]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/math/minimax/f.cpp
buildsys: change download over to reef release
[ceph.git] / ceph / src / boost / libs / math / minimax / f.cpp
1 // (C) Copyright John Maddock 2006.
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 #define L22
7 //#include "../tools/ntl_rr_lanczos.hpp"
8 //#include "../tools/ntl_rr_digamma.hpp"
9 #include "multiprecision.hpp"
10 #include <boost/math/tools/polynomial.hpp>
11 #include <boost/math/special_functions.hpp>
12 #include <boost/math/special_functions/zeta.hpp>
13 #include <boost/math/special_functions/expint.hpp>
14 #include <boost/math/special_functions/lambert_w.hpp>
15
16 #include <cmath>
17
18
19 mp_type f(const mp_type& x, int variant)
20 {
21 static const mp_type tiny = boost::math::tools::min_value<mp_type>() * 64;
22 switch(variant)
23 {
24 case 0:
25 {
26 mp_type x_ = sqrt(x == 0 ? 1e-80 : x);
27 return boost::math::erf(x_) / x_;
28 }
29 case 1:
30 {
31 mp_type x_ = 1 / x;
32 return boost::math::erfc(x_) * x_ / exp(-x_ * x_);
33 }
34 case 2:
35 {
36 return boost::math::erfc(x) * x / exp(-x * x);
37 }
38 case 3:
39 {
40 mp_type y(x);
41 if(y == 0)
42 y += tiny;
43 return boost::math::lgamma(y+2) / y - 0.5;
44 }
45 case 4:
46 //
47 // lgamma in the range [2,3], use:
48 //
49 // lgamma(x) = (x-2) * (x + 1) * (c + R(x - 2))
50 //
51 // Works well at 80-bit long double precision, but doesn't
52 // stretch to 128-bit precision.
53 //
54 if(x == 0)
55 {
56 return boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008") / 3;
57 }
58 return boost::math::lgamma(x+2) / (x * (x+3));
59 case 5:
60 {
61 //
62 // lgamma in the range [1,2], use:
63 //
64 // lgamma(x) = (x - 1) * (x - 2) * (c + R(x - 1))
65 //
66 // works well over [1, 1.5] but not near 2 :-(
67 //
68 mp_type r1 = boost::lexical_cast<mp_type>("0.57721566490153286060651209008240243104215933593992");
69 mp_type r2 = boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008");
70 if(x == 0)
71 {
72 return r1;
73 }
74 if(x == 1)
75 {
76 return r2;
77 }
78 return boost::math::lgamma(x+1) / (x * (x - 1));
79 }
80 case 6:
81 {
82 //
83 // lgamma in the range [1.5,2], use:
84 //
85 // lgamma(x) = (2 - x) * (1 - x) * (c + R(2 - x))
86 //
87 // works well over [1.5, 2] but not near 1 :-(
88 //
89 mp_type r1 = boost::lexical_cast<mp_type>("0.57721566490153286060651209008240243104215933593992");
90 mp_type r2 = boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008");
91 if(x == 0)
92 {
93 return r2;
94 }
95 if(x == 1)
96 {
97 return r1;
98 }
99 return boost::math::lgamma(2-x) / (x * (x - 1));
100 }
101 case 7:
102 {
103 //
104 // erf_inv in range [0, 0.5]
105 //
106 mp_type y = x;
107 if(y == 0)
108 y = boost::math::tools::epsilon<mp_type>() / 64;
109 return boost::math::erf_inv(y) / (y * (y+10));
110 }
111 case 8:
112 {
113 //
114 // erfc_inv in range [0.25, 0.5]
115 // Use an y-offset of 0.25, and range [0, 0.25]
116 // abs error, auto y-offset.
117 //
118 mp_type y = x;
119 if(y == 0)
120 y = boost::lexical_cast<mp_type>("1e-5000");
121 return sqrt(-2 * log(y)) / boost::math::erfc_inv(y);
122 }
123 case 9:
124 {
125 mp_type x2 = x;
126 if(x2 == 0)
127 x2 = boost::lexical_cast<mp_type>("1e-5000");
128 mp_type y = exp(-x2*x2); // sqrt(-log(x2)) - 5;
129 return boost::math::erfc_inv(y) / x2;
130 }
131 case 10:
132 {
133 //
134 // Digamma over the interval [1,2], set x-offset to 1
135 // and optimise for absolute error over [0,1].
136 //
137 int current_precision = get_working_precision();
138 if(current_precision < 1000)
139 set_working_precision(1000);
140 //
141 // This value for the root of digamma is calculated using our
142 // differentiated lanczos approximation. It agrees with Cody
143 // to ~ 25 digits and to Morris to 35 digits. See:
144 // TOMS ALGORITHM 708 (Didonato and Morris).
145 // and Math. Comp. 27, 123-127 (1973) by Cody, Strecok and Thacher.
146 //
147 //mp_type root = boost::lexical_cast<mp_type>("1.4616321449683623412626595423257213234331845807102825466429633351908372838889871");
148 //
149 // Actually better to calculate the root on the fly, it appears to be more
150 // accurate: convergence is easier with the 1000-bit value, the approximation
151 // produced agrees with functions.mathworld.com values to 35 digits even quite
152 // near the root.
153 //
154 static boost::math::tools::eps_tolerance<mp_type> tol(1000);
155 static boost::uintmax_t max_iter = 1000;
156 mp_type (*pdg)(mp_type) = &boost::math::digamma;
157 static const mp_type root = boost::math::tools::bracket_and_solve_root(pdg, mp_type(1.4), mp_type(1.5), true, tol, max_iter).first;
158
159 mp_type x2 = x;
160 double lim = 1e-65;
161 if(fabs(x2 - root) < lim)
162 {
163 //
164 // This is a problem area:
165 // x2-root suffers cancellation error, so does digamma.
166 // That gets compounded again when Remez calculates the error
167 // function. This cludge seems to stop the worst of the problems:
168 //
169 static const mp_type a = boost::math::digamma(root - lim) / -lim;
170 static const mp_type b = boost::math::digamma(root + lim) / lim;
171 mp_type fract = (x2 - root + lim) / (2*lim);
172 mp_type r = (1-fract) * a + fract * b;
173 std::cout << "In root area: " << r;
174 return r;
175 }
176 mp_type result = boost::math::digamma(x2) / (x2 - root);
177 if(current_precision < 1000)
178 set_working_precision(current_precision);
179 return result;
180 }
181 case 11:
182 // expm1:
183 if(x == 0)
184 {
185 static mp_type lim = 1e-80;
186 static mp_type a = boost::math::expm1(-lim);
187 static mp_type b = boost::math::expm1(lim);
188 static mp_type l = (b-a) / (2 * lim);
189 return l;
190 }
191 return boost::math::expm1(x) / x;
192 case 12:
193 // demo, and test case:
194 return exp(x);
195 case 13:
196 // K(k):
197 {
198 return boost::math::ellint_1(x);
199 }
200 case 14:
201 // K(k)
202 {
203 return boost::math::ellint_1(1-x) / log(x);
204 }
205 case 15:
206 // E(k)
207 {
208 // x = 1-k^2
209 mp_type z = 1 - x * log(x);
210 return boost::math::ellint_2(sqrt(1-x)) / z;
211 }
212 case 16:
213 // Bessel I0(x) over [0,16]:
214 {
215 return boost::math::cyl_bessel_i(0, sqrt(x));
216 }
217 case 17:
218 // Bessel I0(x) over [16,INF]
219 {
220 mp_type z = 1 / (mp_type(1)/16 - x);
221 return boost::math::cyl_bessel_i(0, z) * sqrt(z) / exp(z);
222 }
223 case 18:
224 // Zeta over [0, 1]
225 {
226 return boost::math::zeta(1 - x) * x - x;
227 }
228 case 19:
229 // Zeta over [1, n]
230 {
231 return boost::math::zeta(x) - 1 / (x - 1);
232 }
233 case 20:
234 // Zeta over [a, b] : a >> 1
235 {
236 return log(boost::math::zeta(x) - 1);
237 }
238 case 21:
239 // expint[1] over [0,1]:
240 {
241 mp_type tiny = boost::lexical_cast<mp_type>("1e-5000");
242 mp_type z = (x <= tiny) ? tiny : x;
243 return boost::math::expint(1, z) - z + log(z);
244 }
245 case 22:
246 // expint[1] over [1,N],
247 // Note that x varies from [0,1]:
248 {
249 mp_type z = 1 / x;
250 return boost::math::expint(1, z) * exp(z) * z;
251 }
252 case 23:
253 // expin Ei over [0,R]
254 {
255 static const mp_type root =
256 boost::lexical_cast<mp_type>("0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392");
257 mp_type z = x < (std::numeric_limits<long double>::min)() ? (std::numeric_limits<long double>::min)() : x;
258 return (boost::math::expint(z) - log(z / root)) / (z - root);
259 }
260 case 24:
261 // Expint Ei for large x:
262 {
263 static const mp_type root =
264 boost::lexical_cast<mp_type>("0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392");
265 mp_type z = x < (std::numeric_limits<long double>::min)() ? (std::numeric_limits<long double>::max)() : mp_type(1 / x);
266 return (boost::math::expint(z) - z) * z * exp(-z);
267 //return (boost::math::expint(z) - log(z)) * z * exp(-z);
268 }
269 case 25:
270 // Expint Ei for large x:
271 {
272 return (boost::math::expint(x) - x) * x * exp(-x);
273 }
274 case 26:
275 {
276 //
277 // erf_inv in range [0, 0.5]
278 //
279 mp_type y = x;
280 if(y == 0)
281 y = boost::math::tools::epsilon<mp_type>() / 64;
282 y = sqrt(y);
283 return boost::math::erf_inv(y) / (y);
284 }
285 case 28:
286 {
287 // log1p over [-0.5,0.5]
288 mp_type y = x;
289 if(fabs(y) < 1e-100)
290 y = (y == 0) ? 1e-100 : boost::math::sign(y) * 1e-100;
291 return (boost::math::log1p(y) - y + y * y / 2) / (y);
292 }
293 case 29:
294 {
295 // cbrt over [0.5, 1]
296 return boost::math::cbrt(x);
297 }
298 case 30:
299 {
300 // trigamma over [x,y]
301 mp_type y = x;
302 y = sqrt(y);
303 return boost::math::trigamma(x) * (x * x);
304 }
305 case 31:
306 {
307 // trigamma over [x, INF]
308 if(x == 0) return 1;
309 mp_type y = (x == 0) ? (std::numeric_limits<double>::max)() / 2 : mp_type(1/x);
310 return boost::math::trigamma(y) * y;
311 }
312 case 32:
313 {
314 // I0 over [N, INF]
315 // Don't need to go past x = 1/1000 = 1e-3 for double, or
316 // 1/15000 = 0.0006 for long double, start at 1/7.75=0.13
317 mp_type arg = 1 / x;
318 return sqrt(arg) * exp(-arg) * boost::math::cyl_bessel_i(0, arg);
319 }
320 case 33:
321 {
322 // I0 over [0, N]
323 mp_type xx = sqrt(x) * 2;
324 return (boost::math::cyl_bessel_i(0, xx) - 1) / x;
325 }
326 case 34:
327 {
328 // I1 over [0, N]
329 mp_type xx = sqrt(x) * 2;
330 return (boost::math::cyl_bessel_i(1, xx) * 2 / xx - 1 - x / 2) / (x * x);
331 }
332 case 35:
333 {
334 // I1 over [N, INF]
335 mp_type xx = 1 / x;
336 return boost::math::cyl_bessel_i(1, xx) * sqrt(xx) * exp(-xx);
337 }
338 case 36:
339 {
340 // K0 over [0, 1]
341 mp_type xx = sqrt(x);
342 return boost::math::cyl_bessel_k(0, xx) + log(xx) * boost::math::cyl_bessel_i(0, xx);
343 }
344 case 37:
345 {
346 // K0 over [1, INF]
347 mp_type xx = 1 / x;
348 return boost::math::cyl_bessel_k(0, xx) * exp(xx) * sqrt(xx);
349 }
350 case 38:
351 {
352 // K1 over [0, 1]
353 mp_type xx = sqrt(x);
354 return (boost::math::cyl_bessel_k(1, xx) - log(xx) * boost::math::cyl_bessel_i(1, xx) - 1 / xx) / xx;
355 }
356 case 39:
357 {
358 // K1 over [1, INF]
359 mp_type xx = 1 / x;
360 return boost::math::cyl_bessel_k(1, xx) * sqrt(xx) * exp(xx);
361 }
362 // Lambert W0
363 case 40:
364 return boost::math::lambert_w0(x);
365 case 41:
366 {
367 if (x == 0)
368 return 1;
369 return boost::math::lambert_w0(x) / x;
370 }
371 case 42:
372 {
373 static const mp_type e1 = exp(mp_type(-1));
374 return x / -boost::math::lambert_w0(-e1 + x);
375 }
376 case 43:
377 {
378 mp_type xx = 1 / x;
379 return 1 / boost::math::lambert_w0(xx);
380 }
381 case 44:
382 {
383 mp_type ex = exp(x);
384 return boost::math::lambert_w0(ex) - x;
385 }
386 }
387 return 0;
388 }
389
390 void show_extra(
391 const boost::math::tools::polynomial<mp_type>& n,
392 const boost::math::tools::polynomial<mp_type>& d,
393 const mp_type& x_offset,
394 const mp_type& y_offset,
395 int variant)
396 {
397 switch(variant)
398 {
399 default:
400 // do nothing here...
401 ;
402 }
403 }
404