]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/lambda/test/bind_tests_advanced.cpp
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / lambda / test / bind_tests_advanced.cpp
1 // bind_tests_advanced.cpp -- The Boost Lambda Library ------------------
2 //
3 // Copyright (C) 2000-2003 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
4 // Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
5 // Copyright (C) 2010 Steven Watanabe
6 //
7 // Distributed under the Boost Software License, Version 1.0. (See
8 // accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10 //
11 // For more information, see www.boost.org
12
13 // -----------------------------------------------------------------------
14
15
16 #include <boost/test/minimal.hpp> // see "Header Implementation Option"
17
18 #include "boost/lambda/lambda.hpp"
19 #include "boost/lambda/bind.hpp"
20
21
22 #include "boost/any.hpp"
23 #include "boost/type_traits/is_reference.hpp"
24 #include "boost/mpl/assert.hpp"
25 #include "boost/mpl/if.hpp"
26
27 #include <iostream>
28
29 #include <functional>
30
31 #include <algorithm>
32
33
34 using namespace boost::lambda;
35 namespace bl = boost::lambda;
36
37 int sum_0() { return 0; }
38 int sum_1(int a) { return a; }
39 int sum_2(int a, int b) { return a+b; }
40
41 int product_2(int a, int b) { return a*b; }
42
43 // unary function that returns a pointer to a binary function
44 typedef int (*fptr_type)(int, int);
45 fptr_type sum_or_product(bool x) {
46 return x ? sum_2 : product_2;
47 }
48
49 // a nullary functor that returns a pointer to a unary function that
50 // returns a pointer to a binary function.
51 struct which_one {
52 typedef fptr_type (*result_type)(bool x);
53 template <class T> struct sig { typedef result_type type; };
54
55 result_type operator()() const { return sum_or_product; }
56 };
57
58 void test_nested_binds()
59 {
60 int j = 2; int k = 3;
61
62 // bind calls can be nested (the target function can be a lambda functor)
63 // The interpretation is, that the innermost lambda functor returns something
64 // that is bindable (another lambda functor, function pointer ...)
65 bool condition;
66
67 condition = true;
68 BOOST_CHECK(bind(bind(&sum_or_product, _1), 1, 2)(condition)==3);
69 BOOST_CHECK(bind(bind(&sum_or_product, _1), _2, _3)(condition, j, k)==5);
70
71 condition = false;
72 BOOST_CHECK(bind(bind(&sum_or_product, _1), 1, 2)(condition)==2);
73 BOOST_CHECK(bind(bind(&sum_or_product, _1), _2, _3)(condition, j, k)==6);
74
75
76 which_one wo;
77 BOOST_CHECK(bind(bind(bind(wo), _1), _2, _3)(condition, j, k)==6);
78
79
80 return;
81 }
82
83
84 // unlambda -------------------------------------------------
85
86 // Sometimes it may be necessary to prevent the argument substitution of
87 // taking place. For example, we may end up with a nested bind expression
88 // inadvertently when using the target function is received as a parameter
89
90 template<class F>
91 int call_with_100(const F& f) {
92
93
94
95 // bind(f, _1)(make_const(100));
96 // This would result in;
97 // bind(_1 + 1, _1)(make_const(100)) , which would be a compile time error
98
99 return bl::bind(unlambda(f), _1)(make_const(100));
100
101 // for other functors than lambda functors, unlambda has no effect
102 // (except for making them const)
103 }
104
105 template<class F>
106 int call_with_101(const F& f) {
107
108 return bind(unlambda(f), _1)(make_const(101));
109
110 }
111
112
113 void test_unlambda() {
114
115 int i = 1;
116
117 BOOST_CHECK(unlambda(_1 + _2)(i, i) == 2);
118 BOOST_CHECK(unlambda(++var(i))() == 2);
119 BOOST_CHECK(call_with_100(_1 + 1) == 101);
120
121
122 BOOST_CHECK(call_with_101(_1 + 1) == 102);
123
124 BOOST_CHECK(call_with_100(bl::bind(std_functor(std::bind1st(std::plus<int>(), 1)), _1)) == 101);
125
126 // std_functor insturcts LL that the functor defines a result_type typedef
127 // rather than a sig template.
128 bl::bind(std_functor(std::plus<int>()), _1, _2)(i, i);
129 }
130
131
132
133
134 // protect ------------------------------------------------------------
135
136 // protect protects a lambda functor from argument substitution.
137 // protect is useful e.g. with nested stl algorithm calls.
138
139 namespace ll {
140
141 struct for_each {
142
143 // note, std::for_each returns it's last argument
144 // We want the same behaviour from our ll::for_each.
145 // However, the functor can be called with any arguments, and
146 // the return type thus depends on the argument types.
147
148 // 1. Provide a sig class member template:
149
150 // The return type deduction system instantiate this class as:
151 // sig<Args>::type, where Args is a boost::tuples::cons-list
152 // The head type is the function object type itself
153 // cv-qualified (so it is possilbe to provide different return types
154 // for differently cv-qualified operator()'s.
155
156 // The tail type is the list of the types of the actual arguments the
157 // function was called with.
158 // So sig should contain a typedef type, which defines a mapping from
159 // the operator() arguments to its return type.
160 // Note, that it is possible to provide different sigs for the same functor
161 // if the functor has several operator()'s, even if they have different
162 // number of arguments.
163
164 // Note, that the argument types in Args are guaranteed to be non-reference
165 // types, but they can have cv-qualifiers.
166
167 template <class Args>
168 struct sig {
169 typedef typename boost::remove_const<
170 typename boost::tuples::element<3, Args>::type
171 >::type type;
172 };
173
174 template <class A, class B, class C>
175 C
176 operator()(const A& a, const B& b, const C& c) const
177 { return std::for_each(a, b, c);}
178 };
179
180 } // end of ll namespace
181
182 void test_protect()
183 {
184 int i = 0;
185 int b[3][5];
186 int* a[3];
187
188 for(int j=0; j<3; ++j) a[j] = b[j];
189
190 std::for_each(a, a+3,
191 bind(ll::for_each(), _1, _1 + 5, protect(_1 = ++var(i))));
192
193 // This is how you could output the values (it is uncommented, no output
194 // from a regression test file):
195 // std::for_each(a, a+3,
196 // bind(ll::for_each(), _1, _1 + 5,
197 // std::cout << constant("\nLine ") << (&_1 - a) << " : "
198 // << protect(_1)
199 // )
200 // );
201
202 int sum = 0;
203
204 std::for_each(a, a+3,
205 bind(ll::for_each(), _1, _1 + 5,
206 protect(sum += _1))
207 );
208 BOOST_CHECK(sum == (1+15)*15/2);
209
210 sum = 0;
211
212 std::for_each(a, a+3,
213 bind(ll::for_each(), _1, _1 + 5,
214 sum += 1 + protect(_1)) // add element count
215 );
216 BOOST_CHECK(sum == (1+15)*15/2 + 15);
217
218 (1 + protect(_1))(sum);
219
220 int k = 0;
221 ((k += constant(1)) += protect(constant(2)))();
222 BOOST_CHECK(k==1);
223
224 k = 0;
225 ((k += constant(1)) += protect(constant(2)))()();
226 BOOST_CHECK(k==3);
227
228 // note, the following doesn't work:
229
230 // ((var(k) = constant(1)) = protect(constant(2)))();
231
232 // (var(k) = constant(1))() returns int& and thus the
233 // second assignment fails.
234
235 // We should have something like:
236 // bind(var, var(k) = constant(1)) = protect(constant(2)))();
237 // But currently var is not bindable.
238
239 // The same goes with ret. A bindable ret could be handy sometimes as well
240 // (protect(std::cout << _1), std::cout << _1)(i)(j); does not work
241 // because the comma operator tries to store the result of the evaluation
242 // of std::cout << _1 as a copy (and you can't copy std::ostream).
243 // something like this:
244 // (protect(std::cout << _1), bind(ref, std::cout << _1))(i)(j);
245
246
247 // the stuff below works, but we do not want extra output to
248 // cout, must be changed to stringstreams but stringstreams do not
249 // work due to a bug in the type deduction. Will be fixed...
250 #if 0
251 // But for now, ref is not bindable. There are other ways around this:
252
253 int x = 1, y = 2;
254 (protect(std::cout << _1), (std::cout << _1, 0))(x)(y);
255
256 // added one dummy value to make the argument to comma an int
257 // instead of ostream&
258
259 // Note, the same problem is more apparent without protect
260 // (std::cout << 1, std::cout << constant(2))(); // does not work
261
262 (boost::ref(std::cout << 1), std::cout << constant(2))(); // this does
263
264 #endif
265
266 }
267
268
269 void test_lambda_functors_as_arguments_to_lambda_functors() {
270
271 // lambda functor is a function object, and can therefore be used
272 // as an argument to another lambda functors function call object.
273
274 // Note however, that the argument/type substitution is not entered again.
275 // This means, that something like this will not work:
276
277 (_1 + _2)(_1, make_const(7));
278 (_1 + _2)(bind(&sum_0), make_const(7));
279
280 // or it does work, but the effect is not to call
281 // sum_0() + 7, but rather
282 // bind(sum_0) + 7, which results in another lambda functor
283 // (lambda functor + int) and can be called again
284 BOOST_CHECK((_1 + _2)(bind(&sum_0), make_const(7))() == 7);
285
286 int i = 3, j = 12;
287 BOOST_CHECK((_1 - _2)(_2, _1)(i, j) == j - i);
288
289 // also, note that lambda functor are no special case for bind if received
290 // as a parameter. In oder to be bindable, the functor must
291 // defint the sig template, or then
292 // the return type must be defined within the bind call. Lambda functors
293 // do define the sig template, so if the return type deduction system
294 // covers the case, there is no need to specify the return type
295 // explicitly.
296
297 int a = 5, b = 6;
298
299 // Let type deduction find out the return type
300 BOOST_CHECK(bind(_1, _2, _3)(unlambda(_1 + _2), a, b) == 11);
301
302 //specify it yourself:
303 BOOST_CHECK(bind(_1, _2, _3)(ret<int>(_1 + _2), a, b) == 11);
304 BOOST_CHECK(ret<int>(bind(_1, _2, _3))(_1 + _2, a, b) == 11);
305 BOOST_CHECK(bind<int>(_1, _2, _3)(_1 + _2, a, b) == 11);
306
307 bind(_1,1.0)(_1+_1);
308 return;
309
310 }
311
312
313 void test_const_parameters() {
314
315 // (_1 + _2)(1, 2); // this would fail,
316
317 // Either make arguments const:
318 BOOST_CHECK((_1 + _2)(make_const(1), make_const(2)) == 3);
319
320 // Or use const_parameters:
321 BOOST_CHECK(const_parameters(_1 + _2)(1, 2) == 3);
322
323
324
325 }
326
327 void test_rvalue_arguments()
328 {
329 // Not quite working yet.
330 // Problems with visual 7.1
331 // BOOST_CHECK((_1 + _2)(1, 2) == 3);
332 }
333
334 void test_break_const()
335 {
336
337 // break_const is currently unnecessary, as LL supports perfect forwarding
338 // for up to there argument lambda functors, and LL does not support
339 // lambda functors with more than 3 args.
340
341 // I'll keep the test case around anyway, if more arguments will be supported
342 // in the future.
343
344
345
346 // break_const breaks constness! Be careful!
347 // You need this only if you need to have side effects on some argument(s)
348 // and some arguments are non-const rvalues and your lambda functors
349 // take more than 3 arguments.
350
351
352 int i = 1;
353 // OLD COMMENT: (_1 += _2)(i, 2) // fails, 2 is a non-const rvalue
354 // OLD COMMENT: const_parameters(_1 += _2)(i, 2) // fails, side-effect to i
355 break_const(_1 += _2)(i, 2); // ok
356 BOOST_CHECK(i == 3);
357 }
358
359 template<class T>
360 struct func {
361 template<class Args>
362 struct sig {
363 typedef typename boost::tuples::element<1, Args>::type arg1;
364 // If the argument type is not the same as the expected type,
365 // return void, which will cause an error. Note that we
366 // can't just assert that the types are the same, because
367 // both const and non-const versions can be instantiated
368 // even though only one is ultimately used.
369 typedef typename boost::mpl::if_<boost::is_same<arg1, T>,
370 typename boost::remove_const<arg1>::type,
371 void
372 >::type type;
373 };
374 template<class U>
375 U operator()(const U& arg) const {
376 return arg;
377 }
378 };
379
380 void test_sig()
381 {
382 int i = 1;
383 BOOST_CHECK(bind(func<int>(), 1)() == 1);
384 BOOST_CHECK(bind(func<const int>(), _1)(static_cast<const int&>(i)) == 1);
385 BOOST_CHECK(bind(func<int>(), _1)(i) == 1);
386 }
387
388 class base {
389 public:
390 virtual int foo() = 0;
391 };
392
393 class derived : public base {
394 public:
395 virtual int foo() {
396 return 1;
397 }
398 };
399
400 void test_abstract()
401 {
402 derived d;
403 base& b = d;
404 BOOST_CHECK(bind(&base::foo, var(b))() == 1);
405 BOOST_CHECK(bind(&base::foo, *_1)(&b) == 1);
406 }
407
408 int test_main(int, char *[]) {
409
410 test_nested_binds();
411 test_unlambda();
412 test_protect();
413 test_lambda_functors_as_arguments_to_lambda_functors();
414 test_const_parameters();
415 test_rvalue_arguments();
416 test_break_const();
417 test_sig();
418 test_abstract();
419 return 0;
420 }