]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/math/doc/html/math_toolkit/lanczos.html
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / math / doc / html / math_toolkit / lanczos.html
1 <html>
2 <head>
3 <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
4 <title>The Lanczos Approximation</title>
5 <link rel="stylesheet" href="../math.css" type="text/css">
6 <meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
7 <link rel="home" href="../index.html" title="Math Toolkit 2.5.1">
8 <link rel="up" href="../backgrounders.html" title="Chapter&#160;17.&#160;Backgrounders">
9 <link rel="prev" href="relative_error.html" title="Relative Error">
10 <link rel="next" href="remez.html" title="The Remez Method">
11 </head>
12 <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13 <table cellpadding="2" width="100%"><tr>
14 <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15 <td align="center"><a href="../../../../../index.html">Home</a></td>
16 <td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17 <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18 <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19 <td align="center"><a href="../../../../../more/index.htm">More</a></td>
20 </tr></table>
21 <hr>
22 <div class="spirit-nav">
23 <a accesskey="p" href="relative_error.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="remez.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24 </div>
25 <div class="section">
26 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
27 <a name="math_toolkit.lanczos"></a><a class="link" href="lanczos.html" title="The Lanczos Approximation">The Lanczos Approximation</a>
28 </h2></div></div></div>
29 <h5>
30 <a name="math_toolkit.lanczos.h0"></a>
31 <span class="phrase"><a name="math_toolkit.lanczos.motivation"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.motivation">Motivation</a>
32 </h5>
33 <p>
34 <span class="emphasis"><em>Why base gamma and gamma-like functions on the Lanczos approximation?</em></span>
35 </p>
36 <p>
37 First of all I should make clear that for the gamma function over real numbers
38 (as opposed to complex ones) the Lanczos approximation (See <a href="http://en.wikipedia.org/wiki/Lanczos_approximation" target="_top">Wikipedia
39 or </a> <a href="http://mathworld.wolfram.com/LanczosApproximation.html" target="_top">Mathworld</a>)
40 appears to offer no clear advantage over more traditional methods such as
41 <a href="http://en.wikipedia.org/wiki/Stirling_approximation" target="_top">Stirling's
42 approximation</a>. <a class="link" href="lanczos.html#pugh">Pugh</a> carried out an extensive
43 comparison of the various methods available and discovered that they were all
44 very similar in terms of complexity and relative error. However, the Lanczos
45 approximation does have a couple of properties that make it worthy of further
46 consideration:
47 </p>
48 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
49 <li class="listitem">
50 The approximation has an easy to compute truncation error that holds for
51 all <span class="emphasis"><em>z &gt; 0</em></span>. In practice that means we can use the
52 same approximation for all <span class="emphasis"><em>z &gt; 0</em></span>, and be certain
53 that no matter how large or small <span class="emphasis"><em>z</em></span> is, the truncation
54 error will <span class="emphasis"><em>at worst</em></span> be bounded by some finite value.
55 </li>
56 <li class="listitem">
57 The approximation has a form that is particularly amenable to analytic
58 manipulation, in particular ratios of gamma or gamma-like functions are
59 particularly easy to compute without resorting to logarithms.
60 </li>
61 </ul></div>
62 <p>
63 It is the combination of these two properties that make the approximation attractive:
64 Stirling's approximation is highly accurate for large z, and has some of the
65 same analytic properties as the Lanczos approximation, but can't easily be
66 used across the whole range of z.
67 </p>
68 <p>
69 As the simplest example, consider the ratio of two gamma functions: one could
70 compute the result via lgamma:
71 </p>
72 <pre class="programlisting"><span class="identifier">exp</span><span class="special">(</span><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">b</span><span class="special">));</span>
73 </pre>
74 <p>
75 However, even if lgamma is uniformly accurate to 0.5ulp, the worst case relative
76 error in the above can easily be shown to be:
77 </p>
78 <pre class="programlisting"><span class="identifier">Erel</span> <span class="special">&gt;</span> <span class="identifier">a</span> <span class="special">*</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">a</span><span class="special">)/</span><span class="number">2</span> <span class="special">+</span> <span class="identifier">b</span> <span class="special">*</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">b</span><span class="special">)/</span><span class="number">2</span>
79 </pre>
80 <p>
81 For small <span class="emphasis"><em>a</em></span> and <span class="emphasis"><em>b</em></span> that's not a problem,
82 but to put the relationship another way: <span class="emphasis"><em>each time a and b increase
83 in magnitude by a factor of 10, at least one decimal digit of precision will
84 be lost.</em></span>
85 </p>
86 <p>
87 In contrast, by analytically combining like power terms in a ratio of Lanczos
88 approximation's, these errors can be virtually eliminated for small <span class="emphasis"><em>a</em></span>
89 and <span class="emphasis"><em>b</em></span>, and kept under control for very large (or very
90 small for that matter) <span class="emphasis"><em>a</em></span> and <span class="emphasis"><em>b</em></span>. Of
91 course, computing large powers is itself a notoriously hard problem, but even
92 so, analytic combinations of Lanczos approximations can make the difference
93 between obtaining a valid result, or simply garbage. Refer to the implementation
94 notes for the <a class="link" href="sf_beta/beta_function.html" title="Beta">beta</a>
95 function for an example of this method in practice. The incomplete <a class="link" href="sf_gamma/igamma.html" title="Incomplete Gamma Functions">gamma_p
96 gamma</a> and <a class="link" href="sf_beta/ibeta_function.html" title="Incomplete Beta Functions">beta</a>
97 functions use similar analytic combinations of power terms, to combine gamma
98 and beta functions divided by large powers into single (simpler) expressions.
99 </p>
100 <h5>
101 <a name="math_toolkit.lanczos.h1"></a>
102 <span class="phrase"><a name="math_toolkit.lanczos.the_approximation"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.the_approximation">The
103 Approximation</a>
104 </h5>
105 <p>
106 The Lanczos Approximation to the Gamma Function is given by:
107 </p>
108 <p>
109 <span class="inlinemediaobject"><img src="../../equations/lanczos0.svg"></span>
110 </p>
111 <p>
112 Where S<sub>g</sub>(z) is an infinite sum, that is convergent for all z &gt; 0, and <span class="emphasis"><em>g</em></span>
113 is an arbitrary parameter that controls the "shape" of the terms
114 in the sum which is given by:
115 </p>
116 <p>
117 <span class="inlinemediaobject"><img src="../../equations/lanczos0a.svg"></span>
118 </p>
119 <p>
120 With individual coefficients defined in closed form by:
121 </p>
122 <p>
123 <span class="inlinemediaobject"><img src="../../equations/lanczos0b.svg"></span>
124 </p>
125 <p>
126 However, evaluation of the sum in that form can lead to numerical instability
127 in the computation of the ratios of rising and falling factorials (effectively
128 we're multiplying by a series of numbers very close to 1, so roundoff errors
129 can accumulate quite rapidly).
130 </p>
131 <p>
132 The Lanczos approximation is therefore often written in partial fraction form
133 with the leading constants absorbed by the coefficients in the sum:
134 </p>
135 <p>
136 <span class="inlinemediaobject"><img src="../../equations/lanczos1.svg"></span>
137 </p>
138 <p>
139 where:
140 </p>
141 <p>
142 <span class="inlinemediaobject"><img src="../../equations/lanczos2.svg"></span>
143 </p>
144 <p>
145 Again parameter <span class="emphasis"><em>g</em></span> is an arbitrarily chosen constant, and
146 <span class="emphasis"><em>N</em></span> is an arbitrarily chosen number of terms to evaluate
147 in the "Lanczos sum" part.
148 </p>
149 <div class="note"><table border="0" summary="Note">
150 <tr>
151 <td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
152 <th align="left">Note</th>
153 </tr>
154 <tr><td align="left" valign="top"><p>
155 Some authors choose to define the sum from k=1 to N, and hence end up with
156 N+1 coefficients. This happens to confuse both the following discussion and
157 the code (since C++ deals with half open array ranges, rather than the closed
158 range of the sum). This convention is consistent with <a class="link" href="lanczos.html#godfrey">Godfrey</a>,
159 but not <a class="link" href="lanczos.html#pugh">Pugh</a>, so take care when referring to
160 the literature in this field.
161 </p></td></tr>
162 </table></div>
163 <h5>
164 <a name="math_toolkit.lanczos.h2"></a>
165 <span class="phrase"><a name="math_toolkit.lanczos.computing_the_coefficients"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.computing_the_coefficients">Computing
166 the Coefficients</a>
167 </h5>
168 <p>
169 The coefficients C0..CN-1 need to be computed from <span class="emphasis"><em>N</em></span> and
170 <span class="emphasis"><em>g</em></span> at high precision, and then stored as part of the program.
171 Calculation of the coefficients is performed via the method of <a class="link" href="lanczos.html#godfrey">Godfrey</a>;
172 let the constants be contained in a column vector P, then:
173 </p>
174 <p>
175 P = D B C F
176 </p>
177 <p>
178 where B is an NxN matrix:
179 </p>
180 <p>
181 <span class="inlinemediaobject"><img src="../../equations/lanczos4.svg"></span>
182 </p>
183 <p>
184 D is an NxN matrix:
185 </p>
186 <p>
187 <span class="inlinemediaobject"><img src="../../equations/lanczos3.svg"></span>
188 </p>
189 <p>
190 C is an NxN matrix:
191 </p>
192 <p>
193 <span class="inlinemediaobject"><img src="../../equations/lanczos5.svg"></span>
194 </p>
195 <p>
196 and F is an N element column vector:
197 </p>
198 <p>
199 <span class="inlinemediaobject"><img src="../../equations/lanczos6.svg"></span>
200 </p>
201 <p>
202 Note than the matrices B, D and C contain all integer terms and depend only
203 on <span class="emphasis"><em>N</em></span>, this product should be computed first, and then
204 multiplied by <span class="emphasis"><em>F</em></span> as the last step.
205 </p>
206 <h5>
207 <a name="math_toolkit.lanczos.h3"></a>
208 <span class="phrase"><a name="math_toolkit.lanczos.choosing_the_right_parameters"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.choosing_the_right_parameters">Choosing
209 the Right Parameters</a>
210 </h5>
211 <p>
212 The trick is to choose <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span> to
213 give the desired level of accuracy: choosing a small value for <span class="emphasis"><em>g</em></span>
214 leads to a strictly convergent series, but one which converges only slowly.
215 Choosing a larger value of <span class="emphasis"><em>g</em></span> causes the terms in the series
216 to be large and/or divergent for about the first <span class="emphasis"><em>g-1</em></span> terms,
217 and to then suddenly converge with a "crunch".
218 </p>
219 <p>
220 <a class="link" href="lanczos.html#pugh">Pugh</a> has determined the optimal value of <span class="emphasis"><em>g</em></span>
221 for <span class="emphasis"><em>N</em></span> in the range <span class="emphasis"><em>1 &lt;= N &lt;= 60</em></span>:
222 unfortunately in practice choosing these values leads to cancellation errors
223 in the Lanczos sum as the largest term in the (alternating) series is approximately
224 1000 times larger than the result. These optimal values appear not to be useful
225 in practice unless the evaluation can be done with a number of guard digits
226 <span class="emphasis"><em>and</em></span> the coefficients are stored at higher precision than
227 that desired in the result. These values are best reserved for say, computing
228 to float precision with double precision arithmetic.
229 </p>
230 <div class="table">
231 <a name="math_toolkit.lanczos.optimal_choices_for_n_and_g_when"></a><p class="title"><b>Table&#160;17.1.&#160;Optimal choices for N and g when computing with guard digits (source:
232 Pugh)</b></p>
233 <div class="table-contents"><table class="table" summary="Optimal choices for N and g when computing with guard digits (source:
234 Pugh)">
235 <colgroup>
236 <col>
237 <col>
238 <col>
239 <col>
240 </colgroup>
241 <thead><tr>
242 <th>
243 <p>
244 Significand Size
245 </p>
246 </th>
247 <th>
248 <p>
249 N
250 </p>
251 </th>
252 <th>
253 <p>
254 g
255 </p>
256 </th>
257 <th>
258 <p>
259 Max Error
260 </p>
261 </th>
262 </tr></thead>
263 <tbody>
264 <tr>
265 <td>
266 <p>
267 24
268 </p>
269 </td>
270 <td>
271 <p>
272 6
273 </p>
274 </td>
275 <td>
276 <p>
277 5.581
278 </p>
279 </td>
280 <td>
281 <p>
282 9.51e-12
283 </p>
284 </td>
285 </tr>
286 <tr>
287 <td>
288 <p>
289 53
290 </p>
291 </td>
292 <td>
293 <p>
294 13
295 </p>
296 </td>
297 <td>
298 <p>
299 13.144565
300 </p>
301 </td>
302 <td>
303 <p>
304 9.2213e-23
305 </p>
306 </td>
307 </tr>
308 </tbody>
309 </table></div>
310 </div>
311 <br class="table-break"><p>
312 The alternative described by <a class="link" href="lanczos.html#godfrey">Godfrey</a> is to perform
313 an exhaustive search of the <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span>
314 parameter space to determine the optimal combination for a given <span class="emphasis"><em>p</em></span>
315 digit floating-point type. Repeating this work found a good approximation for
316 double precision arithmetic (close to the one <a class="link" href="lanczos.html#godfrey">Godfrey</a>
317 found), but failed to find really good approximations for 80 or 128-bit long
318 doubles. Further it was observed that the approximations obtained tended to
319 optimised for the small values of z (1 &lt; z &lt; 200) used to test the implementation
320 against the factorials. Computing ratios of gamma functions with large arguments
321 were observed to suffer from error resulting from the truncation of the Lancozos
322 series.
323 </p>
324 <p>
325 <a class="link" href="lanczos.html#pugh">Pugh</a> identified all the locations where the theoretical
326 error of the approximation were at a minimum, but unfortunately has published
327 only the largest of these minima. However, he makes the observation that the
328 minima coincide closely with the location where the first neglected term (a<sub>N</sub>)
329 in the Lanczos series S<sub>g</sub>(z) changes sign. These locations are quite easy to
330 locate, albeit with considerable computer time. These "sweet spots"
331 need only be computed once, tabulated, and then searched when required for
332 an approximation that delivers the required precision for some fixed precision
333 type.
334 </p>
335 <p>
336 Unfortunately, following this path failed to find a really good approximation
337 for 128-bit long doubles, and those found for 64 and 80-bit reals required
338 an excessive number of terms. There are two competing issues here: high precision
339 requires a large value of <span class="emphasis"><em>g</em></span>, but avoiding cancellation
340 errors in the evaluation requires a small <span class="emphasis"><em>g</em></span>.
341 </p>
342 <p>
343 At this point note that the Lanczos sum can be converted into rational form
344 (a ratio of two polynomials, obtained from the partial-fraction form using
345 polynomial arithmetic), and doing so changes the coefficients so that <span class="emphasis"><em>they
346 are all positive</em></span>. That means that the sum in rational form can be
347 evaluated without cancellation error, albeit with double the number of coefficients
348 for a given N. Repeating the search of the "sweet spots", this time
349 evaluating the Lanczos sum in rational form, and testing only those "sweet
350 spots" whose theoretical error is less than the machine epsilon for the
351 type being tested, yielded good approximations for all the types tested. The
352 optimal values found were quite close to the best cases reported by <a class="link" href="lanczos.html#pugh">Pugh</a>
353 (just slightly larger <span class="emphasis"><em>N</em></span> and slightly smaller <span class="emphasis"><em>g</em></span>
354 for a given precision than <a class="link" href="lanczos.html#pugh">Pugh</a> reports), and even
355 though converting to rational form doubles the number of stored coefficients,
356 it should be noted that half of them are integers (and therefore require less
357 storage space) and the approximations require a smaller <span class="emphasis"><em>N</em></span>
358 than would otherwise be required, so fewer floating point operations may be
359 required overall.
360 </p>
361 <p>
362 The following table shows the optimal values for <span class="emphasis"><em>N</em></span> and
363 <span class="emphasis"><em>g</em></span> when computing at fixed precision. These should be taken
364 as work in progress: there are no values for 106-bit significand machines (Darwin
365 long doubles &amp; NTL quad_float), and further optimisation of the values
366 of <span class="emphasis"><em>g</em></span> may be possible. Errors given in the table are estimates
367 of the error due to truncation of the Lanczos infinite series to <span class="emphasis"><em>N</em></span>
368 terms. They are calculated from the sum of the first five neglected terms -
369 and are known to be rather pessimistic estimates - although it is noticeable
370 that the best combinations of <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span>
371 occurred when the estimated truncation error almost exactly matches the machine
372 epsilon for the type in question.
373 </p>
374 <div class="table">
375 <a name="math_toolkit.lanczos.optimum_value_for_n_and_g_when_c"></a><p class="title"><b>Table&#160;17.2.&#160;Optimum value for N and g when computing at fixed precision</b></p>
376 <div class="table-contents"><table class="table" summary="Optimum value for N and g when computing at fixed precision">
377 <colgroup>
378 <col>
379 <col>
380 <col>
381 <col>
382 <col>
383 </colgroup>
384 <thead><tr>
385 <th>
386 <p>
387 Significand Size
388 </p>
389 </th>
390 <th>
391 <p>
392 Platform/Compiler Used
393 </p>
394 </th>
395 <th>
396 <p>
397 N
398 </p>
399 </th>
400 <th>
401 <p>
402 g
403 </p>
404 </th>
405 <th>
406 <p>
407 Max Truncation Error
408 </p>
409 </th>
410 </tr></thead>
411 <tbody>
412 <tr>
413 <td>
414 <p>
415 24
416 </p>
417 </td>
418 <td>
419 <p>
420 Win32, VC++ 7.1
421 </p>
422 </td>
423 <td>
424 <p>
425 6
426 </p>
427 </td>
428 <td>
429 <p>
430 1.428456135094165802001953125
431 </p>
432 </td>
433 <td>
434 <p>
435 9.41e-007
436 </p>
437 </td>
438 </tr>
439 <tr>
440 <td>
441 <p>
442 53
443 </p>
444 </td>
445 <td>
446 <p>
447 Win32, VC++ 7.1
448 </p>
449 </td>
450 <td>
451 <p>
452 13
453 </p>
454 </td>
455 <td>
456 <p>
457 6.024680040776729583740234375
458 </p>
459 </td>
460 <td>
461 <p>
462 3.23e-016
463 </p>
464 </td>
465 </tr>
466 <tr>
467 <td>
468 <p>
469 64
470 </p>
471 </td>
472 <td>
473 <p>
474 Suse Linux 9 IA64, gcc-3.3.3
475 </p>
476 </td>
477 <td>
478 <p>
479 17
480 </p>
481 </td>
482 <td>
483 <p>
484 12.2252227365970611572265625
485 </p>
486 </td>
487 <td>
488 <p>
489 2.34e-024
490 </p>
491 </td>
492 </tr>
493 <tr>
494 <td>
495 <p>
496 116
497 </p>
498 </td>
499 <td>
500 <p>
501 HP Tru64 Unix 5.1B / Alpha, Compaq C++ V7.1-006
502 </p>
503 </td>
504 <td>
505 <p>
506 24
507 </p>
508 </td>
509 <td>
510 <p>
511 20.3209821879863739013671875
512 </p>
513 </td>
514 <td>
515 <p>
516 4.75e-035
517 </p>
518 </td>
519 </tr>
520 </tbody>
521 </table></div>
522 </div>
523 <br class="table-break"><p>
524 Finally note that the Lanczos approximation can be written as follows by removing
525 a factor of exp(g) from the denominator, and then dividing all the coefficients
526 by exp(g):
527 </p>
528 <p>
529 <span class="inlinemediaobject"><img src="../../equations/lanczos7.svg"></span>
530 </p>
531 <p>
532 This form is more convenient for calculating lgamma, but for the gamma function
533 the division by <span class="emphasis"><em>e</em></span> turns a possibly exact quality into
534 an inexact value: this reduces accuracy in the common case that the input is
535 exact, and so isn't used for the gamma function.
536 </p>
537 <h5>
538 <a name="math_toolkit.lanczos.h4"></a>
539 <span class="phrase"><a name="math_toolkit.lanczos.references"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.references">References</a>
540 </h5>
541 <div class="orderedlist"><ol class="orderedlist" type="1">
542 <li class="listitem">
543 <a name="godfrey"></a>Paul Godfrey, <a href="http://my.fit.edu/~gabdo/gamma.txt" target="_top">"A
544 note on the computation of the convergent Lanczos complex Gamma approximation"</a>.
545 </li>
546 <li class="listitem">
547 <a name="pugh"></a>Glendon Ralph Pugh, <a href="http://bh0.physics.ubc.ca/People/matt/Doc/ThesesOthers/Phd/pugh.pdf" target="_top">"An
548 Analysis of the Lanczos Gamma Approximation"</a>, PhD Thesis November
549 2004.
550 </li>
551 <li class="listitem">
552 Viktor T. Toth, <a href="http://www.rskey.org/gamma.htm" target="_top">"Calculators
553 and the Gamma Function"</a>.
554 </li>
555 <li class="listitem">
556 Mathworld, <a href="http://mathworld.wolfram.com/LanczosApproximation.html" target="_top">The
557 Lanczos Approximation</a>.
558 </li>
559 </ol></div>
560 </div>
561 <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
562 <td align="left"></td>
563 <td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
564 Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
565 Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam Sewani,
566 Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
567 Distributed under the Boost Software License, Version 1.0. (See accompanying
568 file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
569 </p>
570 </div></td>
571 </tr></table>
572 <hr>
573 <div class="spirit-nav">
574 <a accesskey="p" href="relative_error.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="remez.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
575 </div>
576 </body>
577 </html>