]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/geometry/include/boost/geometry/strategies/spherical/distance_cross_track.hpp
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / geometry / include / boost / geometry / strategies / spherical / distance_cross_track.hpp
1 // Boost.Geometry (aka GGL, Generic Geometry Library)
2
3 // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands.
4
5 // This file was modified by Oracle on 2014.
6 // Modifications copyright (c) 2014, Oracle and/or its affiliates.
7
8 // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
9
10 // Use, modification and distribution is subject to the Boost Software License,
11 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
12 // http://www.boost.org/LICENSE_1_0.txt)
13
14 #ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_CROSS_TRACK_HPP
15 #define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_CROSS_TRACK_HPP
16
17 #include <algorithm>
18
19 #include <boost/config.hpp>
20 #include <boost/concept_check.hpp>
21 #include <boost/mpl/if.hpp>
22 #include <boost/type_traits/is_void.hpp>
23
24 #include <boost/geometry/core/cs.hpp>
25 #include <boost/geometry/core/access.hpp>
26 #include <boost/geometry/core/radian_access.hpp>
27 #include <boost/geometry/core/tags.hpp>
28
29 #include <boost/geometry/algorithms/detail/course.hpp>
30
31 #include <boost/geometry/strategies/distance.hpp>
32 #include <boost/geometry/strategies/concepts/distance_concept.hpp>
33 #include <boost/geometry/strategies/spherical/distance_haversine.hpp>
34
35 #include <boost/geometry/util/math.hpp>
36 #include <boost/geometry/util/promote_floating_point.hpp>
37 #include <boost/geometry/util/select_calculation_type.hpp>
38
39 #ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK
40 # include <boost/geometry/io/dsv/write.hpp>
41 #endif
42
43
44 namespace boost { namespace geometry
45 {
46
47 namespace strategy { namespace distance
48 {
49
50
51 namespace comparable
52 {
53
54 /*
55 Given a spherical segment AB and a point D, we are interested in
56 computing the distance of D from AB. This is usually known as the
57 cross track distance.
58
59 If the projection (along great circles) of the point D lies inside
60 the segment AB, then the distance (cross track error) XTD is given
61 by the formula (see http://williams.best.vwh.net/avform.htm#XTE):
62
63 XTD = asin( sin(dist_AD) * sin(crs_AD-crs_AB) )
64
65 where dist_AD is the great circle distance between the points A and
66 B, and crs_AD, crs_AB is the course (bearing) between the points A,
67 D and A, B, respectively.
68
69 If the point D does not project inside the arc AB, then the distance
70 of D from AB is the minimum of the two distances dist_AD and dist_BD.
71
72 Our reference implementation for this procedure is listed below
73 (this was the old Boost.Geometry implementation of the cross track distance),
74 where:
75 * The member variable m_strategy is the underlying haversine strategy.
76 * p stands for the point D.
77 * sp1 stands for the segment endpoint A.
78 * sp2 stands for the segment endpoint B.
79
80 ================= reference implementation -- start =================
81
82 return_type d1 = m_strategy.apply(sp1, p);
83 return_type d3 = m_strategy.apply(sp1, sp2);
84
85 if (geometry::math::equals(d3, 0.0))
86 {
87 // "Degenerate" segment, return either d1 or d2
88 return d1;
89 }
90
91 return_type d2 = m_strategy.apply(sp2, p);
92
93 return_type crs_AD = geometry::detail::course<return_type>(sp1, p);
94 return_type crs_AB = geometry::detail::course<return_type>(sp1, sp2);
95 return_type crs_BA = crs_AB - geometry::math::pi<return_type>();
96 return_type crs_BD = geometry::detail::course<return_type>(sp2, p);
97 return_type d_crs1 = crs_AD - crs_AB;
98 return_type d_crs2 = crs_BD - crs_BA;
99
100 // d1, d2, d3 are in principle not needed, only the sign matters
101 return_type projection1 = cos( d_crs1 ) * d1 / d3;
102 return_type projection2 = cos( d_crs2 ) * d2 / d3;
103
104 if (projection1 > 0.0 && projection2 > 0.0)
105 {
106 return_type XTD
107 = radius() * math::abs( asin( sin( d1 / radius() ) * sin( d_crs1 ) ));
108
109 // Return shortest distance, projected point on segment sp1-sp2
110 return return_type(XTD);
111 }
112 else
113 {
114 // Return shortest distance, project either on point sp1 or sp2
115 return return_type( (std::min)( d1 , d2 ) );
116 }
117
118 ================= reference implementation -- end =================
119
120
121 Motivation
122 ----------
123 In what follows we develop a comparable version of the cross track
124 distance strategy, that meets the following goals:
125 * It is more efficient than the original cross track strategy (less
126 operations and less calls to mathematical functions).
127 * Distances using the comparable cross track strategy can not only
128 be compared with other distances using the same strategy, but also with
129 distances computed with the comparable version of the haversine strategy.
130 * It can serve as the basis for the computation of the cross track distance,
131 as it is more efficient to compute its comparable version and
132 transform that to the actual cross track distance, rather than
133 follow/use the reference implementation listed above.
134
135 Major idea
136 ----------
137 The idea here is to use the comparable haversine strategy to compute
138 the distances d1, d2 and d3 in the above listing. Once we have done
139 that we need also to make sure that instead of returning XTD (as
140 computed above) that we return a distance CXTD that is compatible
141 with the comparable haversine distance. To achieve this CXTD must satisfy
142 the relation:
143 XTD = 2 * R * asin( sqrt(XTD) )
144 where R is the sphere's radius.
145
146 Below we perform the mathematical analysis that show how to compute CXTD.
147
148
149 Mathematical analysis
150 ---------------------
151 Below we use the following trigonometric identities:
152 sin(2 * x) = 2 * sin(x) * cos(x)
153 cos(asin(x)) = sqrt(1 - x^2)
154
155 Observation:
156 The distance d1 needed when the projection of the point D is within the
157 segment must be the true distance. However, comparable::haversine<>
158 returns a comparable distance instead of the one needed.
159 To remedy this, we implicitly compute what is needed.
160 More precisely, we need to compute sin(true_d1):
161
162 sin(true_d1) = sin(2 * asin(sqrt(d1)))
163 = 2 * sin(asin(sqrt(d1)) * cos(asin(sqrt(d1)))
164 = 2 * sqrt(d1) * sqrt(1-(sqrt(d1))^2)
165 = 2 * sqrt(d1 - d1 * d1)
166 This relation is used below.
167
168 As we mentioned above the goal is to find CXTD (named "a" below for
169 brevity) such that ("b" below stands for "d1", and "c" for "d_crs1"):
170
171 2 * R * asin(sqrt(a)) == R * asin(2 * sqrt(b-b^2) * sin(c))
172
173 Analysis:
174 2 * R * asin(sqrt(a)) == R * asin(2 * sqrt(b-b^2) * sin(c))
175 <=> 2 * asin(sqrt(a)) == asin(sqrt(b-b^2) * sin(c))
176 <=> sin(2 * asin(sqrt(a))) == 2 * sqrt(b-b^2) * sin(c)
177 <=> 2 * sin(asin(sqrt(a))) * cos(asin(sqrt(a))) == 2 * sqrt(b-b^2) * sin(c)
178 <=> 2 * sqrt(a) * sqrt(1-a) == 2 * sqrt(b-b^2) * sin(c)
179 <=> sqrt(a) * sqrt(1-a) == sqrt(b-b^2) * sin(c)
180 <=> sqrt(a-a^2) == sqrt(b-b^2) * sin(c)
181 <=> a-a^2 == (b-b^2) * (sin(c))^2
182
183 Consider the quadratic equation: x^2-x+p^2 == 0,
184 where p = sqrt(b-b^2) * sin(c); its discriminant is:
185 d = 1 - 4 * p^2 = 1 - 4 * (b-b^2) * (sin(c))^2
186
187 The two solutions are:
188 a_1 = (1 - sqrt(d)) / 2
189 a_2 = (1 + sqrt(d)) / 2
190
191 Which one to choose?
192 "a" refers to the distance (on the unit sphere) of D from the
193 supporting great circle Circ(A,B) of the segment AB.
194 The two different values for "a" correspond to the lengths of the two
195 arcs delimited D and the points of intersection of Circ(A,B) and the
196 great circle perperdicular to Circ(A,B) passing through D.
197 Clearly, the value we want is the smallest among these two distances,
198 hence the root we must choose is the smallest root among the two.
199
200 So the answer is:
201 CXTD = ( 1 - sqrt(1 - 4 * (b-b^2) * (sin(c))^2) ) / 2
202
203 Therefore, in order to implement the comparable version of the cross
204 track strategy we need to:
205 (1) Use the comparable version of the haversine strategy instead of
206 the non-comparable one.
207 (2) Instead of return XTD when D projects inside the segment AB, we
208 need to return CXTD, given by the following formula:
209 CXTD = ( 1 - sqrt(1 - 4 * (d1-d1^2) * (sin(d_crs1))^2) ) / 2;
210
211
212 Complexity Analysis
213 -------------------
214 In the analysis that follows we refer to the actual implementation below.
215 In particular, instead of computing CXTD as above, we use the more
216 efficient (operation-wise) computation of CXTD shown here:
217
218 return_type sin_d_crs1 = sin(d_crs1);
219 return_type d1_x_sin = d1 * sin_d_crs1;
220 return_type d = d1_x_sin * (sin_d_crs1 - d1_x_sin);
221 return d / (0.5 + math::sqrt(0.25 - d));
222
223 Notice that instead of computing:
224 0.5 - 0.5 * sqrt(1 - 4 * d) = 0.5 - sqrt(0.25 - d)
225 we use the following formula instead:
226 d / (0.5 + sqrt(0.25 - d)).
227 This is done for numerical robustness. The expression 0.5 - sqrt(0.25 - x)
228 has large numerical errors for values of x close to 0 (if using doubles
229 the error start to become large even when d is as large as 0.001).
230 To remedy that, we re-write 0.5 - sqrt(0.25 - x) as:
231 0.5 - sqrt(0.25 - d)
232 = (0.5 - sqrt(0.25 - d) * (0.5 - sqrt(0.25 - d)) / (0.5 + sqrt(0.25 - d)).
233 The numerator is the difference of two squares:
234 (0.5 - sqrt(0.25 - d) * (0.5 - sqrt(0.25 - d))
235 = 0.5^2 - (sqrt(0.25 - d))^ = 0.25 - (0.25 - d) = d,
236 which gives the expression we use.
237
238 For the complexity analysis, we distinguish between two cases:
239 (A) The distance is realized between the point D and an
240 endpoint of the segment AB
241
242 Gains:
243 Since we are using comparable::haversine<> which is called
244 3 times, we gain:
245 -> 3 calls to sqrt
246 -> 3 calls to asin
247 -> 6 multiplications
248
249 Loses: None
250
251 So the net gain is:
252 -> 6 function calls (sqrt/asin)
253 -> 6 arithmetic operations
254
255 If we use comparable::cross_track<> to compute
256 cross_track<> we need to account for a call to sqrt, a call
257 to asin and 2 multiplications. In this case the net gain is:
258 -> 4 function calls (sqrt/asin)
259 -> 4 arithmetic operations
260
261
262 (B) The distance is realized between the point D and an
263 interior point of the segment AB
264
265 Gains:
266 Since we are using comparable::haversine<> which is called
267 3 times, we gain:
268 -> 3 calls to sqrt
269 -> 3 calls to asin
270 -> 6 multiplications
271 Also we gain the operations used to compute XTD:
272 -> 2 calls to sin
273 -> 1 call to asin
274 -> 1 call to abs
275 -> 2 multiplications
276 -> 1 division
277 So the total gains are:
278 -> 9 calls to sqrt/sin/asin
279 -> 1 call to abs
280 -> 8 multiplications
281 -> 1 division
282
283 Loses:
284 To compute a distance compatible with comparable::haversine<>
285 we need to perform a few more operations, namely:
286 -> 1 call to sin
287 -> 1 call to sqrt
288 -> 2 multiplications
289 -> 1 division
290 -> 1 addition
291 -> 2 subtractions
292
293 So roughly speaking the net gain is:
294 -> 8 fewer function calls and 3 fewer arithmetic operations
295
296 If we were to implement cross_track directly from the
297 comparable version (much like what haversine<> does using
298 comparable::haversine<>) we need additionally
299 -> 2 function calls (asin/sqrt)
300 -> 2 multiplications
301
302 So it pays off to re-implement cross_track<> to use
303 comparable::cross_track<>; in this case the net gain would be:
304 -> 6 function calls
305 -> 1 arithmetic operation
306
307 Summary/Conclusion
308 ------------------
309 Following the mathematical and complexity analysis above, the
310 comparable cross track strategy (as implemented below) satisfies
311 all the goal mentioned in the beginning:
312 * It is more efficient than its non-comparable counter-part.
313 * Comparable distances using this new strategy can also be compared
314 with comparable distances computed with the comparable haversine
315 strategy.
316 * It turns out to be more efficient to compute the actual cross
317 track distance XTD by first computing CXTD, and then computing
318 XTD by means of the formula:
319 XTD = 2 * R * asin( sqrt(CXTD) )
320 */
321
322 template
323 <
324 typename CalculationType = void,
325 typename Strategy = comparable::haversine<double, CalculationType>
326 >
327 class cross_track
328 {
329 public :
330 template <typename Point, typename PointOfSegment>
331 struct return_type
332 : promote_floating_point
333 <
334 typename select_calculation_type
335 <
336 Point,
337 PointOfSegment,
338 CalculationType
339 >::type
340 >
341 {};
342
343 typedef typename Strategy::radius_type radius_type;
344
345 inline cross_track()
346 {}
347
348 explicit inline cross_track(typename Strategy::radius_type const& r)
349 : m_strategy(r)
350 {}
351
352 inline cross_track(Strategy const& s)
353 : m_strategy(s)
354 {}
355
356
357 // It might be useful in the future
358 // to overload constructor with strategy info.
359 // crosstrack(...) {}
360
361
362 template <typename Point, typename PointOfSegment>
363 inline typename return_type<Point, PointOfSegment>::type
364 apply(Point const& p, PointOfSegment const& sp1, PointOfSegment const& sp2) const
365 {
366
367 #if !defined(BOOST_MSVC)
368 BOOST_CONCEPT_ASSERT
369 (
370 (concepts::PointDistanceStrategy<Strategy, Point, PointOfSegment>)
371 );
372 #endif
373
374 typedef typename return_type<Point, PointOfSegment>::type return_type;
375
376 #ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK
377 std::cout << "Course " << dsv(sp1) << " to " << dsv(p) << " "
378 << crs_AD * geometry::math::r2d<return_type>() << std::endl;
379 std::cout << "Course " << dsv(sp1) << " to " << dsv(sp2) << " "
380 << crs_AB * geometry::math::r2d<return_type>() << std::endl;
381 std::cout << "Course " << dsv(sp2) << " to " << dsv(p) << " "
382 << crs_BD * geometry::math::r2d << std::endl;
383 std::cout << "Projection AD-AB " << projection1 << " : "
384 << d_crs1 * geometry::math::r2d<return_type>() << std::endl;
385 std::cout << "Projection BD-BA " << projection2 << " : "
386 << d_crs2 * geometry::math::r2d<return_type>() << std::endl;
387 #endif
388
389 // http://williams.best.vwh.net/avform.htm#XTE
390 return_type d1 = m_strategy.apply(sp1, p);
391 return_type d3 = m_strategy.apply(sp1, sp2);
392
393 if (geometry::math::equals(d3, 0.0))
394 {
395 // "Degenerate" segment, return either d1 or d2
396 return d1;
397 }
398
399 return_type d2 = m_strategy.apply(sp2, p);
400
401 return_type crs_AD = geometry::detail::course<return_type>(sp1, p);
402 return_type crs_AB = geometry::detail::course<return_type>(sp1, sp2);
403 return_type crs_BA = crs_AB - geometry::math::pi<return_type>();
404 return_type crs_BD = geometry::detail::course<return_type>(sp2, p);
405 return_type d_crs1 = crs_AD - crs_AB;
406 return_type d_crs2 = crs_BD - crs_BA;
407
408 // d1, d2, d3 are in principle not needed, only the sign matters
409 return_type projection1 = cos( d_crs1 ) * d1 / d3;
410 return_type projection2 = cos( d_crs2 ) * d2 / d3;
411
412 if (projection1 > 0.0 && projection2 > 0.0)
413 {
414 #ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK
415 return_type XTD = radius() * geometry::math::abs( asin( sin( d1 ) * sin( d_crs1 ) ));
416
417 std::cout << "Projection ON the segment" << std::endl;
418 std::cout << "XTD: " << XTD
419 << " d1: " << (d1 * radius())
420 << " d2: " << (d2 * radius())
421 << std::endl;
422 #endif
423 return_type const half(0.5);
424 return_type const quarter(0.25);
425
426 return_type sin_d_crs1 = sin(d_crs1);
427 /*
428 This is the straightforward obvious way to continue:
429
430 return_type discriminant
431 = 1.0 - 4.0 * (d1 - d1 * d1) * sin_d_crs1 * sin_d_crs1;
432 return 0.5 - 0.5 * math::sqrt(discriminant);
433
434 Below we optimize the number of arithmetic operations
435 and account for numerical robustness:
436 */
437 return_type d1_x_sin = d1 * sin_d_crs1;
438 return_type d = d1_x_sin * (sin_d_crs1 - d1_x_sin);
439 return d / (half + math::sqrt(quarter - d));
440 }
441 else
442 {
443 #ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK
444 std::cout << "Projection OUTSIDE the segment" << std::endl;
445 #endif
446
447 // Return shortest distance, project either on point sp1 or sp2
448 return return_type( (std::min)( d1 , d2 ) );
449 }
450 }
451
452 inline typename Strategy::radius_type radius() const
453 { return m_strategy.radius(); }
454
455 private :
456 Strategy m_strategy;
457 };
458
459 } // namespace comparable
460
461
462 /*!
463 \brief Strategy functor for distance point to segment calculation
464 \ingroup strategies
465 \details Class which calculates the distance of a point to a segment, for points on a sphere or globe
466 \see http://williams.best.vwh.net/avform.htm
467 \tparam CalculationType \tparam_calculation
468 \tparam Strategy underlying point-point distance strategy, defaults to haversine
469
470 \qbk{
471 [heading See also]
472 [link geometry.reference.algorithms.distance.distance_3_with_strategy distance (with strategy)]
473 }
474
475 */
476 template
477 <
478 typename CalculationType = void,
479 typename Strategy = haversine<double, CalculationType>
480 >
481 class cross_track
482 {
483 public :
484 template <typename Point, typename PointOfSegment>
485 struct return_type
486 : promote_floating_point
487 <
488 typename select_calculation_type
489 <
490 Point,
491 PointOfSegment,
492 CalculationType
493 >::type
494 >
495 {};
496
497 typedef typename Strategy::radius_type radius_type;
498
499 inline cross_track()
500 {}
501
502 explicit inline cross_track(typename Strategy::radius_type const& r)
503 : m_strategy(r)
504 {}
505
506 inline cross_track(Strategy const& s)
507 : m_strategy(s)
508 {}
509
510
511 // It might be useful in the future
512 // to overload constructor with strategy info.
513 // crosstrack(...) {}
514
515
516 template <typename Point, typename PointOfSegment>
517 inline typename return_type<Point, PointOfSegment>::type
518 apply(Point const& p, PointOfSegment const& sp1, PointOfSegment const& sp2) const
519 {
520
521 #if !defined(BOOST_MSVC)
522 BOOST_CONCEPT_ASSERT
523 (
524 (concepts::PointDistanceStrategy<Strategy, Point, PointOfSegment>)
525 );
526 #endif
527 typedef typename return_type<Point, PointOfSegment>::type return_type;
528 typedef cross_track<CalculationType, Strategy> this_type;
529
530 typedef typename services::comparable_type
531 <
532 this_type
533 >::type comparable_type;
534
535 comparable_type cstrategy
536 = services::get_comparable<this_type>::apply(m_strategy);
537
538 return_type const a = cstrategy.apply(p, sp1, sp2);
539 return_type const c = return_type(2.0) * asin(math::sqrt(a));
540 return c * radius();
541 }
542
543 inline typename Strategy::radius_type radius() const
544 { return m_strategy.radius(); }
545
546 private :
547
548 Strategy m_strategy;
549 };
550
551
552
553 #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
554 namespace services
555 {
556
557 template <typename CalculationType, typename Strategy>
558 struct tag<cross_track<CalculationType, Strategy> >
559 {
560 typedef strategy_tag_distance_point_segment type;
561 };
562
563
564 template <typename CalculationType, typename Strategy, typename P, typename PS>
565 struct return_type<cross_track<CalculationType, Strategy>, P, PS>
566 : cross_track<CalculationType, Strategy>::template return_type<P, PS>
567 {};
568
569
570 template <typename CalculationType, typename Strategy>
571 struct comparable_type<cross_track<CalculationType, Strategy> >
572 {
573 typedef comparable::cross_track
574 <
575 CalculationType, typename comparable_type<Strategy>::type
576 > type;
577 };
578
579
580 template
581 <
582 typename CalculationType,
583 typename Strategy
584 >
585 struct get_comparable<cross_track<CalculationType, Strategy> >
586 {
587 typedef typename comparable_type
588 <
589 cross_track<CalculationType, Strategy>
590 >::type comparable_type;
591 public :
592 static inline comparable_type
593 apply(cross_track<CalculationType, Strategy> const& strategy)
594 {
595 return comparable_type(strategy.radius());
596 }
597 };
598
599
600 template
601 <
602 typename CalculationType,
603 typename Strategy,
604 typename P,
605 typename PS
606 >
607 struct result_from_distance<cross_track<CalculationType, Strategy>, P, PS>
608 {
609 private :
610 typedef typename cross_track
611 <
612 CalculationType, Strategy
613 >::template return_type<P, PS>::type return_type;
614 public :
615 template <typename T>
616 static inline return_type
617 apply(cross_track<CalculationType, Strategy> const& , T const& distance)
618 {
619 return distance;
620 }
621 };
622
623
624 // Specializations for comparable::cross_track
625 template <typename RadiusType, typename CalculationType>
626 struct tag<comparable::cross_track<RadiusType, CalculationType> >
627 {
628 typedef strategy_tag_distance_point_segment type;
629 };
630
631
632 template
633 <
634 typename RadiusType,
635 typename CalculationType,
636 typename P,
637 typename PS
638 >
639 struct return_type<comparable::cross_track<RadiusType, CalculationType>, P, PS>
640 : comparable::cross_track
641 <
642 RadiusType, CalculationType
643 >::template return_type<P, PS>
644 {};
645
646
647 template <typename RadiusType, typename CalculationType>
648 struct comparable_type<comparable::cross_track<RadiusType, CalculationType> >
649 {
650 typedef comparable::cross_track<RadiusType, CalculationType> type;
651 };
652
653
654 template <typename RadiusType, typename CalculationType>
655 struct get_comparable<comparable::cross_track<RadiusType, CalculationType> >
656 {
657 private :
658 typedef comparable::cross_track<RadiusType, CalculationType> this_type;
659 public :
660 static inline this_type apply(this_type const& input)
661 {
662 return input;
663 }
664 };
665
666
667 template
668 <
669 typename RadiusType,
670 typename CalculationType,
671 typename P,
672 typename PS
673 >
674 struct result_from_distance
675 <
676 comparable::cross_track<RadiusType, CalculationType>, P, PS
677 >
678 {
679 private :
680 typedef comparable::cross_track<RadiusType, CalculationType> strategy_type;
681 typedef typename return_type<strategy_type, P, PS>::type return_type;
682 public :
683 template <typename T>
684 static inline return_type apply(strategy_type const& strategy,
685 T const& distance)
686 {
687 return_type const s
688 = sin( (distance / strategy.radius()) / return_type(2.0) );
689 return s * s;
690 }
691 };
692
693
694
695 /*
696
697 TODO: spherical polar coordinate system requires "get_as_radian_equatorial<>"
698
699 template <typename Point, typename PointOfSegment, typename Strategy>
700 struct default_strategy
701 <
702 segment_tag, Point, PointOfSegment,
703 spherical_polar_tag, spherical_polar_tag,
704 Strategy
705 >
706 {
707 typedef cross_track
708 <
709 void,
710 typename boost::mpl::if_
711 <
712 boost::is_void<Strategy>,
713 typename default_strategy
714 <
715 point_tag, Point, PointOfSegment,
716 spherical_polar_tag, spherical_polar_tag
717 >::type,
718 Strategy
719 >::type
720 > type;
721 };
722 */
723
724 template <typename Point, typename PointOfSegment, typename Strategy>
725 struct default_strategy
726 <
727 point_tag, segment_tag, Point, PointOfSegment,
728 spherical_equatorial_tag, spherical_equatorial_tag,
729 Strategy
730 >
731 {
732 typedef cross_track
733 <
734 void,
735 typename boost::mpl::if_
736 <
737 boost::is_void<Strategy>,
738 typename default_strategy
739 <
740 point_tag, point_tag, Point, PointOfSegment,
741 spherical_equatorial_tag, spherical_equatorial_tag
742 >::type,
743 Strategy
744 >::type
745 > type;
746 };
747
748
749 template <typename PointOfSegment, typename Point, typename Strategy>
750 struct default_strategy
751 <
752 segment_tag, point_tag, PointOfSegment, Point,
753 spherical_equatorial_tag, spherical_equatorial_tag,
754 Strategy
755 >
756 {
757 typedef typename default_strategy
758 <
759 point_tag, segment_tag, Point, PointOfSegment,
760 spherical_equatorial_tag, spherical_equatorial_tag,
761 Strategy
762 >::type type;
763 };
764
765
766 } // namespace services
767 #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
768
769 }} // namespace strategy::distance
770
771 }} // namespace boost::geometry
772
773 #endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_CROSS_TRACK_HPP