]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/numeric/odeint/include/boost/numeric/odeint/stepper/base/explicit_error_stepper_fsal_base.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / numeric / odeint / include / boost / numeric / odeint / stepper / base / explicit_error_stepper_fsal_base.hpp
1 /*
2 [auto_generated]
3 boost/numeric/odeint/stepper/base/explicit_error_stepper_fsal_base.hpp
4
5 [begin_description]
6 Base class for all explicit first-same-as-last Runge Kutta steppers.
7 [end_description]
8
9 Copyright 2010-2013 Karsten Ahnert
10 Copyright 2010-2012 Mario Mulansky
11 Copyright 2012 Christoph Koke
12
13 Distributed under the Boost Software License, Version 1.0.
14 (See accompanying file LICENSE_1_0.txt or
15 copy at http://www.boost.org/LICENSE_1_0.txt)
16 */
17
18
19 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
20 #define BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
21
22 #include <boost/utility/enable_if.hpp>
23 #include <boost/type_traits/is_same.hpp>
24
25
26 #include <boost/numeric/odeint/util/bind.hpp>
27 #include <boost/numeric/odeint/util/unwrap_reference.hpp>
28 #include <boost/numeric/odeint/util/state_wrapper.hpp>
29 #include <boost/numeric/odeint/util/is_resizeable.hpp>
30 #include <boost/numeric/odeint/util/resizer.hpp>
31 #include <boost/numeric/odeint/util/copy.hpp>
32
33 #include <boost/numeric/odeint/stepper/stepper_categories.hpp>
34
35 #include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>
36
37 namespace boost {
38 namespace numeric {
39 namespace odeint {
40
41 /*
42 * base class for explicit stepper and error steppers with the fsal property
43 * models the stepper AND the error stepper fsal concept
44 *
45 * this class provides the following do_step overloads
46 * do_step( sys , x , t , dt )
47 * do_step( sys , x , dxdt , t , dt )
48 * do_step( sys , in , t , out , dt )
49 * do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )
50 * do_step( sys , x , t , dt , xerr )
51 * do_step( sys , x , dxdt , t , dt , xerr )
52 * do_step( sys , in , t , out , dt , xerr )
53 * do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )
54 */
55 template<
56 class Stepper ,
57 unsigned short Order ,
58 unsigned short StepperOrder ,
59 unsigned short ErrorOrder ,
60 class State ,
61 class Value ,
62 class Deriv ,
63 class Time ,
64 class Algebra ,
65 class Operations ,
66 class Resizer
67 >
68 class explicit_error_stepper_fsal_base : public algebra_stepper_base< Algebra , Operations >
69 {
70 public:
71
72 typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
73 typedef typename algebra_stepper_base_type::algebra_type algebra_type;
74
75 typedef State state_type;
76 typedef Value value_type;
77 typedef Deriv deriv_type;
78 typedef Time time_type;
79 typedef Resizer resizer_type;
80 typedef Stepper stepper_type;
81 typedef explicit_error_stepper_fsal_tag stepper_category;
82
83 #ifndef DOXYGEN_SKIP
84 typedef state_wrapper< state_type > wrapped_state_type;
85 typedef state_wrapper< deriv_type > wrapped_deriv_type;
86 typedef explicit_error_stepper_fsal_base< Stepper , Order , StepperOrder , ErrorOrder ,
87 State , Value , Deriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type;
88 #endif
89
90
91 typedef unsigned short order_type;
92 static const order_type order_value = Order;
93 static const order_type stepper_order_value = StepperOrder;
94 static const order_type error_order_value = ErrorOrder;
95
96 explicit_error_stepper_fsal_base( const algebra_type &algebra = algebra_type() )
97 : algebra_stepper_base_type( algebra ) , m_first_call( true )
98 { }
99
100 order_type order( void ) const
101 {
102 return order_value;
103 }
104
105 order_type stepper_order( void ) const
106 {
107 return stepper_order_value;
108 }
109
110 order_type error_order( void ) const
111 {
112 return error_order_value;
113 }
114
115
116 /*
117 * version 1 : do_step( sys , x , t , dt )
118 *
119 * the two overloads are needed in order to solve the forwarding problem
120 */
121 template< class System , class StateInOut >
122 void do_step( System system , StateInOut &x , time_type t , time_type dt )
123 {
124 do_step_v1( system , x , t , dt );
125 }
126
127 /**
128 * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
129 */
130 template< class System , class StateInOut >
131 void do_step( System system , const StateInOut &x , time_type t , time_type dt )
132 {
133 do_step_v1( system , x , t , dt );
134 }
135
136
137 /*
138 * version 2 : do_step( sys , x , dxdt , t , dt )
139 *
140 * this version does not solve the forwarding problem, boost.range can not be used
141 *
142 * the disable is needed to avoid ambiguous overloads if state_type = time_type
143 */
144 template< class System , class StateInOut , class DerivInOut >
145 typename boost::disable_if< boost::is_same< StateInOut , time_type > , void >::type
146 do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
147 {
148 m_first_call = true;
149 this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt );
150 }
151
152
153 /*
154 * named Version 2: do_step_dxdt_impl( sys , in , dxdt , t , dt )
155 *
156 * this version is needed when this stepper is used for initializing
157 * multistep stepper like adams-bashforth. Hence we provide an explicitely
158 * named version that is not disabled. Meant for internal use only.
159 */
160 template< class System , class StateInOut , class DerivInOut >
161 void do_step_dxdt_impl( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
162 {
163 m_first_call = true;
164 this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt );
165 }
166
167 /*
168 * version 3 : do_step( sys , in , t , out , dt )
169 *
170 * this version does not solve the forwarding problem, boost.range can not
171 * be used.
172 *
173 * the disable is needed to avoid ambiguous overloads if
174 * state_type = time_type
175 */
176 template< class System , class StateIn , class StateOut >
177 typename boost::disable_if< boost::is_same< StateIn , time_type > , void >::type
178 do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
179 {
180 if( m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
181 {
182 initialize( system , in , t );
183 }
184 this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , m_dxdt.m_v , dt );
185 }
186
187
188 /*
189 * version 4 : do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )
190 *
191 * this version does not solve the forwarding problem, boost.range can not be used
192 */
193 template< class System, class StateIn, class DerivIn, class StateOut,
194 class DerivOut >
195 void do_step( System system, const StateIn &in, const DerivIn &dxdt_in,
196 time_type t, StateOut &out, DerivOut &dxdt_out, time_type dt )
197 {
198 m_first_call = true;
199 this->stepper().do_step_impl( system, in, dxdt_in, t, out, dxdt_out,
200 dt );
201 }
202
203
204
205
206
207 /*
208 * version 5 : do_step( sys , x , t , dt , xerr )
209 *
210 * the two overloads are needed in order to solve the forwarding problem
211 */
212 template< class System , class StateInOut , class Err >
213 void do_step( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
214 {
215 do_step_v5( system , x , t , dt , xerr );
216 }
217
218 /**
219 * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
220 */
221 template< class System , class StateInOut , class Err >
222 void do_step( System system , const StateInOut &x , time_type t , time_type dt , Err &xerr )
223 {
224 do_step_v5( system , x , t , dt , xerr );
225 }
226
227
228 /*
229 * version 6 : do_step( sys , x , dxdt , t , dt , xerr )
230 *
231 * this version does not solve the forwarding problem, boost.range can not be used
232 *
233 * the disable is needed to avoid ambiguous overloads if state_type = time_type
234 */
235 template< class System , class StateInOut , class DerivInOut , class Err >
236 typename boost::disable_if< boost::is_same< StateInOut , time_type > , void >::type
237 do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt , Err &xerr )
238 {
239 m_first_call = true;
240 this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt , xerr );
241 }
242
243
244
245
246 /*
247 * version 7 : do_step( sys , in , t , out , dt , xerr )
248 *
249 * this version does not solve the forwarding problem, boost.range can not be used
250 */
251 template< class System , class StateIn , class StateOut , class Err >
252 void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt , Err &xerr )
253 {
254 if( m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
255 {
256 initialize( system , in , t );
257 }
258 this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , m_dxdt.m_v , dt , xerr );
259 }
260
261
262 /*
263 * version 8 : do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )
264 *
265 * this version does not solve the forwarding problem, boost.range can not be used
266 */
267 template< class System , class StateIn , class DerivIn , class StateOut , class DerivOut , class Err >
268 void do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t ,
269 StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr )
270 {
271 m_first_call = true;
272 this->stepper().do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt , xerr );
273 }
274
275 template< class StateIn >
276 void adjust_size( const StateIn &x )
277 {
278 resize_impl( x );
279 }
280
281 void reset( void )
282 {
283 m_first_call = true;
284 }
285
286 template< class DerivIn >
287 void initialize( const DerivIn &deriv )
288 {
289 boost::numeric::odeint::copy( deriv , m_dxdt.m_v );
290 m_first_call = false;
291 }
292
293 template< class System , class StateIn >
294 void initialize( System system , const StateIn &x , time_type t )
295 {
296 typename odeint::unwrap_reference< System >::type &sys = system;
297 sys( x , m_dxdt.m_v , t );
298 m_first_call = false;
299 }
300
301 bool is_initialized( void ) const
302 {
303 return ! m_first_call;
304 }
305
306
307
308 private:
309
310 template< class System , class StateInOut >
311 void do_step_v1( System system , StateInOut &x , time_type t , time_type dt )
312 {
313 if( m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
314 {
315 initialize( system , x , t );
316 }
317 this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , m_dxdt.m_v , dt );
318 }
319
320 template< class System , class StateInOut , class Err >
321 void do_step_v5( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
322 {
323 if( m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
324 {
325 initialize( system , x , t );
326 }
327 this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , m_dxdt.m_v , dt , xerr );
328 }
329
330 template< class StateIn >
331 bool resize_impl( const StateIn &x )
332 {
333 return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
334 }
335
336
337 stepper_type& stepper( void )
338 {
339 return *static_cast< stepper_type* >( this );
340 }
341
342 const stepper_type& stepper( void ) const
343 {
344 return *static_cast< const stepper_type* >( this );
345 }
346
347
348 resizer_type m_resizer;
349 bool m_first_call;
350
351 protected:
352
353
354 wrapped_deriv_type m_dxdt;
355 };
356
357
358 /******* DOXYGEN *******/
359
360 /**
361 * \class explicit_error_stepper_fsal_base
362 * \brief Base class for explicit steppers with error estimation and stepper fulfilling the FSAL (first-same-as-last)
363 * property. This class can be used with controlled steppers for step size control.
364 *
365 * This class serves as the base class for all explicit steppers with algebra and operations and which fulfill the FSAL
366 * property. In contrast to explicit_stepper_base it also estimates the error and can be used in a controlled stepper
367 * to provide step size control.
368 *
369 * The FSAL property means that the derivative of the system at t+dt is already used in the current step going from
370 * t to t +dt. Therefore, some more do_steps method can be introduced and the controlled steppers can explicitly make use
371 * of this property.
372 *
373 * \note This stepper provides `do_step` methods with and without error estimation. It has therefore three orders,
374 * one for the order of a step if the error is not estimated. The other two orders are the orders of the step and
375 * the error step if the error estimation is performed.
376 *
377 * explicit_error_stepper_fsal_base is used as the interface in a CRTP (currently recurring template
378 * pattern). In order to work correctly the parent class needs to have a method
379 * `do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt , xerr )`.
380 * explicit_error_stepper_fsal_base derives from algebra_stepper_base.
381 *
382 * This class can have an intrinsic state depending on the explicit usage of the `do_step` method. This means that some
383 * `do_step` methods are expected to be called in order. For example the `do_step( sys , x , t , dt , xerr )` will keep track
384 * of the derivative of `x` which is the internal state. The first call of this method is recognized such that one
385 * does not explicitly initialize the internal state, so it is safe to use this method like
386 *
387 * \code
388 * stepper_type stepper;
389 * stepper.do_step( sys , x , t , dt , xerr );
390 * stepper.do_step( sys , x , t , dt , xerr );
391 * stepper.do_step( sys , x , t , dt , xerr );
392 * \endcode
393 *
394 * But it is unsafe to call this method with different system functions after each other. Do do so, one must initialize the
395 * internal state with the `initialize` method or reset the internal state with the `reset` method.
396 *
397 * explicit_error_stepper_fsal_base provides several overloaded `do_step` methods, see the list below. Only two of them are needed
398 * to fulfill the Error Stepper concept. The other ones are for convenience and for better performance. Some of them
399 * simply update the state out-of-place, while other expect that the first derivative at `t` is passed to the stepper.
400 *
401 * - `do_step( sys , x , t , dt )` - The classical `do_step` method needed to fulfill the Error Stepper concept. The
402 * state is updated in-place. A type modelling a Boost.Range can be used for x.
403 * - `do_step( sys , x , dxdt , t , dt )` - This method updates the state x and the derivative dxdt in-place. It is expected
404 * that dxdt has the value of the derivative of x at time t.
405 * - `do_step( sys , in , t , out , dt )` - This method updates the state out-of-place, hence the result of the step
406 * is stored in `out`.
407 * - `do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )` - This method updates the state and the derivative
408 * out-of-place. It expects that the derivative at the point `t` is explicitly passed in `dxdt_in`.
409 * - `do_step( sys , x , t , dt , xerr )` - This `do_step` method is needed to fulfill the Error Stepper concept. The
410 * state is updated in-place and an error estimate is calculated. A type modelling a Boost.Range can be used for x.
411 * - `do_step( sys , x , dxdt , t , dt , xerr )` - This method updates the state and the derivative in-place. It is assumed
412 * that the dxdt has the value of the derivative of x at time t. An error estimate is calculated.
413 * - `do_step( sys , in , t , out , dt , xerr )` - This method updates the state out-of-place and estimates the error
414 * during the step.
415 * - `do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )` - This methods updates the state and the derivative
416 * out-of-place and estimates the error during the step. It is assumed the dxdt_in is derivative of in at time t.
417 *
418 * \note The system is always passed as value, which might result in poor performance if it contains data. In this
419 * case it can be used with `boost::ref` or `std::ref`, for example `stepper.do_step( boost::ref( sys ) , x , t , dt );`
420 *
421 * \note The time `t` is not advanced by the stepper. This has to done manually, or by the appropriate `integrate`
422 * routines or `iterator`s.
423 *
424 * \tparam Stepper The stepper on which this class should work. It is used via CRTP, hence explicit_stepper_base
425 * provides the interface for the Stepper.
426 * \tparam Order The order of a stepper if the stepper is used without error estimation.
427 * \tparam StepperOrder The order of a step if the stepper is used with error estimation. Usually Order and StepperOrder have
428 * the same value.
429 * \tparam ErrorOrder The order of the error step if the stepper is used with error estimation.
430 * \tparam State The state type for the stepper.
431 * \tparam Value The value type for the stepper. This should be a floating point type, like float,
432 * double, or a multiprecision type. It must not necessary be the value_type of the State. For example
433 * the State can be a `vector< complex< double > >` in this case the Value must be double.
434 * The default value is double.
435 * \tparam Deriv The type representing time derivatives of the state type. It is usually the same type as the
436 * state type, only if used with Boost.Units both types differ.
437 * \tparam Time The type representing the time. Usually the same type as the value type. When Boost.Units is
438 * used, this type has usually a unit.
439 * \tparam Algebra The algebra type which must fulfill the Algebra Concept.
440 * \tparam Operations The type for the operations which must fulfill the Operations Concept.
441 * \tparam Resizer The resizer policy class.
442 */
443
444
445
446 /**
447 * \fn explicit_error_stepper_fsal_base::explicit_error_stepper_fsal_base( const algebra_type &algebra )
448 * \brief Constructs a explicit_stepper_fsal_base class. This constructor can be used as a default
449 * constructor if the algebra has a default constructor.
450 * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
451 */
452
453
454 /**
455 * \fn explicit_error_stepper_fsal_base::order( void ) const
456 * \return Returns the order of the stepper if it used without error estimation.
457 */
458
459 /**
460 * \fn explicit_error_stepper_fsal_base::stepper_order( void ) const
461 * \return Returns the order of a step if the stepper is used without error estimation.
462 */
463
464
465 /**
466 * \fn explicit_error_stepper_fsal_base::error_order( void ) const
467 * \return Returns the order of an error step if the stepper is used without error estimation.
468 */
469
470 /**
471 * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , time_type t , time_type dt )
472 * \brief This method performs one step. It transforms the result in-place.
473 *
474 * \note This method uses the internal state of the stepper.
475 *
476 * \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
477 * Simple System concept.
478 * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
479 * \param t The value of the time, at which the step should be performed.
480 * \param dt The step size.
481 */
482
483
484 /**
485 * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
486 * \brief The method performs one step with the stepper passed by Stepper. Additionally to the other methods
487 * the derivative of x is also passed to this method. Therefore, dxdt must be evaluated initially:
488 *
489 * \code
490 * ode( x , dxdt , t );
491 * for( ... )
492 * {
493 * stepper.do_step( ode , x , dxdt , t , dt );
494 * t += dt;
495 * }
496 * \endcode
497 *
498 * \note This method does NOT use the initial state, since the first derivative is explicitly passed to this method.
499 *
500 * The result is updated in place in x as well as the derivative dxdt. This method is disabled if
501 * Time and StateInOut are of the same type. In this case the method could not be distinguished from other `do_step`
502 * versions.
503 *
504 * \note This method does not solve the forwarding problem.
505 *
506 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
507 * Simple System concept.
508 * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
509 * \param dxdt The derivative of x at t. After calling `do_step` dxdt is updated to the new value.
510 * \param t The value of the time, at which the step should be performed.
511 * \param dt The step size.
512 */
513
514 /**
515 * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
516 * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
517 * This method is disabled if StateIn and Time are the same type. In this case the method can not be distinguished from
518 * other `do_step` variants.
519 *
520 * \note This method uses the internal state of the stepper.
521 *
522 * \note This method does not solve the forwarding problem.
523 *
524 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
525 * Simple System concept.
526 * \param in The state of the ODE which should be solved. in is not modified in this method
527 * \param t The value of the time, at which the step should be performed.
528 * \param out The result of the step is written in out.
529 * \param dt The step size.
530 */
531
532 /**
533 * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt )
534 * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
535 * Furthermore, the derivative of x at t is passed to the stepper and updated by the stepper to its new value at
536 * t+dt.
537 *
538 * \note This method does not solve the forwarding problem.
539 *
540 * \note This method does NOT use the internal state of the stepper.
541 *
542 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
543 * Simple System concept.
544 * \param in The state of the ODE which should be solved. in is not modified in this method
545 * \param dxdt_in The derivative of x at t.
546 * \param t The value of the time, at which the step should be performed.
547 * \param out The result of the step is written in out.
548 * \param dxdt_out The updated derivative of `out` at `t+dt`.
549 * \param dt The step size.
550 */
551
552 /**
553 * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
554 * \brief The method performs one step with the stepper passed by Stepper and estimates the error. The state of the ODE
555 * is updated in-place.
556 *
557 *
558 * \note This method uses the internal state of the stepper.
559 *
560 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
561 * Simple System concept.
562 * \param x The state of the ODE which should be solved. x is updated by this method.
563 * \param t The value of the time, at which the step should be performed.
564 * \param dt The step size.
565 * \param xerr The estimation of the error is stored in xerr.
566 */
567
568 /**
569 * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt , Err &xerr )
570 * \brief The method performs one step with the stepper passed by Stepper. Additionally to the other method
571 * the derivative of x is also passed to this method and updated by this method.
572 *
573 * \note This method does NOT use the internal state of the stepper.
574 *
575 * The result is updated in place in x. This method is disabled if Time and Deriv are of the same type. In this
576 * case the method could not be distinguished from other `do_step` versions. This method is disabled if StateInOut and
577 * Time are of the same type.
578 *
579 * \note This method does NOT use the internal state of the stepper.
580 *
581 * \note This method does not solve the forwarding problem.
582 *
583 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
584 * Simple System concept.
585 * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
586 * \param dxdt The derivative of x at t. After calling `do_step` this value is updated to the new value at `t+dt`.
587 * \param t The value of the time, at which the step should be performed.
588 * \param dt The step size.
589 * \param xerr The error estimate is stored in xerr.
590 */
591
592
593 /**
594 * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt , Err &xerr )
595 * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
596 * Furthermore, the error is estimated.
597 *
598 * \note This method uses the internal state of the stepper.
599 *
600 * \note This method does not solve the forwarding problem.
601 *
602 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
603 * Simple System concept.
604 * \param in The state of the ODE which should be solved. in is not modified in this method
605 * \param t The value of the time, at which the step should be performed.
606 * \param out The result of the step is written in out.
607 * \param dt The step size.
608 * \param xerr The error estimate.
609 */
610
611 /**
612 * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr )
613 * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
614 * Furthermore, the derivative of x at t is passed to the stepper and the error is estimated.
615 *
616 * \note This method does NOT use the internal state of the stepper.
617 *
618 * \note This method does not solve the forwarding problem.
619 *
620 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
621 * Simple System concept.
622 * \param in The state of the ODE which should be solved. in is not modified in this method
623 * \param dxdt_in The derivative of x at t.
624 * \param t The value of the time, at which the step should be performed.
625 * \param out The result of the step is written in out.
626 * \param dxdt_out The new derivative at `t+dt` is written into this variable.
627 * \param dt The step size.
628 * \param xerr The error estimate.
629 */
630
631 /**
632 * \fn explicit_error_stepper_fsal_base::adjust_size( const StateIn &x )
633 * \brief Adjust the size of all temporaries in the stepper manually.
634 * \param x A state from which the size of the temporaries to be resized is deduced.
635 */
636
637 /**
638 * \fn explicit_error_stepper_fsal_base::reset( void )
639 * \brief Resets the internal state of this stepper. After calling this method it is safe to use all
640 * `do_step` method without explicitly initializing the stepper.
641 */
642
643 /**
644 * \fn explicit_error_stepper_fsal_base::initialize( const DerivIn &deriv )
645 * \brief Initializes the internal state of the stepper.
646 * \param deriv The derivative of x. The next call of `do_step` expects that the derivative of `x` passed to `do_step`
647 * has the value of `deriv`.
648 */
649
650 /**
651 * \fn explicit_error_stepper_fsal_base::initialize( System system , const StateIn &x , time_type t )
652 * \brief Initializes the internal state of the stepper.
653 *
654 * This method is equivalent to
655 * \code
656 * Deriv dxdt;
657 * system( x , dxdt , t );
658 * stepper.initialize( dxdt );
659 * \endcode
660 *
661 * \param system The system function for the next calls of `do_step`.
662 * \param x The current state of the ODE.
663 * \param t The current time of the ODE.
664 */
665
666 /**
667 * \fn explicit_error_stepper_fsal_base::is_initialized( void ) const
668 * \brief Returns if the stepper is already initialized. If the stepper is not initialized, the first
669 * call of `do_step` will initialize the state of the stepper. If the stepper is already initialized
670 * the system function can not be safely exchanged between consecutive `do_step` calls.
671 */
672
673 } // odeint
674 } // numeric
675 } // boost
676
677 #endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED