]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/math/test/test_legendre.hpp
update sources to v12.2.3
[ceph.git] / ceph / src / boost / libs / math / test / test_legendre.hpp
1 // Copyright John Maddock 2006.
2 // Copyright Paul A. Bristow 2007, 2009
3 // Use, modification and distribution are subject to the
4 // Boost Software License, Version 1.0. (See accompanying file
5 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6
7 #ifdef _MSC_VER
8 # pragma warning (disable : 4756) // overflow in constant arithmetic
9 #endif
10
11 #include <boost/math/concepts/real_concept.hpp>
12 #define BOOST_TEST_MAIN
13 #include <boost/test/unit_test.hpp>
14 #include <boost/test/floating_point_comparison.hpp>
15 #include <boost/math/special_functions/math_fwd.hpp>
16 #include <boost/math/special_functions/legendre.hpp>
17 #include <boost/math/constants/constants.hpp>
18 #include <boost/multiprecision/cpp_bin_float.hpp>
19 #include <boost/array.hpp>
20 #include "functor.hpp"
21
22 #include "handle_test_result.hpp"
23 #include "table_type.hpp"
24
25 #ifndef SC_
26 #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
27 #endif
28
29 template <class Real, class T>
30 void do_test_legendre_p(const T& data, const char* type_name, const char* test_name)
31 {
32 typedef Real value_type;
33
34 typedef value_type (*pg)(int, value_type);
35 pg funcp;
36
37 #if !(defined(ERROR_REPORTING_MODE) && !defined(LEGENDRE_P_FUNCTION_TO_TEST))
38 #ifdef LEGENDRE_P_FUNCTION_TO_TEST
39 funcp = LEGENDRE_P_FUNCTION_TO_TEST;
40 #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
41 funcp = boost::math::legendre_p<value_type>;
42 #else
43 funcp = boost::math::legendre_p;
44 #endif
45
46 boost::math::tools::test_result<value_type> result;
47
48 std::cout << "Testing " << test_name << " with type " << type_name
49 << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
50
51 //
52 // test legendre_p against data:
53 //
54 result = boost::math::tools::test_hetero<Real>(
55 data,
56 bind_func_int1<Real>(funcp, 0, 1),
57 extract_result<Real>(2));
58 handle_test_result(result, data[result.worst()], result.worst(), type_name, "legendre_p", test_name);
59 #endif
60
61 typedef value_type (*pg2)(unsigned, value_type);
62 #if !(defined(ERROR_REPORTING_MODE) && !defined(LEGENDRE_Q_FUNCTION_TO_TEST))
63 #ifdef LEGENDRE_Q_FUNCTION_TO_TEST
64 pg2 funcp2 = LEGENDRE_Q_FUNCTION_TO_TEST;
65 #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
66 pg2 funcp2 = boost::math::legendre_q<value_type>;
67 #else
68 pg2 funcp2 = boost::math::legendre_q;
69 #endif
70
71 //
72 // test legendre_q against data:
73 //
74 result = boost::math::tools::test_hetero<Real>(
75 data,
76 bind_func_int1<Real>(funcp2, 0, 1),
77 extract_result<Real>(3));
78 handle_test_result(result, data[result.worst()], result.worst(), type_name, "legendre_q", test_name);
79
80 std::cout << std::endl;
81 #endif
82 }
83
84 template <class Real, class T>
85 void do_test_assoc_legendre_p(const T& data, const char* type_name, const char* test_name)
86 {
87 #if !(defined(ERROR_REPORTING_MODE) && !defined(LEGENDRE_PA_FUNCTION_TO_TEST))
88 typedef Real value_type;
89
90 typedef value_type (*pg)(int, int, value_type);
91 #ifdef LEGENDRE_PA_FUNCTION_TO_TEST
92 pg funcp = LEGENDRE_PA_FUNCTION_TO_TEST;
93 #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
94 pg funcp = boost::math::legendre_p<value_type>;
95 #else
96 pg funcp = boost::math::legendre_p;
97 #endif
98
99 boost::math::tools::test_result<value_type> result;
100
101 std::cout << "Testing " << test_name << " with type " << type_name
102 << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
103
104 //
105 // test legendre_p against data:
106 //
107 result = boost::math::tools::test_hetero<Real>(
108 data,
109 bind_func_int2<Real>(funcp, 0, 1, 2),
110 extract_result<Real>(3));
111 handle_test_result(result, data[result.worst()], result.worst(), type_name, "legendre_p (associated)", test_name);
112 std::cout << std::endl;
113 #endif
114 }
115
116 template <class T>
117 void test_legendre_p(T, const char* name)
118 {
119 //
120 // The actual test data is rather verbose, so it's in a separate file
121 //
122 // The contents are as follows, each row of data contains
123 // three items, input value a, input value b and erf(a, b):
124 //
125 # include "legendre_p.ipp"
126
127 do_test_legendre_p<T>(legendre_p, name, "Legendre Polynomials: Small Values");
128
129 # include "legendre_p_large.ipp"
130
131 do_test_legendre_p<T>(legendre_p_large, name, "Legendre Polynomials: Large Values");
132
133 # include "assoc_legendre_p.ipp"
134
135 do_test_assoc_legendre_p<T>(assoc_legendre_p, name, "Associated Legendre Polynomials: Small Values");
136
137 }
138
139 template <class T>
140 void test_spots(T, const char* t)
141 {
142 std::cout << "Testing basic sanity checks for type " << t << std::endl;
143 //
144 // basic sanity checks, tolerance is 100 epsilon:
145 //
146 T tolerance = boost::math::tools::epsilon<T>() * 100;
147 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(1, static_cast<T>(0.5L)), static_cast<T>(0.5L), tolerance);
148 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-1, static_cast<T>(0.5L)), static_cast<T>(1L), tolerance);
149 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, static_cast<T>(0.5L)), static_cast<T>(-0.2890625000000000000000000000000000000000L), tolerance);
150 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, static_cast<T>(0.5L)), static_cast<T>(-0.4375000000000000000000000000000000000000L), tolerance);
151 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, static_cast<T>(0.5L)), static_cast<T>(0.2231445312500000000000000000000000000000L), tolerance);
152 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, static_cast<T>(0.5L)), static_cast<T>(0.3232421875000000000000000000000000000000L), tolerance);
153 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, static_cast<T>(0.5L)), static_cast<T>(-0.09542943523261546936538467572384923220258L), tolerance);
154 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, static_cast<T>(0.5L)), static_cast<T>(-0.1316993126940266257030910566308990611306L), tolerance);
155
156 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, 2, static_cast<T>(0.5L)), static_cast<T>(4.218750000000000000000000000000000000000L), tolerance);
157 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, 2, static_cast<T>(0.5L)), static_cast<T>(5.625000000000000000000000000000000000000L), tolerance);
158 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, 5, static_cast<T>(0.5L)), static_cast<T>(-5696.789530152175143607977274672800795328L), tolerance);
159 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, 4, static_cast<T>(0.5L)), static_cast<T>(465.1171875000000000000000000000000000000L), tolerance);
160 if(std::numeric_limits<T>::max_exponent > std::numeric_limits<float>::max_exponent)
161 {
162 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, 30, static_cast<T>(0.5L)), static_cast<T>(-7.855722083232252643913331343916012143461e45L), tolerance);
163 }
164 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, 20, static_cast<T>(0.5L)), static_cast<T>(4.966634149702370788037088925152355134665e30L), tolerance);
165 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, 2, static_cast<T>(-0.5L)), static_cast<T>(4.218750000000000000000000000000000000000L), tolerance);
166 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, 2, static_cast<T>(-0.5L)), static_cast<T>(-5.625000000000000000000000000000000000000L), tolerance);
167 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, 5, static_cast<T>(-0.5L)), static_cast<T>(-5696.789530152175143607977274672800795328L), tolerance);
168 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, 4, static_cast<T>(-0.5L)), static_cast<T>(465.1171875000000000000000000000000000000L), tolerance);
169 if(std::numeric_limits<T>::max_exponent > std::numeric_limits<float>::max_exponent)
170 {
171 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, 30, static_cast<T>(-0.5L)), static_cast<T>(-7.855722083232252643913331343916012143461e45L), tolerance);
172 }
173 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, 20, static_cast<T>(-0.5L)), static_cast<T>(-4.966634149702370788037088925152355134665e30L), tolerance);
174 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, -2, static_cast<T>(0.5L)), static_cast<T>(0.01171875000000000000000000000000000000000L), tolerance);
175 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, -2, static_cast<T>(0.5L)), static_cast<T>(0.04687500000000000000000000000000000000000L), tolerance);
176 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, -5, static_cast<T>(0.5L)), static_cast<T>(0.00002378609812640364935569308025139290054701L), tolerance);
177 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, -4, static_cast<T>(0.5L)), static_cast<T>(0.0002563476562500000000000000000000000000000L), tolerance);
178 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, -30, static_cast<T>(0.5L)), static_cast<T>(-2.379819988646847616996471299410611801239e-48L), tolerance);
179 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, -20, static_cast<T>(0.5L)), static_cast<T>(4.356454600748202401657099008867502679122e-33L), tolerance);
180
181 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(1, static_cast<T>(0.5L)), static_cast<T>(-0.7253469278329725771511886907693685738381L), tolerance);
182 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(4, static_cast<T>(0.5L)), static_cast<T>(0.4401745259867706044988642951843745400835L), tolerance);
183 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(7, static_cast<T>(0.5L)), static_cast<T>(-0.3439152932669753451878700644212067616780L), tolerance);
184 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(40, static_cast<T>(0.5L)), static_cast<T>(0.1493671665503550095010454949479907886011L), tolerance);
185 }
186
187 template <class T>
188 void test_legendre_p_prime()
189 {
190 T tolerance = 100*boost::math::tools::epsilon<T>();
191 T x = -1;
192 while (x <= 1)
193 {
194 // P_0'(x) = 0
195 BOOST_CHECK_SMALL(::boost::math::legendre_p_prime<T>(0, x), tolerance);
196 // Reflection formula for P_{-1}(x) = P_{0}(x):
197 BOOST_CHECK_SMALL(::boost::math::legendre_p_prime<T>(-1, x), tolerance);
198
199 // P_1(x) = x, so P_1'(x) = 1:
200 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(1, x), static_cast<T>(1), tolerance);
201 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-2, x), static_cast<T>(1), tolerance);
202
203 // P_2(x) = 3x^2/2 + k => P_2'(x) = 3x
204 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(2, x), 3*x, tolerance);
205 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-3, x), 3*x, tolerance);
206
207 // P_3(x) = (5x^3 - 3x)/2 => P_3'(x) = (15x^2 - 3)/2:
208 T xsq = x*x;
209 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(3, x), (15*xsq - 3)/2, tolerance);
210 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-4, x), (15*xsq -3)/2, tolerance);
211
212 // P_4(x) = (35x^4 - 30x^2 +3)/8 => P_4'(x) = (5x/2)*(7x^2 - 3)
213 T expected = 5*x*(7*xsq - 3)/2;
214 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(4, x), expected, tolerance);
215 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-5, x), expected, tolerance);
216
217 // P_5(x) = (63x^5 - 70x^3 + 15x)/8 => P_5'(x) = (315*x^4 - 210*x^2 + 15)/8
218 T x4 = xsq*xsq;
219 expected = (315*x4 - 210*xsq + 15)/8;
220 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(5, x), expected, tolerance);
221 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-6, x), expected, tolerance);
222
223 // P_6(x) = (231x^6 -315*x^4 +105x^2 -5)/16 => P_6'(x) = (6*231*x^5 - 4*315*x^3 + 105x)/16
224 expected = 21*x*(33*x4 - 30*xsq + 5)/8;
225 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(6, x), expected, tolerance);
226 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-7, x), expected, tolerance);
227
228 // Mathematica: D[LegendreP[7, x],x]
229 T x6 = x4*xsq;
230 expected = 7*(429*x6 -495*x4 + 135*xsq - 5)/16;
231 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(7, x), expected, tolerance);
232 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-8, x), expected, tolerance);
233
234 // Mathematica: D[LegendreP[8, x],x]
235 // The naive polynomial evaluation algorithm is going to get worse from here out, so this will be enough.
236 expected = 9*x*(715*x6 - 1001*x4 + 385*xsq - 35)/16;
237 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(8, x), expected, tolerance);
238 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-9, x), expected, tolerance);
239
240 x += static_cast<T>(1)/static_cast<T>(pow(T(2), T(4)));
241 }
242
243 int n = 0;
244 while (n < 5000)
245 {
246 T expected = n*(n+1)*boost::math::constants::half<T>();
247 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(n, (T) 1), expected, tolerance);
248 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-n - 1, (T) 1), expected, tolerance);
249 if (n & 1)
250 {
251 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(n, (T) -1), expected, tolerance);
252 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-n - 1, (T) -1), expected, tolerance);
253 }
254 else
255 {
256 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(n, (T) -1), -expected, tolerance);
257 BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p_prime<T>(-n - 1, (T) -1), -expected, tolerance);
258 }
259 ++n;
260 }
261 }
262
263 template<class Real>
264 void test_legendre_p_zeros()
265 {
266 std::cout << "Testing Legendre zeros on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
267 using std::sqrt;
268 using std::abs;
269 using boost::math::legendre_p_zeros;
270 using boost::math::legendre_p;
271 using boost::math::constants::third;
272 Real tol = std::numeric_limits<Real>::epsilon();
273
274 // Check the trivial cases:
275 std::vector<Real> zeros = legendre_p_zeros<Real>(1);
276 BOOST_ASSERT(zeros.size() == 1);
277 BOOST_CHECK_SMALL(zeros[0], tol);
278
279 zeros = legendre_p_zeros<Real>(2);
280 BOOST_ASSERT(zeros.size() == 1);
281 BOOST_CHECK_CLOSE_FRACTION(zeros[0], (Real) 1/ sqrt(static_cast<Real>(3)), tol);
282
283 zeros = legendre_p_zeros<Real>(3);
284 BOOST_ASSERT(zeros.size() == 2);
285 BOOST_CHECK_SMALL(zeros[0], tol);
286 BOOST_CHECK_CLOSE_FRACTION(zeros[1], sqrt(static_cast<Real>(3)/static_cast<Real>(5)), tol);
287
288 zeros = legendre_p_zeros<Real>(4);
289 BOOST_ASSERT(zeros.size() == 2);
290 BOOST_CHECK_CLOSE_FRACTION(zeros[0], sqrt( (15-2*sqrt(static_cast<Real>(30)))/static_cast<Real>(35) ), tol);
291 BOOST_CHECK_CLOSE_FRACTION(zeros[1], sqrt( (15+2*sqrt(static_cast<Real>(30)))/static_cast<Real>(35) ), tol);
292
293
294 zeros = legendre_p_zeros<Real>(5);
295 BOOST_ASSERT(zeros.size() == 3);
296 BOOST_CHECK_SMALL(zeros[0], tol);
297 BOOST_CHECK_CLOSE_FRACTION(zeros[1], third<Real>()*sqrt( (35 - 2*sqrt(static_cast<Real>(70)))/static_cast<Real>(7) ), 2*tol);
298 BOOST_CHECK_CLOSE_FRACTION(zeros[2], third<Real>()*sqrt( (35 + 2*sqrt(static_cast<Real>(70)))/static_cast<Real>(7) ), 2*tol);
299
300 // Don't take the tolerances too seriously.
301 // The other test shows that the zeros are estimated more accurately than the function!
302 for (int n = 6; n < 130; ++n)
303 {
304 zeros = legendre_p_zeros<Real>(n);
305 if (n & 1)
306 {
307 BOOST_CHECK(zeros.size() == (n-1)/2 +1);
308 BOOST_CHECK_SMALL(zeros[0], tol);
309 }
310 else
311 {
312 // Zero is not a zero of the odd Legendre polynomials
313 BOOST_CHECK(zeros.size() == n/2);
314 BOOST_CHECK(zeros[0] > 0);
315 BOOST_CHECK_SMALL(legendre_p(n, zeros[0]), 550*tol);
316 }
317 Real previous_zero = zeros[0];
318 for (int k = 1; k < zeros.size(); ++k)
319 {
320 Real next_zero = zeros[k];
321 BOOST_CHECK(next_zero > previous_zero);
322
323 std::string err = "Tolerance failed for (n, k) = (" + boost::lexical_cast<std::string>(n) + "," + boost::lexical_cast<std::string>(k) + ")\n";
324 if (n < 40)
325 {
326 BOOST_CHECK_MESSAGE( abs(legendre_p(n, next_zero)) < 100*tol,
327 err);
328 }
329 else
330 {
331 BOOST_CHECK_MESSAGE( abs(legendre_p(n, next_zero)) < 1000*tol,
332 err);
333 }
334 previous_zero = next_zero;
335 }
336 // The zeros of orthogonal polynomials are contained strictly in (a, b).
337 BOOST_CHECK(previous_zero < 1);
338 }
339 return;
340 }
341
342 int test_legendre_p_zeros_double_ulp(int min_x, int max_n)
343 {
344 std::cout << "Testing ULP distance for Legendre zeros.\n";
345 using std::abs;
346 using boost::math::legendre_p_zeros;
347 using boost::math::float_distance;
348 using boost::multiprecision::cpp_bin_float_quad;
349
350 double max_float_distance = 0;
351 for (int n = min_x; n < max_n; ++n)
352 {
353 std::vector<double> double_zeros = legendre_p_zeros<double>(n);
354 std::vector<cpp_bin_float_quad> quad_zeros = legendre_p_zeros<cpp_bin_float_quad>(n);
355 BOOST_ASSERT(quad_zeros.size() == double_zeros.size());
356 for (int k = 0; k < (int)double_zeros.size(); ++k)
357 {
358 double d = abs(float_distance(double_zeros[k], quad_zeros[k].convert_to<double>()));
359 if (d > max_float_distance)
360 {
361 max_float_distance = d;
362 }
363 }
364 }
365
366 return (int) max_float_distance;
367 }