]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/graph/doc/astar_search.html
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / graph / doc / astar_search.html
1 <HTML>
2 <!--
3 Copyright (c) 2004 Kris Beevers
4
5 Distributed under the Boost Software License, Version 1.0.
6 (See accompanying file LICENSE_1_0.txt or copy at
7 http://www.boost.org/LICENSE_1_0.txt)
8 -->
9 <Head>
10 <Title>Boost Graph Library: A* Heuristic Search</Title>
11 <BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
12 ALINK="#ff0000">
13 <IMG SRC="../../../boost.png"
14 ALT="C++ Boost" width="277" height="86">
15
16 <BR Clear>
17
18 <H1><A NAME="sec:astar"></A>
19 <TT>astar_search</TT>
20 </H1>
21
22
23 <P>
24 <PRE>
25 <i>// Named parameter interfaces</i>
26 template &lt;typename VertexListGraph,
27 typename AStarHeuristic,
28 typename P, typename T, typename R&gt;
29 void
30 astar_search
31 (const VertexListGraph &amp;g,
32 typename graph_traits&lt;VertexListGraph&gt;::vertex_descriptor s,
33 <a href="AStarHeuristic.html">AStarHeuristic</a> h, const bgl_named_params&lt;P, T, R&gt;&amp; params);
34
35 template &lt;typename VertexListGraph,
36 typename AStarHeuristic,
37 typename P, typename T, typename R&gt;
38 void
39 astar_search_no_init
40 (const IncidenceGraph &amp;g,
41 typename graph_traits&lt;VertexListGraph&gt;::vertex_descriptor s,
42 <a href="AStarHeuristic.html">AStarHeuristic</a> h, const bgl_named_params&lt;P, T, R&gt;&amp; params);
43
44 template &lt;typename VertexListGraph,
45 typename AStarHeuristic,
46 typename P, typename T, typename R&gt;
47 void
48 astar_search_tree
49 (const VertexListGraph &amp;g,
50 typename graph_traits&lt;VertexListGraph&gt;::vertex_descriptor s,
51 <a href="AStarHeuristic.html">AStarHeuristic</a> h, const bgl_named_params&lt;P, T, R&gt;&amp; params);
52
53 template &lt;typename VertexListGraph,
54 typename AStarHeuristic,
55 typename P, typename T, typename R&gt;
56 void
57 astar_search_no_init_tree
58 (const IncidenceGraph &amp;g,
59 typename graph_traits&lt;VertexListGraph&gt;::vertex_descriptor s,
60 <a href="AStarHeuristic.html">AStarHeuristic</a> h, const bgl_named_params&lt;P, T, R&gt;&amp; params);
61
62 <i>// Non-named parameter interface</i>
63 template &lt;typename VertexListGraph, typename AStarHeuristic,
64 typename <a href="AStarVisitor.html">AStarVisitor</a>, typename PredecessorMap,
65 typename CostMap, typename DistanceMap,
66 typename WeightMap, typename VertexIndexMap,
67 typename ColorMap,
68 typename <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">CombineFunction</a>,
69 typename CostInf, typename CostZero&gt;
70 inline void
71 astar_search
72 (const VertexListGraph &amp;g,
73 typename graph_traits&lt;VertexListGraph&gt;::vertex_descriptor s,
74 AStarHeuristic h, AStarVisitor vis,
75 PredecessorMap predecessor, CostMap cost,
76 DistanceMap distance, WeightMap weight,
77 VertexIndexMap index_map, ColorMap color,
78 CompareFunction compare, CombineFunction combine,
79 CostInf inf, CostZero zero);
80
81 template &lt;typename VertexListGraph, typename AStarHeuristic,
82 typename <a href="AStarVisitor.html">AStarVisitor</a>, typename PredecessorMap,
83 typename CostMap, typename DistanceMap,
84 typename WeightMap,
85 typename <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">CombineFunction</a>,
86 typename CostInf, typename CostZero&gt;
87 inline void
88 astar_search_tree
89 (const VertexListGraph &amp;g,
90 typename graph_traits&lt;VertexListGraph&gt;::vertex_descriptor s,
91 AStarHeuristic h, AStarVisitor vis,
92 PredecessorMap predecessor, CostMap cost,
93 DistanceMap distance, WeightMap weight,
94 CompareFunction compare, CombineFunction combine,
95 CostInf inf, CostZero zero);
96
97 <i>// Versions that do not initialize property maps (used for implicit graphs)</i>
98 template &lt;typename IncidenceGraph, typename AStarHeuristic,
99 typename <a href="AStarVisitor.html">AStarVisitor</a>, typename PredecessorMap,
100 typename CostMap, typename DistanceMap,
101 typename WeightMap, typename ColorMap,
102 typename VertexIndexMap,
103 typename <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">CombineFunction</a>,
104 typename CostInf, typename CostZero&gt;
105 inline void
106 astar_search_no_init
107 (const IncidenceGraph &amp;g,
108 typename graph_traits&lt;IncidenceGraph&gt;::vertex_descriptor s,
109 AStarHeuristic h, AStarVisitor vis,
110 PredecessorMap predecessor, CostMap cost,
111 DistanceMap distance, WeightMap weight,
112 ColorMap color, VertexIndexMap index_map,
113 CompareFunction compare, CombineFunction combine,
114 CostInf inf, CostZero zero);
115
116 <b>Note that the index_map and color parameters are swapped in
117 astar_search_no_init() relative to astar_search(); the named parameter
118 interfaces are not affected.</b>
119
120 template &lt;typename IncidenceGraph, typename AStarHeuristic,
121 typename <a href="AStarVisitor.html">AStarVisitor</a>, typename PredecessorMap,
122 typename CostMap, typename DistanceMap,
123 typename WeightMap,
124 typename <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">CombineFunction</a>,
125 typename CostInf, typename CostZero&gt;
126 inline void
127 astar_search_no_init_tree
128 (const IncidenceGraph &amp;g,
129 typename graph_traits&lt;IncidenceGraph&gt;::vertex_descriptor s,
130 AStarHeuristic h, AStarVisitor vis,
131 PredecessorMap predecessor, CostMap cost,
132 DistanceMap distance, WeightMap weight,
133 CompareFunction compare, CombineFunction combine,
134 CostInf inf, CostZero zero);
135 </PRE>
136
137 <P>
138 This algorithm implements a heuristic search on a weighted, directed
139 or undirected graph for the case where all edge weights are
140 non-negative.
141 </P>
142
143 <P>
144 The A* algorithm is a <i>heuristic graph search algorithm</i>: an A*
145 search is "guided" by a <i>heuristic function</i>. A heuristic
146 function <i>h(v)</i> is one which estimates the cost from a non-goal
147 state (<i>v</i>) in the graph to some goal state, <i>g</i>.
148 Intuitively, A* follows paths (through the graph) to the goal that are
149 estimated by the heuristic function to be the best paths. Unlike
150 best-first search, A* takes into account the known cost from the start
151 of the search to <i>v</i>; the paths A* takes are guided by a function
152 <i>f(v) = g(v) + h(v)</i>, where <i>h(v)</i> is the heuristic
153 function, and <i>g(v)</i> (sometimes denoted <i>c(s, v)</i>) is the
154 known cost from the start to <i>v</i>. Clearly, the efficiency of A*
155 is highly dependent on the heuristic function with which it is used.
156 </P>
157
158 <P>
159 The A* algorithm is very similar to Dijkstra's Shortest Paths
160 algorithm. This implementation finds all the shortest paths from the
161 start vertex to every other vertex by creating a search tree,
162 examining vertices according to their remaining cost to some goal, as
163 estimated by a heuristic function. Most commonly, A* is used to find
164 some specific goal vertex or vertices in a graph, after which the
165 search is terminated.
166 </P>
167
168 <P>
169 A* is particularly useful for searching <i>implicit</i> graphs.
170 Implicit graphs are graphs that are not completely known at the
171 beginning of the search. Upon visiting a vertex, its neighbors are
172 "generated" and added to the search. Implicit graphs are particularly
173 useful for searching large state spaces -- in game-playing scenarios
174 (e.g. chess), for example -- in which it may not be possible to store
175 the entire graph. Implicit searches can be performed with this
176 implementation of A* by creating special visitors that generate
177 neighbors of newly-expanded vertices. Please note that
178 <tt>astar_search_no_init()</tt> or <tt>astar_search_no_init_tree()</tt> must be
179 used for implicit graphs; the basic
180 <tt>astar_search()</tt> function requires a graph that models
181 the <a href="VertexListGraph.html">Vertex List Graph</a> concept. Both
182 versions
183 also require the graph type to model the <a
184 href="IncidenceGraph.html">Incidence Graph</a> concept.
185 </P>
186
187 <P>
188 For the non-tree versions of the algorithm,
189 this implementation of A* is based on an OPEN/CLOSED list formulation.
190 Vertices on the OPEN list have been ``discovered''
191 by the algorithm, but not ``expanded'' (we have not discovered their
192 adjacent vertices). Vertices on the CLOSED list have been completely
193 examined by our search (we have expanded them and added their children
194 to the OPEN list). Vertices that are on neither list have not been
195 encountered in any context so far in our search. A major advantage of
196 this formulation of the A* algorithm over other approaches is that it
197 avoids ``cycles'' in the state space; the search will not become
198 trapped by loops in the graph. The OPEN/CLOSED lists are implemented
199 using BGL's vertex coloring mechanisms. Vertices in OPEN are colored
200 gray, vertices in CLOSED are colored black, and undiscovered vertices
201 are colored white. For the versions of the algorithm whose names end in
202 <tt>_tree</tt>, all vertices are assumed to always be white, leading to
203 checking for repeated vertices being done using the distance map. If a dummy
204 value is used for the distance map and the graph contains cycles, the algorithm
205 will probably enter an infinite loop.
206 </P>
207
208 <P>
209 The criteria for expanding a vertex on the OPEN list is that it has
210 the lowest <i>f(v) = g(v) + h(v)</i> value of all vertices on OPEN.
211 Cost information about vertices is stored in a property map.
212 </P>
213
214 <P>
215 The following is the pseudocode for the A* heuristic search algorithm.
216 In the pseudocode, <i>h</i> is the heuristic function, <i>w</i> is the
217 edge weight, <i>d</i> is the distance of a vertex from <i>s</i>, and
218 <i>Q</i> is a priority queue, sorted by <i>f</i>, the estimated cost
219 to the goal of the path through a vertex. <i>p</i> is a predecessor
220 map. The visitor event points for the algorithm are indicated by the
221 labels on the right.
222 </P>
223
224 <table>
225 <tr>
226 <td valign="top">
227 <pre>
228 A*(<i>G</i>, <i>s</i>, <i>h</i>)
229 <b>for</b> each vertex <i>u in V</i>
230 <i>d[u] := f[u] := infinity</i>
231 <i>color[u] :=</i> WHITE
232 <i>p[u] := u</i>
233 <b>end for</b>
234 <i>color[s] :=</i> GRAY
235 <i>d[s] := 0</i>
236 <i>f[s] := h(s)</i>
237 INSERT(<i>Q, s</i>)
238 <b>while</b> (<i>Q != &Oslash;</i>)
239 <i>u :=</i> EXTRACT-MIN(<i>Q</i>)
240 <b>for</b> each vertex <i>v in Adj[u]</i>
241 <b>if</b> (<i>w(u,v) + d[u] &lt; d[v]</i>)
242 <i>d[v] := w(u,v) + d[u]</i>
243 <i>f[v] := d[v] + h(v)</i>
244 <i>p[v] := u</i>
245 <b>if</b> (<i>color[v] =</i> WHITE)
246 <i>color[v] :=</i> GRAY
247 INSERT(<i>Q, v</i>)
248 <b>else if</b> (<i>color[v] =</i> BLACK)
249 <i>color[v] :=</i> GRAY
250 INSERT(<i>Q, v</i>)
251 <b>end if</b>
252 <b>else</b>
253 <i>...</i>
254 <b>end for</b>
255 <i>color[u] :=</i> BLACK
256 <b>end while</b>
257 </pre>
258 </td>
259 <td valign="top">
260 <pre>
261
262 initialize vertex <i>u</i>
263
264
265
266
267
268
269
270 discover vertex <i>s</i>
271
272 examine vertex <i>u</i>
273 examine edge <i>(u,v)</i>
274
275 edge <i>(u,v)</i> relaxed
276
277
278
279
280 discover vertex <i>v</i>
281
282
283 reopen vertex <i>v</i>
284
285
286 edge <i>(u,v)</i> not relaxed
287
288 finish vertex <i>u</i>
289 </pre>
290 </td>
291 </tr>
292 </table>
293
294 <h3>Where Defined</h3>
295
296 <a href="../../../boost/graph/astar_search.hpp"><tt>boost/graph/astar_search.hpp</tt></a>
297
298 <h3>Parameters</h3>
299
300 IN: <tt>const VertexListGraph&amp; g</tt>
301 <blockquote>
302 The graph object on which the algorithm will be applied for <tt>astar_search()</tt>. The type
303 <tt>VertexListGraph</tt> must be a model of the <a
304 href="VertexListGraph.html">
305 Vertex List Graph</a> and <a href="IncidenceGraph.html">Incidence Graph</a>
306 concepts.
307 </blockquote>
308
309 IN: <tt>const IncidenceGraph&amp; g</tt>
310 <blockquote>
311 The graph object on which the algorithm will be applied for <tt>astar_search_no_init()</tt>. The type
312 <tt>IncidenceGraph</tt> must be a model of the
313 <a href="IncidenceGraph.html">Incidence Graph</a>
314 concept.
315 </blockquote>
316
317 IN: <tt>vertex_descriptor s</tt>
318 <blockquote>
319 The start vertex for the search. All distances will be calculated
320 from this vertex, and the shortest paths tree (recorded in the
321 predecessor map) will be rooted at this vertex.
322 </blockquote>
323
324 IN: <tt>AStarHeuristic h</tt>
325 <blockquote>
326 The heuristic function that guides the search. The type
327 <tt>AStarHeuristic</tt> must be a model of the <a href="AStarHeuristic.html">AStarHeuristic</a>
328 concept.
329 </blockquote>
330
331 <h3>Named Parameters</h3>
332
333 IN: <tt>weight_map(WeightMap w_map)</tt>
334 <blockquote>
335 The weight or ``length'' of each edge in the graph. The weights
336 must all be non-negative; the algorithm will throw a <a
337 href="./exception.html#negative_edge"><tt>negative_edge</tt></a>
338 exception if one of the edges is negative. The type
339 <tt>WeightMap</tt> must be a model of <a
340 href="../../property_map/doc/ReadablePropertyMap.html"><tt>Readable
341 Property Map</tt></a>. The edge descriptor type of the graph needs
342 to be usable as the key type for the weight map. The value type
343 for this map must be the same as the value type of the distance
344 map.<br>
345 <b>Default:</b> <tt>get(edge\_weight, g)</tt>
346 </blockquote>
347
348 IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt>
349 <blockquote>
350 This maps each vertex to an integer in the range <tt>[0,
351 num_vertices(g))</tt>. This is necessary in non-tree versions of the
352 algorithm for efficient updates of
353 the heap data structure when an edge is relaxed. The type
354 <tt>VertexIndexMap</tt> must be a model of <a
355 href="../../property_map/doc/ReadablePropertyMap.html"><tt>Readable
356 Property Map</tt></a>. The value type of the map must be an integer
357 type. The vertex descriptor type of the graph needs to be usable as
358 the key type of the map.<br>
359
360 <b>Default:</b> <tt>get(vertex_index, g)</tt>.
361 Note: if you use this default, make sure your graph has
362 an internal <tt>vertex_index</tt> property. For example,
363 <tt>adjacency_list</tt> with <tt>VertexList=listS</tt> does
364 not have an internal <tt>vertex_index</tt> property.
365 </blockquote>
366
367 OUT: <tt>predecessor_map(PredecessorMap p_map)</tt>
368 <blockquote>
369
370 The predecessor map records the edges in the minimum spanning tree.
371 Upon completion of the algorithm, the edges <tt>(p[u],u)</tt> for
372 all <tt>u</tt> in <tt>V</tt> are in the minimum spanning tree. If
373 <tt>p[u] = u</tt> then <tt>u</tt> is either the start vertex or a
374 vertex that is not reachable from the start. The
375 <tt>PredecessorMap</tt> type must be a <a
376 href="../../property_map/doc/ReadWritePropertyMap.html"><tt>Read/Write
377 Property Map</tt></a> with key and vertex types the same as the
378 vertex descriptor type of the graph.<br>
379
380 <b>Default:</b> <tt>dummy_property_map</tt>
381 </blockquote>
382
383 UTIL/OUT: <tt>distance_map(DistanceMap d_map)</tt>
384 <blockquote>
385
386 The shortest path weight from the start vertex <tt>s</tt> to each
387 vertex in the graph <tt>g</tt> is recorded in this property map.
388 The shortest path weight is the sum of the edge weights along the
389 shortest path. The type <tt>DistanceMap</tt> must be a model of <a
390 href="../../property_map/doc/ReadWritePropertyMap.html"><tt>Read/Write
391 Property Map</tt></a>. The vertex descriptor type of the graph
392 needs to be usable as the key type of the distance map. The value
393 type of the distance map is the element type of a <a
394 href="./Monoid.html"><tt>Monoid</tt></a> formed with the
395 <tt>combine</tt> function object and the zero object for the
396 identity element. Also the distance value type must have a <a
397 href="http://www.sgi.com/tech/stl/StrictWeakOrdering.html"><tt>StrictWeakOrdering</tt></a>
398 provided by the <tt>compare</tt> function object. A
399 <tt>constant_writable_property_map</tt> returning the infinity value can be
400 used for this parameter in tree versions of the algorithm when the graph does
401 not contain a directed cycle.<br>
402
403 <b>Default:</b> <tt>shared_array_property_map</tt>
404 with the same value type as the
405 <tt>WeightMap</tt>, and of size <tt>num_vertices(g)</tt>, and using
406 the <tt>i_map</tt> for the index map.
407 </blockquote>
408
409 UTIL/OUT: <tt>rank_map(CostMap c_map)</tt>
410 <blockquote>
411
412 The <i>f</i>-value for each vertex. The <i>f</i>-value is defined
413 as the sum of the cost to get to a vertex from the start vertex, and
414 the estimated cost (as returned by the heuristic function
415 <tt>h</tt>) from the vertex to a goal. The type <tt>CostMap</tt>
416 must be a model of <a
417 href="../../property_map/doc/ReadWritePropertyMap.html"><tt>Read/Write
418 Property Map</tt></a> in non-tree versions of the algorithm, and <a
419 href="../../property_map/doc/WritablePropertyMap.html"><tt>Writable Property
420 Map</tt></a> in tree versions of the algorithm. The vertex descriptor type
421 of the graph
422 needs to be usable as the key type of the distance map. The value
423 type of the distance map is the element type of a <a
424 href="./Monoid.html"><tt>Monoid</tt></a> formed with the
425 <tt>combine</tt> function object and the zero object for the
426 identity element. Also the distance value type must have a <a
427 href="http://www.sgi.com/tech/stl/StrictWeakOrdering.html"><tt>StrictWeakOrdering</tt></a>
428 provided by the <tt>compare</tt> function object. The value type
429 for this map must be the same as the value type for the distance
430 map. In tree versions of the algorithm, <tt>null_property_map</tt> can be
431 used for this parameter.<br>
432
433 <b>Default:</b> <tt>shared_array_property_map</tt>
434 with the same value type as the
435 <tt>DistanceMap</tt>, and of size <tt>num_vertices(g)</tt>, and using
436 the <tt>i_map</tt> for the index map.
437 </blockquote>
438
439 UTIL/OUT: <tt>color_map(ColorMap c_map)</tt>
440 <blockquote>
441
442 This is used during the execution of non-tree versions of the algorithm to
443 mark the
444 vertices, indicating whether they are on the OPEN or CLOSED lists.
445 The vertices start out white and become gray when they are inserted
446 into the OPEN list. They then turn black when they are examined and
447 placed on the CLOSED list. At the end of the algorithm, vertices
448 reachable from the source vertex will have been colored black. All
449 other vertices will still be white. The type <tt>ColorMap</tt> must
450 be a model of <a
451 href="../../property_map/doc/ReadWritePropertyMap.html"><tt>Read/Write
452 Property Map</tt></a>. A vertex descriptor must be usable as the
453 key type of the map, and the value type of the map must be a model
454 of <a href="./ColorValue.html"><tt>Color Value</tt></a>.<br>
455
456 <b>Default:</b> <tt>shared_array_property_map</tt>
457 of value type <tt>default_color_type</tt>, with size
458 <tt>num_vertices(g)</tt>, and using
459 the <tt>i_map</tt> for the index map.
460 </blockquote>
461
462 IN: <tt>distance_compare(CompareFunction cmp)</tt>
463 <blockquote>
464
465 This function is use to compare distances to determine which vertex
466 is closer to the start vertex, and to compare <i>f</i>-values to
467 determine which vertex on the OPEN list to examine next. The
468 <tt>CompareFunction</tt> type must be a model of <a
469 href="http://www.sgi.com/tech/stl/BinaryPredicate.html"><tt>Binary
470 Predicate</tt></a> and have argument types that match the value type
471 of the <tt>DistanceMap</tt> property map.<br>
472
473 <b>Default:</b> <tt>std::less&lt;D&gt;</tt> with <tt>D = typename
474 property_traits&lt;DistanceMap&gt;::value_type</tt>.
475 </blockquote>
476
477 IN: <tt>distance_combine(CombineFunction cmb)</tt>
478 <blockquote>
479
480 This function is used to combine distances to compute the distance
481 of a path, and to combine distance and heuristic values to compute
482 the <i>f</i>-value of a vertex. The <tt>CombineFunction</tt> type
483 must be a model of <a
484 href="http://www.sgi.com/tech/stl/BinaryFunction.html"><tt>Binary
485 Function</tt></a>. Both argument types of the binary function must
486 match the value type of the <tt>DistanceMap</tt> property map (which
487 is the same as that of the <tt>WeightMap</tt> and <tt>CostMap</tt>
488 property maps). The result type must be the same type as the
489 distance value type.<br>
490
491 <b>Default:</b> <tt>std::plus&lt;D&gt;</tt> with <tt>D = typename
492 property_traits&lt;DistanceMap&gt;::value_type</tt>.
493 </blockquote>
494
495 IN: <tt>distance_inf(D inf)</tt>
496 <blockquote>
497
498 The <tt>inf</tt> object must be the greatest value of any <tt>D</tt>
499 object. That is, <tt>compare(d, inf) == true</tt> for any <tt>d !=
500 inf</tt>. The type <tt>D</tt> is the value type of the
501 <tt>DistanceMap</tt>.<br>
502
503 <b>Default:</b> <tt>std::numeric_limits&lt;D&gt;::max()</tt>
504 </blockquote>
505
506 IN: <tt>distance_zero(D zero)</tt>
507 <blockquote>
508
509 The <tt>zero</tt> value must be the identity element for the <a
510 href="./Monoid.html"><tt>Monoid</tt></a> formed by the distance
511 values and the <tt>combine</tt> function object. The type
512 <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.<br>
513
514 <b>Default</b>: <tt>D()</tt> with <tt>D = typename
515 property_traits&lt;DistanceMap&gt;::value_type</tt>.
516 </blockquote>
517
518 OUT: <tt>visitor(AStarVisitor v)</tt>
519 <blockquote>
520
521 Use this to specify actions that you would like to happen during
522 certain event points within the algorithm. The type
523 <tt>AStarVisitor</tt> must be a model of the <a
524 href="AStarVisitor.html"><tt>AStarVisitor</tt></a> concept. The
525 visitor object is passed by value <a href="#1">[1]</a>.<br>
526
527 <b>Default:</b> <tt>astar_visitor&lt;null_visitor&gt;</tt>
528 </blockquote>
529
530 <H3>Complexity</H3>
531
532 <P>
533 The time complexity is <i>O((E + V) log V)</i>.
534
535 <h3>Visitor Event Points</h3>
536
537 <ul>
538 <li><b><tt>vis.initialize_vertex(u, g)</tt></b>
539 is invoked on each vertex in the graph before the start of the
540 algorithm.
541 <li><b><tt>vis.discover_vertex(v, g)</tt></b>
542 is invoked when a vertex is first discovered and is added to the
543 OPEN list.
544 <li><b><tt>vis.examine_vertex(u, g)</tt></b>
545 is invoked when a vertex is popped from
546 the queue (i.e., it has the lowest cost on the OPEN list).
547 <li><b><tt>vis.examine_edge(e, g)</tt></b>
548 is invoked on each out-edge of a vertex immediately after it is
549 examined.
550 <li><b><tt>vis.edge_relaxed(e, g)</tt></b>
551 is invoked on edge <i>(u,v)</i> if <i>d[u] + w(u,v) &lt; d[v]</i>.
552 <li><b><tt>vis.edge_not_relaxed(e, g)</tt></b>
553 is invoked if the edge is not relaxed (see above).
554 <li><b><tt>vis.black_target(e, g)</tt></b>
555 is invoked when a vertex that is on the CLOSED list is
556 "rediscovered" via a more efficient path, and is re-added to the
557 OPEN list.
558 <li><b><tt>vis.finish_vertex(u, g)</tt></b>
559 is invoked on a vertex when it is added to the CLOSED list, which
560 happens after all of its out edges have been examined.
561 </ul>
562
563 <H3>Example</H3>
564
565 <P>
566 See <a href="../example/astar-cities.cpp">
567 <TT>example/astar-cities.cpp</TT></a> for an example of
568 using A* search.
569
570 <H3>Notes</H3>
571
572 <a name="1">[1]</a> Since the visitor parameter is passed by value, if
573 your visitor contains state then any changes to the state during the
574 algorithm will be made to a copy of the visitor object, not the
575 visitor object passed in. Therefore you may want the visitor to hold
576 this state by pointer or reference.
577
578 <br>
579 <HR>
580 <TABLE>
581 <TR valign=top>
582 <TD nowrap>Copyright &copy; 2004</TD><TD>
583 <A HREF="http://www.cs.rpi.edu/~beevek/">Kristopher Beevers</A>,
584 Rensselaer Polytechnic Institute (<A
585 HREF="mailto:beevek@cs.rpi.edu">beevek@cs.rpi.edu</A>)
586 </TD></TR></TABLE>
587
588 </BODY>
589 </HTML>