]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/numeric/odeint/include/boost/numeric/odeint/stepper/base/symplectic_rkn_stepper_base.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / numeric / odeint / include / boost / numeric / odeint / stepper / base / symplectic_rkn_stepper_base.hpp
1 /*
2 [auto_generated]
3 boost/numeric/odeint/stepper/base/symplectic_rkn_stepper_base.hpp
4
5 [begin_description]
6 Base class for symplectic Runge-Kutta-Nystrom steppers.
7 [end_description]
8
9 Copyright 2011-2013 Karsten Ahnert
10 Copyright 2011-2013 Mario Mulansky
11 Copyright 2012 Christoph Koke
12
13 Distributed under the Boost Software License, Version 1.0.
14 (See accompanying file LICENSE_1_0.txt or
15 copy at http://www.boost.org/LICENSE_1_0.txt)
16 */
17
18
19 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED
20 #define BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED
21
22 #include <boost/array.hpp>
23
24 #include <boost/numeric/odeint/util/bind.hpp>
25 #include <boost/numeric/odeint/util/unwrap_reference.hpp>
26
27 #include <boost/numeric/odeint/util/copy.hpp>
28 #include <boost/numeric/odeint/util/is_pair.hpp>
29
30 #include <boost/numeric/odeint/util/state_wrapper.hpp>
31 #include <boost/numeric/odeint/util/resizer.hpp>
32
33 #include <boost/numeric/odeint/stepper/stepper_categories.hpp>
34
35 #include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>
36
37
38
39
40 namespace boost {
41 namespace numeric {
42 namespace odeint {
43
44
45 template<
46 size_t NumOfStages ,
47 unsigned short Order ,
48 class Coor ,
49 class Momentum ,
50 class Value ,
51 class CoorDeriv ,
52 class MomentumDeriv ,
53 class Time ,
54 class Algebra ,
55 class Operations ,
56 class Resizer
57 >
58 class symplectic_nystroem_stepper_base : public algebra_stepper_base< Algebra , Operations >
59 {
60
61 public:
62
63 typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
64 typedef typename algebra_stepper_base_type::algebra_type algebra_type;
65 typedef typename algebra_stepper_base_type::operations_type operations_type;
66
67 const static size_t num_of_stages = NumOfStages;
68 typedef Coor coor_type;
69 typedef Momentum momentum_type;
70 typedef std::pair< coor_type , momentum_type > state_type;
71 typedef CoorDeriv coor_deriv_type;
72 typedef state_wrapper< coor_deriv_type> wrapped_coor_deriv_type;
73 typedef MomentumDeriv momentum_deriv_type;
74 typedef state_wrapper< momentum_deriv_type > wrapped_momentum_deriv_type;
75 typedef std::pair< coor_deriv_type , momentum_deriv_type > deriv_type;
76 typedef Value value_type;
77 typedef Time time_type;
78 typedef Resizer resizer_type;
79 typedef stepper_tag stepper_category;
80
81 #ifndef DOXYGEN_SKIP
82 typedef symplectic_nystroem_stepper_base< NumOfStages , Order , Coor , Momentum , Value ,
83 CoorDeriv , MomentumDeriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type;
84 #endif
85 typedef unsigned short order_type;
86
87 static const order_type order_value = Order;
88
89 typedef boost::array< value_type , num_of_stages > coef_type;
90
91 symplectic_nystroem_stepper_base( const coef_type &coef_a , const coef_type &coef_b , const algebra_type &algebra = algebra_type() )
92 : algebra_stepper_base_type( algebra ) , m_coef_a( coef_a ) , m_coef_b( coef_b ) ,
93 m_dqdt_resizer() , m_dpdt_resizer() , m_dqdt() , m_dpdt()
94 { }
95
96
97 order_type order( void ) const
98 {
99 return order_value;
100 }
101
102 /*
103 * Version 1 : do_step( system , x , t , dt )
104 *
105 * This version does not solve the forwarding problem, boost.range can not be used.
106 */
107 template< class System , class StateInOut >
108 void do_step( System system , const StateInOut &state , time_type t , time_type dt )
109 {
110 typedef typename odeint::unwrap_reference< System >::type system_type;
111 do_step_impl( system , state , t , state , dt , typename is_pair< system_type >::type() );
112 }
113
114 /**
115 * \brief Same function as above. It differs only in a different const specifier in order
116 * to solve the forwarding problem, can be used with Boost.Range.
117 */
118 template< class System , class StateInOut >
119 void do_step( System system , StateInOut &state , time_type t , time_type dt )
120 {
121 typedef typename odeint::unwrap_reference< System >::type system_type;
122 do_step_impl( system , state , t , state , dt , typename is_pair< system_type >::type() );
123 }
124
125
126
127
128 /*
129 * Version 2 : do_step( system , q , p , t , dt );
130 *
131 * For Convenience
132 *
133 * The two overloads are needed in order to solve the forwarding problem.
134 */
135 template< class System , class CoorInOut , class MomentumInOut >
136 void do_step( System system , CoorInOut &q , MomentumInOut &p , time_type t , time_type dt )
137 {
138 do_step( system , std::make_pair( detail::ref( q ) , detail::ref( p ) ) , t , dt );
139 }
140
141 /**
142 * \brief Same function as do_step( system , q , p , t , dt ). It differs only in a different const specifier in order
143 * to solve the forwarding problem, can be called with Boost.Range.
144 */
145 template< class System , class CoorInOut , class MomentumInOut >
146 void do_step( System system , const CoorInOut &q , const MomentumInOut &p , time_type t , time_type dt )
147 {
148 do_step( system , std::make_pair( detail::ref( q ) , detail::ref( p ) ) , t , dt );
149 }
150
151
152
153
154
155 /*
156 * Version 3 : do_step( system , in , t , out , dt )
157 *
158 * The forwarding problem is not solved in this version
159 */
160 template< class System , class StateIn , class StateOut >
161 void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
162 {
163 typedef typename odeint::unwrap_reference< System >::type system_type;
164 do_step_impl( system , in , t , out , dt , typename is_pair< system_type >::type() );
165 }
166
167
168 template< class StateType >
169 void adjust_size( const StateType &x )
170 {
171 resize_dqdt( x );
172 resize_dpdt( x );
173 }
174
175 /** \brief Returns the coefficients a. */
176 const coef_type& coef_a( void ) const { return m_coef_a; }
177
178 /** \brief Returns the coefficients b. */
179 const coef_type& coef_b( void ) const { return m_coef_b; }
180
181 private:
182
183 // stepper for systems with function for dq/dt = f(p) and dp/dt = -f(q)
184 template< class System , class StateIn , class StateOut >
185 void do_step_impl( System system , const StateIn &in , time_type /* t */ , StateOut &out , time_type dt , boost::mpl::true_ )
186 {
187 typedef typename odeint::unwrap_reference< System >::type system_type;
188 typedef typename odeint::unwrap_reference< typename system_type::first_type >::type coor_deriv_func_type;
189 typedef typename odeint::unwrap_reference< typename system_type::second_type >::type momentum_deriv_func_type;
190 system_type &sys = system;
191 coor_deriv_func_type &coor_func = sys.first;
192 momentum_deriv_func_type &momentum_func = sys.second;
193
194 typedef typename odeint::unwrap_reference< StateIn >::type state_in_type;
195 typedef typename odeint::unwrap_reference< typename state_in_type::first_type >::type coor_in_type;
196 typedef typename odeint::unwrap_reference< typename state_in_type::second_type >::type momentum_in_type;
197 const state_in_type &state_in = in;
198 const coor_in_type &coor_in = state_in.first;
199 const momentum_in_type &momentum_in = state_in.second;
200
201 typedef typename odeint::unwrap_reference< StateOut >::type state_out_type;
202 typedef typename odeint::unwrap_reference< typename state_out_type::first_type >::type coor_out_type;
203 typedef typename odeint::unwrap_reference< typename state_out_type::second_type >::type momentum_out_type;
204 state_out_type &state_out = out;
205 coor_out_type &coor_out = state_out.first;
206 momentum_out_type &momentum_out = state_out.second;
207
208 m_dqdt_resizer.adjust_size( coor_in , detail::bind( &internal_stepper_base_type::template resize_dqdt< coor_in_type > , detail::ref( *this ) , detail::_1 ) );
209 m_dpdt_resizer.adjust_size( momentum_in , detail::bind( &internal_stepper_base_type::template resize_dpdt< momentum_in_type > , detail::ref( *this ) , detail::_1 ) );
210
211 // ToDo: check sizes?
212
213 for( size_t l=0 ; l<num_of_stages ; ++l )
214 {
215 if( l == 0 )
216 {
217 coor_func( momentum_in , m_dqdt.m_v );
218 this->m_algebra.for_each3( coor_out , coor_in , m_dqdt.m_v ,
219 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) );
220 momentum_func( coor_out , m_dpdt.m_v );
221 this->m_algebra.for_each3( momentum_out , momentum_in , m_dpdt.m_v ,
222 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) );
223 }
224 else
225 {
226 coor_func( momentum_out , m_dqdt.m_v );
227 this->m_algebra.for_each3( coor_out , coor_out , m_dqdt.m_v ,
228 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) );
229 momentum_func( coor_out , m_dpdt.m_v );
230 this->m_algebra.for_each3( momentum_out , momentum_out , m_dpdt.m_v ,
231 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) );
232 }
233 }
234 }
235
236
237 // stepper for systems with only function dp /dt = -f(q), dq/dt = p, time not required but still expected for compatibility reasons
238 template< class System , class StateIn , class StateOut >
239 void do_step_impl( System system , const StateIn &in , time_type /* t */ , StateOut &out , time_type dt , boost::mpl::false_ )
240 {
241 typedef typename odeint::unwrap_reference< System >::type momentum_deriv_func_type;
242 momentum_deriv_func_type &momentum_func = system;
243
244 typedef typename odeint::unwrap_reference< StateIn >::type state_in_type;
245 typedef typename odeint::unwrap_reference< typename state_in_type::first_type >::type coor_in_type;
246 typedef typename odeint::unwrap_reference< typename state_in_type::second_type >::type momentum_in_type;
247 const state_in_type &state_in = in;
248 const coor_in_type &coor_in = state_in.first;
249 const momentum_in_type &momentum_in = state_in.second;
250
251 typedef typename odeint::unwrap_reference< StateOut >::type state_out_type;
252 typedef typename odeint::unwrap_reference< typename state_out_type::first_type >::type coor_out_type;
253 typedef typename odeint::unwrap_reference< typename state_out_type::second_type >::type momentum_out_type;
254 state_out_type &state_out = out;
255 coor_out_type &coor_out = state_out.first;
256 momentum_out_type &momentum_out = state_out.second;
257
258
259 // m_dqdt not required when called with momentum_func only - don't resize
260 // m_dqdt_resizer.adjust_size( coor_in , detail::bind( &internal_stepper_base_type::template resize_dqdt< coor_in_type > , detail::ref( *this ) , detail::_1 ) );
261 m_dpdt_resizer.adjust_size( momentum_in , detail::bind( &internal_stepper_base_type::template resize_dpdt< momentum_in_type > , detail::ref( *this ) , detail::_1 ) );
262
263
264 // ToDo: check sizes?
265
266 // step 0
267 this->m_algebra.for_each3( coor_out , coor_in , momentum_in ,
268 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[0] * dt ) );
269 momentum_func( coor_out , m_dpdt.m_v );
270 this->m_algebra.for_each3( momentum_out , momentum_in , m_dpdt.m_v ,
271 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[0] * dt ) );
272
273 for( size_t l=1 ; l<num_of_stages ; ++l )
274 {
275 this->m_algebra.for_each3( coor_out , coor_out , momentum_out ,
276 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) );
277 momentum_func( coor_out , m_dpdt.m_v );
278 this->m_algebra.for_each3( momentum_out , momentum_out , m_dpdt.m_v ,
279 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) );
280 }
281 }
282
283 template< class StateIn >
284 bool resize_dqdt( const StateIn &x )
285 {
286 return adjust_size_by_resizeability( m_dqdt , x , typename is_resizeable<coor_deriv_type>::type() );
287 }
288
289 template< class StateIn >
290 bool resize_dpdt( const StateIn &x )
291 {
292 return adjust_size_by_resizeability( m_dpdt , x , typename is_resizeable<momentum_deriv_type>::type() );
293 }
294
295
296 const coef_type m_coef_a;
297 const coef_type m_coef_b;
298
299 resizer_type m_dqdt_resizer;
300 resizer_type m_dpdt_resizer;
301 wrapped_coor_deriv_type m_dqdt;
302 wrapped_momentum_deriv_type m_dpdt;
303
304 };
305
306 /********* DOXYGEN *********/
307
308 /**
309 * \class symplectic_nystroem_stepper_base
310 * \brief Base class for all symplectic steppers of Nystroem type.
311 *
312 * This class is the base class for the symplectic Runge-Kutta-Nystroem steppers. Symplectic steppers are usually
313 * used to solve Hamiltonian systems and they conserve the phase space volume, see
314 * <a href="http://en.wikipedia.org/wiki/Symplectic_integrator">en.wikipedia.org/wiki/Symplectic_integrator</a>.
315 * Furthermore, the energy is conserved
316 * in average. In detail this class of steppers can be used to solve separable Hamiltonian systems which can be written
317 * in the form H(q,p) = H1(p) + H2(q). q is usually called the coordinate, while p is the momentum. The equations of motion
318 * are dq/dt = dH1/dp, dp/dt = -dH2/dq.
319 *
320 * ToDo : add formula for solver and explanation of the coefficients
321 *
322 * symplectic_nystroem_stepper_base uses odeints algebra and operation system. Step size and error estimation are not
323 * provided for this class of solvers. It derives from algebra_stepper_base. Several `do_step` variants are provided:
324 *
325 * - `do_step( sys , x , t , dt )` - The classical `do_step` method. The sys can be either a pair of function objects
326 * for the coordinate or the momentum part or one function object for the momentum part. `x` is a pair of coordinate
327 * and momentum. The state is updated in-place.
328 * - `do_step( sys , q , p , t , dt )` - This method is similar to the method above with the difference that the coordinate
329 * and the momentum are passed explicitly and not packed into a pair.
330 * - `do_step( sys , x_in , t , x_out , dt )` - This method transforms the state out-of-place. `x_in` and `x_out` are here pairs
331 * of coordinate and momentum.
332 *
333 * \tparam NumOfStages Number of stages.
334 * \tparam Order The order of the stepper.
335 * \tparam Coor The type representing the coordinates q.
336 * \tparam Momentum The type representing the coordinates p.
337 * \tparam Value The basic value type. Should be something like float, double or a high-precision type.
338 * \tparam CoorDeriv The type representing the time derivative of the coordinate dq/dt.
339 * \tparam MomemtnumDeriv The type representing the time derivative of the momentum dp/dt.
340 * \tparam Time The type representing the time t.
341 * \tparam Algebra The algebra.
342 * \tparam Operations The operations.
343 * \tparam Resizer The resizer policy.
344 */
345
346 /**
347 * \fn symplectic_nystroem_stepper_base::symplectic_nystroem_stepper_base( const coef_type &coef_a , const coef_type &coef_b , const algebra_type &algebra )
348 * \brief Constructs a symplectic_nystroem_stepper_base class. The parameters of the specific Nystroem method and the
349 * algebra have to be passed.
350 * \param coef_a The coefficients a.
351 * \param coef_b The coefficients b.
352 * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
353 */
354
355 /**
356 * \fn symplectic_nystroem_stepper_base::order( void ) const
357 * \return Returns the order of the stepper.
358 */
359
360 /**
361 * \fn symplectic_nystroem_stepper_base::do_step( System system , const StateInOut &state , time_type t , time_type dt )
362 * \brief This method performs one step. The system can be either a pair of two function object
363 * describing the momentum part and the coordinate part or one function object describing only
364 * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state
365 * is updated in-place.
366 *
367 * \note boost::ref or std::ref can be used for the system as well as for the state. So, it is correct
368 * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , make_pair( std::ref( q ) , std::ref( p ) ) , t , dt )`.
369 *
370 * \note This method solves the forwarding problem.
371 *
372 * \param system The system, can be represented as a pair of two function object or one function object. See above.
373 * \param state The state of the ODE. It is a pair of Coor and Momentum. The state is updated in-place, therefore, the
374 * new value of the state will be written into this variable.
375 * \param t The time of the ODE. It is not advanced by this method.
376 * \param dt The time step.
377 */
378
379 /**
380 * \fn symplectic_nystroem_stepper_base::do_step( System system , CoorInOut &q , MomentumInOut &p , time_type t , time_type dt )
381 * \brief This method performs one step. The system can be either a pair of two function object
382 * describing the momentum part and the coordinate part or one function object describing only
383 * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state
384 * is updated in-place.
385 *
386 * \note boost::ref or std::ref can be used for the system. So, it is correct
387 * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , q , p , t , dt )`.
388 *
389 * \note This method solves the forwarding problem.
390 *
391 * \param system The system, can be represented as a pair of two function object or one function object. See above.
392 * \param q The coordinate of the ODE. It is updated in-place. Therefore, the new value of the coordinate will be written
393 * into this variable.
394 * \param p The momentum of the ODE. It is updated in-place. Therefore, the new value of the momentum will be written info
395 * this variable.
396 * \param t The time of the ODE. It is not advanced by this method.
397 * \param dt The time step.
398 */
399
400 /**
401 * \fn symplectic_nystroem_stepper_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
402 * \brief This method performs one step. The system can be either a pair of two function object
403 * describing the momentum part and the coordinate part or one function object describing only
404 * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state
405 * is updated out-of-place.
406 *
407 * \note boost::ref or std::ref can be used for the system. So, it is correct
408 * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , x_in , t , x_out , dt )`.
409 *
410 * \note This method NOT solve the forwarding problem.
411 *
412 * \param system The system, can be represented as a pair of two function object or one function object. See above.
413 * \param in The state of the ODE, which is a pair of coordinate and momentum. The state is updated out-of-place, therefore the
414 * new value is written into out
415 * \param t The time of the ODE. It is not advanced by this method.
416 * \param out The new state of the ODE.
417 * \param dt The time step.
418 */
419
420 /**
421 * \fn symplectic_nystroem_stepper_base::adjust_size( const StateType &x )
422 * \brief Adjust the size of all temporaries in the stepper manually.
423 * \param x A state from which the size of the temporaries to be resized is deduced.
424 */
425
426 } // namespace odeint
427 } // namespace numeric
428 } // namespace boost
429
430
431 #endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED