]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/numeric/interval/doc/examples.htm
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / numeric / interval / doc / examples.htm
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
2 "http://www.w3.org/TR/html4/loose.dtd">
3
4 <html>
5 <head>
6 <meta http-equiv="Content-Language" content="en-us">
7 <meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
8 <link rel="stylesheet" type="text/css" href="../../../../boost.css">
9
10 <title>Tests and Examples</title>
11 </head>
12
13 <body lang="en">
14 <h1>Tests and Examples</h1>
15
16 <h2>A first example</h2>
17
18 <p>This example shows how to design a function which takes a polynomial and
19 a value and returns the sign of this polynomial at this point. This
20 function is a filter: if the answer is not guaranteed, the functions says
21 so. The reason of using a filter rather than a simple evaluation function
22 is: computations with floating-point numbers will incur approximations and
23 it can be enough to change the sign of the polynomial. So, in order to
24 validate the result, the function will use interval arithmetic.</p>
25
26 <p>The first step is the inclusion of the appropriate headers. Because the
27 function will handle floating-point bounds, the easiest solution is:</p>
28 <pre>
29 #include &lt;boost/numeric/interval.hpp&gt;
30 </pre>
31
32 <p>Now, let's begin the function. The polynomial is given by the array of
33 its coefficients and its size (strictly greater to its degree). In order to
34 simplify the code, two namespaces of the library are included.</p>
35 <pre>
36 int sign_polynomial(double x, double P[], int sz) {
37 using namespace boost::numeric;
38 using namespace interval_lib;
39 </pre>
40
41 <p>Then we can define the interval type. Since no special behavior is
42 required, the default policies are enough:</p>
43 <pre>
44 typedef interval&lt;double&gt; I;
45 </pre>
46
47 <p>For the evaluation, let's just use the Horner scheme with interval
48 arithmetic. The library overloads all the arithmetic operators and provides
49 mixed operations, so the only difference between the code with and without
50 interval arithmetic lies in the type of the iterated value
51 <code>y</code>:</p>
52 <pre>
53 I y = P[sz - 1];
54 for(int i = sz - 2; i &gt;= 0; i--)
55 y = y * x + P[i];
56 </pre>
57
58 <p>The last step is the computation of the sign of <code>y</code>. It is
59 done by choosing an appropriate comparison scheme and then doing the
60 comparison with the usual operators:</p>
61 <pre>
62 using namespace compare::certain;
63 if (y &gt; 0.) return 1;
64 if (y &lt; 0.) return -1;
65 return 0;
66 }
67 </pre>
68
69 <p>The answer <code>0</code> does not mean the polynomial is zero at this
70 point. It only means the answer is not known since <code>y</code> contains
71 zero and thus does not have a precise sign.</p>
72
73 <p>Now we have the expected function. However, due to the poor
74 implementations of floating-point rounding in most of the processors, it
75 can be useful to say to optimize the code; or rather, to let the library
76 optimize it. The main condition for this optimization is that the interval
77 code should not be mixed with floating-point code. In this example, it is
78 the case, since all the operations done in the functions involve the
79 library. So the code can be rewritten:</p>
80 <pre>
81 int sign_polynomial(double x, double P[], int sz) {
82 using namespace boost::numeric;
83 using namespace interval_lib;
84 typedef interval&lt;double&gt; I_aux;
85
86 I_aux::traits_type::rounding rnd;
87 typedef unprotect&lt;I_aux&gt;::type I;
88
89 I y = P[sz - 1];
90 for(int i = sz - 2; i &gt;= 0; i--)
91 y = y * x + P[i];
92
93 using namespace compare::certain;
94 if (y &gt; 0.) return 1;
95 if (y &lt; 0.) return -1;
96 return 0;
97 }
98 </pre>
99
100 <p>The difference between this code and the previous is the use of another
101 interval type. This new type <code>I</code> indicates to the library that
102 all the computations can be done without caring for the rounding mode. And
103 because of that, it is up to the function to care about it: a rounding
104 object need to be alive whenever the optimized type is used.</p>
105
106 <h2>Other tests and examples</h2>
107
108 <p>In <code>libs/numeric/interval/test/</code> and
109 <code>libs/numeric/interval/examples/</code> are some test and example
110 programs.. The examples illustrate a few uses of intervals. For a general
111 description and considerations on using this library, and some potential
112 domains of application, please read this <a href=
113 "guide.htm">mini-guide</a>.</p>
114
115 <h3>Tests</h3>
116
117 <p>The test programs are as follows. Please note that they require the use
118 of the Boost.test library and can be automatically tested by using
119 <code>bjam</code> (except for interval_test.cpp).</p>
120
121 <p><b>add.cpp</b> tests if the additive and subtractive operators and the
122 respective _std and _opp rounding functions are correctly implemented. It
123 is done by using symbolic expressions as a base type.</p>
124
125 <p><b>cmp.cpp</b>, <b>cmp_lex.cpp</b>, <b>cmp_set.cpp</b>, and
126 <b>cmp_tribool.cpp</b> test if the operators <code>&lt;</code>
127 <code>&gt;</code> <code>&lt;=</code> <code>&gt;=</code> <code>==</code>
128 <code>!=</code> behave correctly for the default, lexicographic, set, and
129 tristate comparisons. <b>cmp_exp.cpp</b> tests the explicit comparison
130 functions <code>cer..</code> and <code>pos..</code> behave correctly.
131 <b>cmp_exn.cpp</b> tests if the various policies correctly detect
132 exceptional cases. All these tests use some simple intervals ([1,2] and
133 [3,4], [1,3] and [2,4], [1,2] and [2,3], etc).</p>
134
135 <p><b>det.cpp</b> tests if the <code>_std</code> and <code>_opp</code>
136 versions in protected and unprotected mode produce the same result when
137 Gauss scheme is used on an unstable matrix (in order to exercise rounding).
138 The tests are done for <code>interval&lt;float&gt;</code> and
139 <code>interval&lt;double&gt;</code>.</p>
140
141 <p><b>fmod.cpp</b> defines a minimalistic version of
142 <code>interval&lt;int&gt;</code> and uses it in order to test
143 <code>fmod</code> on some specific interval values.</p>
144
145 <p><b>mul.cpp</b> exercises the multiplication, the finite division, the
146 square and the square root with some integer intervals leading to exact
147 results.</p>
148
149 <p><b>pi.cpp</b> tests if the interval value of &pi; (for <code>int</code>,
150 <code>float</code> and <code>double</code> base types) contains the number
151 &pi; (defined with 21 decimal digits) and if it is a subset of
152 [&pi;&plusmn;1ulp] (in order to ensure some precision).</p>
153
154 <p><b>pow.cpp</b> tests if the <code>pow</code> function behaves correctly
155 on some simple test cases.</p>
156
157 <p><b>test_float.cpp</b> exercises the arithmetic operations of the library
158 for floating point base types.</p>
159
160 <p><b>interval_test.cpp</b> tests if the interval library respects the
161 inclusion property of interval arithmetic by computing some functions and
162 operations for both <code>double</code> and
163 <code>interval&lt;double&gt;</code>.</p>
164
165 <h2>Examples</h2>
166
167 <p><b>filter.cpp</b> contains filters for computational geometry able to
168 find the sign of a determinant. This example is inspired by the article
169 <em>Interval arithmetic yields efficient dynamic filters for computational
170 geometry</em> by Br&ouml;nnimann, Burnikel and Pion, 2001.</p>
171
172 <p><b>findroot_demo.cpp</b> finds zeros of some functions by using
173 dichotomy and even produces gnuplot data for one of them. The processor has
174 to correctly handle elementary functions for this example to properly
175 work.</p>
176
177 <p><b>horner.cpp</b> is a really basic example of unprotecting the interval
178 operations for a whole function (which computes the value of a polynomial
179 by using Horner scheme).</p>
180
181 <p><b>io.cpp</b> shows some stream input and output operators for intervals
182 .The wide variety of possibilities explains why the library do not
183 implement i/o operators and they are left to the user.</p>
184
185 <p><b>newton-raphson.cpp</b> is an implementation of a specialized version
186 of Newton-Raphson algorithm for finding the zeros of a function knowing its
187 derivative. It exercises unprotecting, full division, some set operations
188 and empty intervals.</p>
189
190 <p><b>transc.cpp</b> implements the transcendental part of the rounding
191 policy for <code>double</code> by using an external library (the MPFR
192 subset of GMP in this case).</p>
193 <hr>
194
195 <p><a href="http://validator.w3.org/check?uri=referer"><img border="0" src=
196 "../../../../doc/images/valid-html401.png" alt="Valid HTML 4.01 Transitional"
197 height="31" width="88"></a></p>
198
199 <p>Revised
200 <!--webbot bot="Timestamp" s-type="EDITED" s-format="%Y-%m-%d" startspan -->2006-12-24<!--webbot bot="Timestamp" endspan i-checksum="12172" --></p>
201
202 <p><i>Copyright &copy; 2002 Guillaume Melquiond, Sylvain Pion, Herv&eacute;
203 Br&ouml;nnimann, Polytechnic University<br>
204 Copyright &copy; 2003 Guillaume Melquiond</i></p>
205
206 <p><i>Distributed under the Boost Software License, Version 1.0. (See
207 accompanying file <a href="../../../../LICENSE_1_0.txt">LICENSE_1_0.txt</a>
208 or copy at <a href=
209 "http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</i></p>
210 </body>
211 </html>