]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/math/include/boost/math/tools/toms748_solve.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / math / include / boost / math / tools / toms748_solve.hpp
1 // (C) Copyright John Maddock 2006.
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
7 #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
8
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12
13 #include <boost/math/tools/precision.hpp>
14 #include <boost/math/policies/error_handling.hpp>
15 #include <boost/math/tools/config.hpp>
16 #include <boost/math/special_functions/sign.hpp>
17 #include <boost/cstdint.hpp>
18 #include <limits>
19
20 #ifdef BOOST_MATH_LOG_ROOT_ITERATIONS
21 # define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp>
22 # include BOOST_MATH_LOGGER_INCLUDE
23 # undef BOOST_MATH_LOGGER_INCLUDE
24 #else
25 # define BOOST_MATH_LOG_COUNT(count)
26 #endif
27
28 namespace boost{ namespace math{ namespace tools{
29
30 template <class T>
31 class eps_tolerance
32 {
33 public:
34 eps_tolerance()
35 {
36 eps = 4 * tools::epsilon<T>();
37 }
38 eps_tolerance(unsigned bits)
39 {
40 BOOST_MATH_STD_USING
41 eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>()));
42 }
43 bool operator()(const T& a, const T& b)
44 {
45 BOOST_MATH_STD_USING
46 return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b)));
47 }
48 private:
49 T eps;
50 };
51
52 struct equal_floor
53 {
54 equal_floor(){}
55 template <class T>
56 bool operator()(const T& a, const T& b)
57 {
58 BOOST_MATH_STD_USING
59 return floor(a) == floor(b);
60 }
61 };
62
63 struct equal_ceil
64 {
65 equal_ceil(){}
66 template <class T>
67 bool operator()(const T& a, const T& b)
68 {
69 BOOST_MATH_STD_USING
70 return ceil(a) == ceil(b);
71 }
72 };
73
74 struct equal_nearest_integer
75 {
76 equal_nearest_integer(){}
77 template <class T>
78 bool operator()(const T& a, const T& b)
79 {
80 BOOST_MATH_STD_USING
81 return floor(a + 0.5f) == floor(b + 0.5f);
82 }
83 };
84
85 namespace detail{
86
87 template <class F, class T>
88 void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd)
89 {
90 //
91 // Given a point c inside the existing enclosing interval
92 // [a, b] sets a = c if f(c) == 0, otherwise finds the new
93 // enclosing interval: either [a, c] or [c, b] and sets
94 // d and fd to the point that has just been removed from
95 // the interval. In other words d is the third best guess
96 // to the root.
97 //
98 BOOST_MATH_STD_USING // For ADL of std math functions
99 T tol = tools::epsilon<T>() * 2;
100 //
101 // If the interval [a,b] is very small, or if c is too close
102 // to one end of the interval then we need to adjust the
103 // location of c accordingly:
104 //
105 if((b - a) < 2 * tol * a)
106 {
107 c = a + (b - a) / 2;
108 }
109 else if(c <= a + fabs(a) * tol)
110 {
111 c = a + fabs(a) * tol;
112 }
113 else if(c >= b - fabs(b) * tol)
114 {
115 c = b - fabs(b) * tol;
116 }
117 //
118 // OK, lets invoke f(c):
119 //
120 T fc = f(c);
121 //
122 // if we have a zero then we have an exact solution to the root:
123 //
124 if(fc == 0)
125 {
126 a = c;
127 fa = 0;
128 d = 0;
129 fd = 0;
130 return;
131 }
132 //
133 // Non-zero fc, update the interval:
134 //
135 if(boost::math::sign(fa) * boost::math::sign(fc) < 0)
136 {
137 d = b;
138 fd = fb;
139 b = c;
140 fb = fc;
141 }
142 else
143 {
144 d = a;
145 fd = fa;
146 a = c;
147 fa= fc;
148 }
149 }
150
151 template <class T>
152 inline T safe_div(T num, T denom, T r)
153 {
154 //
155 // return num / denom without overflow,
156 // return r if overflow would occur.
157 //
158 BOOST_MATH_STD_USING // For ADL of std math functions
159
160 if(fabs(denom) < 1)
161 {
162 if(fabs(denom * tools::max_value<T>()) <= fabs(num))
163 return r;
164 }
165 return num / denom;
166 }
167
168 template <class T>
169 inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb)
170 {
171 //
172 // Performs standard secant interpolation of [a,b] given
173 // function evaluations f(a) and f(b). Performs a bisection
174 // if secant interpolation would leave us very close to either
175 // a or b. Rationale: we only call this function when at least
176 // one other form of interpolation has already failed, so we know
177 // that the function is unlikely to be smooth with a root very
178 // close to a or b.
179 //
180 BOOST_MATH_STD_USING // For ADL of std math functions
181
182 T tol = tools::epsilon<T>() * 5;
183 T c = a - (fa / (fb - fa)) * (b - a);
184 if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol))
185 return (a + b) / 2;
186 return c;
187 }
188
189 template <class T>
190 T quadratic_interpolate(const T& a, const T& b, T const& d,
191 const T& fa, const T& fb, T const& fd,
192 unsigned count)
193 {
194 //
195 // Performs quadratic interpolation to determine the next point,
196 // takes count Newton steps to find the location of the
197 // quadratic polynomial.
198 //
199 // Point d must lie outside of the interval [a,b], it is the third
200 // best approximation to the root, after a and b.
201 //
202 // Note: this does not guarantee to find a root
203 // inside [a, b], so we fall back to a secant step should
204 // the result be out of range.
205 //
206 // Start by obtaining the coefficients of the quadratic polynomial:
207 //
208 T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>());
209 T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>());
210 A = safe_div(T(A - B), T(d - a), T(0));
211
212 if(A == 0)
213 {
214 // failure to determine coefficients, try a secant step:
215 return secant_interpolate(a, b, fa, fb);
216 }
217 //
218 // Determine the starting point of the Newton steps:
219 //
220 T c;
221 if(boost::math::sign(A) * boost::math::sign(fa) > 0)
222 {
223 c = a;
224 }
225 else
226 {
227 c = b;
228 }
229 //
230 // Take the Newton steps:
231 //
232 for(unsigned i = 1; i <= count; ++i)
233 {
234 //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a);
235 c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a));
236 }
237 if((c <= a) || (c >= b))
238 {
239 // Oops, failure, try a secant step:
240 c = secant_interpolate(a, b, fa, fb);
241 }
242 return c;
243 }
244
245 template <class T>
246 T cubic_interpolate(const T& a, const T& b, const T& d,
247 const T& e, const T& fa, const T& fb,
248 const T& fd, const T& fe)
249 {
250 //
251 // Uses inverse cubic interpolation of f(x) at points
252 // [a,b,d,e] to obtain an approximate root of f(x).
253 // Points d and e lie outside the interval [a,b]
254 // and are the third and forth best approximations
255 // to the root that we have found so far.
256 //
257 // Note: this does not guarantee to find a root
258 // inside [a, b], so we fall back to quadratic
259 // interpolation in case of an erroneous result.
260 //
261 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b
262 << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb
263 << " fd = " << fd << " fe = " << fe);
264 T q11 = (d - e) * fd / (fe - fd);
265 T q21 = (b - d) * fb / (fd - fb);
266 T q31 = (a - b) * fa / (fb - fa);
267 T d21 = (b - d) * fd / (fd - fb);
268 T d31 = (a - b) * fb / (fb - fa);
269 BOOST_MATH_INSTRUMENT_CODE(
270 "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31
271 << " d21 = " << d21 << " d31 = " << d31);
272 T q22 = (d21 - q11) * fb / (fe - fb);
273 T q32 = (d31 - q21) * fa / (fd - fa);
274 T d32 = (d31 - q21) * fd / (fd - fa);
275 T q33 = (d32 - q22) * fa / (fe - fa);
276 T c = q31 + q32 + q33 + a;
277 BOOST_MATH_INSTRUMENT_CODE(
278 "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32
279 << " q33 = " << q33 << " c = " << c);
280
281 if((c <= a) || (c >= b))
282 {
283 // Out of bounds step, fall back to quadratic interpolation:
284 c = quadratic_interpolate(a, b, d, fa, fb, fd, 3);
285 BOOST_MATH_INSTRUMENT_CODE(
286 "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c);
287 }
288
289 return c;
290 }
291
292 } // namespace detail
293
294 template <class F, class T, class Tol, class Policy>
295 std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
296 {
297 //
298 // Main entry point and logic for Toms Algorithm 748
299 // root finder.
300 //
301 BOOST_MATH_STD_USING // For ADL of std math functions
302
303 static const char* function = "boost::math::tools::toms748_solve<%1%>";
304
305 boost::uintmax_t count = max_iter;
306 T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe;
307 static const T mu = 0.5f;
308
309 // initialise a, b and fa, fb:
310 a = ax;
311 b = bx;
312 if(a >= b)
313 return boost::math::detail::pair_from_single(policies::raise_domain_error(
314 function,
315 "Parameters a and b out of order: a=%1%", a, pol));
316 fa = fax;
317 fb = fbx;
318
319 if(tol(a, b) || (fa == 0) || (fb == 0))
320 {
321 max_iter = 0;
322 if(fa == 0)
323 b = a;
324 else if(fb == 0)
325 a = b;
326 return std::make_pair(a, b);
327 }
328
329 if(boost::math::sign(fa) * boost::math::sign(fb) > 0)
330 return boost::math::detail::pair_from_single(policies::raise_domain_error(
331 function,
332 "Parameters a and b do not bracket the root: a=%1%", a, pol));
333 // dummy value for fd, e and fe:
334 fe = e = fd = 1e5F;
335
336 if(fa != 0)
337 {
338 //
339 // On the first step we take a secant step:
340 //
341 c = detail::secant_interpolate(a, b, fa, fb);
342 detail::bracket(f, a, b, c, fa, fb, d, fd);
343 --count;
344 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
345
346 if(count && (fa != 0) && !tol(a, b))
347 {
348 //
349 // On the second step we take a quadratic interpolation:
350 //
351 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
352 e = d;
353 fe = fd;
354 detail::bracket(f, a, b, c, fa, fb, d, fd);
355 --count;
356 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
357 }
358 }
359
360 while(count && (fa != 0) && !tol(a, b))
361 {
362 // save our brackets:
363 a0 = a;
364 b0 = b;
365 //
366 // Starting with the third step taken
367 // we can use either quadratic or cubic interpolation.
368 // Cubic interpolation requires that all four function values
369 // fa, fb, fd, and fe are distinct, should that not be the case
370 // then variable prof will get set to true, and we'll end up
371 // taking a quadratic step instead.
372 //
373 T min_diff = tools::min_value<T>() * 32;
374 bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
375 if(prof)
376 {
377 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
378 BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
379 }
380 else
381 {
382 c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
383 }
384 //
385 // re-bracket, and check for termination:
386 //
387 e = d;
388 fe = fd;
389 detail::bracket(f, a, b, c, fa, fb, d, fd);
390 if((0 == --count) || (fa == 0) || tol(a, b))
391 break;
392 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
393 //
394 // Now another interpolated step:
395 //
396 prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
397 if(prof)
398 {
399 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3);
400 BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
401 }
402 else
403 {
404 c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
405 }
406 //
407 // Bracket again, and check termination condition, update e:
408 //
409 detail::bracket(f, a, b, c, fa, fb, d, fd);
410 if((0 == --count) || (fa == 0) || tol(a, b))
411 break;
412 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
413 //
414 // Now we take a double-length secant step:
415 //
416 if(fabs(fa) < fabs(fb))
417 {
418 u = a;
419 fu = fa;
420 }
421 else
422 {
423 u = b;
424 fu = fb;
425 }
426 c = u - 2 * (fu / (fb - fa)) * (b - a);
427 if(fabs(c - u) > (b - a) / 2)
428 {
429 c = a + (b - a) / 2;
430 }
431 //
432 // Bracket again, and check termination condition:
433 //
434 e = d;
435 fe = fd;
436 detail::bracket(f, a, b, c, fa, fb, d, fd);
437 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
438 BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a)));
439 if((0 == --count) || (fa == 0) || tol(a, b))
440 break;
441 //
442 // And finally... check to see if an additional bisection step is
443 // to be taken, we do this if we're not converging fast enough:
444 //
445 if((b - a) < mu * (b0 - a0))
446 continue;
447 //
448 // bracket again on a bisection:
449 //
450 e = d;
451 fe = fd;
452 detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd);
453 --count;
454 BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!");
455 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
456 } // while loop
457
458 max_iter -= count;
459 if(fa == 0)
460 {
461 b = a;
462 }
463 else if(fb == 0)
464 {
465 a = b;
466 }
467 BOOST_MATH_LOG_COUNT(max_iter)
468 return std::make_pair(a, b);
469 }
470
471 template <class F, class T, class Tol>
472 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter)
473 {
474 return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>());
475 }
476
477 template <class F, class T, class Tol, class Policy>
478 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
479 {
480 max_iter -= 2;
481 std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol);
482 max_iter += 2;
483 return r;
484 }
485
486 template <class F, class T, class Tol>
487 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter)
488 {
489 return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>());
490 }
491
492 template <class F, class T, class Tol, class Policy>
493 std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
494 {
495 BOOST_MATH_STD_USING
496 static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>";
497 //
498 // Set up inital brackets:
499 //
500 T a = guess;
501 T b = a;
502 T fa = f(a);
503 T fb = fa;
504 //
505 // Set up invocation count:
506 //
507 boost::uintmax_t count = max_iter - 1;
508
509 int step = 32;
510
511 if((fa < 0) == (guess < 0 ? !rising : rising))
512 {
513 //
514 // Zero is to the right of b, so walk upwards
515 // until we find it:
516 //
517 while((boost::math::sign)(fb) == (boost::math::sign)(fa))
518 {
519 if(count == 0)
520 return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol));
521 //
522 // Heuristic: normally it's best not to increase the step sizes as we'll just end up
523 // with a really wide range to search for the root. However, if the initial guess was *really*
524 // bad then we need to speed up the search otherwise we'll take forever if we're orders of
525 // magnitude out. This happens most often if the guess is a small value (say 1) and the result
526 // we're looking for is close to std::numeric_limits<T>::min().
527 //
528 if((max_iter - count) % step == 0)
529 {
530 factor *= 2;
531 if(step > 1) step /= 2;
532 }
533 //
534 // Now go ahead and move our guess by "factor":
535 //
536 a = b;
537 fa = fb;
538 b *= factor;
539 fb = f(b);
540 --count;
541 BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
542 }
543 }
544 else
545 {
546 //
547 // Zero is to the left of a, so walk downwards
548 // until we find it:
549 //
550 while((boost::math::sign)(fb) == (boost::math::sign)(fa))
551 {
552 if(fabs(a) < tools::min_value<T>())
553 {
554 // Escape route just in case the answer is zero!
555 max_iter -= count;
556 max_iter += 1;
557 return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
558 }
559 if(count == 0)
560 return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol));
561 //
562 // Heuristic: normally it's best not to increase the step sizes as we'll just end up
563 // with a really wide range to search for the root. However, if the initial guess was *really*
564 // bad then we need to speed up the search otherwise we'll take forever if we're orders of
565 // magnitude out. This happens most often if the guess is a small value (say 1) and the result
566 // we're looking for is close to std::numeric_limits<T>::min().
567 //
568 if((max_iter - count) % step == 0)
569 {
570 factor *= 2;
571 if(step > 1) step /= 2;
572 }
573 //
574 // Now go ahead and move are guess by "factor":
575 //
576 b = a;
577 fb = fa;
578 a /= factor;
579 fa = f(a);
580 --count;
581 BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
582 }
583 }
584 max_iter -= count;
585 max_iter += 1;
586 std::pair<T, T> r = toms748_solve(
587 f,
588 (a < 0 ? b : a),
589 (a < 0 ? a : b),
590 (a < 0 ? fb : fa),
591 (a < 0 ? fa : fb),
592 tol,
593 count,
594 pol);
595 max_iter += count;
596 BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
597 BOOST_MATH_LOG_COUNT(max_iter)
598 return r;
599 }
600
601 template <class F, class T, class Tol>
602 inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter)
603 {
604 return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>());
605 }
606
607 } // namespace tools
608 } // namespace math
609 } // namespace boost
610
611
612 #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
613