]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/lambda/include/boost/lambda/detail/lambda_traits.hpp
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / lambda / include / boost / lambda / detail / lambda_traits.hpp
1 // - lambda_traits.hpp --- Boost Lambda Library ----------------------------
2 //
3 // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
4 //
5 // Distributed under the Boost Software License, Version 1.0. (See
6 // accompanying file LICENSE_1_0.txt or copy at
7 // http://www.boost.org/LICENSE_1_0.txt)
8 //
9 // For more information, see www.boost.org
10 // -------------------------------------------------------------------------
11
12 #ifndef BOOST_LAMBDA_LAMBDA_TRAITS_HPP
13 #define BOOST_LAMBDA_LAMBDA_TRAITS_HPP
14
15 #include "boost/type_traits/transform_traits.hpp"
16 #include "boost/type_traits/cv_traits.hpp"
17 #include "boost/type_traits/function_traits.hpp"
18 #include "boost/type_traits/object_traits.hpp"
19 #include "boost/tuple/tuple.hpp"
20
21 namespace boost {
22 namespace lambda {
23
24 // -- if construct ------------------------------------------------
25 // Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
26
27 namespace detail {
28
29 template <bool If, class Then, class Else> struct IF { typedef Then RET; };
30
31 template <class Then, class Else> struct IF<false, Then, Else> {
32 typedef Else RET;
33 };
34
35
36 // An if construct that doesn't instantiate the non-matching template:
37
38 // Called as:
39 // IF_type<condition, A, B>::type
40 // The matching template must define the typeded 'type'
41 // I.e. A::type if condition is true, B::type if condition is false
42 // Idea from Vesa Karvonen (from C&E as well I guess)
43 template<class T>
44 struct IF_type_
45 {
46 typedef typename T::type type;
47 };
48
49
50 template<bool C, class T, class E>
51 struct IF_type
52 {
53 typedef typename
54 IF_type_<typename IF<C, T, E>::RET >::type type;
55 };
56
57 // helper that can be used to give typedef T to some type
58 template <class T> struct identity_mapping { typedef T type; };
59
60 // An if construct for finding an integral constant 'value'
61 // Does not instantiate the non-matching branch
62 // Called as IF_value<condition, A, B>::value
63 // If condition is true A::value must be defined, otherwise B::value
64
65 template<class T>
66 struct IF_value_
67 {
68 BOOST_STATIC_CONSTANT(int, value = T::value);
69 };
70
71
72 template<bool C, class T, class E>
73 struct IF_value
74 {
75 BOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value));
76 };
77
78
79 // --------------------------------------------------------------
80
81 // removes reference from other than function types:
82 template<class T> class remove_reference_if_valid
83 {
84
85 typedef typename boost::remove_reference<T>::type plainT;
86 public:
87 typedef typename IF<
88 boost::is_function<plainT>::value,
89 T,
90 plainT
91 >::RET type;
92
93 };
94
95
96 template<class T> struct remove_reference_and_cv {
97 typedef typename boost::remove_cv<
98 typename boost::remove_reference<T>::type
99 >::type type;
100 };
101
102
103
104 // returns a reference to the element of tuple T
105 template<int N, class T> struct tuple_element_as_reference {
106 typedef typename
107 boost::tuples::access_traits<
108 typename boost::tuples::element<N, T>::type
109 >::non_const_type type;
110 };
111
112 // returns the cv and reverence stripped type of a tuple element
113 template<int N, class T> struct tuple_element_stripped {
114 typedef typename
115 remove_reference_and_cv<
116 typename boost::tuples::element<N, T>::type
117 >::type type;
118 };
119
120 // is_lambda_functor -------------------------------------------------
121
122 template <class T> struct is_lambda_functor_ {
123 BOOST_STATIC_CONSTANT(bool, value = false);
124 };
125
126 template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > {
127 BOOST_STATIC_CONSTANT(bool, value = true);
128 };
129
130 } // end detail
131
132
133 template <class T> struct is_lambda_functor {
134 BOOST_STATIC_CONSTANT(bool,
135 value =
136 detail::is_lambda_functor_<
137 typename detail::remove_reference_and_cv<T>::type
138 >::value);
139 };
140
141
142 namespace detail {
143
144 // -- parameter_traits_ ---------------------------------------------
145
146 // An internal parameter type traits class that respects
147 // the reference_wrapper class.
148
149 // The conversions performed are:
150 // references -> compile_time_error
151 // T1 -> T2,
152 // reference_wrapper<T> -> T&
153 // const array -> ref to const array
154 // array -> ref to array
155 // function -> ref to function
156
157 // ------------------------------------------------------------------------
158
159 template<class T1, class T2>
160 struct parameter_traits_ {
161 typedef T2 type;
162 };
163
164 // Do not instantiate with reference types
165 template<class T, class Any> struct parameter_traits_<T&, Any> {
166 typedef typename
167 generate_error<T&>::
168 parameter_traits_class_instantiated_with_reference_type type;
169 };
170
171 // Arrays can't be stored as plain types; convert them to references
172 template<class T, int n, class Any> struct parameter_traits_<T[n], Any> {
173 typedef T (&type)[n];
174 };
175
176 template<class T, int n, class Any>
177 struct parameter_traits_<const T[n], Any> {
178 typedef const T (&type)[n];
179 };
180
181 template<class T, int n, class Any>
182 struct parameter_traits_<volatile T[n], Any> {
183 typedef volatile T (&type)[n];
184 };
185 template<class T, int n, class Any>
186 struct parameter_traits_<const volatile T[n], Any> {
187 typedef const volatile T (&type)[n];
188 };
189
190
191 template<class T, class Any>
192 struct parameter_traits_<boost::reference_wrapper<T>, Any >{
193 typedef T& type;
194 };
195
196 template<class T, class Any>
197 struct parameter_traits_<const boost::reference_wrapper<T>, Any >{
198 typedef T& type;
199 };
200
201 template<class T, class Any>
202 struct parameter_traits_<volatile boost::reference_wrapper<T>, Any >{
203 typedef T& type;
204 };
205
206 template<class T, class Any>
207 struct parameter_traits_<const volatile boost::reference_wrapper<T>, Any >{
208 typedef T& type;
209 };
210
211 template<class Any>
212 struct parameter_traits_<void, Any> {
213 typedef void type;
214 };
215
216 template<class Arg, class Any>
217 struct parameter_traits_<lambda_functor<Arg>, Any > {
218 typedef lambda_functor<Arg> type;
219 };
220
221 template<class Arg, class Any>
222 struct parameter_traits_<const lambda_functor<Arg>, Any > {
223 typedef lambda_functor<Arg> type;
224 };
225
226 // Are the volatile versions needed?
227 template<class Arg, class Any>
228 struct parameter_traits_<volatile lambda_functor<Arg>, Any > {
229 typedef lambda_functor<Arg> type;
230 };
231
232 template<class Arg, class Any>
233 struct parameter_traits_<const volatile lambda_functor<Arg>, Any > {
234 typedef lambda_functor<Arg> type;
235 };
236
237 } // end namespace detail
238
239
240 // ------------------------------------------------------------------------
241 // traits classes for lambda expressions (bind functions, operators ...)
242
243 // must be instantiated with non-reference types
244
245 // The default is const plain type -------------------------
246 // const T -> const T,
247 // T -> const T,
248 // references -> compile_time_error
249 // reference_wrapper<T> -> T&
250 // array -> const ref array
251 template<class T>
252 struct const_copy_argument {
253 typedef typename
254 detail::parameter_traits_<
255 T,
256 typename detail::IF<boost::is_function<T>::value, T&, const T>::RET
257 >::type type;
258 };
259
260 // T may be a function type. Without the IF test, const would be added
261 // to a function type, which is illegal.
262
263 // all arrays are converted to const.
264 // This traits template is used for 'const T&' parameter passing
265 // and thus the knowledge of the potential
266 // non-constness of an actual argument is lost.
267 template<class T, int n> struct const_copy_argument <T[n]> {
268 typedef const T (&type)[n];
269 };
270 template<class T, int n> struct const_copy_argument <volatile T[n]> {
271 typedef const volatile T (&type)[n];
272 };
273
274 template<class T>
275 struct const_copy_argument<T&> {};
276 // do not instantiate with references
277 // typedef typename detail::generate_error<T&>::references_not_allowed type;
278
279
280 template<>
281 struct const_copy_argument<void> {
282 typedef void type;
283 };
284
285 template<>
286 struct const_copy_argument<void const> {
287 typedef void type;
288 };
289
290
291 // Does the same as const_copy_argument, but passes references through as such
292 template<class T>
293 struct bound_argument_conversion {
294 typedef typename const_copy_argument<T>::type type;
295 };
296
297 template<class T>
298 struct bound_argument_conversion<T&> {
299 typedef T& type;
300 };
301
302 // The default is non-const reference -------------------------
303 // const T -> const T&,
304 // T -> T&,
305 // references -> compile_time_error
306 // reference_wrapper<T> -> T&
307 template<class T>
308 struct reference_argument {
309 typedef typename detail::parameter_traits_<T, T&>::type type;
310 };
311
312 template<class T>
313 struct reference_argument<T&> {
314 typedef typename detail::generate_error<T&>::references_not_allowed type;
315 };
316
317 template<class Arg>
318 struct reference_argument<lambda_functor<Arg> > {
319 typedef lambda_functor<Arg> type;
320 };
321
322 template<class Arg>
323 struct reference_argument<const lambda_functor<Arg> > {
324 typedef lambda_functor<Arg> type;
325 };
326
327 // Are the volatile versions needed?
328 template<class Arg>
329 struct reference_argument<volatile lambda_functor<Arg> > {
330 typedef lambda_functor<Arg> type;
331 };
332
333 template<class Arg>
334 struct reference_argument<const volatile lambda_functor<Arg> > {
335 typedef lambda_functor<Arg> type;
336 };
337
338 template<>
339 struct reference_argument<void> {
340 typedef void type;
341 };
342
343 namespace detail {
344
345 // Array to pointer conversion
346 template <class T>
347 struct array_to_pointer {
348 typedef T type;
349 };
350
351 template <class T, int N>
352 struct array_to_pointer <const T[N]> {
353 typedef const T* type;
354 };
355 template <class T, int N>
356 struct array_to_pointer <T[N]> {
357 typedef T* type;
358 };
359
360 template <class T, int N>
361 struct array_to_pointer <const T (&) [N]> {
362 typedef const T* type;
363 };
364 template <class T, int N>
365 struct array_to_pointer <T (&) [N]> {
366 typedef T* type;
367 };
368
369
370 // ---------------------------------------------------------------------------
371 // The call_traits for bind
372 // Respects the reference_wrapper class.
373
374 // These templates are used outside of bind functions as well.
375 // the bind_tuple_mapper provides a shorter notation for default
376 // bound argument storing semantics, if all arguments are treated
377 // uniformly.
378
379 // from template<class T> foo(const T& t) : bind_traits<const T>::type
380 // from template<class T> foo(T& t) : bind_traits<T>::type
381
382 // Conversions:
383 // T -> const T,
384 // cv T -> cv T,
385 // T& -> T&
386 // reference_wrapper<T> -> T&
387 // const reference_wrapper<T> -> T&
388 // array -> const ref array
389
390 // make bound arguments const, this is a deliberate design choice, the
391 // purpose is to prevent side effects to bound arguments that are stored
392 // as copies
393 template<class T>
394 struct bind_traits {
395 typedef const T type;
396 };
397
398 template<class T>
399 struct bind_traits<T&> {
400 typedef T& type;
401 };
402
403 // null_types are an exception, we always want to store them as non const
404 // so that other templates can assume that null_type is always without const
405 template<>
406 struct bind_traits<null_type> {
407 typedef null_type type;
408 };
409
410 // the bind_tuple_mapper, bind_type_generators may
411 // introduce const to null_type
412 template<>
413 struct bind_traits<const null_type> {
414 typedef null_type type;
415 };
416
417 // Arrays can't be stored as plain types; convert them to references.
418 // All arrays are converted to const. This is because bind takes its
419 // parameters as const T& and thus the knowledge of the potential
420 // non-constness of actual argument is lost.
421 template<class T, int n> struct bind_traits <T[n]> {
422 typedef const T (&type)[n];
423 };
424
425 template<class T, int n>
426 struct bind_traits<const T[n]> {
427 typedef const T (&type)[n];
428 };
429
430 template<class T, int n> struct bind_traits<volatile T[n]> {
431 typedef const volatile T (&type)[n];
432 };
433
434 template<class T, int n>
435 struct bind_traits<const volatile T[n]> {
436 typedef const volatile T (&type)[n];
437 };
438
439 template<class R>
440 struct bind_traits<R()> {
441 typedef R(&type)();
442 };
443
444 template<class R, class Arg1>
445 struct bind_traits<R(Arg1)> {
446 typedef R(&type)(Arg1);
447 };
448
449 template<class R, class Arg1, class Arg2>
450 struct bind_traits<R(Arg1, Arg2)> {
451 typedef R(&type)(Arg1, Arg2);
452 };
453
454 template<class R, class Arg1, class Arg2, class Arg3>
455 struct bind_traits<R(Arg1, Arg2, Arg3)> {
456 typedef R(&type)(Arg1, Arg2, Arg3);
457 };
458
459 template<class R, class Arg1, class Arg2, class Arg3, class Arg4>
460 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4)> {
461 typedef R(&type)(Arg1, Arg2, Arg3, Arg4);
462 };
463
464 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
465 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5)> {
466 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5);
467 };
468
469 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6>
470 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
471 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
472 };
473
474 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7>
475 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
476 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7);
477 };
478
479 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8>
480 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
481 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8);
482 };
483
484 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9>
485 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
486 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9);
487 };
488
489 template<class T>
490 struct bind_traits<reference_wrapper<T> >{
491 typedef T& type;
492 };
493
494 template<class T>
495 struct bind_traits<const reference_wrapper<T> >{
496 typedef T& type;
497 };
498
499 template<>
500 struct bind_traits<void> {
501 typedef void type;
502 };
503
504
505
506 template <
507 class T0 = null_type, class T1 = null_type, class T2 = null_type,
508 class T3 = null_type, class T4 = null_type, class T5 = null_type,
509 class T6 = null_type, class T7 = null_type, class T8 = null_type,
510 class T9 = null_type
511 >
512 struct bind_tuple_mapper {
513 typedef
514 tuple<typename bind_traits<T0>::type,
515 typename bind_traits<T1>::type,
516 typename bind_traits<T2>::type,
517 typename bind_traits<T3>::type,
518 typename bind_traits<T4>::type,
519 typename bind_traits<T5>::type,
520 typename bind_traits<T6>::type,
521 typename bind_traits<T7>::type,
522 typename bind_traits<T8>::type,
523 typename bind_traits<T9>::type> type;
524 };
525
526 // bind_traits, except map const T& -> const T
527 // this is needed e.g. in currying. Const reference arguments can
528 // refer to temporaries, so it is not safe to store them as references.
529 template <class T> struct remove_const_reference {
530 typedef typename bind_traits<T>::type type;
531 };
532
533 template <class T> struct remove_const_reference<const T&> {
534 typedef const T type;
535 };
536
537
538 // maps the bind argument types to the resulting lambda functor type
539 template <
540 class T0 = null_type, class T1 = null_type, class T2 = null_type,
541 class T3 = null_type, class T4 = null_type, class T5 = null_type,
542 class T6 = null_type, class T7 = null_type, class T8 = null_type,
543 class T9 = null_type
544 >
545 class bind_type_generator {
546
547 typedef typename
548 detail::bind_tuple_mapper<
549 T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
550 >::type args_t;
551
552 BOOST_STATIC_CONSTANT(int, nof_elems = boost::tuples::length<args_t>::value);
553
554 typedef
555 action<
556 nof_elems,
557 function_action<nof_elems>
558 > action_type;
559
560 public:
561 typedef
562 lambda_functor<
563 lambda_functor_base<
564 action_type,
565 args_t
566 >
567 > type;
568
569 };
570
571
572
573 } // detail
574
575 template <class T> inline const T& make_const(const T& t) { return t; }
576
577
578 } // end of namespace lambda
579 } // end of namespace boost
580
581
582
583 #endif // BOOST_LAMBDA_TRAITS_HPP