]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/math/example/lambert_w_precision_example.cpp
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / boost / libs / math / example / lambert_w_precision_example.cpp
1 // Copyright Paul A. Bristow 2016, 2018.
2
3 // Distributed under the Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt or
5 // copy at http ://www.boost.org/LICENSE_1_0.txt).
6
7 //! Lambert W examples of controlling precision
8
9 // #define BOOST_MATH_INSTRUMENT_LAMBERT_W // #define only for (much) diagnostic output.
10
11 #include <boost/config.hpp> // for BOOST_PLATFORM, BOOST_COMPILER, BOOST_STDLIB ...
12 #include <boost/version.hpp> // for BOOST_MSVC versions.
13 #include <boost/cstdint.hpp>
14 #include <boost/exception/exception.hpp> // boost::exception
15 #include <boost/math/constants/constants.hpp> // For exp_minus_one == 3.67879441171442321595523770161460867e-01.
16 #include <boost/math/policies/policy.hpp>
17 #include <boost/math/special_functions/next.hpp> // for float_distance.
18 #include <boost/math/special_functions/relative_difference.hpp> // for relative and epsilon difference.
19
20 // Built-in/fundamental GCC float128 or Intel Quad 128-bit type, if available.
21 #ifdef BOOST_HAS_FLOAT128
22 #include <boost/multiprecision/float128.hpp> // Not available for MSVC.
23 // sets BOOST_MP_USE_FLOAT128 for GCC
24 using boost::multiprecision::float128;
25 #endif //# NOT _MSC_VER
26
27 #include <boost/multiprecision/cpp_dec_float.hpp> // boost::multiprecision::cpp_dec_float_50
28 using boost::multiprecision::cpp_dec_float_50; // 50 decimal digits type.
29 using boost::multiprecision::cpp_dec_float_100; // 100 decimal digits type.
30
31 #include <boost/multiprecision/cpp_bin_float.hpp>
32 using boost::multiprecision::cpp_bin_float_double_extended;
33 using boost::multiprecision::cpp_bin_float_double;
34 using boost::multiprecision::cpp_bin_float_quad;
35 // For lambert_w function.
36 #include <boost/math/special_functions/lambert_w.hpp>
37 // using boost::math::lambert_w0;
38 // using boost::math::lambert_wm1;
39
40 #include <iostream>
41 #include <exception>
42 #include <stdexcept>
43 #include <string>
44 #include <limits> // For std::numeric_limits.
45
46 int main()
47 {
48 try
49 {
50 std::cout << "Lambert W examples of precision control." << std::endl;
51 std::cout.precision(std::numeric_limits<double>::max_digits10);
52 std::cout << std::showpoint << std::endl; // Show any trailing zeros.
53
54 using boost::math::constants::exp_minus_one;
55
56 using boost::math::lambert_w0;
57 using boost::math::lambert_wm1;
58
59 // Error handling policy examples.
60 using namespace boost::math::policies;
61 using boost::math::policies::make_policy;
62 using boost::math::policies::policy;
63 using boost::math::policies::evaluation_error;
64 using boost::math::policies::domain_error;
65 using boost::math::policies::overflow_error;
66 using boost::math::policies::throw_on_error;
67
68 //[lambert_w_precision_reference_w
69
70 using boost::multiprecision::cpp_bin_float_50;
71 using boost::math::float_distance;
72
73 cpp_bin_float_50 z("10."); // Note use a decimal digit string, not a double 10.
74 cpp_bin_float_50 r;
75 std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10);
76
77 r = lambert_w0(z); // Default policy.
78 std::cout << "lambert_w0(z) cpp_bin_float_50 = " << r << std::endl;
79 //lambert_w0(z) cpp_bin_float_50 = 1.7455280027406993830743012648753899115352881290809
80 // [N[productlog[10], 50]] == 1.7455280027406993830743012648753899115352881290809
81 std::cout.precision(std::numeric_limits<double>::max_digits10);
82 std::cout << "lambert_w0(z) static_cast from cpp_bin_float_50 = "
83 << static_cast<double>(r) << std::endl;
84 // double lambert_w0(z) static_cast from cpp_bin_float_50 = 1.7455280027406994
85 // [N[productlog[10], 17]] == 1.7455280027406994
86 std::cout << "bits different from Wolfram = "
87 << static_cast<int>(float_distance(static_cast<double>(r), 1.7455280027406994))
88 << std::endl; // 0
89
90
91 //] [/lambert_w_precision_reference_w]
92
93 //[lambert_w_precision_0
94 std::cout.precision(std::numeric_limits<float>::max_digits10); // Show all potentially significant decimal digits,
95 std::cout << std::showpoint << std::endl; // and show any significant trailing zeros too.
96
97 float x = 10.;
98 std::cout << "Lambert W (" << x << ") = " << lambert_w0(x) << std::endl;
99 //] [/lambert_w_precision_0]
100
101 /*
102 //[lambert_w_precision_output_0
103 Lambert W (10.0000000) = 1.74552800
104 //] [/lambert_w_precision_output_0]
105 */
106 { // Lambert W0 Halley step example
107 //[lambert_w_precision_1
108 using boost::math::lambert_w_detail::lambert_w_halley_step;
109 using boost::math::epsilon_difference;
110 using boost::math::relative_difference;
111
112 std::cout << std::showpoint << std::endl; // and show any significant trailing zeros too.
113 std::cout.precision(std::numeric_limits<double>::max_digits10); // 17 decimal digits for double.
114
115 cpp_bin_float_50 z50("1.23"); // Note: use a decimal digit string, not a double 1.23!
116 double z = static_cast<double>(z50);
117 cpp_bin_float_50 w50;
118 w50 = lambert_w0(z50);
119 std::cout.precision(std::numeric_limits<cpp_bin_float_50>::max_digits10); // 50 decimal digits.
120 std::cout << "Reference Lambert W (" << z << ") =\n "
121 << w50 << std::endl;
122 std::cout.precision(std::numeric_limits<double>::max_digits10); // 17 decimal digits for double.
123 double wr = static_cast<double>(w50);
124 std::cout << "Reference Lambert W (" << z << ") = " << wr << std::endl;
125
126 double w = lambert_w0(z);
127 std::cout << "Rat/poly Lambert W (" << z << ") = " << lambert_w0(z) << std::endl;
128 // Add a Halley step to the value obtained from rational polynomial approximation.
129 double ww = lambert_w_halley_step(lambert_w0(z), z);
130 std::cout << "Halley Step Lambert W (" << z << ") = " << lambert_w_halley_step(lambert_w0(z), z) << std::endl;
131
132 std::cout << "absolute difference from Halley step = " << w - ww << std::endl;
133 std::cout << "relative difference from Halley step = " << relative_difference(w, ww) << std::endl;
134 std::cout << "epsilon difference from Halley step = " << epsilon_difference(w, ww) << std::endl;
135 std::cout << "epsilon for float = " << std::numeric_limits<double>::epsilon() << std::endl;
136 std::cout << "bits different from Halley step = " << static_cast<int>(float_distance(w, ww)) << std::endl;
137 //] [/lambert_w_precision_1]
138
139
140 /*
141 //[lambert_w_precision_output_1
142 Reference Lambert W (1.2299999999999999822364316059974953532218933105468750) =
143 0.64520356959320237759035605255334853830173300262666480
144 Reference Lambert W (1.2300000000000000) = 0.64520356959320235
145 Rat/poly Lambert W (1.2300000000000000) = 0.64520356959320224
146 Halley Step Lambert W (1.2300000000000000) = 0.64520356959320235
147 absolute difference from Halley step = -1.1102230246251565e-16
148 relative difference from Halley step = 1.7207329236029286e-16
149 epsilon difference from Halley step = 0.77494921535422934
150 epsilon for float = 2.2204460492503131e-16
151 bits different from Halley step = 1
152 //] [/lambert_w_precision_output_1]
153 */
154
155 } // Lambert W0 Halley step example
156
157 { // Lambert W-1 Halley step example
158 //[lambert_w_precision_2
159 using boost::math::lambert_w_detail::lambert_w_halley_step;
160 using boost::math::epsilon_difference;
161 using boost::math::relative_difference;
162
163 std::cout << std::showpoint << std::endl; // and show any significant trailing zeros too.
164 std::cout.precision(std::numeric_limits<double>::max_digits10); // 17 decimal digits for double.
165
166 cpp_bin_float_50 z50("-0.123"); // Note: use a decimal digit string, not a double -1.234!
167 double z = static_cast<double>(z50);
168 cpp_bin_float_50 wm1_50;
169 wm1_50 = lambert_wm1(z50);
170 std::cout.precision(std::numeric_limits<cpp_bin_float_50>::max_digits10); // 50 decimal digits.
171 std::cout << "Reference Lambert W-1 (" << z << ") =\n "
172 << wm1_50 << std::endl;
173 std::cout.precision(std::numeric_limits<double>::max_digits10); // 17 decimal digits for double.
174 double wr = static_cast<double>(wm1_50);
175 std::cout << "Reference Lambert W-1 (" << z << ") = " << wr << std::endl;
176
177 double w = lambert_wm1(z);
178 std::cout << "Rat/poly Lambert W-1 (" << z << ") = " << lambert_wm1(z) << std::endl;
179 // Add a Halley step to the value obtained from rational polynomial approximation.
180 double ww = lambert_w_halley_step(lambert_wm1(z), z);
181 std::cout << "Halley Step Lambert W (" << z << ") = " << lambert_w_halley_step(lambert_wm1(z), z) << std::endl;
182
183 std::cout << "absolute difference from Halley step = " << w - ww << std::endl;
184 std::cout << "relative difference from Halley step = " << relative_difference(w, ww) << std::endl;
185 std::cout << "epsilon difference from Halley step = " << epsilon_difference(w, ww) << std::endl;
186 std::cout << "epsilon for float = " << std::numeric_limits<double>::epsilon() << std::endl;
187 std::cout << "bits different from Halley step = " << static_cast<int>(float_distance(w, ww)) << std::endl;
188 //] [/lambert_w_precision_2]
189 }
190 /*
191 //[lambert_w_precision_output_2
192 Reference Lambert W-1 (-0.12299999999999999822364316059974953532218933105468750) =
193 -3.2849102557740360179084675531714935199110302996513384
194 Reference Lambert W-1 (-0.12300000000000000) = -3.2849102557740362
195 Rat/poly Lambert W-1 (-0.12300000000000000) = -3.2849102557740357
196 Halley Step Lambert W (-0.12300000000000000) = -3.2849102557740362
197 absolute difference from Halley step = 4.4408920985006262e-16
198 relative difference from Halley step = 1.3519066740696092e-16
199 epsilon difference from Halley step = 0.60884463935795785
200 epsilon for float = 2.2204460492503131e-16
201 bits different from Halley step = -1
202 //] [/lambert_w_precision_output_2]
203 */
204
205
206
207 // Similar example using cpp_bin_float_quad (128-bit floating-point types).
208
209 cpp_bin_float_quad zq = 10.;
210 std::cout << "\nTest evaluation of cpp_bin_float_quad Lambert W(" << zq << ")"
211 << std::endl;
212 std::cout << std::setprecision(3) << "std::numeric_limits<cpp_bin_float_quad>::digits = " << std::numeric_limits<cpp_bin_float_quad>::digits << std::endl;
213 std::cout << std::setprecision(3) << "std::numeric_limits<cpp_bin_float_quad>::epsilon() = " << std::numeric_limits<cpp_bin_float_quad>::epsilon() << std::endl;
214 std::cout << std::setprecision(3) << "std::numeric_limits<cpp_bin_float_quad>::max_digits10 = " << std::numeric_limits<cpp_bin_float_quad>::max_digits10 << std::endl;
215 std::cout << std::setprecision(3) << "std::numeric_limits<cpp_bin_float_quad>::digits10 = " << std::numeric_limits<cpp_bin_float_quad>::digits10 << std::endl;
216 std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::max_digits10);
217 // All are same precision because double precision first approximation used before Halley.
218
219 /*
220
221 */
222
223 { // Reference value for lambert_w0(10)
224 cpp_dec_float_50 z("10");
225 cpp_dec_float_50 r;
226 std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
227
228 r = lambert_w0(z); // Default policy.
229 std::cout << "lambert_w0(z) cpp_dec_float_50 = " << r << std::endl; // 0.56714329040978387299996866221035554975381578718651
230 std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::max_digits10);
231
232 std::cout << "lambert_w0(z) cpp_dec_float_50 cast to quad (max_digits10(" << std::numeric_limits<cpp_bin_float_quad>::max_digits10 <<
233 " ) = " << static_cast<cpp_bin_float_quad>(r) << std::endl; // 1.7455280027406993830743012648753899115352881290809
234 std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::digits10); // 1.745528002740699383074301264875389837
235 std::cout << "lambert_w0(z) cpp_dec_float_50 cast to quad (digits10(" << std::numeric_limits<cpp_bin_float_quad>::digits10 <<
236 " ) = " << static_cast<cpp_bin_float_quad>(r) << std::endl; // 1.74552800274069938307430126487539
237 std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::digits10 + 1); //
238
239 std::cout << "lambert_w0(z) cpp_dec_float_50 cast to quad (digits10(" << std::numeric_limits<cpp_bin_float_quad>::digits10 <<
240 " ) = " << static_cast<cpp_bin_float_quad>(r) << std::endl; // 1.74552800274069938307430126487539
241
242 // [N[productlog[10], 50]] == 1.7455280027406993830743012648753899115352881290809
243
244 // [N[productlog[10], 37]] == 1.745528002740699383074301264875389912
245 // [N[productlog[10], 34]] == 1.745528002740699383074301264875390
246 // [N[productlog[10], 33]] == 1.74552800274069938307430126487539
247
248 // lambert_w0(z) cpp_dec_float_50 cast to quad = 1.745528002740699383074301264875389837
249
250 // lambert_w0(z) cpp_dec_float_50 = 1.7455280027406993830743012648753899115352881290809
251 // lambert_w0(z) cpp_dec_float_50 cast to quad = 1.745528002740699383074301264875389837
252 // lambert_w0(z) cpp_dec_float_50 cast to quad = 1.74552800274069938307430126487539
253 }
254 }
255 catch (std::exception& ex)
256 {
257 std::cout << ex.what() << std::endl;
258 }
259 } // int main()
260
261
262
263