]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/lambda/include/boost/lambda/closures.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / lambda / include / boost / lambda / closures.hpp
1 /*=============================================================================
2 Adaptable closures
3
4 Phoenix V0.9
5 Copyright (c) 2001-2002 Joel de Guzman
6
7 Distributed under the Boost Software License, Version 1.0. (See
8 accompanying file LICENSE_1_0.txt or copy at
9 http://www.boost.org/LICENSE_1_0.txt)
10
11 URL: http://spirit.sourceforge.net/
12
13 ==============================================================================*/
14 #ifndef PHOENIX_CLOSURES_HPP
15 #define PHOENIX_CLOSURES_HPP
16
17 ///////////////////////////////////////////////////////////////////////////////
18 #include "boost/lambda/core.hpp"
19 ///////////////////////////////////////////////////////////////////////////////
20 namespace boost {
21 namespace lambda {
22
23 ///////////////////////////////////////////////////////////////////////////////
24 //
25 // Adaptable closures
26 //
27 // The framework will not be complete without some form of closures
28 // support. Closures encapsulate a stack frame where local
29 // variables are created upon entering a function and destructed
30 // upon exiting. Closures provide an environment for local
31 // variables to reside. Closures can hold heterogeneous types.
32 //
33 // Phoenix closures are true hardware stack based closures. At the
34 // very least, closures enable true reentrancy in lambda functions.
35 // A closure provides access to a function stack frame where local
36 // variables reside. Modeled after Pascal nested stack frames,
37 // closures can be nested just like nested functions where code in
38 // inner closures may access local variables from in-scope outer
39 // closures (accessing inner scopes from outer scopes is an error
40 // and will cause a run-time assertion failure).
41 //
42 // There are three (3) interacting classes:
43 //
44 // 1) closure:
45 //
46 // At the point of declaration, a closure does not yet create a
47 // stack frame nor instantiate any variables. A closure declaration
48 // declares the types and names[note] of the local variables. The
49 // closure class is meant to be subclassed. It is the
50 // responsibility of a closure subclass to supply the names for
51 // each of the local variable in the closure. Example:
52 //
53 // struct my_closure : closure<int, string, double> {
54 //
55 // member1 num; // names the 1st (int) local variable
56 // member2 message; // names the 2nd (string) local variable
57 // member3 real; // names the 3rd (double) local variable
58 // };
59 //
60 // my_closure clos;
61 //
62 // Now that we have a closure 'clos', its local variables can be
63 // accessed lazily using the dot notation. Each qualified local
64 // variable can be used just like any primitive actor (see
65 // primitives.hpp). Examples:
66 //
67 // clos.num = 30
68 // clos.message = arg1
69 // clos.real = clos.num * 1e6
70 //
71 // The examples above are lazily evaluated. As usual, these
72 // expressions return composite actors that will be evaluated
73 // through a second function call invocation (see operators.hpp).
74 // Each of the members (clos.xxx) is an actor. As such, applying
75 // the operator() will reveal its identity:
76 //
77 // clos.num() // will return the current value of clos.num
78 //
79 // *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
80 // introduced and initilally implemented the closure member names
81 // that uses the dot notation.
82 //
83 // 2) closure_member
84 //
85 // The named local variables of closure 'clos' above are actually
86 // closure members. The closure_member class is an actor and
87 // conforms to its conceptual interface. member1..memberN are
88 // predefined typedefs that correspond to each of the listed types
89 // in the closure template parameters.
90 //
91 // 3) closure_frame
92 //
93 // When a closure member is finally evaluated, it should refer to
94 // an actual instance of the variable in the hardware stack.
95 // Without doing so, the process is not complete and the evaluated
96 // member will result to an assertion failure. Remember that the
97 // closure is just a declaration. The local variables that a
98 // closure refers to must still be instantiated.
99 //
100 // The closure_frame class does the actual instantiation of the
101 // local variables and links these variables with the closure and
102 // all its members. There can be multiple instances of
103 // closure_frames typically situated in the stack inside a
104 // function. Each closure_frame instance initiates a stack frame
105 // with a new set of closure local variables. Example:
106 //
107 // void foo()
108 // {
109 // closure_frame<my_closure> frame(clos);
110 // /* do something */
111 // }
112 //
113 // where 'clos' is an instance of our closure 'my_closure' above.
114 // Take note that the usage above precludes locally declared
115 // classes. If my_closure is a locally declared type, we can still
116 // use its self_type as a paramater to closure_frame:
117 //
118 // closure_frame<my_closure::self_type> frame(clos);
119 //
120 // Upon instantiation, the closure_frame links the local variables
121 // to the closure. The previous link to another closure_frame
122 // instance created before is saved. Upon destruction, the
123 // closure_frame unlinks itself from the closure and relinks the
124 // preceding closure_frame prior to this instance.
125 //
126 // The local variables in the closure 'clos' above is default
127 // constructed in the stack inside function 'foo'. Once 'foo' is
128 // exited, all of these local variables are destructed. In some
129 // cases, default construction is not desirable and we need to
130 // initialize the local closure variables with some values. This
131 // can be done by passing in the initializers in a compatible
132 // tuple. A compatible tuple is one with the same number of
133 // elements as the destination and where each element from the
134 // destination can be constructed from each corresponding element
135 // in the source. Example:
136 //
137 // tuple<int, char const*, int> init(123, "Hello", 1000);
138 // closure_frame<my_closure> frame(clos, init);
139 //
140 // Here now, our closure_frame's variables are initialized with
141 // int: 123, char const*: "Hello" and int: 1000.
142 //
143 ///////////////////////////////////////////////////////////////////////////////
144
145
146
147 ///////////////////////////////////////////////////////////////////////////////
148 //
149 // closure_frame class
150 //
151 ///////////////////////////////////////////////////////////////////////////////
152 template <typename ClosureT>
153 class closure_frame : public ClosureT::tuple_t {
154
155 public:
156
157 closure_frame(ClosureT& clos)
158 : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
159 { clos.frame = this; }
160
161 template <typename TupleT>
162 closure_frame(ClosureT& clos, TupleT const& init)
163 : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
164 { clos.frame = this; }
165
166 ~closure_frame()
167 { frame = save; }
168
169 private:
170
171 closure_frame(closure_frame const&); // no copy
172 closure_frame& operator=(closure_frame const&); // no assign
173
174 closure_frame* save;
175 closure_frame*& frame;
176 };
177
178 ///////////////////////////////////////////////////////////////////////////////
179 //
180 // closure_member class
181 //
182 ///////////////////////////////////////////////////////////////////////////////
183 template <int N, typename ClosureT>
184 class closure_member {
185
186 public:
187
188 typedef typename ClosureT::tuple_t tuple_t;
189
190 closure_member()
191 : frame(ClosureT::closure_frame_ref()) {}
192
193 template <typename TupleT>
194 struct sig {
195
196 typedef typename detail::tuple_element_as_reference<
197 N, typename ClosureT::tuple_t
198 >::type type;
199 };
200
201 template <class Ret, class A, class B, class C>
202 // typename detail::tuple_element_as_reference
203 // <N, typename ClosureT::tuple_t>::type
204 Ret
205 call(A&, B&, C&) const
206 {
207 assert(frame);
208 return boost::tuples::get<N>(*frame);
209 }
210
211
212 private:
213
214 typename ClosureT::closure_frame_t*& frame;
215 };
216
217 ///////////////////////////////////////////////////////////////////////////////
218 //
219 // closure class
220 //
221 ///////////////////////////////////////////////////////////////////////////////
222 template <
223 typename T0 = null_type,
224 typename T1 = null_type,
225 typename T2 = null_type,
226 typename T3 = null_type,
227 typename T4 = null_type
228 >
229 class closure {
230
231 public:
232
233 typedef tuple<T0, T1, T2, T3, T4> tuple_t;
234 typedef closure<T0, T1, T2, T3, T4> self_t;
235 typedef closure_frame<self_t> closure_frame_t;
236
237 closure()
238 : frame(0) { closure_frame_ref(&frame); }
239 closure_frame_t& context() { assert(frame); return frame; }
240 closure_frame_t const& context() const { assert(frame); return frame; }
241
242 typedef lambda_functor<closure_member<0, self_t> > member1;
243 typedef lambda_functor<closure_member<1, self_t> > member2;
244 typedef lambda_functor<closure_member<2, self_t> > member3;
245 typedef lambda_functor<closure_member<3, self_t> > member4;
246 typedef lambda_functor<closure_member<4, self_t> > member5;
247
248 private:
249
250 closure(closure const&); // no copy
251 closure& operator=(closure const&); // no assign
252
253 template <int N, typename ClosureT>
254 friend class closure_member;
255
256 template <typename ClosureT>
257 friend class closure_frame;
258
259 static closure_frame_t*&
260 closure_frame_ref(closure_frame_t** frame_ = 0)
261 {
262 static closure_frame_t** frame = 0;
263 if (frame_ != 0)
264 frame = frame_;
265 return *frame;
266 }
267
268 closure_frame_t* frame;
269 };
270
271 }}
272 // namespace
273
274 #endif