]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/iterator/doc/quickbook/indirect_iterator.qbk
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / iterator / doc / quickbook / indirect_iterator.qbk
1
2 [section:indirect Indirect Iterator]
3
4 `indirect_iterator` adapts an iterator by applying an
5 *extra* dereference inside of `operator*()`. For example, this
6 iterator adaptor makes it possible to view a container of pointers
7 (e.g. `list<foo*>`) as if it were a container of the pointed-to type
8 (e.g. `list<foo>`). `indirect_iterator` depends on two
9 auxiliary traits, `pointee` and `indirect_reference`, to
10 provide support for underlying iterators whose `value_type` is
11 not an iterator.
12
13 [h2 Example]
14
15 This example prints an array of characters, using
16 `indirect_iterator` to access the array of characters through an
17 array of pointers. Next `indirect_iterator` is used with the
18 `transform` algorithm to copy the characters (incremented by one) to
19 another array. A constant indirect iterator is used for the source and
20 a mutable indirect iterator is used for the destination. The last part
21 of the example prints the original array of characters, but this time
22 using the `make_indirect_iterator` helper function.
23
24
25 char characters[] = "abcdefg";
26 const int N = sizeof(characters)/sizeof(char) - 1; // -1 since characters has a null char
27 char* pointers_to_chars[N]; // at the end.
28 for (int i = 0; i < N; ++i)
29 pointers_to_chars[i] = &characters[i];
30
31 // Example of using indirect_iterator
32
33 boost::indirect_iterator<char**, char>
34 indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);
35
36 std::copy(indirect_first, indirect_last, std::ostream_iterator<char>(std::cout, ","));
37 std::cout << std::endl;
38
39
40 // Example of making mutable and constant indirect iterators
41
42 char mutable_characters[N];
43 char* pointers_to_mutable_chars[N];
44 for (int j = 0; j < N; ++j)
45 pointers_to_mutable_chars[j] = &mutable_characters[j];
46
47 boost::indirect_iterator<char* const*> mutable_indirect_first(pointers_to_mutable_chars),
48 mutable_indirect_last(pointers_to_mutable_chars + N);
49 boost::indirect_iterator<char* const*, char const> const_indirect_first(pointers_to_chars),
50 const_indirect_last(pointers_to_chars + N);
51
52 std::transform(const_indirect_first, const_indirect_last,
53 mutable_indirect_first, std::bind1st(std::plus<char>(), 1));
54
55 std::copy(mutable_indirect_first, mutable_indirect_last,
56 std::ostream_iterator<char>(std::cout, ","));
57 std::cout << std::endl;
58
59
60 // Example of using make_indirect_iterator()
61
62 std::copy(boost::make_indirect_iterator(pointers_to_chars),
63 boost::make_indirect_iterator(pointers_to_chars + N),
64 std::ostream_iterator<char>(std::cout, ","));
65 std::cout << std::endl;
66
67
68 The output is:
69
70 a,b,c,d,e,f,g,
71 b,c,d,e,f,g,h,
72 a,b,c,d,e,f,g,
73
74
75 The source code for this example can be found
76 [@../example/indirect_iterator_example.cpp here].
77
78
79 [h2 Reference]
80
81 [h3 Synopsis]
82
83 template <
84 class Iterator
85 , class Value = use_default
86 , class CategoryOrTraversal = use_default
87 , class Reference = use_default
88 , class Difference = use_default
89 >
90 class indirect_iterator
91 {
92 public:
93 typedef /* see below */ value_type;
94 typedef /* see below */ reference;
95 typedef /* see below */ pointer;
96 typedef /* see below */ difference_type;
97 typedef /* see below */ iterator_category;
98
99 indirect_iterator();
100 indirect_iterator(Iterator x);
101
102 template <
103 class Iterator2, class Value2, class Category2
104 , class Reference2, class Difference2
105 >
106 indirect_iterator(
107 indirect_iterator<
108 Iterator2, Value2, Category2, Reference2, Difference2
109 > const& y
110 , typename enable_if_convertible<Iterator2, Iterator>::type* = 0 // exposition
111 );
112
113 Iterator const& base() const;
114 reference operator*() const;
115 indirect_iterator& operator++();
116 indirect_iterator& operator--();
117 private:
118 Iterator m_iterator; // exposition
119 };
120
121
122 The member types of `indirect_iterator` are defined according to
123 the following pseudo-code, where `V` is
124 `iterator_traits<Iterator>::value_type`
125
126 [pre
127 if (Value is use_default) then
128 typedef remove_const<pointee<V>::type>::type value_type;
129 else
130 typedef remove_const<Value>::type value_type;
131
132 if (Reference is use_default) then
133 if (Value is use_default) then
134 typedef indirect_reference<V>::type reference;
135 else
136 typedef Value& reference;
137 else
138 typedef Reference reference;
139
140 if (Value is use_default) then
141 typedef pointee<V>::type\* pointer;
142 else
143 typedef Value\* pointer;
144
145 if (Difference is use_default)
146 typedef iterator_traits<Iterator>::difference_type difference_type;
147 else
148 typedef Difference difference_type;
149
150 if (CategoryOrTraversal is use_default)
151 typedef *iterator-category* (
152 iterator_traversal<Iterator>::type,`reference`,`value_type`
153 ) iterator_category;
154 else
155 typedef *iterator-category* (
156 CategoryOrTraversal,`reference`,`value_type`
157 ) iterator_category;
158 ]
159
160
161 [h3 Requirements]
162
163 The expression `*v`, where `v` is an object of
164 `iterator_traits<Iterator>::value_type`, shall be valid
165 expression and convertible to `reference`. `Iterator` shall
166 model the traversal concept indicated by `iterator_category`.
167 `Value`, `Reference`, and `Difference` shall be chosen so
168 that `value_type`, `reference`, and `difference_type` meet
169 the requirements indicated by `iterator_category`.
170
171 [blurb Note: there are further requirements on the
172 `iterator_traits<Iterator>::value_type` if the `Value`
173 parameter is not `use_default`, as implied by the algorithm for
174 deducing the default for the `value_type` member.]
175
176 [h3 Concepts]
177
178 In addition to the concepts indicated by `iterator_category`
179 and by `iterator_traversal<indirect_iterator>::type`, a
180 specialization of `indirect_iterator` models the following
181 concepts, Where `v` is an object of
182 `iterator_traits<Iterator>::value_type`:
183
184 Readable Iterator if `reference(*v)` is convertible to
185 `value_type`.
186
187 Writable Iterator if `reference(*v) = t` is a valid
188 expression (where `t` is an object of type
189 `indirect_iterator::value_type`)
190
191 Lvalue Iterator if `reference` is a reference type.
192
193 `indirect_iterator<X,V1,C1,R1,D1>` is interoperable with
194 `indirect_iterator<Y,V2,C2,R2,D2>` if and only if `X` is
195 interoperable with `Y`.
196
197 [h3 Operations]
198
199 In addition to the operations required by the concepts described
200 above, specializations of `indirect_iterator` provide the
201 following operations:
202
203
204 indirect_iterator();
205
206 [*Requires: ] `Iterator` must be Default Constructible.[br]
207 [*Effects: ] Constructs an instance of `indirect_iterator` with
208 a default-constructed `m_iterator`.
209
210
211 indirect_iterator(Iterator x);
212
213 [*Effects: ] Constructs an instance of `indirect_iterator` with
214 `m_iterator` copy constructed from `x`.
215
216
217 template <
218 class Iterator2, class Value2, unsigned Access, class Traversal
219 , class Reference2, class Difference2
220 >
221 indirect_iterator(
222 indirect_iterator<
223 Iterator2, Value2, Access, Traversal, Reference2, Difference2
224 > const& y
225 , typename enable_if_convertible<Iterator2, Iterator>::type* = 0 // exposition
226 );
227
228 [*Requires: ] `Iterator2` is implicitly convertible to `Iterator`.[br]
229 [*Effects: ] Constructs an instance of `indirect_iterator` whose
230 `m_iterator` subobject is constructed from `y.base()`.
231
232
233 Iterator const& base() const;
234
235 [*Returns: ] `m_iterator`
236
237
238 reference operator*() const;
239
240 [*Returns: ] `**m_iterator`
241
242
243 indirect_iterator& operator++();
244
245 [*Effects: ] `++m_iterator`[br]
246 [*Returns: ] `*this`
247
248
249 indirect_iterator& operator--();
250
251 [*Effects: ] `--m_iterator`[br]
252 [*Returns: ] `*this`
253
254 [endsect]