]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/polygon/include/boost/polygon/detail/max_cover.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / polygon / include / boost / polygon / detail / max_cover.hpp
1 /*
2 Copyright 2008 Intel Corporation
3
4 Use, modification and distribution are subject to the Boost Software License,
5 Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
6 http://www.boost.org/LICENSE_1_0.txt).
7 */
8 #ifndef BOOST_POLYGON_MAX_COVER_HPP
9 #define BOOST_POLYGON_MAX_COVER_HPP
10 namespace boost { namespace polygon{
11
12 template <typename Unit>
13 struct MaxCover {
14 typedef interval_data<Unit> Interval;
15 typedef rectangle_data<Unit> Rectangle;
16
17 class Node {
18 private:
19 std::vector<Node*> children_;
20 std::set<Interval> tracedPaths_;
21 public:
22 Rectangle rect;
23 Node() : children_(), tracedPaths_(), rect() {}
24 Node(const Rectangle rectIn) : children_(), tracedPaths_(), rect(rectIn) {}
25 typedef typename std::vector<Node*>::iterator iterator;
26 inline iterator begin() { return children_.begin(); }
27 inline iterator end() { return children_.end(); }
28 inline void add(Node* child) { children_.push_back(child); }
29 inline bool tracedPath(const Interval& ivl) const {
30 return tracedPaths_.find(ivl) != tracedPaths_.end();
31 }
32 inline void addPath(const Interval& ivl) {
33 tracedPaths_.insert(tracedPaths_.end(), ivl);
34 }
35 };
36
37 typedef std::pair<std::pair<Unit, Interval>, Node* > EdgeAssociation;
38
39 class lessEdgeAssociation : public std::binary_function<const EdgeAssociation&, const EdgeAssociation&, bool> {
40 public:
41 inline lessEdgeAssociation() {}
42 inline bool operator () (const EdgeAssociation& elem1, const EdgeAssociation& elem2) const {
43 if(elem1.first.first < elem2.first.first) return true;
44 if(elem1.first.first > elem2.first.first) return false;
45 return elem1.first.second < elem2.first.second;
46 }
47 };
48
49 template <class cT>
50 static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient) {
51 Interval rectIvl = node->rect.get(orient);
52 if(node->tracedPath(rectIvl)) {
53 return;
54 }
55 node->addPath(rectIvl);
56 if(node->begin() == node->end()) {
57 //std::cout << "WRITE OUT 3: " << node->rect << std::endl;
58 outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(node->rect));
59 return;
60 }
61 bool writeOut = true;
62 for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) {
63 getMaxCover(outputContainer, *itr, orient, node->rect); //get rectangles down path
64 Interval nodeIvl = (*itr)->rect.get(orient);
65 if(contains(nodeIvl, rectIvl, true)) writeOut = false;
66 }
67 if(writeOut) {
68 //std::cout << "WRITE OUT 2: " << node->rect << std::endl;
69 outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(node->rect));
70 }
71 }
72
73 struct stack_element {
74 inline stack_element() :
75 node(), rect(), itr() {}
76 inline stack_element(Node* n,
77 const Rectangle& r,
78 typename Node::iterator i) :
79 node(n), rect(r), itr(i) {}
80 Node* node;
81 Rectangle rect;
82 typename Node::iterator itr;
83 };
84
85 template <class cT>
86 static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient,
87 Rectangle rect) {
88 //std::cout << "New Root\n";
89 std::vector<stack_element> stack;
90 typename Node::iterator itr = node->begin();
91 do {
92 //std::cout << "LOOP\n";
93 //std::cout << node->rect << std::endl;
94 Interval rectIvl = rect.get(orient);
95 Interval nodeIvl = node->rect.get(orient);
96 bool iresult = intersect(rectIvl, nodeIvl, false);
97 bool tresult = !node->tracedPath(rectIvl);
98 //std::cout << (itr != node->end()) << " " << iresult << " " << tresult << std::endl;
99 Rectangle nextRect1 = Rectangle(rectIvl, rectIvl);
100 Unit low = rect.get(orient.get_perpendicular()).low();
101 Unit high = node->rect.get(orient.get_perpendicular()).high();
102 nextRect1.set(orient.get_perpendicular(), Interval(low, high));
103 if(iresult && tresult) {
104 node->addPath(rectIvl);
105 bool writeOut = true;
106 //check further visibility beyond this node
107 for(typename Node::iterator itr2 = node->begin(); itr2 != node->end(); ++itr2) {
108 Interval nodeIvl3 = (*itr2)->rect.get(orient);
109 //if a child of this node can contain the interval then we can extend through
110 if(contains(nodeIvl3, rectIvl, true)) writeOut = false;
111 //std::cout << "child " << (*itr2)->rect << std::endl;
112 }
113 Rectangle nextRect2 = Rectangle(rectIvl, rectIvl);
114 Unit low2 = rect.get(orient.get_perpendicular()).low();
115 Unit high2 = node->rect.get(orient.get_perpendicular()).high();
116 nextRect2.set(orient.get_perpendicular(), Interval(low2, high2));
117 if(writeOut) {
118 //std::cout << "write out " << nextRect << std::endl;
119 outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect2));
120 } else {
121 //std::cout << "suppress " << nextRect << std::endl;
122 }
123 }
124 if(itr != node->end() && iresult && tresult) {
125 //std::cout << "recurse into child\n";
126 stack.push_back(stack_element(node, rect, itr));
127 rect = nextRect1;
128 node = *itr;
129 itr = node->begin();
130 } else {
131 if(!stack.empty()) {
132 //std::cout << "recurse out of child\n";
133 node = stack.back().node;
134 rect = stack.back().rect;
135 itr = stack.back().itr;
136 stack.pop_back();
137 } else {
138 //std::cout << "empty stack\n";
139 //if there were no children of the root node
140 // Rectangle nextRect = Rectangle(rectIvl, rectIvl);
141 // Unit low = rect.get(orient.get_perpendicular()).low();
142 // Unit high = node->rect.get(orient.get_perpendicular()).high();
143 // nextRect.set(orient.get_perpendicular(), Interval(low, high));
144 // outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect));
145 }
146 //std::cout << "increment " << (itr != node->end()) << std::endl;
147 if(itr != node->end()) {
148 ++itr;
149 if(itr != node->end()) {
150 //std::cout << "recurse into next child.\n";
151 stack.push_back(stack_element(node, rect, itr));
152 Interval rectIvl2 = rect.get(orient);
153 Interval nodeIvl2 = node->rect.get(orient);
154 /*bool iresult =*/ intersect(rectIvl2, nodeIvl2, false);
155 Rectangle nextRect2 = Rectangle(rectIvl2, rectIvl2);
156 Unit low2 = rect.get(orient.get_perpendicular()).low();
157 Unit high2 = node->rect.get(orient.get_perpendicular()).high();
158 nextRect2.set(orient.get_perpendicular(), Interval(low2, high2));
159 rect = nextRect2;
160 //std::cout << "rect for next child" << rect << std::endl;
161 node = *itr;
162 itr = node->begin();
163 }
164 }
165 }
166 } while(!stack.empty() || itr != node->end());
167 }
168
169 /* Function recursive version of getMaxCover
170 Because the code is so much simpler than the loop algorithm I retain it for clarity
171
172 template <class cT>
173 static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient,
174 const Rectangle& rect) {
175 Interval rectIvl = rect.get(orient);
176 Interval nodeIvl = node->rect.get(orient);
177 if(!intersect(rectIvl, nodeIvl, false)) {
178 return;
179 }
180 if(node->tracedPath(rectIvl)) {
181 return;
182 }
183 node->addPath(rectIvl);
184 Rectangle nextRect(rectIvl, rectIvl);
185 Unit low = rect.get(orient.get_perpendicular()).low();
186 Unit high = node->rect.get(orient.get_perpendicular()).high();
187 nextRect.set(orient.get_perpendicular(), Interval(low, high));
188 bool writeOut = true;
189 rectIvl = nextRect.get(orient);
190 for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) {
191 nodeIvl = (*itr)->rect.get(orient);
192 if(contains(nodeIvl, rectIvl, true)) writeOut = false;
193 }
194 if(writeOut) {
195 outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect));
196 }
197 for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) {
198 getMaxCover(outputContainer, *itr, orient, nextRect);
199 }
200 }
201 */
202
203 //iterator range is assummed to be in topological order meaning all node's trailing
204 //edges are in sorted order
205 template <class iT>
206 static inline void computeDag(iT beginNode, iT endNode, orientation_2d orient,
207 std::size_t size) {
208 std::vector<EdgeAssociation> leadingEdges;
209 leadingEdges.reserve(size);
210 for(iT iter = beginNode; iter != endNode; ++iter) {
211 Node* nodep = &(*iter);
212 Unit leading = nodep->rect.get(orient.get_perpendicular()).low();
213 Interval rectIvl = nodep->rect.get(orient);
214 leadingEdges.push_back(EdgeAssociation(std::pair<Unit, Interval>(leading, rectIvl), nodep));
215 }
216 polygon_sort(leadingEdges.begin(), leadingEdges.end(), lessEdgeAssociation());
217 typename std::vector<EdgeAssociation>::iterator leadingBegin = leadingEdges.begin();
218 iT trailingBegin = beginNode;
219 while(leadingBegin != leadingEdges.end()) {
220 EdgeAssociation& leadingSegment = (*leadingBegin);
221 Unit trailing = (*trailingBegin).rect.get(orient.get_perpendicular()).high();
222 Interval ivl = (*trailingBegin).rect.get(orient);
223 std::pair<Unit, Interval> trailingSegment(trailing, ivl);
224 if(leadingSegment.first.first < trailingSegment.first) {
225 ++leadingBegin;
226 continue;
227 }
228 if(leadingSegment.first.first > trailingSegment.first) {
229 ++trailingBegin;
230 continue;
231 }
232 if(leadingSegment.first.second.high() <= trailingSegment.second.low()) {
233 ++leadingBegin;
234 continue;
235 }
236 if(trailingSegment.second.high() <= leadingSegment.first.second.low()) {
237 ++trailingBegin;
238 continue;
239 }
240 //leading segment intersects trailing segment
241 (*trailingBegin).add((*leadingBegin).second);
242 if(leadingSegment.first.second.high() > trailingSegment.second.high()) {
243 ++trailingBegin;
244 continue;
245 }
246 if(trailingSegment.second.high() > leadingSegment.first.second.high()) {
247 ++leadingBegin;
248 continue;
249 }
250 ++leadingBegin;
251 ++trailingBegin;
252 }
253 }
254
255 template <class cT>
256 static inline void getMaxCover(cT& outputContainer,
257 const std::vector<Rectangle>& rects, orientation_2d orient) {
258 if(rects.empty()) return;
259 std::vector<Node> nodes;
260 {
261 if(rects.size() == 1) {
262 outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(rects[0]));
263 return;
264 }
265 nodes.reserve(rects.size());
266 for(std::size_t i = 0; i < rects.size(); ++i) { nodes.push_back(Node(rects[i])); }
267 }
268 computeDag(nodes.begin(), nodes.end(), orient, nodes.size());
269 for(std::size_t i = 0; i < nodes.size(); ++i) {
270 getMaxCover(outputContainer, &(nodes[i]), orient);
271 }
272 }
273
274 };
275 }
276 }
277
278 #endif