #include <utility>
17 #include <vector>
18
19 #include <boost/geometry/geometry.hpp>
20 #include <boost/geometry/geometries/linestring.hpp>
21 #include <boost/geometry/geometries/point_xy.hpp>
22 #include <boost/geometry/geometries/polygon.hpp>
23
24 // Optional includes and defines to handle c-arrays as points, std::vectors as linestrings
25 #include <boost/geometry/geometries/register/linestring.hpp>
26 #include <boost/geometry/geometries/adapted/c_array.hpp>
27
28 BOOST_GEOMETRY_REGISTER_C_ARRAY_CS(cs::cartesian)
29
30 BOOST_GEOMETRY_REGISTER_LINESTRING_TEMPLATED(std::vector)
31 BOOST_GEOMETRY_REGISTER_LINESTRING_TEMPLATED(std::deque)
32
33
34 template<typename P>
35 inline void translate_function(P& p)
36 {
37 p.x(p.x() + 100.0);
38 }
39
40 template<typename P>
41 struct scale_functor
42 {
43 inline void operator()(P& p)
44 {
45 p.x(p.x() * 1000.0);
46 p.y(p.y() * 1000.0);
47 }
48 };
49
50
51 template<typename Point>
52 struct round_coordinates
53 {
54 typedef typename boost::geometry::coordinate_type<Point>::type coordinate_type;
55 coordinate_type m_factor;
56
57 inline round_coordinates(coordinate_type const& factor)
58 : m_factor(factor)
59 {}
60
61 template <int Dimension>
62 inline void round(Point& p)
63 {
64 coordinate_type c = boost::geometry::get<Dimension>(p) / m_factor;
65 int rounded = c;
66 boost::geometry::set<Dimension>(p, coordinate_type(rounded) * m_factor);
67 }
68
69 inline void operator()(Point& p)
70 {
71 round<0>(p);
72 round<1>(p);
73 }
74 };
75
76
77 int main(void)
78 {
79 using namespace boost::geometry;
80
81 // Define a linestring, which is a vector of points, and add some points
82 // (we add them deliberately in different ways)
83 typedef model::d2::point_xy<double> point_2d;
84 typedef model::linestring<point_2d> linestring_2d;
85 linestring_2d ls;
86
87 // points can be created using "make" and added to a linestring using the std:: "push_back"
88 ls.push_back(make<point_2d>(1.1, 1.1));
89
90 // points can also be assigned using "assign_values" and added to a linestring using "append"
91 point_2d lp;
92 assign_values(lp, 2.5, 2.1);
93 append(ls, lp);
94
95 // Lines can be streamed using DSV (delimiter separated values)
96 std::cout << dsv(ls) << std::endl;
97
98 // The bounding box of linestrings can be calculated
99 typedef model::box<point_2d> box_2d;
100 box_2d b;
101 envelope(ls, b);
102 std::cout << dsv(b) << std::endl;
103
104 // The length of the line can be calulated
105 std::cout << "length: " << length(ls) << std::endl;
106
107 // All things from std::vector can be called, because a linestring is a vector
108 std::cout << "number of points 1: " << ls.size() << std::endl;
109
110 // All things from boost ranges can be called because a linestring is considered as a range
111 std::cout << "number of points 2: " << boost::size(ls) << std::endl;
112
113 // Generic function from geometry/OGC delivers the same value
114 std::cout << "number of points 3: " << num_points(ls) << std::endl;
115
116 // The distance from a point to a linestring can be calculated
117 point_2d p(1.9, 1.2);
118 std::cout << "distance of " << dsv(p)
119 << " to line: " << distance(p, ls) << std::endl;
120
121 // A linestring is a vector. However, some algorithms consider "segments",
122 // which are the line pieces between two points of a linestring.
123 double d = distance(p, model::segment<point_2d >(ls.front(), ls.back()));
124 std::cout << "distance: " << d << std::endl;
125
126 // Add some three points more, let's do it using a classic array.
127 // (See documentation for picture of this linestring)
128 const double c[][2] = { {3.1, 3.1}, {4.9, 1.1}, {3.1, 1.9} };
129 append(ls, c);
130 std::cout << "appended: " << dsv(ls) << std::endl;
131
132 // Output as iterator-pair on a vector
133 {
134 std::vector<point_2d> v;
135 std::copy(ls.begin(), ls.end(), std::back_inserter(v));
136
137 std::cout
138 << "as vector: "
139 << dsv(v)
140 << std::endl;
141 }
142
143 // All algorithms from std can be used: a linestring is a vector
144 std::reverse(ls.begin(), ls.end());
145 std::cout << "reversed: " << dsv(ls) << std::endl;
146 std::reverse(boost::begin(ls), boost::end(ls));
147
148 // The other way, using a vector instead of a linestring, is also possible
149 std::vector<point_2d> pv(ls.begin(), ls.end());
150 std::cout << "length: " << length(pv) << std::endl;
151
152 // If there are double points in the line, you can use unique to remove them
153 // So we add the last point, print, make a unique copy and print
154 {
155 // (sidenote, we have to make copies, because
156 // ls.push_back(ls.back()) often succeeds but
157 // IS dangerous and erroneous!
158 point_2d last = ls.back(), first = ls.front();
159 ls.push_back(last);
160 ls.insert(ls.begin(), first);
161 }
162 std::cout << "extra duplicate points: " << dsv(ls) << std::endl;
163
164 {
165 linestring_2d ls_copy;
166 std::unique_copy(ls.begin(), ls.end(), std::back_inserter(ls_copy),
167 boost::geometry::equal_to<point_2d>());
168 ls = ls_copy;
169 std::cout << "uniquecopy: " << dsv(ls) << std::endl;
170 }
171
172 // Lines can be simplified. This removes points, but preserves the shape
173 linestring_2d ls_simplified;
174 simplify(ls, ls_simplified, 0.5);
175 std::cout << "simplified: " << dsv(ls_simplified) << std::endl;
176
177
178 // for_each:
179 // 1) Lines can be visited with std::for_each
180 // 2) for_each_point is also defined for all geometries
181 // 3) for_each_segment is defined for all geometries to all segments
182 // 4) loop is defined for geometries to visit segments
183 // with state apart, and to be able to break out (not shown here)
184 {
185 linestring_2d lscopy = ls;
186 std::for_each(lscopy.begin(), lscopy.end(), translate_function<point_2d>);
187 for_each_point(lscopy, scale_functor<point_2d>());
188 for_each_point(lscopy, translate_function<point_2d>);
189 std::cout << "modified line: " << dsv(lscopy) << std::endl;
190 }
191
192 // Lines can be clipped using a clipping box. Clipped lines are added to the output iterator
193 box_2d cb(point_2d(1.5, 1.5), point_2d(4.5, 2.5));
194
195 std::vector<linestring_2d> clipped;
196 intersection(cb, ls, clipped);
197
198 // Also possible: clip-output to a vector of vectors
199 std::vector<std::vector<point_2d> > vector_out;
200 intersection(cb, ls, vector_out);
201
202 std::cout << "clipped output as vector:" << std::endl;
203 for (std::vector<std::vector<point_2d> >::const_iterator it
204 = vector_out.begin(); it != vector_out.end(); ++it)
205 {
206 std::cout << dsv(*it) << std::endl;
207 }
208
209 // Calculate the convex hull of the linestring
210 model::polygon<point_2d> hull;
211 convex_hull(ls, hull);
212 std::cout << "Convex hull:" << dsv(hull) << std::endl;
213
214 // All the above assumed 2D Cartesian linestrings. 3D is possible as well
215 // Let's define a 3D point ourselves, this time using 'float'
216 typedef model::point<float, 3, cs::cartesian> point_3d;
217 model::linestring<point_3d> line3;
218 line3.push_back(make<point_3d>(1,2,3));
219 line3.push_back(make<point_3d>(4,5,6));
220 line3.push_back(make<point_3d>(7,8,9));
221
222 // Not all algorithms work on 3d lines. For example convex hull does NOT.
223 // But, for example, length, distance, simplify, envelope and stream do.
224 std::cout << "3D: length: " << length(line3) << " line: " << dsv(line3) << std::endl;
225
226 // With DSV you can also use other delimiters, e.g. JSON style
227 std::cout << "JSON: "
228 << dsv(ls, ", ", "[", "]", ", ", "[ ", " ]")
229 << std::endl;
230
231 return 0;
232 }