]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/graph/doc/dijkstra_shortest_paths.html
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / graph / doc / dijkstra_shortest_paths.html
1 <HTML>
2 <!--
3 Copyright (c) Jeremy Siek 2000
4
5 Distributed under the Boost Software License, Version 1.0.
6 (See accompanying file LICENSE_1_0.txt or copy at
7 http://www.boost.org/LICENSE_1_0.txt)
8 -->
9 <Head>
10 <Title>Boost Graph Library: Dijkstra's Shortest Paths</Title>
11 <BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
12 ALINK="#ff0000">
13 <IMG SRC="../../../boost.png"
14 ALT="C++ Boost" width="277" height="86">
15
16 <BR Clear>
17
18 <H1><A NAME="sec:dijkstra"></A><img src="figs/python.gif" alt="(Python)"/>
19 <TT>dijkstra_shortest_paths</TT>
20 </H1>
21
22 <P>
23 <PRE>
24 <i>// named parameter version</i>
25 template &lt;typename Graph, typename P, typename T, typename R&gt;
26 void
27 dijkstra_shortest_paths(Graph&amp; g,
28 typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
29 const bgl_named_params&lt;P, T, R&gt;&amp; params);
30
31 <i>// non-named parameter version</i>
32 template &lt;typename Graph, typename <a href="DijkstraVisitor.html">DijkstraVisitor</a>,
33 typename PredecessorMap, typename DistanceMap,
34 typename WeightMap, typename VertexIndexMap, typename <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">CombineFunction</a>,
35 typename DistInf, typename DistZero, typename ColorMap = <i>default</i>&gt;
36 void dijkstra_shortest_paths
37 (const Graph&amp; g,
38 typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
39 PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
40 VertexIndexMap index_map,
41 CompareFunction compare, CombineFunction combine, DistInf inf, DistZero zero,
42 DijkstraVisitor vis, ColorMap color = <i>default</i>)
43
44 <i>// version that does not initialize the property maps (except for the default color map)</i>
45 template &lt;class Graph, class DijkstraVisitor,
46 class PredecessorMap, class DistanceMap,
47 class WeightMap, class IndexMap, class Compare, class Combine,
48 class DistZero, class ColorMap&gt;
49 void
50 dijkstra_shortest_paths_no_init
51 (const Graph&amp; g,
52 typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
53 PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
54 IndexMap index_map,
55 Compare compare, Combine combine, DistZero zero,
56 DijkstraVisitor vis, ColorMap color = <i>default</i>);
57 </PRE>
58
59 <P>
60 This algorithm&nbsp;[<A HREF="bibliography.html#dijkstra59">10</A>,<A
61 HREF="bibliography.html#clr90">8</A>] solves the single-source
62 shortest-paths problem on a weighted, directed or undirected graph for
63 the case where all edge weights are nonnegative. Use the Bellman-Ford
64 algorithm for the case when some edge weights are negative. Use
65 breadth-first search instead of Dijkstra's algorithm when all edge
66 weights are equal to one. For the definition of the shortest-path
67 problem see Section <A
68 HREF="graph_theory_review.html#sec:shortest-paths-algorithms">Shortest-Paths
69 Algorithms</A> for some background to the shortest-path problem.
70 </P>
71
72 <P>
73 There are two main options for obtaining output from the
74 <tt>dijkstra_shortest_paths()</tt> function. If you provide a
75 distance property map through the <tt>distance_map()</tt> parameter
76 then the shortest distance from the source vertex to every other
77 vertex in the graph will be recorded in the distance map. Also you can
78 record the shortest paths tree in a predecessor map: for each vertex
79 <i>u in V</i>, <i>p[u]</i> will be the predecessor of <i>u</i> in
80 the shortest paths tree (unless <i>p[u] = u</i>, in which case <i>u</i> is
81 either the source or a vertex unreachable from the source). In
82 addition to these two options, the user can provide their own
83 custom-made visitor that takes actions during any of the
84 algorithm's event points.</P>
85
86 <P>
87 Dijkstra's algorithm finds all the shortest paths from the source
88 vertex to every other vertex by iteratively ``growing'' the set of
89 vertices <i>S</i> to which it knows the shortest path. At each step of
90 the algorithm, the next vertex added to <i>S</i> is determined by a
91 priority queue. The queue contains the vertices in <i>V - S</i><a
92 href="#1">[1]</a> prioritized by their distance label, which is the
93 length of the shortest path seen so far for each vertex. The vertex
94 <i>u</i> at the top of the priority queue is then added to <i>S</i>,
95 and each of its out-edges is relaxed: if the distance to <i>u</i> plus
96 the weight of the out-edge <i>(u,v)</i> is less than the distance
97 label for <i>v</i> then the estimated distance for vertex <i>v</i> is
98 reduced. The algorithm then loops back, processing the next vertex at
99 the top of the priority queue. The algorithm finishes when the
100 priority queue is empty.
101 </P>
102 <P>
103 The algorithm uses color markers (white, gray, and black) to keep
104 track of which set each vertex is in. Vertices colored black are in
105 <i>S</i>. Vertices colored white or gray are in <i>V-S</i>. White vertices have
106 not yet been discovered and gray vertices are in the priority queue.
107 By default, the algorithm will allocate an array to store a color
108 marker for each vertex in the graph. You can provide your own storage
109 and access for colors with the <tt>color_map()</tt> parameter.
110 </P>
111 <p>
112 The following is the pseudo-code for Dijkstra's single-source shortest
113 paths algorithm. <i>w</i> is the edge weight, <i>d</i> is the distance label,
114 and <i>p</i> is the predecessor of each vertex which is used to encode
115 the shortest paths tree. <i>Q</i> is a priority queue that supports the
116 DECREASE-KEY operation. The visitor event points for the algorithm are
117 indicated by the labels on the right.
118 </p>
119
120 <table>
121 <tr>
122 <td valign="top">
123 <pre>
124 DIJKSTRA(<i>G</i>, <i>s</i>, <i>w</i>)
125 <b>for</b> each vertex <i>u in V</i> <b>(This loop is not run in dijkstra_shortest_paths_no_init)</b>
126 <i>d[u] := infinity</i>
127 <i>p[u] := u</i>
128 <i>color[u] :=</i> WHITE
129 <b>end for</b>
130 <i>color[s] := </i>GRAY
131 <i>d[s] := 0</i>
132 INSERT(<i>Q</i>, <i>s</i>)
133 <b>while</b> (<i>Q != &Oslash;</i>)
134 <i>u :=</i> EXTRACT-MIN(<i>Q</i>)
135 <i>S := S U { u }</i>
136 <b>for</b> each vertex <i>v in Adj[u]</i>
137 <b>if</b> (<i>w(u,v) + d[u] < d[v]</i>)
138 <i>d[v] := w(u,v) + d[u]</i>
139 <i>p[v] := u</i>
140 <b>if</b> (<i>color[v] =</i> WHITE)
141 <i>color[v] :=</i> GRAY
142 INSERT(<i>Q</i>, <i>v</i>)
143 <b>else if</b> (<i>color[v] =</i> GRAY)
144 DECREASE-KEY(<i>Q</i>, <i>v</i>)
145 <b>else</b>
146 <i>...</i>
147 <b>end for</b>
148 <i>color[u] :=</i> BLACK
149 <b>end while</b>
150 return (<i>d</i>, <i>p</i>)
151 </pre>
152 </td>
153 <td valign="top">
154 <pre>
155
156 initialize vertex <i>u</i>
157
158
159
160
161
162
163 discover vertex <i>s</i>
164
165 examine vertex <i>u</i>
166
167 examine edge <i>(u,v)</i>
168
169 edge <i>(u,v)</i> relaxed
170
171
172
173 discover vertex <i>v</i>
174
175
176
177 edge <i>(u,v)</i> not relaxed
178
179 finish vertex <i>u</i>
180 </pre>
181 </td>
182 </tr>
183 </table>
184
185 <h3>Where Defined</h3>
186
187 <a href="../../../boost/graph/dijkstra_shortest_paths.hpp"><tt>boost/graph/dijkstra_shortest_paths.hpp</tt></a>
188
189 <h3>Parameters</h3>
190
191 IN: <tt>const Graph&amp; g</tt>
192 <blockquote>
193 The graph object on which the algorithm will be applied.
194 The type <tt>Graph</tt> must be a model of
195 <a href="./VertexListGraph.html">Vertex List Graph</a>
196 and <a href="./IncidenceGraph.html">Incidence Graph</a>.<br>
197
198 <b>Python</b>: The parameter is named <tt>graph</tt>.
199 </blockquote>
200
201 IN: <tt>vertex_descriptor s</tt>
202 <blockquote>
203 The source vertex. All distance will be calculated from this vertex,
204 and the shortest paths tree will be rooted at this vertex.<br>
205
206 <b>Python</b>: The parameter is named <tt>root_vertex</tt>.
207 </blockquote>
208
209 <h3>Named Parameters</h3>
210
211 IN: <tt>weight_map(WeightMap w_map)</tt>
212 <blockquote>
213 The weight or ``length'' of each edge in the graph. The weights
214 must all be non-negative, and the algorithm will throw a
215 <a href="./exception.html#negative_edge"><tt>negative_edge</tt></a>
216 exception is one of the edges is negative.
217 The type <tt>WeightMap</tt> must be a model of
218 <a href="../../property_map/doc/ReadablePropertyMap.html">Readable Property Map</a>. The edge descriptor type of
219 the graph needs to be usable as the key type for the weight
220 map. The value type for this map must be
221 the same as the value type of the distance map.<br>
222 <b>Default:</b> <tt>get(edge_weight, g)</tt><br>
223
224 <b>Python</b>: Must be an <tt>edge_double_map</tt> for the graph.<br>
225 <b>Python default</b>: <tt>graph.get_edge_double_map("weight")</tt>
226 </blockquote>
227
228 IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt>
229 <blockquote>
230 This maps each vertex to an integer in the range <tt>[0,
231 num_vertices(g))</tt>. This is necessary for efficient updates of the
232 heap data structure&nbsp;[<A
233 HREF="bibliography.html#driscoll88">61</A>] when an edge is relaxed.
234 The type
235 <tt>VertexIndexMap</tt> must be a model of
236 <a href="../../property_map/doc/ReadablePropertyMap.html">Readable Property Map</a>. The value type of the map must be an
237 integer type. The vertex descriptor type of the graph needs to be
238 usable as the key type of the map.<br>
239 <b>Default:</b> <tt>get(vertex_index, g)</tt>.
240 Note: if you use this default, make sure your graph has
241 an internal <tt>vertex_index</tt> property. For example,
242 <tt>adjacency_list</tt> with <tt>VertexList=listS</tt> does
243 not have an internal <tt>vertex_index</tt> property.
244 <br>
245
246 <b>Python</b>: Unsupported parameter.
247 </blockquote>
248
249 OUT: <tt>predecessor_map(PredecessorMap p_map)</tt>
250 <blockquote>
251 The predecessor map records the edges in the shortest path tree, the tree computed
252 by the traversal of the graph. Upon completion of the algorithm, the edges
253 <i>(p[u],u)</i> for all <i>u in V</i> are in the tree. The shortest path
254 from vertex <i>s</i> to each vertex <i>v</i> in the graph consists of the
255 vertices <i>v</i>, <i>p[v]</i>, <i>p[p[v]]</i>, and so on until <i>s</i> is
256 reached, in reverse order. The
257 tree is not guaranteed to be a minimum spanning tree. If <i>p[u] =
258 u</i> then <i>u</i> is either the source vertex or a vertex that is
259 not reachable from the source. The <tt>PredecessorMap</tt> type
260 must be a <a
261 href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
262 Property Map</a> whose key and value types are the same as the vertex
263 descriptor type of the graph.<br>
264 <b>Default:</b> <tt>dummy_property_map</tt><br>
265
266 <b>Python</b>: Must be a <tt>vertex_vertex_map</tt> for the graph.<br>
267 </blockquote>
268
269 UTIL/OUT: <tt>distance_map(DistanceMap d_map)</tt>
270 <blockquote>
271 The shortest path weight from the source vertex <tt>s</tt> to each
272 vertex in the graph <tt>g</tt> is recorded in this property map. The
273 shortest path weight is the sum of the edge weights along the
274 shortest path. The type <tt>DistanceMap</tt> must be a model of <a
275 href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
276 Property Map</a>. The vertex descriptor type of the graph needs to
277 be usable as the key type of the distance map.
278
279 The value type of the distance map is the element type of a <a
280 href="./Monoid.html">Monoid</a> formed with the <tt>combine</tt>
281 function object and the <tt>zero</tt> object for the identity
282 element. Also the distance value type must have a <a
283 href="http://www.sgi.com/tech/stl/StrictWeakOrdering.html">
284 StrictWeakOrdering</a> provided by the <tt>compare</tt> function
285 object.<br>
286 <b>Default:</b> <a
287 href="../../property_map/doc/iterator_property_map.html">
288 <tt>iterator_property_map</tt></a> created from a
289 <tt>std::vector</tt> of the <tt>WeightMap</tt>'s value type of size
290 <tt>num_vertices(g)</tt> and using the <tt>i_map</tt> for the index
291 map.<br>
292
293 <b>Python</b>: Must be a <tt>vertex_double_map</tt> for the graph.<br>
294 </blockquote>
295
296 IN: <tt>distance_compare(CompareFunction cmp)</tt>
297 <blockquote>
298 This function is use to compare distances to determine which vertex
299 is closer to the source vertex. The <tt>CompareFunction</tt> type
300 must be a model of <a
301 href="http://www.sgi.com/tech/stl/BinaryPredicate.html">Binary
302 Predicate</a> and have argument types that match the value type of
303 the <tt>DistanceMap</tt> property map.<br>
304
305 <b>Default:</b>
306 <tt>std::less&lt;D&gt;</tt> with <tt>D=typename
307 property_traits&lt;DistanceMap&gt;::value_type</tt><br>
308
309 <b>Python</b>: Unsupported parameter.
310 </blockquote>
311
312 IN: <tt>distance_combine(CombineFunction cmb)</tt>
313 <blockquote>
314 This function is used to combine distances to compute the distance
315 of a path. The <tt>CombineFunction</tt> type must be a model of <a
316 href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary
317 Function</a>. The first argument type of the binary function must
318 match the value type of the <tt>DistanceMap</tt> property map and
319 the second argument type must match the value type of the
320 <tt>WeightMap</tt> property map. The result type must be the same
321 type as the distance value type.<br>
322
323 <b>Default:</b> <tt>closed_plus&lt;D&gt;</tt> with
324 <tt>D=typename property_traits&lt;DistanceMap&gt;::value_type</tt><br>
325
326 <b>Python</b>: Unsupported parameter.
327 </blockquote>
328
329 IN: <tt>distance_inf(D inf)</tt>
330 <blockquote>
331 The <tt>inf</tt> object must be the greatest value of any <tt>D</tt> object.
332 That is, <tt>compare(d, inf) == true</tt> for any <tt>d != inf</tt>.
333 The type <tt>D</tt> is the value type of the <tt>DistanceMap</tt>. Edges
334 are assumed to have a weight less than (using <tt>distance_compare</tt> for
335 comparison) this value.<br>
336 <b>Default:</b> <tt>std::numeric_limits&lt;D&gt;::max()</tt><br>
337
338 <b>Python</b>: Unsupported parameter.
339 </blockquote>
340
341 IN: <tt>distance_zero(D zero)</tt>
342 <blockquote>
343 The <tt>zero</tt> value must be the identity element for the
344 <a href="./Monoid.html">Monoid</a> formed by the distance values
345 and the <tt>combine</tt> function object.
346 The type <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.<br>
347 <b>Default:</b> <tt>D()</tt>with
348 <tt>D=typename property_traits&lt;DistanceMap&gt;::value_type</tt><br>
349
350 <b>Python</b>: Unsupported parameter.
351 </blockquote>
352
353 UTIL/OUT: <tt>color_map(ColorMap c_map)</tt>
354 <blockquote>
355 This is used during the execution of the algorithm to mark the
356 vertices. The vertices start out white and become gray when they are
357 inserted in the queue. They then turn black when they are removed
358 from the queue. At the end of the algorithm, vertices reachable from
359 the source vertex will have been colored black. All other vertices
360 will still be white. The type <tt>ColorMap</tt> must be a model of
361 <a href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
362 Property Map</a>. A vertex descriptor must be usable as the key type
363 of the map, and the value type of the map must be a model of
364 <a href="./ColorValue.html">Color Value</a>.<br>
365 <b>Default:</b> an <a
366 href="../../property_map/doc/iterator_property_map.html">
367 <tt>iterator_property_map</tt></a> created from a <tt>std::vector</tt>
368 of <tt>default_color_type</tt> of size <tt>num_vertices(g)</tt> and
369 using the <tt>i_map</tt> for the index map.<br>
370
371 <b>Python</b>: The color map must be a <tt>vertex_color_map</tt> for
372 the graph.
373 </blockquote>
374
375 OUT: <tt>visitor(DijkstraVisitor v)</tt>
376 <blockquote>
377 Use this to specify actions that you would like to happen
378 during certain event points within the algorithm.
379 The type <tt>DijkstraVisitor</tt> must be a model of the
380 <a href="./DijkstraVisitor.html">Dijkstra Visitor</a> concept.
381 The visitor object is passed by value <a
382 href="#2">[2]</a>.<br>
383 <b>Default:</b> <tt>dijkstra_visitor&lt;null_visitor&gt;</tt><br>
384
385 <b>Python</b>: The parameter should be an object that derives from
386 the <a
387 href="DijkstraVisitor.html#python"><tt>DijkstraVisitor</tt></a> type
388 of the graph.
389 </blockquote>
390
391
392 <H3>Complexity</H3>
393
394 <P>
395 The time complexity is <i>O(V log V + E)</i>.
396
397
398 <h3>Visitor Event Points</h3>
399
400 <ul>
401 <li><b><tt>vis.initialize_vertex(u, g)</tt></b>
402 is invoked on each vertex in the graph before the start of the
403 algorithm.
404 <li><b><tt>vis.examine_vertex(u, g)</tt></b>
405 is invoked on a vertex as it is removed from the priority queue
406 and added to set <i>S</i>. At this point we know that <i>(p[u],u)</i>
407 is a shortest-paths tree edge so
408 <i>d[u] = delta(s,u) = d[p[u]] + w(p[u],u)</i>. Also, the distances
409 of the examined vertices is monotonically increasing
410 <i>d[u<sub>1</sub>] <= d[u<sub>2</sub>] <= d[u<sub>n</sub>]</i>.
411 <li><b><tt>vis.examine_edge(e, g)</tt></b>
412 is invoked on each out-edge of a vertex immediately after it has
413 been added to set <i>S</i>.
414 <li><b><tt>vis.edge_relaxed(e, g)</tt></b>
415 is invoked on edge <i>(u,v)</i> if <i>d[u] + w(u,v) < d[v]</i>.
416 The edge <i>(u,v)</i> that participated in the last
417 relaxation for vertex <i>v</i> is an edge in the shortest paths tree.
418 <li><b><tt>vis.discover_vertex(v, g)</tt></b>
419 is invoked on vertex <i>v</i> when the edge
420 <i>(u,v)</i> is examined and <i>v</i> is WHITE. Since
421 a vertex is colored GRAY when it is discovered,
422 each reacable vertex is discovered exactly once. This
423 is also when the vertex is inserted into the priority queue.
424 <li><b><tt>vis.edge_not_relaxed(e, g)</tt></b>
425 is invoked if the edge is not relaxed (see above).
426 <li><b><tt>vis.finish_vertex(u, g)</tt></b>
427 is invoked on a vertex after all of its out edges have
428 been examined.
429 </ul>
430
431 <H3>Example</H3>
432
433 <P>
434 See <a href="../example/dijkstra-example.cpp">
435 <TT>example/dijkstra-example.cpp</TT></a> for an example of using Dijkstra's
436 algorithm.
437
438 <H3>See also</H3> <a href="dijkstra_shortest_paths_no_color_map.html">dijkstra_shortest_paths_no_color_map</a> for a version of dijkstra's shortest path that does not use a color map.
439
440 <H3>Notes</H3>
441
442 <a name="1">[1]</a>
443 The algorithm used here saves a little space by not putting all <i>V -
444 S</i> vertices in the priority queue at once, but instead only those
445 vertices in <i>V - S</i> that are discovered and therefore have a
446 distance less than infinity.
447
448 <p><a name="2">[2]</a>
449 Since the visitor parameter is passed by value, if your visitor
450 contains state then any changes to the state during the algorithm
451 will be made to a copy of the visitor object, not the visitor object
452 passed in. Therefore you may want the visitor to hold this state by
453 pointer or reference.
454
455 <br>
456 <HR>
457 <TABLE>
458 <TR valign=top>
459 <TD nowrap>Copyright &copy; 2000-2001</TD><TD>
460 <A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)
461 </TD></TR></TABLE>
462
463 </BODY>
464 </HTML>